pmap.c revision 205360
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
38 *	from: src/sys/i386/i386/pmap.c,v 1.250.2.8 2000/11/21 00:09:14 ps
39 *	JNPR: pmap.c,v 1.11.2.1 2007/08/16 11:51:06 girish
40 */
41
42/*
43 *	Manages physical address maps.
44 *
45 *	In addition to hardware address maps, this
46 *	module is called upon to provide software-use-only
47 *	maps which may or may not be stored in the same
48 *	form as hardware maps.	These pseudo-maps are
49 *	used to store intermediate results from copy
50 *	operations to and from address spaces.
51 *
52 *	Since the information managed by this module is
53 *	also stored by the logical address mapping module,
54 *	this module may throw away valid virtual-to-physical
55 *	mappings at almost any time.  However, invalidations
56 *	of virtual-to-physical mappings must be done as
57 *	requested.
58 *
59 *	In order to cope with hardware architectures which
60 *	make virtual-to-physical map invalidates expensive,
61 *	this module may delay invalidate or reduced protection
62 *	operations until such time as they are actually
63 *	necessary.  This module is given full information as
64 *	to which processors are currently using which maps,
65 *	and to when physical maps must be made correct.
66 */
67
68#include <sys/cdefs.h>
69__FBSDID("$FreeBSD: head/sys/mips/mips/pmap.c 205360 2010-03-20 05:07:15Z neel $");
70
71#include "opt_ddb.h"
72#include "opt_msgbuf.h"
73#include <sys/param.h>
74#include <sys/systm.h>
75#include <sys/proc.h>
76#include <sys/msgbuf.h>
77#include <sys/vmmeter.h>
78#include <sys/mman.h>
79#include <sys/smp.h>
80
81#include <vm/vm.h>
82#include <vm/vm_param.h>
83#include <sys/lock.h>
84#include <sys/mutex.h>
85#include <vm/vm_kern.h>
86#include <vm/vm_page.h>
87#include <vm/vm_map.h>
88#include <vm/vm_object.h>
89#include <vm/vm_extern.h>
90#include <vm/vm_pageout.h>
91#include <vm/vm_pager.h>
92#include <vm/uma.h>
93#include <sys/pcpu.h>
94#include <sys/sched.h>
95#ifdef SMP
96#include <sys/smp.h>
97#endif
98
99#include <machine/cache.h>
100#include <machine/md_var.h>
101
102#if defined(DIAGNOSTIC)
103#define	PMAP_DIAGNOSTIC
104#endif
105
106#undef PMAP_DEBUG
107
108#ifndef PMAP_SHPGPERPROC
109#define	PMAP_SHPGPERPROC 200
110#endif
111
112#if !defined(PMAP_DIAGNOSTIC)
113#define	PMAP_INLINE __inline
114#else
115#define	PMAP_INLINE
116#endif
117
118/*
119 * Get PDEs and PTEs for user/kernel address space
120 */
121#define	pmap_pde(m, v)	       (&((m)->pm_segtab[(vm_offset_t)(v) >> SEGSHIFT]))
122#define	segtab_pde(m, v)	(m[(vm_offset_t)(v) >> SEGSHIFT])
123
124#define	pmap_pte_w(pte)		((*(int *)pte & PTE_W) != 0)
125#define	pmap_pde_v(pte)		((*(int *)pte) != 0)
126#define	pmap_pte_m(pte)		((*(int *)pte & PTE_M) != 0)
127#define	pmap_pte_v(pte)		((*(int *)pte & PTE_V) != 0)
128
129#define	pmap_pte_set_w(pte, v)	((v)?(*(int *)pte |= PTE_W):(*(int *)pte &= ~PTE_W))
130#define	pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
131
132#define	MIPS_SEGSIZE		(1L << SEGSHIFT)
133#define	mips_segtrunc(va)	((va) & ~(MIPS_SEGSIZE-1))
134#define	pmap_TLB_invalidate_all() MIPS_TBIAP()
135#define	pmap_va_asid(pmap, va)	((va) | ((pmap)->pm_asid[PCPU_GET(cpuid)].asid << VMTLB_PID_SHIFT))
136#define	is_kernel_pmap(x)	((x) == kernel_pmap)
137
138struct pmap kernel_pmap_store;
139pd_entry_t *kernel_segmap;
140
141vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
142vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
143
144static int nkpt;
145unsigned pmap_max_asid;		/* max ASID supported by the system */
146
147
148#define	PMAP_ASID_RESERVED	0
149
150
151vm_offset_t kernel_vm_end;
152
153static struct tlb tlbstash[MAXCPU][MIPS_MAX_TLB_ENTRIES];
154
155static void pmap_asid_alloc(pmap_t pmap);
156
157/*
158 * Data for the pv entry allocation mechanism
159 */
160static uma_zone_t pvzone;
161static struct vm_object pvzone_obj;
162static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
163
164struct fpage fpages_shared[FPAGES_SHARED];
165
166struct sysmaps sysmaps_pcpu[MAXCPU];
167
168static PMAP_INLINE void free_pv_entry(pv_entry_t pv);
169static pv_entry_t get_pv_entry(pmap_t locked_pmap);
170static __inline void pmap_changebit(vm_page_t m, int bit, boolean_t setem);
171
172static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
173    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
174static int pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va);
175static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
176static void pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va);
177static boolean_t pmap_testbit(vm_page_t m, int bit);
178static void
179pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte,
180    vm_page_t m, boolean_t wired);
181static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte,
182    vm_offset_t va, vm_page_t m);
183
184static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
185
186static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
187static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
188static int init_pte_prot(vm_offset_t va, vm_page_t m, vm_prot_t prot);
189static void pmap_TLB_invalidate_kernel(vm_offset_t);
190static void pmap_TLB_update_kernel(vm_offset_t, pt_entry_t);
191static void pmap_init_fpage(void);
192
193#ifdef SMP
194static void pmap_invalidate_page_action(void *arg);
195static void pmap_invalidate_all_action(void *arg);
196static void pmap_update_page_action(void *arg);
197
198#endif
199
200struct local_sysmaps {
201	struct mtx lock;
202	pt_entry_t CMAP1;
203	pt_entry_t CMAP2;
204	caddr_t CADDR1;
205	caddr_t CADDR2;
206	uint16_t valid1, valid2;
207};
208
209/* This structure is for large memory
210 * above 512Meg. We can't (in 32 bit mode)
211 * just use the direct mapped MIPS_KSEG0_TO_PHYS()
212 * macros since we can't see the memory and must
213 * map it in when we need to access it. In 64
214 * bit mode this goes away.
215 */
216static struct local_sysmaps sysmap_lmem[MAXCPU];
217caddr_t virtual_sys_start = (caddr_t)0;
218
219pd_entry_t
220pmap_segmap(pmap_t pmap, vm_offset_t va)
221{
222	if (pmap->pm_segtab)
223		return (pmap->pm_segtab[((vm_offset_t)(va) >> SEGSHIFT)]);
224	else
225		return ((pd_entry_t)0);
226}
227
228/*
229 *	Routine:	pmap_pte
230 *	Function:
231 *		Extract the page table entry associated
232 *		with the given map/virtual_address pair.
233 */
234pt_entry_t *
235pmap_pte(pmap_t pmap, vm_offset_t va)
236{
237	pt_entry_t *pdeaddr;
238
239	if (pmap) {
240		pdeaddr = (pt_entry_t *)pmap_segmap(pmap, va);
241		if (pdeaddr) {
242			return pdeaddr + vad_to_pte_offset(va);
243		}
244	}
245	return ((pt_entry_t *)0);
246}
247
248
249vm_offset_t
250pmap_steal_memory(vm_size_t size)
251{
252	vm_size_t bank_size;
253	vm_offset_t pa, va;
254
255	size = round_page(size);
256
257	bank_size = phys_avail[1] - phys_avail[0];
258	while (size > bank_size) {
259		int i;
260
261		for (i = 0; phys_avail[i + 2]; i += 2) {
262			phys_avail[i] = phys_avail[i + 2];
263			phys_avail[i + 1] = phys_avail[i + 3];
264		}
265		phys_avail[i] = 0;
266		phys_avail[i + 1] = 0;
267		if (!phys_avail[0])
268			panic("pmap_steal_memory: out of memory");
269		bank_size = phys_avail[1] - phys_avail[0];
270	}
271
272	pa = phys_avail[0];
273	phys_avail[0] += size;
274	if (pa >= MIPS_KSEG0_LARGEST_PHYS) {
275		panic("Out of memory below 512Meg?");
276	}
277	va = MIPS_PHYS_TO_KSEG0(pa);
278	bzero((caddr_t)va, size);
279	return va;
280}
281
282/*
283 *	Bootstrap the system enough to run with virtual memory.  This
284 * assumes that the phys_avail array has been initialized.
285 */
286void
287pmap_bootstrap(void)
288{
289	pt_entry_t *pgtab;
290	pt_entry_t *pte;
291	int i, j;
292	int memory_larger_than_512meg = 0;
293
294	/* Sort. */
295again:
296	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
297		/*
298		 * Keep the memory aligned on page boundary.
299		 */
300		phys_avail[i] = round_page(phys_avail[i]);
301		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
302
303		if (phys_avail[i + 1] >= MIPS_KSEG0_LARGEST_PHYS)
304			memory_larger_than_512meg++;
305		if (i < 2)
306			continue;
307		if (phys_avail[i - 2] > phys_avail[i]) {
308			vm_paddr_t ptemp[2];
309
310
311			ptemp[0] = phys_avail[i + 0];
312			ptemp[1] = phys_avail[i + 1];
313
314			phys_avail[i + 0] = phys_avail[i - 2];
315			phys_avail[i + 1] = phys_avail[i - 1];
316
317			phys_avail[i - 2] = ptemp[0];
318			phys_avail[i - 1] = ptemp[1];
319			goto again;
320		}
321	}
322
323	/*
324	 * Copy the phys_avail[] array before we start stealing memory from it.
325	 */
326	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
327		physmem_desc[i] = phys_avail[i];
328		physmem_desc[i + 1] = phys_avail[i + 1];
329	}
330
331	Maxmem = atop(phys_avail[i - 1]);
332
333	if (bootverbose) {
334		printf("Physical memory chunk(s):\n");
335		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
336			vm_paddr_t size;
337
338			size = phys_avail[i + 1] - phys_avail[i];
339			printf("%#08jx - %#08jx, %ju bytes (%ju pages)\n",
340			    (uintmax_t) phys_avail[i],
341			    (uintmax_t) phys_avail[i + 1] - 1,
342			    (uintmax_t) size, (uintmax_t) size / PAGE_SIZE);
343		}
344		printf("Maxmem is 0x%0lx\n", ptoa(Maxmem));
345	}
346	/*
347	 * Steal the message buffer from the beginning of memory.
348	 */
349	msgbufp = (struct msgbuf *)pmap_steal_memory(MSGBUF_SIZE);
350	msgbufinit(msgbufp, MSGBUF_SIZE);
351
352	/*
353	 * Steal thread0 kstack.
354	 */
355	kstack0 = pmap_steal_memory(KSTACK_PAGES << PAGE_SHIFT);
356
357
358	virtual_avail = VM_MIN_KERNEL_ADDRESS + VM_KERNEL_ALLOC_OFFSET;
359	virtual_end = VM_MAX_KERNEL_ADDRESS;
360
361#ifdef SMP
362	/*
363	 * Steal some virtual address space to map the pcpu area.
364	 */
365	virtual_avail = roundup2(virtual_avail, PAGE_SIZE * 2);
366	pcpup = (struct pcpu *)virtual_avail;
367	virtual_avail += PAGE_SIZE * 2;
368
369	/*
370	 * Initialize the wired TLB entry mapping the pcpu region for
371	 * the BSP at 'pcpup'. Up until this point we were operating
372	 * with the 'pcpup' for the BSP pointing to a virtual address
373	 * in KSEG0 so there was no need for a TLB mapping.
374	 */
375	mips_pcpu_tlb_init(PCPU_ADDR(0));
376
377	if (bootverbose)
378		printf("pcpu is available at virtual address %p.\n", pcpup);
379#endif
380
381	/*
382	 * Steal some virtual space that will not be in kernel_segmap. This
383	 * va memory space will be used to map in kernel pages that are
384	 * outside the 512Meg region. Note that we only do this steal when
385	 * we do have memory in this region, that way for systems with
386	 * smaller memory we don't "steal" any va ranges :-)
387	 */
388	if (memory_larger_than_512meg) {
389		for (i = 0; i < MAXCPU; i++) {
390			sysmap_lmem[i].CMAP1 = PTE_G;
391			sysmap_lmem[i].CMAP2 = PTE_G;
392			sysmap_lmem[i].CADDR1 = (caddr_t)virtual_avail;
393			virtual_avail += PAGE_SIZE;
394			sysmap_lmem[i].CADDR2 = (caddr_t)virtual_avail;
395			virtual_avail += PAGE_SIZE;
396			sysmap_lmem[i].valid1 = sysmap_lmem[i].valid2 = 0;
397			PMAP_LGMEM_LOCK_INIT(&sysmap_lmem[i]);
398		}
399	}
400	virtual_sys_start = (caddr_t)virtual_avail;
401	/*
402	 * Allocate segment table for the kernel
403	 */
404	kernel_segmap = (pd_entry_t *)pmap_steal_memory(PAGE_SIZE);
405
406	/*
407	 * Allocate second level page tables for the kernel
408	 */
409	nkpt = NKPT;
410	if (memory_larger_than_512meg) {
411		/*
412		 * If we have a large memory system we CANNOT afford to hit
413		 * pmap_growkernel() and allocate memory. Since we MAY end
414		 * up with a page that is NOT mappable. For that reason we
415		 * up front grab more. Normall NKPT is 120 (YMMV see pmap.h)
416		 * this gives us 480meg of kernel virtual addresses at the
417		 * cost of 120 pages (each page gets us 4 Meg). Since the
418		 * kernel starts at virtual_avail, we can use this to
419		 * calculate how many entris are left from there to the end
420		 * of the segmap, we want to allocate all of it, which would
421		 * be somewhere above 0xC0000000 - 0xFFFFFFFF which results
422		 * in about 256 entries or so instead of the 120.
423		 */
424		nkpt = (PAGE_SIZE / sizeof(pd_entry_t)) - (virtual_avail >> SEGSHIFT);
425	}
426	pgtab = (pt_entry_t *)pmap_steal_memory(PAGE_SIZE * nkpt);
427
428	/*
429	 * The R[4-7]?00 stores only one copy of the Global bit in the
430	 * translation lookaside buffer for each 2 page entry. Thus invalid
431	 * entrys must have the Global bit set so when Entry LO and Entry HI
432	 * G bits are anded together they will produce a global bit to store
433	 * in the tlb.
434	 */
435	for (i = 0, pte = pgtab; i < (nkpt * NPTEPG); i++, pte++)
436		*pte = PTE_G;
437
438	/*
439	 * The segment table contains the KVA of the pages in the second
440	 * level page table.
441	 */
442	for (i = 0, j = (virtual_avail >> SEGSHIFT); i < nkpt; i++, j++)
443		kernel_segmap[j] = (pd_entry_t)(pgtab + (i * NPTEPG));
444
445	/*
446	 * The kernel's pmap is statically allocated so we don't have to use
447	 * pmap_create, which is unlikely to work correctly at this part of
448	 * the boot sequence (XXX and which no longer exists).
449	 */
450	PMAP_LOCK_INIT(kernel_pmap);
451	kernel_pmap->pm_segtab = kernel_segmap;
452	kernel_pmap->pm_active = ~0;
453	TAILQ_INIT(&kernel_pmap->pm_pvlist);
454	kernel_pmap->pm_asid[0].asid = PMAP_ASID_RESERVED;
455	kernel_pmap->pm_asid[0].gen = 0;
456	pmap_max_asid = VMNUM_PIDS;
457	MachSetPID(0);
458}
459
460/*
461 * Initialize a vm_page's machine-dependent fields.
462 */
463void
464pmap_page_init(vm_page_t m)
465{
466
467	TAILQ_INIT(&m->md.pv_list);
468	m->md.pv_list_count = 0;
469	m->md.pv_flags = 0;
470}
471
472/*
473 *	Initialize the pmap module.
474 *	Called by vm_init, to initialize any structures that the pmap
475 *	system needs to map virtual memory.
476 *	pmap_init has been enhanced to support in a fairly consistant
477 *	way, discontiguous physical memory.
478 */
479void
480pmap_init(void)
481{
482
483	if (need_wired_tlb_page_pool)
484		pmap_init_fpage();
485	/*
486	 * Initialize the address space (zone) for the pv entries.  Set a
487	 * high water mark so that the system can recover from excessive
488	 * numbers of pv entries.
489	 */
490	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
491	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
492	pv_entry_max = PMAP_SHPGPERPROC * maxproc + cnt.v_page_count;
493	pv_entry_high_water = 9 * (pv_entry_max / 10);
494	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
495}
496
497/***************************************************
498 * Low level helper routines.....
499 ***************************************************/
500
501#if defined(PMAP_DIAGNOSTIC)
502
503/*
504 * This code checks for non-writeable/modified pages.
505 * This should be an invalid condition.
506 */
507static int
508pmap_nw_modified(pt_entry_t pte)
509{
510	if ((pte & (PTE_M | PTE_RO)) == (PTE_M | PTE_RO))
511		return (1);
512	else
513		return (0);
514}
515
516#endif
517
518static void
519pmap_invalidate_all(pmap_t pmap)
520{
521#ifdef SMP
522	smp_rendezvous(0, pmap_invalidate_all_action, 0, (void *)pmap);
523}
524
525static void
526pmap_invalidate_all_action(void *arg)
527{
528	pmap_t pmap = (pmap_t)arg;
529
530#endif
531
532	if (pmap->pm_active & PCPU_GET(cpumask)) {
533		pmap_TLB_invalidate_all();
534	} else
535		pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
536}
537
538struct pmap_invalidate_page_arg {
539	pmap_t pmap;
540	vm_offset_t va;
541};
542
543static __inline void
544pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
545{
546#ifdef SMP
547	struct pmap_invalidate_page_arg arg;
548
549	arg.pmap = pmap;
550	arg.va = va;
551
552	smp_rendezvous(0, pmap_invalidate_page_action, 0, (void *)&arg);
553}
554
555static void
556pmap_invalidate_page_action(void *arg)
557{
558	pmap_t pmap = ((struct pmap_invalidate_page_arg *)arg)->pmap;
559	vm_offset_t va = ((struct pmap_invalidate_page_arg *)arg)->va;
560
561#endif
562
563	if (is_kernel_pmap(pmap)) {
564		pmap_TLB_invalidate_kernel(va);
565		return;
566	}
567	if (pmap->pm_asid[PCPU_GET(cpuid)].gen != PCPU_GET(asid_generation))
568		return;
569	else if (!(pmap->pm_active & PCPU_GET(cpumask))) {
570		pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
571		return;
572	}
573	va = pmap_va_asid(pmap, (va & ~PGOFSET));
574	mips_TBIS(va);
575}
576
577static void
578pmap_TLB_invalidate_kernel(vm_offset_t va)
579{
580	u_int32_t pid;
581
582	MachTLBGetPID(pid);
583	va = va | (pid << VMTLB_PID_SHIFT);
584	mips_TBIS(va);
585}
586
587struct pmap_update_page_arg {
588	pmap_t pmap;
589	vm_offset_t va;
590	pt_entry_t pte;
591};
592
593void
594pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte)
595{
596#ifdef SMP
597	struct pmap_update_page_arg arg;
598
599	arg.pmap = pmap;
600	arg.va = va;
601	arg.pte = pte;
602
603	smp_rendezvous(0, pmap_update_page_action, 0, (void *)&arg);
604}
605
606static void
607pmap_update_page_action(void *arg)
608{
609	pmap_t pmap = ((struct pmap_update_page_arg *)arg)->pmap;
610	vm_offset_t va = ((struct pmap_update_page_arg *)arg)->va;
611	pt_entry_t pte = ((struct pmap_update_page_arg *)arg)->pte;
612
613#endif
614	if (is_kernel_pmap(pmap)) {
615		pmap_TLB_update_kernel(va, pte);
616		return;
617	}
618	if (pmap->pm_asid[PCPU_GET(cpuid)].gen != PCPU_GET(asid_generation))
619		return;
620	else if (!(pmap->pm_active & PCPU_GET(cpumask))) {
621		pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
622		return;
623	}
624	va = pmap_va_asid(pmap, va);
625	MachTLBUpdate(va, pte);
626}
627
628static void
629pmap_TLB_update_kernel(vm_offset_t va, pt_entry_t pte)
630{
631	u_int32_t pid;
632
633	MachTLBGetPID(pid);
634	va = va | (pid << VMTLB_PID_SHIFT);
635
636	MachTLBUpdate(va, pte);
637}
638
639/*
640 *	Routine:	pmap_extract
641 *	Function:
642 *		Extract the physical page address associated
643 *		with the given map/virtual_address pair.
644 */
645vm_paddr_t
646pmap_extract(pmap_t pmap, vm_offset_t va)
647{
648	pt_entry_t *pte;
649	vm_offset_t retval = 0;
650
651	PMAP_LOCK(pmap);
652	pte = pmap_pte(pmap, va);
653	if (pte) {
654		retval = mips_tlbpfn_to_paddr(*pte) | (va & PAGE_MASK);
655	}
656	PMAP_UNLOCK(pmap);
657	return retval;
658}
659
660/*
661 *	Routine:	pmap_extract_and_hold
662 *	Function:
663 *		Atomically extract and hold the physical page
664 *		with the given pmap and virtual address pair
665 *		if that mapping permits the given protection.
666 */
667vm_page_t
668pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
669{
670	pt_entry_t pte;
671	vm_page_t m;
672
673	m = NULL;
674	vm_page_lock_queues();
675	PMAP_LOCK(pmap);
676
677	pte = *pmap_pte(pmap, va);
678	if (pte != 0 && pmap_pte_v(&pte) &&
679	    ((pte & PTE_RW) || (prot & VM_PROT_WRITE) == 0)) {
680		m = PHYS_TO_VM_PAGE(mips_tlbpfn_to_paddr(pte));
681		vm_page_hold(m);
682	}
683	vm_page_unlock_queues();
684	PMAP_UNLOCK(pmap);
685	return (m);
686}
687
688/***************************************************
689 * Low level mapping routines.....
690 ***************************************************/
691
692/*
693 * add a wired page to the kva
694 */
695 /* PMAP_INLINE */ void
696pmap_kenter(vm_offset_t va, vm_paddr_t pa)
697{
698	register pt_entry_t *pte;
699	pt_entry_t npte, opte;
700
701#ifdef PMAP_DEBUG
702	printf("pmap_kenter:  va: 0x%08x -> pa: 0x%08x\n", va, pa);
703#endif
704	npte = mips_paddr_to_tlbpfn(pa) | PTE_RW | PTE_V | PTE_G | PTE_W;
705
706	if (is_cacheable_mem(pa))
707		npte |= PTE_CACHE;
708	else
709		npte |= PTE_UNCACHED;
710
711	pte = pmap_pte(kernel_pmap, va);
712	opte = *pte;
713	*pte = npte;
714
715	pmap_update_page(kernel_pmap, va, npte);
716}
717
718/*
719 * remove a page from the kernel pagetables
720 */
721 /* PMAP_INLINE */ void
722pmap_kremove(vm_offset_t va)
723{
724	register pt_entry_t *pte;
725
726	/*
727	 * Write back all caches from the page being destroyed
728	 */
729	mips_dcache_wbinv_range_index(va, NBPG);
730
731	pte = pmap_pte(kernel_pmap, va);
732	*pte = PTE_G;
733	pmap_invalidate_page(kernel_pmap, va);
734}
735
736/*
737 *	Used to map a range of physical addresses into kernel
738 *	virtual address space.
739 *
740 *	The value passed in '*virt' is a suggested virtual address for
741 *	the mapping. Architectures which can support a direct-mapped
742 *	physical to virtual region can return the appropriate address
743 *	within that region, leaving '*virt' unchanged. Other
744 *	architectures should map the pages starting at '*virt' and
745 *	update '*virt' with the first usable address after the mapped
746 *	region.
747 */
748vm_offset_t
749pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
750{
751	vm_offset_t va, sva;
752
753	va = sva = *virt;
754	while (start < end) {
755		pmap_kenter(va, start);
756		va += PAGE_SIZE;
757		start += PAGE_SIZE;
758	}
759	*virt = va;
760	return (sva);
761}
762
763/*
764 * Add a list of wired pages to the kva
765 * this routine is only used for temporary
766 * kernel mappings that do not need to have
767 * page modification or references recorded.
768 * Note that old mappings are simply written
769 * over.  The page *must* be wired.
770 */
771void
772pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
773{
774	int i;
775	vm_offset_t origva = va;
776
777	for (i = 0; i < count; i++) {
778		pmap_flush_pvcache(m[i]);
779		pmap_kenter(va, VM_PAGE_TO_PHYS(m[i]));
780		va += PAGE_SIZE;
781	}
782
783	mips_dcache_wbinv_range_index(origva, PAGE_SIZE*count);
784}
785
786/*
787 * this routine jerks page mappings from the
788 * kernel -- it is meant only for temporary mappings.
789 */
790void
791pmap_qremove(vm_offset_t va, int count)
792{
793	/*
794	 * No need to wb/inv caches here,
795	 *   pmap_kremove will do it for us
796	 */
797
798	while (count-- > 0) {
799		pmap_kremove(va);
800		va += PAGE_SIZE;
801	}
802}
803
804/***************************************************
805 * Page table page management routines.....
806 ***************************************************/
807
808/*
809 * floating pages (FPAGES) management routines
810 *
811 * FPAGES are the reserved virtual memory areas which can be
812 * mapped to any physical memory. This gets used typically
813 * in the following functions:
814 *
815 * pmap_zero_page
816 * pmap_copy_page
817 */
818
819/*
820 * Create the floating pages, aka FPAGES!
821 */
822static void
823pmap_init_fpage()
824{
825	vm_offset_t kva;
826	int i, j;
827	struct sysmaps *sysmaps;
828
829	/*
830	 * We allocate a total of (FPAGES*MAXCPU + FPAGES_SHARED + 1) pages
831	 * at first. FPAGES & FPAGES_SHARED should be EVEN Then we'll adjust
832	 * 'kva' to be even-page aligned so that the fpage area can be wired
833	 * in the TLB with a single TLB entry.
834	 */
835	kva = kmem_alloc_nofault(kernel_map,
836	    (FPAGES * MAXCPU + 1 + FPAGES_SHARED) * PAGE_SIZE);
837	if ((void *)kva == NULL)
838		panic("pmap_init_fpage: fpage allocation failed");
839
840	/*
841	 * Make up start at an even page number so we can wire down the
842	 * fpage area in the tlb with a single tlb entry.
843	 */
844	if ((((vm_offset_t)kva) >> PGSHIFT) & 1) {
845		/*
846		 * 'kva' is not even-page aligned. Adjust it and free the
847		 * first page which is unused.
848		 */
849		kmem_free(kernel_map, (vm_offset_t)kva, NBPG);
850		kva = ((vm_offset_t)kva) + NBPG;
851	} else {
852		/*
853		 * 'kva' is even page aligned. We don't need the last page,
854		 * free it.
855		 */
856		kmem_free(kernel_map, ((vm_offset_t)kva) + FSPACE, NBPG);
857	}
858
859	for (i = 0; i < MAXCPU; i++) {
860		sysmaps = &sysmaps_pcpu[i];
861		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
862
863		/* Assign FPAGES pages to the CPU */
864		for (j = 0; j < FPAGES; j++)
865			sysmaps->fp[j].kva = kva + (j) * PAGE_SIZE;
866		kva = ((vm_offset_t)kva) + (FPAGES * PAGE_SIZE);
867	}
868
869	/*
870	 * An additional 2 pages are needed, one for pmap_zero_page_idle()
871	 * and one for coredump. These pages are shared by all cpu's
872	 */
873	fpages_shared[PMAP_FPAGE3].kva = kva;
874	fpages_shared[PMAP_FPAGE_KENTER_TEMP].kva = kva + PAGE_SIZE;
875}
876
877/*
878 * Map the page to the fpage virtual address as specified thru' fpage id
879 */
880vm_offset_t
881pmap_map_fpage(vm_paddr_t pa, struct fpage *fp, boolean_t check_unmaped)
882{
883	vm_offset_t kva;
884	register pt_entry_t *pte;
885	pt_entry_t npte;
886
887	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
888	/*
889	 * Check if the fpage is free
890	 */
891	if (fp->state) {
892		if (check_unmaped == TRUE)
893			pmap_unmap_fpage(pa, fp);
894		else
895			panic("pmap_map_fpage: fpage is busy");
896	}
897	fp->state = TRUE;
898	kva = fp->kva;
899
900	npte = mips_paddr_to_tlbpfn(pa) | PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;
901	pte = pmap_pte(kernel_pmap, kva);
902	*pte = npte;
903
904	pmap_TLB_update_kernel(kva, npte);
905
906	return (kva);
907}
908
909/*
910 * Unmap the page from the fpage virtual address as specified thru' fpage id
911 */
912void
913pmap_unmap_fpage(vm_paddr_t pa, struct fpage *fp)
914{
915	vm_offset_t kva;
916	register pt_entry_t *pte;
917
918	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
919	/*
920	 * Check if the fpage is busy
921	 */
922	if (!(fp->state)) {
923		panic("pmap_unmap_fpage: fpage is free");
924	}
925	kva = fp->kva;
926
927	pte = pmap_pte(kernel_pmap, kva);
928	*pte = PTE_G;
929	pmap_TLB_invalidate_kernel(kva);
930
931	fp->state = FALSE;
932
933	/*
934	 * Should there be any flush operation at the end?
935	 */
936}
937
938/*  Revision 1.507
939 *
940 * Simplify the reference counting of page table pages.	 Specifically, use
941 * the page table page's wired count rather than its hold count to contain
942 * the reference count.
943 */
944
945/*
946 * This routine unholds page table pages, and if the hold count
947 * drops to zero, then it decrements the wire count.
948 */
949static int
950_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
951{
952	vm_offset_t pteva;
953
954	/*
955	 * unmap the page table page
956	 */
957	pteva = (vm_offset_t)pmap->pm_segtab[m->pindex];
958	if (pteva >= VM_MIN_KERNEL_ADDRESS) {
959		pmap_kremove(pteva);
960		kmem_free(kernel_map, pteva, PAGE_SIZE);
961	} else {
962		KASSERT(MIPS_IS_KSEG0_ADDR(pteva),
963		    ("_pmap_unwire_pte_hold: 0x%0lx is not in kseg0",
964		    (long)pteva));
965	}
966
967	pmap->pm_segtab[m->pindex] = 0;
968	--pmap->pm_stats.resident_count;
969
970	if (pmap->pm_ptphint == m)
971		pmap->pm_ptphint = NULL;
972
973	/*
974	 * If the page is finally unwired, simply free it.
975	 */
976	vm_page_free_zero(m);
977	atomic_subtract_int(&cnt.v_wire_count, 1);
978	return (1);
979}
980
981static PMAP_INLINE int
982pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
983{
984	--m->wire_count;
985	if (m->wire_count == 0)
986		return (_pmap_unwire_pte_hold(pmap, m));
987	else
988		return (0);
989}
990
991/*
992 * After removing a page table entry, this routine is used to
993 * conditionally free the page, and manage the hold/wire counts.
994 */
995static int
996pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
997{
998	unsigned ptepindex;
999	pd_entry_t pteva;
1000
1001	if (va >= VM_MAXUSER_ADDRESS)
1002		return (0);
1003
1004	if (mpte == NULL) {
1005		ptepindex = (va >> SEGSHIFT);
1006		if (pmap->pm_ptphint &&
1007		    (pmap->pm_ptphint->pindex == ptepindex)) {
1008			mpte = pmap->pm_ptphint;
1009		} else {
1010			pteva = *pmap_pde(pmap, va);
1011			mpte = PHYS_TO_VM_PAGE(vtophys(pteva));
1012			pmap->pm_ptphint = mpte;
1013		}
1014	}
1015	return pmap_unwire_pte_hold(pmap, mpte);
1016}
1017
1018void
1019pmap_pinit0(pmap_t pmap)
1020{
1021	int i;
1022
1023	PMAP_LOCK_INIT(pmap);
1024	pmap->pm_segtab = kernel_segmap;
1025	pmap->pm_active = 0;
1026	pmap->pm_ptphint = NULL;
1027	for (i = 0; i < MAXCPU; i++) {
1028		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
1029		pmap->pm_asid[i].gen = 0;
1030	}
1031	PCPU_SET(curpmap, pmap);
1032	TAILQ_INIT(&pmap->pm_pvlist);
1033	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1034}
1035
1036/*
1037 * Initialize a preallocated and zeroed pmap structure,
1038 * such as one in a vmspace structure.
1039 */
1040int
1041pmap_pinit(pmap_t pmap)
1042{
1043	vm_offset_t ptdva;
1044	vm_paddr_t ptdpa;
1045	vm_page_t ptdpg;
1046	int i;
1047	int req;
1048
1049	PMAP_LOCK_INIT(pmap);
1050
1051	req = VM_ALLOC_NOOBJ | VM_ALLOC_NORMAL | VM_ALLOC_WIRED |
1052	    VM_ALLOC_ZERO;
1053
1054#ifdef VM_ALLOC_WIRED_TLB_PG_POOL
1055	if (need_wired_tlb_page_pool)
1056		req |= VM_ALLOC_WIRED_TLB_PG_POOL;
1057#endif
1058	/*
1059	 * allocate the page directory page
1060	 */
1061	while ((ptdpg = vm_page_alloc(NULL, NUSERPGTBLS, req)) == NULL)
1062		VM_WAIT;
1063
1064	ptdpg->valid = VM_PAGE_BITS_ALL;
1065
1066	ptdpa = VM_PAGE_TO_PHYS(ptdpg);
1067	if (ptdpa < MIPS_KSEG0_LARGEST_PHYS) {
1068		ptdva = MIPS_PHYS_TO_KSEG0(ptdpa);
1069	} else {
1070		ptdva = kmem_alloc_nofault(kernel_map, PAGE_SIZE);
1071		if (ptdva == 0)
1072			panic("pmap_pinit: unable to allocate kva");
1073		pmap_kenter(ptdva, ptdpa);
1074	}
1075
1076	pmap->pm_segtab = (pd_entry_t *)ptdva;
1077	if ((ptdpg->flags & PG_ZERO) == 0)
1078		bzero(pmap->pm_segtab, PAGE_SIZE);
1079
1080	pmap->pm_active = 0;
1081	pmap->pm_ptphint = NULL;
1082	for (i = 0; i < MAXCPU; i++) {
1083		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
1084		pmap->pm_asid[i].gen = 0;
1085	}
1086	TAILQ_INIT(&pmap->pm_pvlist);
1087	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1088
1089	return (1);
1090}
1091
1092/*
1093 * this routine is called if the page table page is not
1094 * mapped correctly.
1095 */
1096static vm_page_t
1097_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1098{
1099	vm_offset_t pteva, ptepa;
1100	vm_page_t m;
1101	int req;
1102
1103	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1104	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1105	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1106
1107	req = VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_NOOBJ;
1108#ifdef VM_ALLOC_WIRED_TLB_PG_POOL
1109	if (need_wired_tlb_page_pool)
1110		req |= VM_ALLOC_WIRED_TLB_PG_POOL;
1111#endif
1112	/*
1113	 * Find or fabricate a new pagetable page
1114	 */
1115	if ((m = vm_page_alloc(NULL, ptepindex, req)) == NULL) {
1116		if (flags & M_WAITOK) {
1117			PMAP_UNLOCK(pmap);
1118			vm_page_unlock_queues();
1119			VM_WAIT;
1120			vm_page_lock_queues();
1121			PMAP_LOCK(pmap);
1122		}
1123		/*
1124		 * Indicate the need to retry.	While waiting, the page
1125		 * table page may have been allocated.
1126		 */
1127		return (NULL);
1128	}
1129	if ((m->flags & PG_ZERO) == 0)
1130		pmap_zero_page(m);
1131
1132	KASSERT(m->queue == PQ_NONE,
1133	    ("_pmap_allocpte: %p->queue != PQ_NONE", m));
1134
1135	/*
1136	 * Map the pagetable page into the process address space, if it
1137	 * isn't already there.
1138	 */
1139
1140	pmap->pm_stats.resident_count++;
1141
1142	ptepa = VM_PAGE_TO_PHYS(m);
1143	if (ptepa < MIPS_KSEG0_LARGEST_PHYS) {
1144		pteva = MIPS_PHYS_TO_KSEG0(ptepa);
1145	} else {
1146		pteva = kmem_alloc_nofault(kernel_map, PAGE_SIZE);
1147		if (pteva == 0)
1148			panic("_pmap_allocpte: unable to allocate kva");
1149		pmap_kenter(pteva, ptepa);
1150	}
1151
1152	pmap->pm_segtab[ptepindex] = (pd_entry_t)pteva;
1153
1154	/*
1155	 * Set the page table hint
1156	 */
1157	pmap->pm_ptphint = m;
1158
1159	/*
1160	 * Kernel page tables are allocated in pmap_bootstrap() or
1161	 * pmap_growkernel().
1162	 */
1163	if (is_kernel_pmap(pmap))
1164		panic("_pmap_allocpte() called for kernel pmap\n");
1165
1166	m->valid = VM_PAGE_BITS_ALL;
1167	vm_page_flag_clear(m, PG_ZERO);
1168
1169	return (m);
1170}
1171
1172static vm_page_t
1173pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1174{
1175	unsigned ptepindex;
1176	vm_offset_t pteva;
1177	vm_page_t m;
1178
1179	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1180	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1181	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1182
1183	/*
1184	 * Calculate pagetable page index
1185	 */
1186	ptepindex = va >> SEGSHIFT;
1187retry:
1188	/*
1189	 * Get the page directory entry
1190	 */
1191	pteva = (vm_offset_t)pmap->pm_segtab[ptepindex];
1192
1193	/*
1194	 * If the page table page is mapped, we just increment the hold
1195	 * count, and activate it.
1196	 */
1197	if (pteva) {
1198		/*
1199		 * In order to get the page table page, try the hint first.
1200		 */
1201		if (pmap->pm_ptphint &&
1202		    (pmap->pm_ptphint->pindex == ptepindex)) {
1203			m = pmap->pm_ptphint;
1204		} else {
1205			m = PHYS_TO_VM_PAGE(vtophys(pteva));
1206			pmap->pm_ptphint = m;
1207		}
1208		m->wire_count++;
1209	} else {
1210		/*
1211		 * Here if the pte page isn't mapped, or if it has been
1212		 * deallocated.
1213		 */
1214		m = _pmap_allocpte(pmap, ptepindex, flags);
1215		if (m == NULL && (flags & M_WAITOK))
1216			goto retry;
1217	}
1218	return m;
1219}
1220
1221
1222/***************************************************
1223* Pmap allocation/deallocation routines.
1224 ***************************************************/
1225/*
1226 *  Revision 1.397
1227 *  - Merged pmap_release and pmap_release_free_page.  When pmap_release is
1228 *    called only the page directory page(s) can be left in the pmap pte
1229 *    object, since all page table pages will have been freed by
1230 *    pmap_remove_pages and pmap_remove.  In addition, there can only be one
1231 *    reference to the pmap and the page directory is wired, so the page(s)
1232 *    can never be busy.  So all there is to do is clear the magic mappings
1233 *    from the page directory and free the page(s).
1234 */
1235
1236
1237/*
1238 * Release any resources held by the given physical map.
1239 * Called when a pmap initialized by pmap_pinit is being released.
1240 * Should only be called if the map contains no valid mappings.
1241 */
1242void
1243pmap_release(pmap_t pmap)
1244{
1245	vm_offset_t ptdva;
1246	vm_page_t ptdpg;
1247
1248	KASSERT(pmap->pm_stats.resident_count == 0,
1249	    ("pmap_release: pmap resident count %ld != 0",
1250	    pmap->pm_stats.resident_count));
1251
1252	ptdva = (vm_offset_t)pmap->pm_segtab;
1253	ptdpg = PHYS_TO_VM_PAGE(vtophys(ptdva));
1254
1255	if (ptdva >= VM_MIN_KERNEL_ADDRESS) {
1256		pmap_kremove(ptdva);
1257		kmem_free(kernel_map, ptdva, PAGE_SIZE);
1258	} else {
1259		KASSERT(MIPS_IS_KSEG0_ADDR(ptdva),
1260		    ("pmap_release: 0x%0lx is not in kseg0", (long)ptdva));
1261	}
1262
1263	ptdpg->wire_count--;
1264	atomic_subtract_int(&cnt.v_wire_count, 1);
1265	vm_page_free_zero(ptdpg);
1266}
1267
1268/*
1269 * grow the number of kernel page table entries, if needed
1270 */
1271void
1272pmap_growkernel(vm_offset_t addr)
1273{
1274	vm_offset_t ptppaddr;
1275	vm_page_t nkpg;
1276	pt_entry_t *pte;
1277	int i, req;
1278
1279	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1280	if (kernel_vm_end == 0) {
1281		kernel_vm_end = VM_MIN_KERNEL_ADDRESS + VM_KERNEL_ALLOC_OFFSET;
1282		nkpt = 0;
1283		while (segtab_pde(kernel_segmap, kernel_vm_end)) {
1284			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1285			    ~(PAGE_SIZE * NPTEPG - 1);
1286			nkpt++;
1287			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1288				kernel_vm_end = kernel_map->max_offset;
1289				break;
1290			}
1291		}
1292	}
1293	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1294	if (addr - 1 >= kernel_map->max_offset)
1295		addr = kernel_map->max_offset;
1296	while (kernel_vm_end < addr) {
1297		if (segtab_pde(kernel_segmap, kernel_vm_end)) {
1298			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1299			    ~(PAGE_SIZE * NPTEPG - 1);
1300			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1301				kernel_vm_end = kernel_map->max_offset;
1302				break;
1303			}
1304			continue;
1305		}
1306		/*
1307		 * This index is bogus, but out of the way
1308		 */
1309		req = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ;
1310#ifdef VM_ALLOC_WIRED_TLB_PG_POOL
1311		if (need_wired_tlb_page_pool)
1312			req |= VM_ALLOC_WIRED_TLB_PG_POOL;
1313#endif
1314		nkpg = vm_page_alloc(NULL, nkpt, req);
1315		if (!nkpg)
1316			panic("pmap_growkernel: no memory to grow kernel");
1317
1318		nkpt++;
1319
1320		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1321		if (ptppaddr >= MIPS_KSEG0_LARGEST_PHYS) {
1322			/*
1323			 * We need to do something here, but I am not sure
1324			 * what. We can access anything in the 0 - 512Meg
1325			 * region, but if we get a page to go in the kernel
1326			 * segmap that is outside of of that we really need
1327			 * to have another mapping beyond the temporary ones
1328			 * I have. Not sure how to do this yet. FIXME FIXME.
1329			 */
1330			panic("Gak, can't handle a k-page table outside of lower 512Meg");
1331		}
1332		pte = (pt_entry_t *)MIPS_PHYS_TO_KSEG0(ptppaddr);
1333		segtab_pde(kernel_segmap, kernel_vm_end) = (pd_entry_t)pte;
1334
1335		/*
1336		 * The R[4-7]?00 stores only one copy of the Global bit in
1337		 * the translation lookaside buffer for each 2 page entry.
1338		 * Thus invalid entrys must have the Global bit set so when
1339		 * Entry LO and Entry HI G bits are anded together they will
1340		 * produce a global bit to store in the tlb.
1341		 */
1342		for (i = 0; i < NPTEPG; i++, pte++)
1343			*pte = PTE_G;
1344
1345		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1346		    ~(PAGE_SIZE * NPTEPG - 1);
1347		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1348			kernel_vm_end = kernel_map->max_offset;
1349			break;
1350		}
1351	}
1352}
1353
1354/***************************************************
1355* page management routines.
1356 ***************************************************/
1357
1358/*
1359 * free the pv_entry back to the free list
1360 */
1361static PMAP_INLINE void
1362free_pv_entry(pv_entry_t pv)
1363{
1364
1365	pv_entry_count--;
1366	uma_zfree(pvzone, pv);
1367}
1368
1369/*
1370 * get a new pv_entry, allocating a block from the system
1371 * when needed.
1372 * the memory allocation is performed bypassing the malloc code
1373 * because of the possibility of allocations at interrupt time.
1374 */
1375static pv_entry_t
1376get_pv_entry(pmap_t locked_pmap)
1377{
1378	static const struct timeval printinterval = { 60, 0 };
1379	static struct timeval lastprint;
1380	struct vpgqueues *vpq;
1381	pt_entry_t *pte, oldpte;
1382	pmap_t pmap;
1383	pv_entry_t allocated_pv, next_pv, pv;
1384	vm_offset_t va;
1385	vm_page_t m;
1386
1387	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1388	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1389	allocated_pv = uma_zalloc(pvzone, M_NOWAIT);
1390	if (allocated_pv != NULL) {
1391		pv_entry_count++;
1392		if (pv_entry_count > pv_entry_high_water)
1393			pagedaemon_wakeup();
1394		else
1395			return (allocated_pv);
1396	}
1397	/*
1398	 * Reclaim pv entries: At first, destroy mappings to inactive
1399	 * pages.  After that, if a pv entry is still needed, destroy
1400	 * mappings to active pages.
1401	 */
1402	if (ratecheck(&lastprint, &printinterval))
1403		printf("Approaching the limit on PV entries, "
1404		    "increase the vm.pmap.shpgperproc tunable.\n");
1405	vpq = &vm_page_queues[PQ_INACTIVE];
1406retry:
1407	TAILQ_FOREACH(m, &vpq->pl, pageq) {
1408		if (m->hold_count || m->busy)
1409			continue;
1410		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
1411			va = pv->pv_va;
1412			pmap = pv->pv_pmap;
1413			/* Avoid deadlock and lock recursion. */
1414			if (pmap > locked_pmap)
1415				PMAP_LOCK(pmap);
1416			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
1417				continue;
1418			pmap->pm_stats.resident_count--;
1419			pte = pmap_pte(pmap, va);
1420			KASSERT(pte != NULL, ("pte"));
1421			oldpte = loadandclear((u_int *)pte);
1422			if (is_kernel_pmap(pmap))
1423				*pte = PTE_G;
1424			KASSERT((oldpte & PTE_W) == 0,
1425			    ("wired pte for unwired page"));
1426			if (m->md.pv_flags & PV_TABLE_REF)
1427				vm_page_flag_set(m, PG_REFERENCED);
1428			if (oldpte & PTE_M)
1429				vm_page_dirty(m);
1430			pmap_invalidate_page(pmap, va);
1431			TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1432			m->md.pv_list_count--;
1433			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1434			if (TAILQ_EMPTY(&m->md.pv_list)) {
1435				vm_page_flag_clear(m, PG_WRITEABLE);
1436				m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1437			}
1438			pmap_unuse_pt(pmap, va, pv->pv_ptem);
1439			if (pmap != locked_pmap)
1440				PMAP_UNLOCK(pmap);
1441			if (allocated_pv == NULL)
1442				allocated_pv = pv;
1443			else
1444				free_pv_entry(pv);
1445		}
1446	}
1447	if (allocated_pv == NULL) {
1448		if (vpq == &vm_page_queues[PQ_INACTIVE]) {
1449			vpq = &vm_page_queues[PQ_ACTIVE];
1450			goto retry;
1451		}
1452		panic("get_pv_entry: increase the vm.pmap.shpgperproc tunable");
1453	}
1454	return (allocated_pv);
1455}
1456
1457/*
1458 *  Revision 1.370
1459 *
1460 *  Move pmap_collect() out of the machine-dependent code, rename it
1461 *  to reflect its new location, and add page queue and flag locking.
1462 *
1463 *  Notes: (1) alpha, i386, and ia64 had identical implementations
1464 *  of pmap_collect() in terms of machine-independent interfaces;
1465 *  (2) sparc64 doesn't require it; (3) powerpc had it as a TODO.
1466 *
1467 *  MIPS implementation was identical to alpha [Junos 8.2]
1468 */
1469
1470/*
1471 * If it is the first entry on the list, it is actually
1472 * in the header and we must copy the following entry up
1473 * to the header.  Otherwise we must search the list for
1474 * the entry.  In either case we free the now unused entry.
1475 */
1476
1477static void
1478pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va)
1479{
1480	pv_entry_t pv;
1481
1482	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1483	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1484	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1485		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1486			if (pmap == pv->pv_pmap && va == pv->pv_va)
1487				break;
1488		}
1489	} else {
1490		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1491			if (va == pv->pv_va)
1492				break;
1493		}
1494	}
1495
1496	KASSERT(pv != NULL, ("pmap_remove_entry: pv not found"));
1497	TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1498	m->md.pv_list_count--;
1499	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1500		vm_page_flag_clear(m, PG_WRITEABLE);
1501
1502	TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1503	free_pv_entry(pv);
1504}
1505
1506/*
1507 * Create a pv entry for page at pa for
1508 * (pmap, va).
1509 */
1510static void
1511pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m,
1512    boolean_t wired)
1513{
1514	pv_entry_t pv;
1515
1516	pv = get_pv_entry(pmap);
1517	pv->pv_va = va;
1518	pv->pv_pmap = pmap;
1519	pv->pv_ptem = mpte;
1520	pv->pv_wired = wired;
1521
1522	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1523	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1524	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1525	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1526	m->md.pv_list_count++;
1527}
1528
1529/*
1530 * Conditionally create a pv entry.
1531 */
1532static boolean_t
1533pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte, vm_offset_t va,
1534    vm_page_t m)
1535{
1536	pv_entry_t pv;
1537
1538	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1539	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1540	if (pv_entry_count < pv_entry_high_water &&
1541	    (pv = uma_zalloc(pvzone, M_NOWAIT)) != NULL) {
1542		pv_entry_count++;
1543		pv->pv_va = va;
1544		pv->pv_pmap = pmap;
1545		pv->pv_ptem = mpte;
1546		pv->pv_wired = FALSE;
1547		TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1548		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1549		m->md.pv_list_count++;
1550		return (TRUE);
1551	} else
1552		return (FALSE);
1553}
1554
1555/*
1556 * pmap_remove_pte: do the things to unmap a page in a process
1557 */
1558static int
1559pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va)
1560{
1561	pt_entry_t oldpte;
1562	vm_page_t m;
1563	vm_offset_t pa;
1564
1565	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1566	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1567
1568	oldpte = loadandclear((u_int *)ptq);
1569	if (is_kernel_pmap(pmap))
1570		*ptq = PTE_G;
1571
1572	if (oldpte & PTE_W)
1573		pmap->pm_stats.wired_count -= 1;
1574
1575	pmap->pm_stats.resident_count -= 1;
1576	pa = mips_tlbpfn_to_paddr(oldpte);
1577
1578	if (page_is_managed(pa)) {
1579		m = PHYS_TO_VM_PAGE(pa);
1580		if (oldpte & PTE_M) {
1581#if defined(PMAP_DIAGNOSTIC)
1582			if (pmap_nw_modified(oldpte)) {
1583				printf(
1584				    "pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1585				    va, oldpte);
1586			}
1587#endif
1588			vm_page_dirty(m);
1589		}
1590		if (m->md.pv_flags & PV_TABLE_REF)
1591			vm_page_flag_set(m, PG_REFERENCED);
1592		m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1593
1594		pmap_remove_entry(pmap, m, va);
1595	}
1596	return pmap_unuse_pt(pmap, va, NULL);
1597}
1598
1599/*
1600 * Remove a single page from a process address space
1601 */
1602static void
1603pmap_remove_page(struct pmap *pmap, vm_offset_t va)
1604{
1605	register pt_entry_t *ptq;
1606
1607	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1608	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1609	ptq = pmap_pte(pmap, va);
1610
1611	/*
1612	 * if there is no pte for this address, just skip it!!!
1613	 */
1614	if (!ptq || !pmap_pte_v(ptq)) {
1615		return;
1616	}
1617
1618	/*
1619	 * Write back all caches from the page being destroyed
1620	 */
1621	mips_dcache_wbinv_range_index(va, NBPG);
1622
1623	/*
1624	 * get a local va for mappings for this pmap.
1625	 */
1626	(void)pmap_remove_pte(pmap, ptq, va);
1627	pmap_invalidate_page(pmap, va);
1628
1629	return;
1630}
1631
1632/*
1633 *	Remove the given range of addresses from the specified map.
1634 *
1635 *	It is assumed that the start and end are properly
1636 *	rounded to the page size.
1637 */
1638void
1639pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
1640{
1641	vm_offset_t va, nva;
1642
1643	if (pmap == NULL)
1644		return;
1645
1646	if (pmap->pm_stats.resident_count == 0)
1647		return;
1648
1649	vm_page_lock_queues();
1650	PMAP_LOCK(pmap);
1651
1652	/*
1653	 * special handling of removing one page.  a very common operation
1654	 * and easy to short circuit some code.
1655	 */
1656	if ((sva + PAGE_SIZE) == eva) {
1657		pmap_remove_page(pmap, sva);
1658		goto out;
1659	}
1660	for (va = sva; va < eva; va = nva) {
1661		if (!*pmap_pde(pmap, va)) {
1662			nva = mips_segtrunc(va + MIPS_SEGSIZE);
1663			continue;
1664		}
1665		pmap_remove_page(pmap, va);
1666		nva = va + PAGE_SIZE;
1667	}
1668
1669out:
1670	vm_page_unlock_queues();
1671	PMAP_UNLOCK(pmap);
1672}
1673
1674/*
1675 *	Routine:	pmap_remove_all
1676 *	Function:
1677 *		Removes this physical page from
1678 *		all physical maps in which it resides.
1679 *		Reflects back modify bits to the pager.
1680 *
1681 *	Notes:
1682 *		Original versions of this routine were very
1683 *		inefficient because they iteratively called
1684 *		pmap_remove (slow...)
1685 */
1686
1687void
1688pmap_remove_all(vm_page_t m)
1689{
1690	register pv_entry_t pv;
1691	register pt_entry_t *pte, tpte;
1692
1693	KASSERT((m->flags & PG_FICTITIOUS) == 0,
1694	    ("pmap_remove_all: page %p is fictitious", m));
1695	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1696
1697	if (m->md.pv_flags & PV_TABLE_REF)
1698		vm_page_flag_set(m, PG_REFERENCED);
1699
1700	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1701		PMAP_LOCK(pv->pv_pmap);
1702
1703		/*
1704		 * If it's last mapping writeback all caches from
1705		 * the page being destroyed
1706	 	 */
1707		if (m->md.pv_list_count == 1)
1708			mips_dcache_wbinv_range_index(pv->pv_va, NBPG);
1709
1710		pv->pv_pmap->pm_stats.resident_count--;
1711
1712		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
1713
1714		tpte = loadandclear((u_int *)pte);
1715		if (is_kernel_pmap(pv->pv_pmap))
1716			*pte = PTE_G;
1717
1718		if (tpte & PTE_W)
1719			pv->pv_pmap->pm_stats.wired_count--;
1720
1721		/*
1722		 * Update the vm_page_t clean and reference bits.
1723		 */
1724		if (tpte & PTE_M) {
1725#if defined(PMAP_DIAGNOSTIC)
1726			if (pmap_nw_modified(tpte)) {
1727				printf(
1728				    "pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1729				    pv->pv_va, tpte);
1730			}
1731#endif
1732			vm_page_dirty(m);
1733		}
1734		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1735
1736		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1737		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1738		m->md.pv_list_count--;
1739		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1740		PMAP_UNLOCK(pv->pv_pmap);
1741		free_pv_entry(pv);
1742	}
1743
1744	vm_page_flag_clear(m, PG_WRITEABLE);
1745	m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1746}
1747
1748/*
1749 *	Set the physical protection on the
1750 *	specified range of this map as requested.
1751 */
1752void
1753pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1754{
1755	pt_entry_t *pte;
1756
1757	if (pmap == NULL)
1758		return;
1759
1760	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1761		pmap_remove(pmap, sva, eva);
1762		return;
1763	}
1764	if (prot & VM_PROT_WRITE)
1765		return;
1766
1767	vm_page_lock_queues();
1768	PMAP_LOCK(pmap);
1769	while (sva < eva) {
1770		pt_entry_t pbits, obits;
1771		vm_page_t m;
1772		vm_offset_t pa;
1773
1774		/*
1775		 * If segment table entry is empty, skip this segment.
1776		 */
1777		if (!*pmap_pde(pmap, sva)) {
1778			sva = mips_segtrunc(sva + MIPS_SEGSIZE);
1779			continue;
1780		}
1781		/*
1782		 * If pte is invalid, skip this page
1783		 */
1784		pte = pmap_pte(pmap, sva);
1785		if (!pmap_pte_v(pte)) {
1786			sva += PAGE_SIZE;
1787			continue;
1788		}
1789retry:
1790		obits = pbits = *pte;
1791		pa = mips_tlbpfn_to_paddr(pbits);
1792
1793		if (page_is_managed(pa)) {
1794			m = PHYS_TO_VM_PAGE(pa);
1795			if (m->md.pv_flags & PV_TABLE_REF) {
1796				vm_page_flag_set(m, PG_REFERENCED);
1797				m->md.pv_flags &= ~PV_TABLE_REF;
1798			}
1799			if (pbits & PTE_M) {
1800				vm_page_dirty(m);
1801				m->md.pv_flags &= ~PV_TABLE_MOD;
1802			}
1803		}
1804		pbits = (pbits & ~PTE_M) | PTE_RO;
1805
1806		if (pbits != *pte) {
1807			if (!atomic_cmpset_int((u_int *)pte, obits, pbits))
1808				goto retry;
1809			pmap_update_page(pmap, sva, pbits);
1810		}
1811		sva += PAGE_SIZE;
1812	}
1813	vm_page_unlock_queues();
1814	PMAP_UNLOCK(pmap);
1815}
1816
1817/*
1818 *	Insert the given physical page (p) at
1819 *	the specified virtual address (v) in the
1820 *	target physical map with the protection requested.
1821 *
1822 *	If specified, the page will be wired down, meaning
1823 *	that the related pte can not be reclaimed.
1824 *
1825 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1826 *	or lose information.  That is, this routine must actually
1827 *	insert this page into the given map NOW.
1828 */
1829void
1830pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
1831    vm_prot_t prot, boolean_t wired)
1832{
1833	vm_offset_t pa, opa;
1834	register pt_entry_t *pte;
1835	pt_entry_t origpte, newpte;
1836	vm_page_t mpte, om;
1837	int rw = 0;
1838
1839	if (pmap == NULL)
1840		return;
1841
1842	va &= ~PAGE_MASK;
1843#ifdef PMAP_DIAGNOSTIC
1844	if (va > VM_MAX_KERNEL_ADDRESS)
1845		panic("pmap_enter: toobig");
1846#endif
1847
1848	mpte = NULL;
1849
1850	vm_page_lock_queues();
1851	PMAP_LOCK(pmap);
1852
1853	/*
1854	 * In the case that a page table page is not resident, we are
1855	 * creating it here.
1856	 */
1857	if (va < VM_MAXUSER_ADDRESS) {
1858		mpte = pmap_allocpte(pmap, va, M_WAITOK);
1859	}
1860	pte = pmap_pte(pmap, va);
1861
1862	/*
1863	 * Page Directory table entry not valid, we need a new PT page
1864	 */
1865	if (pte == NULL) {
1866		panic("pmap_enter: invalid page directory, pdir=%p, va=%p\n",
1867		    (void *)pmap->pm_segtab, (void *)va);
1868	}
1869	pa = VM_PAGE_TO_PHYS(m);
1870	om = NULL;
1871	origpte = *pte;
1872	opa = mips_tlbpfn_to_paddr(origpte);
1873
1874	/*
1875	 * Mapping has not changed, must be protection or wiring change.
1876	 */
1877	if ((origpte & PTE_V) && (opa == pa)) {
1878		/*
1879		 * Wiring change, just update stats. We don't worry about
1880		 * wiring PT pages as they remain resident as long as there
1881		 * are valid mappings in them. Hence, if a user page is
1882		 * wired, the PT page will be also.
1883		 */
1884		if (wired && ((origpte & PTE_W) == 0))
1885			pmap->pm_stats.wired_count++;
1886		else if (!wired && (origpte & PTE_W))
1887			pmap->pm_stats.wired_count--;
1888
1889#if defined(PMAP_DIAGNOSTIC)
1890		if (pmap_nw_modified(origpte)) {
1891			printf(
1892			    "pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
1893			    va, origpte);
1894		}
1895#endif
1896
1897		/*
1898		 * Remove extra pte reference
1899		 */
1900		if (mpte)
1901			mpte->wire_count--;
1902
1903		/*
1904		 * We might be turning off write access to the page, so we
1905		 * go ahead and sense modify status.
1906		 */
1907		if (page_is_managed(opa)) {
1908			om = m;
1909		}
1910		goto validate;
1911	}
1912	/*
1913	 * Mapping has changed, invalidate old range and fall through to
1914	 * handle validating new mapping.
1915	 */
1916	if (opa) {
1917		if (origpte & PTE_W)
1918			pmap->pm_stats.wired_count--;
1919
1920		if (page_is_managed(opa)) {
1921			om = PHYS_TO_VM_PAGE(opa);
1922			pmap_remove_entry(pmap, om, va);
1923		}
1924		if (mpte != NULL) {
1925			mpte->wire_count--;
1926			KASSERT(mpte->wire_count > 0,
1927			    ("pmap_enter: missing reference to page table page,"
1928			    " va: %p", (void *)va));
1929		}
1930	} else
1931		pmap->pm_stats.resident_count++;
1932
1933	/*
1934	 * Enter on the PV list if part of our managed memory. Note that we
1935	 * raise IPL while manipulating pv_table since pmap_enter can be
1936	 * called at interrupt time.
1937	 */
1938	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
1939		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
1940		    ("pmap_enter: managed mapping within the clean submap"));
1941		pmap_insert_entry(pmap, va, mpte, m, wired);
1942	}
1943	/*
1944	 * Increment counters
1945	 */
1946	if (wired)
1947		pmap->pm_stats.wired_count++;
1948
1949validate:
1950	if ((access & VM_PROT_WRITE) != 0)
1951		m->md.pv_flags |= PV_TABLE_MOD | PV_TABLE_REF;
1952	rw = init_pte_prot(va, m, prot);
1953
1954#ifdef PMAP_DEBUG
1955	printf("pmap_enter:  va: 0x%08x -> pa: 0x%08x\n", va, pa);
1956#endif
1957	/*
1958	 * Now validate mapping with desired protection/wiring.
1959	 */
1960	newpte = mips_paddr_to_tlbpfn(pa) | rw | PTE_V;
1961
1962	if (is_cacheable_mem(pa))
1963		newpte |= PTE_CACHE;
1964	else
1965		newpte |= PTE_UNCACHED;
1966
1967	if (wired)
1968		newpte |= PTE_W;
1969
1970	if (is_kernel_pmap(pmap)) {
1971	         newpte |= PTE_G;
1972	}
1973
1974	/*
1975	 * if the mapping or permission bits are different, we need to
1976	 * update the pte.
1977	 */
1978	if (origpte != newpte) {
1979		if (origpte & PTE_V) {
1980			*pte = newpte;
1981			if (page_is_managed(opa) && (opa != pa)) {
1982				if (om->md.pv_flags & PV_TABLE_REF)
1983					vm_page_flag_set(om, PG_REFERENCED);
1984				om->md.pv_flags &=
1985				    ~(PV_TABLE_REF | PV_TABLE_MOD);
1986			}
1987			if (origpte & PTE_M) {
1988				KASSERT((origpte & PTE_RW),
1989				    ("pmap_enter: modified page not writable:"
1990				    " va: %p, pte: 0x%lx", (void *)va, origpte));
1991				if (page_is_managed(opa))
1992					vm_page_dirty(om);
1993			}
1994		} else {
1995			*pte = newpte;
1996		}
1997	}
1998	pmap_update_page(pmap, va, newpte);
1999
2000	/*
2001	 * Sync I & D caches for executable pages.  Do this only if the the
2002	 * target pmap belongs to the current process.  Otherwise, an
2003	 * unresolvable TLB miss may occur.
2004	 */
2005	if (!is_kernel_pmap(pmap) && (pmap == &curproc->p_vmspace->vm_pmap) &&
2006	    (prot & VM_PROT_EXECUTE)) {
2007		mips_icache_sync_range(va, NBPG);
2008		mips_dcache_wbinv_range(va, NBPG);
2009	}
2010	vm_page_unlock_queues();
2011	PMAP_UNLOCK(pmap);
2012}
2013
2014/*
2015 * this code makes some *MAJOR* assumptions:
2016 * 1. Current pmap & pmap exists.
2017 * 2. Not wired.
2018 * 3. Read access.
2019 * 4. No page table pages.
2020 * but is *MUCH* faster than pmap_enter...
2021 */
2022
2023void
2024pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2025{
2026
2027	PMAP_LOCK(pmap);
2028	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
2029	PMAP_UNLOCK(pmap);
2030}
2031
2032static vm_page_t
2033pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
2034    vm_prot_t prot, vm_page_t mpte)
2035{
2036	pt_entry_t *pte;
2037	vm_offset_t pa;
2038
2039	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2040	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
2041	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2042	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2043	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2044
2045	/*
2046	 * In the case that a page table page is not resident, we are
2047	 * creating it here.
2048	 */
2049	if (va < VM_MAXUSER_ADDRESS) {
2050		unsigned ptepindex;
2051		vm_offset_t pteva;
2052
2053		/*
2054		 * Calculate pagetable page index
2055		 */
2056		ptepindex = va >> SEGSHIFT;
2057		if (mpte && (mpte->pindex == ptepindex)) {
2058			mpte->wire_count++;
2059		} else {
2060			/*
2061			 * Get the page directory entry
2062			 */
2063			pteva = (vm_offset_t)pmap->pm_segtab[ptepindex];
2064
2065			/*
2066			 * If the page table page is mapped, we just
2067			 * increment the hold count, and activate it.
2068			 */
2069			if (pteva) {
2070				if (pmap->pm_ptphint &&
2071				    (pmap->pm_ptphint->pindex == ptepindex)) {
2072					mpte = pmap->pm_ptphint;
2073				} else {
2074					mpte = PHYS_TO_VM_PAGE(vtophys(pteva));
2075					pmap->pm_ptphint = mpte;
2076				}
2077				mpte->wire_count++;
2078			} else {
2079				mpte = _pmap_allocpte(pmap, ptepindex,
2080				    M_NOWAIT);
2081				if (mpte == NULL)
2082					return (mpte);
2083			}
2084		}
2085	} else {
2086		mpte = NULL;
2087	}
2088
2089	pte = pmap_pte(pmap, va);
2090	if (pmap_pte_v(pte)) {
2091		if (mpte != NULL) {
2092			mpte->wire_count--;
2093			mpte = NULL;
2094		}
2095		return (mpte);
2096	}
2097
2098	/*
2099	 * Enter on the PV list if part of our managed memory.
2100	 */
2101	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
2102	    !pmap_try_insert_pv_entry(pmap, mpte, va, m)) {
2103		if (mpte != NULL) {
2104			pmap_unwire_pte_hold(pmap, mpte);
2105			mpte = NULL;
2106		}
2107		return (mpte);
2108	}
2109
2110	/*
2111	 * Increment counters
2112	 */
2113	pmap->pm_stats.resident_count++;
2114
2115	pa = VM_PAGE_TO_PHYS(m);
2116
2117	/*
2118	 * Now validate mapping with RO protection
2119	 */
2120	*pte = mips_paddr_to_tlbpfn(pa) | PTE_V;
2121
2122	if (is_cacheable_mem(pa))
2123		*pte |= PTE_CACHE;
2124	else
2125		*pte |= PTE_UNCACHED;
2126
2127	if (is_kernel_pmap(pmap))
2128		*pte |= PTE_G;
2129	else {
2130		*pte |= PTE_RO;
2131		/*
2132		 * Sync I & D caches.  Do this only if the the target pmap
2133		 * belongs to the current process.  Otherwise, an
2134		 * unresolvable TLB miss may occur. */
2135		if (pmap == &curproc->p_vmspace->vm_pmap) {
2136			va &= ~PAGE_MASK;
2137			mips_icache_sync_range(va, NBPG);
2138			mips_dcache_wbinv_range(va, NBPG);
2139		}
2140	}
2141	return (mpte);
2142}
2143
2144/*
2145 * Make a temporary mapping for a physical address.  This is only intended
2146 * to be used for panic dumps.
2147 */
2148void *
2149pmap_kenter_temporary(vm_paddr_t pa, int i)
2150{
2151	vm_offset_t va;
2152	int int_level;
2153	if (i != 0)
2154		printf("%s: ERROR!!! More than one page of virtual address mapping not supported\n",
2155		    __func__);
2156
2157#ifdef VM_ALLOC_WIRED_TLB_PG_POOL
2158	if (need_wired_tlb_page_pool) {
2159		va = pmap_map_fpage(pa, &fpages_shared[PMAP_FPAGE_KENTER_TEMP],
2160		    TRUE);
2161	} else
2162#endif
2163	if (pa < MIPS_KSEG0_LARGEST_PHYS) {
2164		va = MIPS_PHYS_TO_KSEG0(pa);
2165	} else {
2166		int cpu;
2167		struct local_sysmaps *sysm;
2168		/* If this is used other than for dumps, we may need to leave
2169		 * interrupts disasbled on return. If crash dumps don't work when
2170		 * we get to this point, we might want to consider this (leaving things
2171		 * disabled as a starting point ;-)
2172	 	 */
2173		int_level = disableintr();
2174		cpu = PCPU_GET(cpuid);
2175		sysm = &sysmap_lmem[cpu];
2176		/* Since this is for the debugger, no locks or any other fun */
2177		sysm->CMAP1 = mips_paddr_to_tlbpfn(pa) | PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;
2178		sysm->valid1 = 1;
2179		pmap_TLB_update_kernel((vm_offset_t)sysm->CADDR1, sysm->CMAP1);
2180		va = (vm_offset_t)sysm->CADDR1;
2181		restoreintr(int_level);
2182	}
2183	return ((void *)va);
2184}
2185
2186void
2187pmap_kenter_temporary_free(vm_paddr_t pa)
2188{
2189	int cpu;
2190	int int_level;
2191	struct local_sysmaps *sysm;
2192
2193	if (pa < MIPS_KSEG0_LARGEST_PHYS) {
2194		/* nothing to do for this case */
2195		return;
2196	}
2197	cpu = PCPU_GET(cpuid);
2198	sysm = &sysmap_lmem[cpu];
2199	if (sysm->valid1) {
2200		int_level = disableintr();
2201		pmap_TLB_invalidate_kernel((vm_offset_t)sysm->CADDR1);
2202		restoreintr(int_level);
2203		sysm->CMAP1 = 0;
2204		sysm->valid1 = 0;
2205	}
2206}
2207
2208/*
2209 * Moved the code to Machine Independent
2210 *	 vm_map_pmap_enter()
2211 */
2212
2213/*
2214 * Maps a sequence of resident pages belonging to the same object.
2215 * The sequence begins with the given page m_start.  This page is
2216 * mapped at the given virtual address start.  Each subsequent page is
2217 * mapped at a virtual address that is offset from start by the same
2218 * amount as the page is offset from m_start within the object.  The
2219 * last page in the sequence is the page with the largest offset from
2220 * m_start that can be mapped at a virtual address less than the given
2221 * virtual address end.  Not every virtual page between start and end
2222 * is mapped; only those for which a resident page exists with the
2223 * corresponding offset from m_start are mapped.
2224 */
2225void
2226pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2227    vm_page_t m_start, vm_prot_t prot)
2228{
2229	vm_page_t m, mpte;
2230	vm_pindex_t diff, psize;
2231
2232	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2233	psize = atop(end - start);
2234	mpte = NULL;
2235	m = m_start;
2236	PMAP_LOCK(pmap);
2237	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2238		mpte = pmap_enter_quick_locked(pmap, start + ptoa(diff), m,
2239		    prot, mpte);
2240		m = TAILQ_NEXT(m, listq);
2241	}
2242 	PMAP_UNLOCK(pmap);
2243}
2244
2245/*
2246 * pmap_object_init_pt preloads the ptes for a given object
2247 * into the specified pmap.  This eliminates the blast of soft
2248 * faults on process startup and immediately after an mmap.
2249 */
2250void
2251pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2252    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2253{
2254	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2255	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2256	    ("pmap_object_init_pt: non-device object"));
2257}
2258
2259/*
2260 *	Routine:	pmap_change_wiring
2261 *	Function:	Change the wiring attribute for a map/virtual-address
2262 *			pair.
2263 *	In/out conditions:
2264 *			The mapping must already exist in the pmap.
2265 */
2266void
2267pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
2268{
2269	register pt_entry_t *pte;
2270
2271	if (pmap == NULL)
2272		return;
2273
2274	PMAP_LOCK(pmap);
2275	pte = pmap_pte(pmap, va);
2276
2277	if (wired && !pmap_pte_w(pte))
2278		pmap->pm_stats.wired_count++;
2279	else if (!wired && pmap_pte_w(pte))
2280		pmap->pm_stats.wired_count--;
2281
2282	/*
2283	 * Wiring is not a hardware characteristic so there is no need to
2284	 * invalidate TLB.
2285	 */
2286	pmap_pte_set_w(pte, wired);
2287	PMAP_UNLOCK(pmap);
2288}
2289
2290/*
2291 *	Copy the range specified by src_addr/len
2292 *	from the source map to the range dst_addr/len
2293 *	in the destination map.
2294 *
2295 *	This routine is only advisory and need not do anything.
2296 */
2297
2298void
2299pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2300    vm_size_t len, vm_offset_t src_addr)
2301{
2302}
2303
2304/*
2305 *	pmap_zero_page zeros the specified hardware page by mapping
2306 *	the page into KVM and using bzero to clear its contents.
2307 */
2308void
2309pmap_zero_page(vm_page_t m)
2310{
2311	vm_offset_t va;
2312	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2313	int int_level;
2314#ifdef VM_ALLOC_WIRED_TLB_PG_POOL
2315	if (need_wired_tlb_page_pool) {
2316		struct fpage *fp1;
2317		struct sysmaps *sysmaps;
2318
2319		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
2320		mtx_lock(&sysmaps->lock);
2321		sched_pin();
2322
2323		fp1 = &sysmaps->fp[PMAP_FPAGE1];
2324		va = pmap_map_fpage(phys, fp1, FALSE);
2325		bzero((caddr_t)va, PAGE_SIZE);
2326		pmap_unmap_fpage(phys, fp1);
2327		sched_unpin();
2328		mtx_unlock(&sysmaps->lock);
2329		/*
2330		 * Should you do cache flush?
2331		 */
2332	} else
2333#endif
2334	if (phys < MIPS_KSEG0_LARGEST_PHYS) {
2335
2336		va = MIPS_PHYS_TO_KSEG0(phys);
2337
2338		bzero((caddr_t)va, PAGE_SIZE);
2339		mips_dcache_wbinv_range(va, PAGE_SIZE);
2340	} else {
2341		int cpu;
2342		struct local_sysmaps *sysm;
2343
2344		cpu = PCPU_GET(cpuid);
2345		sysm = &sysmap_lmem[cpu];
2346		PMAP_LGMEM_LOCK(sysm);
2347		sched_pin();
2348		int_level = disableintr();
2349		sysm->CMAP1 = mips_paddr_to_tlbpfn(phys) | PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;
2350		sysm->valid1 = 1;
2351		pmap_TLB_update_kernel((vm_offset_t)sysm->CADDR1, sysm->CMAP1);
2352		bzero(sysm->CADDR1, PAGE_SIZE);
2353		pmap_TLB_invalidate_kernel((vm_offset_t)sysm->CADDR1);
2354		restoreintr(int_level);
2355		sysm->CMAP1 = 0;
2356		sysm->valid1 = 0;
2357		sched_unpin();
2358		PMAP_LGMEM_UNLOCK(sysm);
2359	}
2360
2361}
2362
2363/*
2364 *	pmap_zero_page_area zeros the specified hardware page by mapping
2365 *	the page into KVM and using bzero to clear its contents.
2366 *
2367 *	off and size may not cover an area beyond a single hardware page.
2368 */
2369void
2370pmap_zero_page_area(vm_page_t m, int off, int size)
2371{
2372	vm_offset_t va;
2373	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2374	int int_level;
2375#ifdef VM_ALLOC_WIRED_TLB_PG_POOL
2376	if (need_wired_tlb_page_pool) {
2377		struct fpage *fp1;
2378		struct sysmaps *sysmaps;
2379
2380		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
2381		mtx_lock(&sysmaps->lock);
2382		sched_pin();
2383
2384		fp1 = &sysmaps->fp[PMAP_FPAGE1];
2385		va = pmap_map_fpage(phys, fp1, FALSE);
2386		bzero((caddr_t)va + off, size);
2387		pmap_unmap_fpage(phys, fp1);
2388
2389		sched_unpin();
2390		mtx_unlock(&sysmaps->lock);
2391	} else
2392#endif
2393	if (phys < MIPS_KSEG0_LARGEST_PHYS) {
2394		va = MIPS_PHYS_TO_KSEG0(phys);
2395		bzero((char *)(caddr_t)va + off, size);
2396		mips_dcache_wbinv_range(va + off, size);
2397	} else {
2398		int cpu;
2399		struct local_sysmaps *sysm;
2400
2401		cpu = PCPU_GET(cpuid);
2402		sysm = &sysmap_lmem[cpu];
2403		PMAP_LGMEM_LOCK(sysm);
2404		int_level = disableintr();
2405		sched_pin();
2406		sysm->CMAP1 = mips_paddr_to_tlbpfn(phys) | PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;
2407		sysm->valid1 = 1;
2408		pmap_TLB_update_kernel((vm_offset_t)sysm->CADDR1, sysm->CMAP1);
2409		bzero((char *)sysm->CADDR1 + off, size);
2410		pmap_TLB_invalidate_kernel((vm_offset_t)sysm->CADDR1);
2411		restoreintr(int_level);
2412		sysm->CMAP1 = 0;
2413		sysm->valid1 = 0;
2414		sched_unpin();
2415		PMAP_LGMEM_UNLOCK(sysm);
2416	}
2417}
2418
2419void
2420pmap_zero_page_idle(vm_page_t m)
2421{
2422	vm_offset_t va;
2423	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2424	int int_level;
2425#ifdef VM_ALLOC_WIRED_TLB_PG_POOL
2426	if (need_wired_tlb_page_pool) {
2427		sched_pin();
2428		va = pmap_map_fpage(phys, &fpages_shared[PMAP_FPAGE3], FALSE);
2429		bzero((caddr_t)va, PAGE_SIZE);
2430		pmap_unmap_fpage(phys, &fpages_shared[PMAP_FPAGE3]);
2431		sched_unpin();
2432	} else
2433#endif
2434	if (phys < MIPS_KSEG0_LARGEST_PHYS) {
2435		va = MIPS_PHYS_TO_KSEG0(phys);
2436		bzero((caddr_t)va, PAGE_SIZE);
2437		mips_dcache_wbinv_range(va, PAGE_SIZE);
2438	} else {
2439		int cpu;
2440		struct local_sysmaps *sysm;
2441
2442		cpu = PCPU_GET(cpuid);
2443		sysm = &sysmap_lmem[cpu];
2444		PMAP_LGMEM_LOCK(sysm);
2445		int_level = disableintr();
2446		sched_pin();
2447		sysm->CMAP1 = mips_paddr_to_tlbpfn(phys) | PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;
2448		sysm->valid1 = 1;
2449		pmap_TLB_update_kernel((vm_offset_t)sysm->CADDR1, sysm->CMAP1);
2450		bzero(sysm->CADDR1, PAGE_SIZE);
2451		pmap_TLB_invalidate_kernel((vm_offset_t)sysm->CADDR1);
2452		restoreintr(int_level);
2453		sysm->CMAP1 = 0;
2454		sysm->valid1 = 0;
2455		sched_unpin();
2456		PMAP_LGMEM_UNLOCK(sysm);
2457	}
2458
2459}
2460
2461/*
2462 *	pmap_copy_page copies the specified (machine independent)
2463 *	page by mapping the page into virtual memory and using
2464 *	bcopy to copy the page, one machine dependent page at a
2465 *	time.
2466 */
2467void
2468pmap_copy_page(vm_page_t src, vm_page_t dst)
2469{
2470	vm_offset_t va_src, va_dst;
2471	vm_paddr_t phy_src = VM_PAGE_TO_PHYS(src);
2472	vm_paddr_t phy_dst = VM_PAGE_TO_PHYS(dst);
2473	int int_level;
2474#ifdef VM_ALLOC_WIRED_TLB_PG_POOL
2475	if (need_wired_tlb_page_pool) {
2476		struct fpage *fp1, *fp2;
2477		struct sysmaps *sysmaps;
2478
2479		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
2480		mtx_lock(&sysmaps->lock);
2481		sched_pin();
2482
2483		fp1 = &sysmaps->fp[PMAP_FPAGE1];
2484		fp2 = &sysmaps->fp[PMAP_FPAGE2];
2485
2486		va_src = pmap_map_fpage(phy_src, fp1, FALSE);
2487		va_dst = pmap_map_fpage(phy_dst, fp2, FALSE);
2488
2489		bcopy((caddr_t)va_src, (caddr_t)va_dst, PAGE_SIZE);
2490
2491		pmap_unmap_fpage(phy_src, fp1);
2492		pmap_unmap_fpage(phy_dst, fp2);
2493		sched_unpin();
2494		mtx_unlock(&sysmaps->lock);
2495
2496		/*
2497		 * Should you flush the cache?
2498		 */
2499	} else
2500#endif
2501	{
2502		if ((phy_src < MIPS_KSEG0_LARGEST_PHYS) && (phy_dst < MIPS_KSEG0_LARGEST_PHYS)) {
2503			/* easy case, all can be accessed via KSEG0 */
2504			/*
2505			 * Flush all caches for VA that are mapped to this page
2506			 * to make sure that data in SDRAM is up to date
2507			 */
2508			pmap_flush_pvcache(src);
2509			mips_dcache_wbinv_range_index(
2510			    MIPS_PHYS_TO_KSEG0(phy_dst), NBPG);
2511			va_src = MIPS_PHYS_TO_KSEG0(phy_src);
2512			va_dst = MIPS_PHYS_TO_KSEG0(phy_dst);
2513			bcopy((caddr_t)va_src, (caddr_t)va_dst, PAGE_SIZE);
2514			mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2515		} else {
2516			int cpu;
2517			struct local_sysmaps *sysm;
2518
2519			cpu = PCPU_GET(cpuid);
2520			sysm = &sysmap_lmem[cpu];
2521			PMAP_LGMEM_LOCK(sysm);
2522			sched_pin();
2523			int_level = disableintr();
2524			if (phy_src < MIPS_KSEG0_LARGEST_PHYS) {
2525				/* one side needs mapping - dest */
2526				va_src = MIPS_PHYS_TO_KSEG0(phy_src);
2527				sysm->CMAP2 = mips_paddr_to_tlbpfn(phy_dst) | PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;
2528				pmap_TLB_update_kernel((vm_offset_t)sysm->CADDR2, sysm->CMAP2);
2529				sysm->valid2 = 1;
2530				va_dst = (vm_offset_t)sysm->CADDR2;
2531			} else if (phy_dst < MIPS_KSEG0_LARGEST_PHYS) {
2532				/* one side needs mapping - src */
2533				va_dst = MIPS_PHYS_TO_KSEG0(phy_dst);
2534				sysm->CMAP1 = mips_paddr_to_tlbpfn(phy_src) | PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;
2535				pmap_TLB_update_kernel((vm_offset_t)sysm->CADDR1, sysm->CMAP1);
2536				va_src = (vm_offset_t)sysm->CADDR1;
2537				sysm->valid1 = 1;
2538			} else {
2539				/* all need mapping */
2540				sysm->CMAP1 = mips_paddr_to_tlbpfn(phy_src) | PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;
2541				sysm->CMAP2 = mips_paddr_to_tlbpfn(phy_dst) | PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;
2542				pmap_TLB_update_kernel((vm_offset_t)sysm->CADDR1, sysm->CMAP1);
2543				pmap_TLB_update_kernel((vm_offset_t)sysm->CADDR2, sysm->CMAP2);
2544				sysm->valid1 = sysm->valid2 = 1;
2545				va_src = (vm_offset_t)sysm->CADDR1;
2546				va_dst = (vm_offset_t)sysm->CADDR2;
2547			}
2548			bcopy((void *)va_src, (void *)va_dst, PAGE_SIZE);
2549			if (sysm->valid1) {
2550				pmap_TLB_invalidate_kernel((vm_offset_t)sysm->CADDR1);
2551				sysm->CMAP1 = 0;
2552				sysm->valid1 = 0;
2553			}
2554			if (sysm->valid2) {
2555				pmap_TLB_invalidate_kernel((vm_offset_t)sysm->CADDR2);
2556				sysm->CMAP2 = 0;
2557				sysm->valid2 = 0;
2558			}
2559			restoreintr(int_level);
2560			sched_unpin();
2561			PMAP_LGMEM_UNLOCK(sysm);
2562		}
2563	}
2564}
2565
2566/*
2567 * Returns true if the pmap's pv is one of the first
2568 * 16 pvs linked to from this page.  This count may
2569 * be changed upwards or downwards in the future; it
2570 * is only necessary that true be returned for a small
2571 * subset of pmaps for proper page aging.
2572 */
2573boolean_t
2574pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
2575{
2576	pv_entry_t pv;
2577	int loops = 0;
2578
2579	if (m->flags & PG_FICTITIOUS)
2580		return FALSE;
2581
2582	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2583	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2584		if (pv->pv_pmap == pmap) {
2585			return TRUE;
2586		}
2587		loops++;
2588		if (loops >= 16)
2589			break;
2590	}
2591	return (FALSE);
2592}
2593
2594/*
2595 * Remove all pages from specified address space
2596 * this aids process exit speeds.  Also, this code
2597 * is special cased for current process only, but
2598 * can have the more generic (and slightly slower)
2599 * mode enabled.  This is much faster than pmap_remove
2600 * in the case of running down an entire address space.
2601 */
2602void
2603pmap_remove_pages(pmap_t pmap)
2604{
2605	pt_entry_t *pte, tpte;
2606	pv_entry_t pv, npv;
2607	vm_page_t m;
2608
2609	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
2610		printf("warning: pmap_remove_pages called with non-current pmap\n");
2611		return;
2612	}
2613	vm_page_lock_queues();
2614	PMAP_LOCK(pmap);
2615	sched_pin();
2616	//XXX need to be TAILQ_FOREACH_SAFE ?
2617	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2618
2619		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2620		if (!pmap_pte_v(pte))
2621			panic("pmap_remove_pages: page on pm_pvlist has no pte\n");
2622		tpte = *pte;
2623
2624/*
2625 * We cannot remove wired pages from a process' mapping at this time
2626 */
2627		if (tpte & PTE_W) {
2628			npv = TAILQ_NEXT(pv, pv_plist);
2629			continue;
2630		}
2631		*pte = is_kernel_pmap(pmap) ? PTE_G : 0;
2632
2633		m = PHYS_TO_VM_PAGE(mips_tlbpfn_to_paddr(tpte));
2634
2635		KASSERT(m < &vm_page_array[vm_page_array_size],
2636		    ("pmap_remove_pages: bad tpte %lx", tpte));
2637
2638		pv->pv_pmap->pm_stats.resident_count--;
2639
2640		/*
2641		 * Update the vm_page_t clean and reference bits.
2642		 */
2643		if (tpte & PTE_M) {
2644			vm_page_dirty(m);
2645		}
2646		npv = TAILQ_NEXT(pv, pv_plist);
2647		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2648
2649		m->md.pv_list_count--;
2650		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2651		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
2652			vm_page_flag_clear(m, PG_WRITEABLE);
2653		}
2654		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2655		free_pv_entry(pv);
2656	}
2657	sched_unpin();
2658	pmap_invalidate_all(pmap);
2659	PMAP_UNLOCK(pmap);
2660	vm_page_unlock_queues();
2661}
2662
2663/*
2664 * pmap_testbit tests bits in pte's
2665 * note that the testbit/changebit routines are inline,
2666 * and a lot of things compile-time evaluate.
2667 */
2668static boolean_t
2669pmap_testbit(vm_page_t m, int bit)
2670{
2671	pv_entry_t pv;
2672	pt_entry_t *pte;
2673	boolean_t rv = FALSE;
2674
2675	if (m->flags & PG_FICTITIOUS)
2676		return rv;
2677
2678	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
2679		return rv;
2680
2681	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2682	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2683#if defined(PMAP_DIAGNOSTIC)
2684		if (!pv->pv_pmap) {
2685			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
2686			continue;
2687		}
2688#endif
2689		PMAP_LOCK(pv->pv_pmap);
2690		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2691		rv = (*pte & bit) != 0;
2692		PMAP_UNLOCK(pv->pv_pmap);
2693		if (rv)
2694			break;
2695	}
2696	return (rv);
2697}
2698
2699/*
2700 * this routine is used to modify bits in ptes
2701 */
2702static __inline void
2703pmap_changebit(vm_page_t m, int bit, boolean_t setem)
2704{
2705	register pv_entry_t pv;
2706	register pt_entry_t *pte;
2707
2708	if (m->flags & PG_FICTITIOUS)
2709		return;
2710
2711	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2712	/*
2713	 * Loop over all current mappings setting/clearing as appropos If
2714	 * setting RO do we need to clear the VAC?
2715	 */
2716	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2717#if defined(PMAP_DIAGNOSTIC)
2718		if (!pv->pv_pmap) {
2719			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
2720			continue;
2721		}
2722#endif
2723
2724		PMAP_LOCK(pv->pv_pmap);
2725		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2726
2727		if (setem) {
2728			*(int *)pte |= bit;
2729			pmap_update_page(pv->pv_pmap, pv->pv_va, *pte);
2730		} else {
2731			vm_offset_t pbits = *(vm_offset_t *)pte;
2732
2733			if (pbits & bit) {
2734				if (bit == PTE_RW) {
2735					if (pbits & PTE_M) {
2736						vm_page_dirty(m);
2737					}
2738					*(int *)pte = (pbits & ~(PTE_M | PTE_RW)) |
2739					    PTE_RO;
2740				} else {
2741					*(int *)pte = pbits & ~bit;
2742				}
2743				pmap_update_page(pv->pv_pmap, pv->pv_va, *pte);
2744			}
2745		}
2746		PMAP_UNLOCK(pv->pv_pmap);
2747	}
2748	if (!setem && bit == PTE_RW)
2749		vm_page_flag_clear(m, PG_WRITEABLE);
2750}
2751
2752/*
2753 *	pmap_page_wired_mappings:
2754 *
2755 *	Return the number of managed mappings to the given physical page
2756 *	that are wired.
2757 */
2758int
2759pmap_page_wired_mappings(vm_page_t m)
2760{
2761	pv_entry_t pv;
2762	int count;
2763
2764	count = 0;
2765	if ((m->flags & PG_FICTITIOUS) != 0)
2766		return (count);
2767	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2768	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list)
2769	    if (pv->pv_wired)
2770		count++;
2771	return (count);
2772}
2773
2774/*
2775 * Clear the write and modified bits in each of the given page's mappings.
2776 */
2777void
2778pmap_remove_write(vm_page_t m)
2779{
2780	pv_entry_t pv, npv;
2781	vm_offset_t va;
2782	pt_entry_t *pte;
2783
2784	if ((m->flags & PG_WRITEABLE) == 0)
2785		return;
2786
2787	/*
2788	 * Loop over all current mappings setting/clearing as appropos.
2789	 */
2790	for (pv = TAILQ_FIRST(&m->md.pv_list); pv; pv = npv) {
2791		npv = TAILQ_NEXT(pv, pv_plist);
2792		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2793
2794		if ((pte == NULL) || !mips_pg_v(*pte))
2795			panic("page on pm_pvlist has no pte\n");
2796
2797		va = pv->pv_va;
2798		pmap_protect(pv->pv_pmap, va, va + PAGE_SIZE,
2799		    VM_PROT_READ | VM_PROT_EXECUTE);
2800	}
2801	vm_page_flag_clear(m, PG_WRITEABLE);
2802}
2803
2804/*
2805 *	pmap_ts_referenced:
2806 *
2807 *	Return the count of reference bits for a page, clearing all of them.
2808 */
2809int
2810pmap_ts_referenced(vm_page_t m)
2811{
2812	if (m->flags & PG_FICTITIOUS)
2813		return (0);
2814
2815	if (m->md.pv_flags & PV_TABLE_REF) {
2816		m->md.pv_flags &= ~PV_TABLE_REF;
2817		return 1;
2818	}
2819	return 0;
2820}
2821
2822/*
2823 *	pmap_is_modified:
2824 *
2825 *	Return whether or not the specified physical page was modified
2826 *	in any physical maps.
2827 */
2828boolean_t
2829pmap_is_modified(vm_page_t m)
2830{
2831	if (m->flags & PG_FICTITIOUS)
2832		return FALSE;
2833
2834	if (m->md.pv_flags & PV_TABLE_MOD)
2835		return TRUE;
2836	else
2837		return pmap_testbit(m, PTE_M);
2838}
2839
2840/* N/C */
2841
2842/*
2843 *	pmap_is_prefaultable:
2844 *
2845 *	Return whether or not the specified virtual address is elgible
2846 *	for prefault.
2847 */
2848boolean_t
2849pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
2850{
2851	pt_entry_t *pte;
2852	boolean_t rv;
2853
2854	rv = FALSE;
2855	PMAP_LOCK(pmap);
2856	if (*pmap_pde(pmap, addr)) {
2857		pte = pmap_pte(pmap, addr);
2858		rv = (*pte == 0);
2859	}
2860	PMAP_UNLOCK(pmap);
2861	return (rv);
2862}
2863
2864/*
2865 *	Clear the modify bits on the specified physical page.
2866 */
2867void
2868pmap_clear_modify(vm_page_t m)
2869{
2870	if (m->flags & PG_FICTITIOUS)
2871		return;
2872	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2873	if (m->md.pv_flags & PV_TABLE_MOD) {
2874		pmap_changebit(m, PTE_M, FALSE);
2875		m->md.pv_flags &= ~PV_TABLE_MOD;
2876	}
2877}
2878
2879/*
2880 *	pmap_clear_reference:
2881 *
2882 *	Clear the reference bit on the specified physical page.
2883 */
2884void
2885pmap_clear_reference(vm_page_t m)
2886{
2887	if (m->flags & PG_FICTITIOUS)
2888		return;
2889
2890	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2891	if (m->md.pv_flags & PV_TABLE_REF) {
2892		m->md.pv_flags &= ~PV_TABLE_REF;
2893	}
2894}
2895
2896/*
2897 * Miscellaneous support routines follow
2898 */
2899
2900/*
2901 * Map a set of physical memory pages into the kernel virtual
2902 * address space. Return a pointer to where it is mapped. This
2903 * routine is intended to be used for mapping device memory,
2904 * NOT real memory.
2905 */
2906
2907/*
2908 * Map a set of physical memory pages into the kernel virtual
2909 * address space. Return a pointer to where it is mapped. This
2910 * routine is intended to be used for mapping device memory,
2911 * NOT real memory.
2912 */
2913void *
2914pmap_mapdev(vm_offset_t pa, vm_size_t size)
2915{
2916        vm_offset_t va, tmpva, offset;
2917
2918	/*
2919	 * KSEG1 maps only first 512M of phys address space. For
2920	 * pa > 0x20000000 we should make proper mapping * using pmap_kenter.
2921	 */
2922	if ((pa + size - 1) < MIPS_KSEG0_LARGEST_PHYS)
2923		return (void *)MIPS_PHYS_TO_KSEG1(pa);
2924	else {
2925		offset = pa & PAGE_MASK;
2926		size = roundup(size + offset, PAGE_SIZE);
2927
2928		va = kmem_alloc_nofault(kernel_map, size);
2929		if (!va)
2930			panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2931		pa = trunc_page(pa);
2932		for (tmpva = va; size > 0;) {
2933			pmap_kenter(tmpva, pa);
2934			size -= PAGE_SIZE;
2935			tmpva += PAGE_SIZE;
2936			pa += PAGE_SIZE;
2937		}
2938	}
2939
2940	return ((void *)(va + offset));
2941}
2942
2943void
2944pmap_unmapdev(vm_offset_t va, vm_size_t size)
2945{
2946	vm_offset_t base, offset, tmpva;
2947
2948	/* If the address is within KSEG1 then there is nothing to do */
2949	if (va >= MIPS_KSEG1_START && va <= MIPS_KSEG1_END)
2950		return;
2951
2952	base = trunc_page(va);
2953	offset = va & PAGE_MASK;
2954	size = roundup(size + offset, PAGE_SIZE);
2955	for (tmpva = base; tmpva < base + size; tmpva += PAGE_SIZE)
2956		pmap_kremove(tmpva);
2957	kmem_free(kernel_map, base, size);
2958}
2959
2960/*
2961 * perform the pmap work for mincore
2962 */
2963int
2964pmap_mincore(pmap_t pmap, vm_offset_t addr)
2965{
2966
2967	pt_entry_t *ptep, pte;
2968	vm_page_t m;
2969	int val = 0;
2970
2971	PMAP_LOCK(pmap);
2972	ptep = pmap_pte(pmap, addr);
2973	pte = (ptep != NULL) ? *ptep : 0;
2974	PMAP_UNLOCK(pmap);
2975
2976	if (mips_pg_v(pte)) {
2977		vm_offset_t pa;
2978
2979		val = MINCORE_INCORE;
2980		pa = mips_tlbpfn_to_paddr(pte);
2981		if (!page_is_managed(pa))
2982			return val;
2983
2984		m = PHYS_TO_VM_PAGE(pa);
2985
2986		/*
2987		 * Modified by us
2988		 */
2989		if (pte & PTE_M)
2990			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
2991		/*
2992		 * Modified by someone
2993		 */
2994		else {
2995			vm_page_lock_queues();
2996			if (m->dirty || pmap_is_modified(m))
2997				val |= MINCORE_MODIFIED_OTHER;
2998			vm_page_unlock_queues();
2999		}
3000		/*
3001		 * Referenced by us or someone
3002		 */
3003		vm_page_lock_queues();
3004		if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
3005			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
3006			vm_page_flag_set(m, PG_REFERENCED);
3007		}
3008		vm_page_unlock_queues();
3009	}
3010	return val;
3011}
3012
3013void
3014pmap_activate(struct thread *td)
3015{
3016	pmap_t pmap, oldpmap;
3017	struct proc *p = td->td_proc;
3018
3019	critical_enter();
3020
3021	pmap = vmspace_pmap(p->p_vmspace);
3022	oldpmap = PCPU_GET(curpmap);
3023
3024	if (oldpmap)
3025		atomic_clear_32(&oldpmap->pm_active, PCPU_GET(cpumask));
3026	atomic_set_32(&pmap->pm_active, PCPU_GET(cpumask));
3027	pmap_asid_alloc(pmap);
3028	if (td == curthread) {
3029		PCPU_SET(segbase, pmap->pm_segtab);
3030		MachSetPID(pmap->pm_asid[PCPU_GET(cpuid)].asid);
3031	}
3032
3033	PCPU_SET(curpmap, pmap);
3034	critical_exit();
3035}
3036
3037void
3038pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
3039{
3040}
3041
3042/*
3043 *	Increase the starting virtual address of the given mapping if a
3044 *	different alignment might result in more superpage mappings.
3045 */
3046void
3047pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
3048    vm_offset_t *addr, vm_size_t size)
3049{
3050	vm_offset_t superpage_offset;
3051
3052	if (size < NBSEG)
3053		return;
3054	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
3055		offset += ptoa(object->pg_color);
3056	superpage_offset = offset & SEGOFSET;
3057	if (size - ((NBSEG - superpage_offset) & SEGOFSET) < NBSEG ||
3058	    (*addr & SEGOFSET) == superpage_offset)
3059		return;
3060	if ((*addr & SEGOFSET) < superpage_offset)
3061		*addr = (*addr & ~SEGOFSET) + superpage_offset;
3062	else
3063		*addr = ((*addr + SEGOFSET) & ~SEGOFSET) + superpage_offset;
3064}
3065
3066int pmap_pid_dump(int pid);
3067
3068int
3069pmap_pid_dump(int pid)
3070{
3071	pmap_t pmap;
3072	struct proc *p;
3073	int npte = 0;
3074	int index;
3075
3076	sx_slock(&allproc_lock);
3077	LIST_FOREACH(p, &allproc, p_list) {
3078		if (p->p_pid != pid)
3079			continue;
3080
3081		if (p->p_vmspace) {
3082			int i, j;
3083
3084			printf("vmspace is %p\n",
3085			       p->p_vmspace);
3086			index = 0;
3087			pmap = vmspace_pmap(p->p_vmspace);
3088			printf("pmap asid:%x generation:%x\n",
3089			       pmap->pm_asid[0].asid,
3090			       pmap->pm_asid[0].gen);
3091			for (i = 0; i < NUSERPGTBLS; i++) {
3092				pd_entry_t *pde;
3093				pt_entry_t *pte;
3094				unsigned base = i << SEGSHIFT;
3095
3096				pde = &pmap->pm_segtab[i];
3097				if (pde && pmap_pde_v(pde)) {
3098					for (j = 0; j < 1024; j++) {
3099						vm_offset_t va = base +
3100						(j << PAGE_SHIFT);
3101
3102						pte = pmap_pte(pmap, va);
3103						if (pte && pmap_pte_v(pte)) {
3104							vm_offset_t pa;
3105							vm_page_t m;
3106
3107							pa = mips_tlbpfn_to_paddr(*pte);
3108							m = PHYS_TO_VM_PAGE(pa);
3109							printf("va: %p, pt: %p, h: %d, w: %d, f: 0x%x",
3110							    (void *)va,
3111							    (void *)pa,
3112							    m->hold_count,
3113							    m->wire_count,
3114							    m->flags);
3115							npte++;
3116							index++;
3117							if (index >= 2) {
3118								index = 0;
3119								printf("\n");
3120							} else {
3121								printf(" ");
3122							}
3123						}
3124					}
3125				}
3126			}
3127		} else {
3128		  printf("Process pid:%d has no vm_space\n", pid);
3129		}
3130		break;
3131	}
3132	sx_sunlock(&allproc_lock);
3133	return npte;
3134}
3135
3136
3137#if defined(DEBUG)
3138
3139static void pads(pmap_t pm);
3140void pmap_pvdump(vm_offset_t pa);
3141
3142/* print address space of pmap*/
3143static void
3144pads(pmap_t pm)
3145{
3146	unsigned va, i, j;
3147	pt_entry_t *ptep;
3148
3149	if (pm == kernel_pmap)
3150		return;
3151	for (i = 0; i < NPTEPG; i++)
3152		if (pm->pm_segtab[i])
3153			for (j = 0; j < NPTEPG; j++) {
3154				va = (i << SEGSHIFT) + (j << PAGE_SHIFT);
3155				if (pm == kernel_pmap && va < KERNBASE)
3156					continue;
3157				if (pm != kernel_pmap &&
3158				    va >= VM_MAXUSER_ADDRESS)
3159					continue;
3160				ptep = pmap_pte(pm, va);
3161				if (pmap_pte_v(ptep))
3162					printf("%x:%x ", va, *(int *)ptep);
3163			}
3164
3165}
3166
3167void
3168pmap_pvdump(vm_offset_t pa)
3169{
3170	register pv_entry_t pv;
3171	vm_page_t m;
3172
3173	printf("pa %x", pa);
3174	m = PHYS_TO_VM_PAGE(pa);
3175	for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
3176	    pv = TAILQ_NEXT(pv, pv_list)) {
3177		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3178		pads(pv->pv_pmap);
3179	}
3180	printf(" ");
3181}
3182
3183/* N/C */
3184#endif
3185
3186
3187/*
3188 * Allocate TLB address space tag (called ASID or TLBPID) and return it.
3189 * It takes almost as much or more time to search the TLB for a
3190 * specific ASID and flush those entries as it does to flush the entire TLB.
3191 * Therefore, when we allocate a new ASID, we just take the next number. When
3192 * we run out of numbers, we flush the TLB, increment the generation count
3193 * and start over. ASID zero is reserved for kernel use.
3194 */
3195static void
3196pmap_asid_alloc(pmap)
3197	pmap_t pmap;
3198{
3199	if (pmap->pm_asid[PCPU_GET(cpuid)].asid != PMAP_ASID_RESERVED &&
3200	    pmap->pm_asid[PCPU_GET(cpuid)].gen == PCPU_GET(asid_generation));
3201	else {
3202		if (PCPU_GET(next_asid) == pmap_max_asid) {
3203			MIPS_TBIAP();
3204			PCPU_SET(asid_generation,
3205			    (PCPU_GET(asid_generation) + 1) & ASIDGEN_MASK);
3206			if (PCPU_GET(asid_generation) == 0) {
3207				PCPU_SET(asid_generation, 1);
3208			}
3209			PCPU_SET(next_asid, 1);	/* 0 means invalid */
3210		}
3211		pmap->pm_asid[PCPU_GET(cpuid)].asid = PCPU_GET(next_asid);
3212		pmap->pm_asid[PCPU_GET(cpuid)].gen = PCPU_GET(asid_generation);
3213		PCPU_SET(next_asid, PCPU_GET(next_asid) + 1);
3214	}
3215}
3216
3217int
3218page_is_managed(vm_offset_t pa)
3219{
3220	vm_offset_t pgnum = mips_btop(pa);
3221
3222	if (pgnum >= first_page && (pgnum < (first_page + vm_page_array_size))) {
3223		vm_page_t m;
3224
3225		m = PHYS_TO_VM_PAGE(pa);
3226		if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0)
3227			return 1;
3228	}
3229	return 0;
3230}
3231
3232static int
3233init_pte_prot(vm_offset_t va, vm_page_t m, vm_prot_t prot)
3234{
3235	int rw = 0;
3236
3237	if (!(prot & VM_PROT_WRITE))
3238		rw = PTE_ROPAGE;
3239	else {
3240		if (va >= VM_MIN_KERNEL_ADDRESS) {
3241			/*
3242			 * Don't bother to trap on kernel writes, just
3243			 * record page as dirty.
3244			 */
3245			rw = PTE_RWPAGE;
3246			vm_page_dirty(m);
3247		} else if ((m->md.pv_flags & PV_TABLE_MOD) ||
3248		    m->dirty == VM_PAGE_BITS_ALL)
3249			rw = PTE_RWPAGE;
3250		else
3251			rw = PTE_CWPAGE;
3252		vm_page_flag_set(m, PG_WRITEABLE);
3253	}
3254	return rw;
3255}
3256
3257/*
3258 *	pmap_page_is_free:
3259 *
3260 *	Called when a page is freed to allow pmap to clean up
3261 *	any extra state associated with the page.  In this case
3262 *	clear modified/referenced bits.
3263 */
3264void
3265pmap_page_is_free(vm_page_t m)
3266{
3267
3268	m->md.pv_flags = 0;
3269}
3270
3271/*
3272 *	pmap_set_modified:
3273 *
3274 *	Sets the page modified and reference bits for the specified page.
3275 */
3276void
3277pmap_set_modified(vm_offset_t pa)
3278{
3279
3280	PHYS_TO_VM_PAGE(pa)->md.pv_flags |= (PV_TABLE_REF | PV_TABLE_MOD);
3281}
3282
3283/*
3284 *	Routine:	pmap_kextract
3285 *	Function:
3286 *		Extract the physical page address associated
3287 *		virtual address.
3288 */
3289 /* PMAP_INLINE */ vm_offset_t
3290pmap_kextract(vm_offset_t va)
3291{
3292	vm_offset_t pa = 0;
3293
3294	if (va < MIPS_KSEG0_START) {
3295		/* user virtual address */
3296		pt_entry_t *ptep;
3297
3298		if (curproc && curproc->p_vmspace) {
3299			ptep = pmap_pte(&curproc->p_vmspace->vm_pmap, va);
3300			if (ptep)
3301				pa = mips_tlbpfn_to_paddr(*ptep) |
3302				    (va & PAGE_MASK);
3303		}
3304	} else if (va >= MIPS_KSEG0_START &&
3305	    va < MIPS_KSEG1_START)
3306		pa = MIPS_KSEG0_TO_PHYS(va);
3307	else if (va >= MIPS_KSEG1_START &&
3308	    va < MIPS_KSEG2_START)
3309		pa = MIPS_KSEG1_TO_PHYS(va);
3310#ifdef VM_ALLOC_WIRED_TLB_PG_POOL
3311	else if (need_wired_tlb_page_pool && ((va >= VM_MIN_KERNEL_ADDRESS) &&
3312	    (va < (VM_MIN_KERNEL_ADDRESS + VM_KERNEL_ALLOC_OFFSET))))
3313		pa = MIPS_KSEG0_TO_PHYS(va);
3314#endif
3315	else if (va >= MIPS_KSEG2_START && va < VM_MAX_KERNEL_ADDRESS) {
3316		pt_entry_t *ptep;
3317
3318		/* Is the kernel pmap initialized? */
3319		if (kernel_pmap->pm_active) {
3320			if (va >= (vm_offset_t)virtual_sys_start) {
3321				/* Its inside the virtual address range */
3322				ptep = pmap_pte(kernel_pmap, va);
3323				if (ptep)
3324					pa = mips_tlbpfn_to_paddr(*ptep) |
3325					    (va & PAGE_MASK);
3326			} else {
3327				int i;
3328
3329				/*
3330				 * its inside the special mapping area, I
3331				 * don't think this should happen, but if it
3332				 * does I want it toa all work right :-)
3333				 * Note if it does happen, we assume the
3334				 * caller has the lock? FIXME, this needs to
3335				 * be checked FIXEM - RRS.
3336				 */
3337				for (i = 0; i < MAXCPU; i++) {
3338					if ((sysmap_lmem[i].valid1) && ((vm_offset_t)sysmap_lmem[i].CADDR1 == va)) {
3339						pa = mips_tlbpfn_to_paddr(sysmap_lmem[i].CMAP1);
3340						break;
3341					}
3342					if ((sysmap_lmem[i].valid2) && ((vm_offset_t)sysmap_lmem[i].CADDR2 == va)) {
3343						pa = mips_tlbpfn_to_paddr(sysmap_lmem[i].CMAP2);
3344						break;
3345					}
3346				}
3347			}
3348		}
3349	}
3350	return pa;
3351}
3352
3353void
3354pmap_flush_pvcache(vm_page_t m)
3355{
3356	pv_entry_t pv;
3357
3358	if (m != NULL) {
3359		for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
3360	    	    pv = TAILQ_NEXT(pv, pv_list)) {
3361			mips_dcache_wbinv_range_index(pv->pv_va, NBPG);
3362		}
3363	}
3364}
3365
3366void
3367pmap_save_tlb(void)
3368{
3369	int tlbno, cpu;
3370
3371	cpu = PCPU_GET(cpuid);
3372
3373	for (tlbno = 0; tlbno < num_tlbentries; ++tlbno)
3374		MachTLBRead(tlbno, &tlbstash[cpu][tlbno]);
3375}
3376
3377#ifdef DDB
3378#include <ddb/ddb.h>
3379
3380DB_SHOW_COMMAND(tlb, ddb_dump_tlb)
3381{
3382	int cpu, tlbno;
3383	struct tlb *tlb;
3384
3385	if (have_addr)
3386		cpu = ((addr >> 4) % 16) * 10 + (addr % 16);
3387	else
3388		cpu = PCPU_GET(cpuid);
3389
3390	if (cpu < 0 || cpu >= mp_ncpus) {
3391		db_printf("Invalid CPU %d\n", cpu);
3392		return;
3393	} else
3394		db_printf("CPU %d:\n", cpu);
3395
3396	if (cpu == PCPU_GET(cpuid))
3397		pmap_save_tlb();
3398
3399	for (tlbno = 0; tlbno < num_tlbentries; ++tlbno) {
3400		tlb = &tlbstash[cpu][tlbno];
3401		if (tlb->tlb_lo0 & PTE_V || tlb->tlb_lo1 & PTE_V) {
3402			printf("TLB %2d vad 0x%0lx ",
3403				tlbno, (long)(tlb->tlb_hi & 0xffffff00));
3404		} else {
3405			printf("TLB*%2d vad 0x%0lx ",
3406				tlbno, (long)(tlb->tlb_hi & 0xffffff00));
3407		}
3408		printf("0=0x%0lx ", pfn_to_vad((long)tlb->tlb_lo0));
3409		printf("%c", tlb->tlb_lo0 & PTE_V ? 'V' : '-');
3410		printf("%c", tlb->tlb_lo0 & PTE_M ? 'M' : '-');
3411		printf("%c", tlb->tlb_lo0 & PTE_G ? 'G' : '-');
3412		printf(" atr %x ", (tlb->tlb_lo0 >> 3) & 7);
3413		printf("1=0x%0lx ", pfn_to_vad((long)tlb->tlb_lo1));
3414		printf("%c", tlb->tlb_lo1 & PTE_V ? 'V' : '-');
3415		printf("%c", tlb->tlb_lo1 & PTE_M ? 'M' : '-');
3416		printf("%c", tlb->tlb_lo1 & PTE_G ? 'G' : '-');
3417		printf(" atr %x ", (tlb->tlb_lo1 >> 3) & 7);
3418		printf(" sz=%x pid=%x\n", tlb->tlb_mask,
3419		       (tlb->tlb_hi & 0x000000ff));
3420	}
3421}
3422#endif	/* DDB */
3423