1/*-
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 *	The Regents of the University of California.
4 * Copyright (c) 2004-2009 Robert N. M. Watson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 4. Neither the name of the University nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
32 */
33
34/*
35 * UNIX Domain (Local) Sockets
36 *
37 * This is an implementation of UNIX (local) domain sockets.  Each socket has
38 * an associated struct unpcb (UNIX protocol control block).  Stream sockets
39 * may be connected to 0 or 1 other socket.  Datagram sockets may be
40 * connected to 0, 1, or many other sockets.  Sockets may be created and
41 * connected in pairs (socketpair(2)), or bound/connected to using the file
42 * system name space.  For most purposes, only the receive socket buffer is
43 * used, as sending on one socket delivers directly to the receive socket
44 * buffer of a second socket.
45 *
46 * The implementation is substantially complicated by the fact that
47 * "ancillary data", such as file descriptors or credentials, may be passed
48 * across UNIX domain sockets.  The potential for passing UNIX domain sockets
49 * over other UNIX domain sockets requires the implementation of a simple
50 * garbage collector to find and tear down cycles of disconnected sockets.
51 *
52 * TODO:
53 *	RDM
54 *	distinguish datagram size limits from flow control limits in SEQPACKET
55 *	rethink name space problems
56 *	need a proper out-of-band
57 */
58
59#include <sys/cdefs.h>
60__FBSDID("$FreeBSD$");
61
62#include "opt_ddb.h"
63
64#include <sys/param.h>
65#include <sys/capability.h>
66#include <sys/domain.h>
67#include <sys/fcntl.h>
68#include <sys/malloc.h>		/* XXX must be before <sys/file.h> */
69#include <sys/eventhandler.h>
70#include <sys/file.h>
71#include <sys/filedesc.h>
72#include <sys/kernel.h>
73#include <sys/lock.h>
74#include <sys/mbuf.h>
75#include <sys/mount.h>
76#include <sys/mutex.h>
77#include <sys/namei.h>
78#include <sys/proc.h>
79#include <sys/protosw.h>
80#include <sys/queue.h>
81#include <sys/resourcevar.h>
82#include <sys/rwlock.h>
83#include <sys/socket.h>
84#include <sys/socketvar.h>
85#include <sys/signalvar.h>
86#include <sys/stat.h>
87#include <sys/sx.h>
88#include <sys/sysctl.h>
89#include <sys/systm.h>
90#include <sys/taskqueue.h>
91#include <sys/un.h>
92#include <sys/unpcb.h>
93#include <sys/vnode.h>
94
95#include <net/vnet.h>
96
97#ifdef DDB
98#include <ddb/ddb.h>
99#endif
100
101#include <security/mac/mac_framework.h>
102
103#include <vm/uma.h>
104
105MALLOC_DECLARE(M_FILECAPS);
106
107/*
108 * Locking key:
109 * (l)	Locked using list lock
110 * (g)	Locked using linkage lock
111 */
112
113static uma_zone_t	unp_zone;
114static unp_gen_t	unp_gencnt;	/* (l) */
115static u_int		unp_count;	/* (l) Count of local sockets. */
116static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
117static int		unp_rights;	/* (g) File descriptors in flight. */
118static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
119static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
120static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
121
122struct unp_defer {
123	SLIST_ENTRY(unp_defer) ud_link;
124	struct file *ud_fp;
125};
126static SLIST_HEAD(, unp_defer) unp_defers;
127static int unp_defers_count;
128
129static const struct sockaddr	sun_noname = { sizeof(sun_noname), AF_LOCAL };
130
131/*
132 * Garbage collection of cyclic file descriptor/socket references occurs
133 * asynchronously in a taskqueue context in order to avoid recursion and
134 * reentrance in the UNIX domain socket, file descriptor, and socket layer
135 * code.  See unp_gc() for a full description.
136 */
137static struct timeout_task unp_gc_task;
138
139/*
140 * The close of unix domain sockets attached as SCM_RIGHTS is
141 * postponed to the taskqueue, to avoid arbitrary recursion depth.
142 * The attached sockets might have another sockets attached.
143 */
144static struct task	unp_defer_task;
145
146/*
147 * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
148 * stream sockets, although the total for sender and receiver is actually
149 * only PIPSIZ.
150 *
151 * Datagram sockets really use the sendspace as the maximum datagram size,
152 * and don't really want to reserve the sendspace.  Their recvspace should be
153 * large enough for at least one max-size datagram plus address.
154 */
155#ifndef PIPSIZ
156#define	PIPSIZ	8192
157#endif
158static u_long	unpst_sendspace = PIPSIZ;
159static u_long	unpst_recvspace = PIPSIZ;
160static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
161static u_long	unpdg_recvspace = 4*1024;
162static u_long	unpsp_sendspace = PIPSIZ;	/* really max datagram size */
163static u_long	unpsp_recvspace = PIPSIZ;
164
165static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain");
166static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0,
167    "SOCK_STREAM");
168static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM");
169static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, CTLFLAG_RW, 0,
170    "SOCK_SEQPACKET");
171
172SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
173	   &unpst_sendspace, 0, "Default stream send space.");
174SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
175	   &unpst_recvspace, 0, "Default stream receive space.");
176SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
177	   &unpdg_sendspace, 0, "Default datagram send space.");
178SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
179	   &unpdg_recvspace, 0, "Default datagram receive space.");
180SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
181	   &unpsp_sendspace, 0, "Default seqpacket send space.");
182SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
183	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
184SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
185    "File descriptors in flight.");
186SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
187    &unp_defers_count, 0,
188    "File descriptors deferred to taskqueue for close.");
189
190/*
191 * Locking and synchronization:
192 *
193 * Three types of locks exit in the local domain socket implementation: a
194 * global list mutex, a global linkage rwlock, and per-unpcb mutexes.  Of the
195 * global locks, the list lock protects the socket count, global generation
196 * number, and stream/datagram global lists.  The linkage lock protects the
197 * interconnection of unpcbs, the v_socket and unp_vnode pointers, and can be
198 * held exclusively over the acquisition of multiple unpcb locks to prevent
199 * deadlock.
200 *
201 * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
202 * allocated in pru_attach() and freed in pru_detach().  The validity of that
203 * pointer is an invariant, so no lock is required to dereference the so_pcb
204 * pointer if a valid socket reference is held by the caller.  In practice,
205 * this is always true during operations performed on a socket.  Each unpcb
206 * has a back-pointer to its socket, unp_socket, which will be stable under
207 * the same circumstances.
208 *
209 * This pointer may only be safely dereferenced as long as a valid reference
210 * to the unpcb is held.  Typically, this reference will be from the socket,
211 * or from another unpcb when the referring unpcb's lock is held (in order
212 * that the reference not be invalidated during use).  For example, to follow
213 * unp->unp_conn->unp_socket, you need unlock the lock on unp, not unp_conn,
214 * as unp_socket remains valid as long as the reference to unp_conn is valid.
215 *
216 * Fields of unpcbss are locked using a per-unpcb lock, unp_mtx.  Individual
217 * atomic reads without the lock may be performed "lockless", but more
218 * complex reads and read-modify-writes require the mutex to be held.  No
219 * lock order is defined between unpcb locks -- multiple unpcb locks may be
220 * acquired at the same time only when holding the linkage rwlock
221 * exclusively, which prevents deadlocks.
222 *
223 * Blocking with UNIX domain sockets is a tricky issue: unlike most network
224 * protocols, bind() is a non-atomic operation, and connect() requires
225 * potential sleeping in the protocol, due to potentially waiting on local or
226 * distributed file systems.  We try to separate "lookup" operations, which
227 * may sleep, and the IPC operations themselves, which typically can occur
228 * with relative atomicity as locks can be held over the entire operation.
229 *
230 * Another tricky issue is simultaneous multi-threaded or multi-process
231 * access to a single UNIX domain socket.  These are handled by the flags
232 * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
233 * binding, both of which involve dropping UNIX domain socket locks in order
234 * to perform namei() and other file system operations.
235 */
236static struct rwlock	unp_link_rwlock;
237static struct mtx	unp_list_lock;
238static struct mtx	unp_defers_lock;
239
240#define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
241					    "unp_link_rwlock")
242
243#define	UNP_LINK_LOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
244					    RA_LOCKED)
245#define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
246					    RA_UNLOCKED)
247
248#define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
249#define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
250#define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
251#define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
252#define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
253					    RA_WLOCKED)
254
255#define	UNP_LIST_LOCK_INIT()		mtx_init(&unp_list_lock,	\
256					    "unp_list_lock", NULL, MTX_DEF)
257#define	UNP_LIST_LOCK()			mtx_lock(&unp_list_lock)
258#define	UNP_LIST_UNLOCK()		mtx_unlock(&unp_list_lock)
259
260#define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
261					    "unp_defer", NULL, MTX_DEF)
262#define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
263#define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
264
265#define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
266					    "unp_mtx", "unp_mtx",	\
267					    MTX_DUPOK|MTX_DEF|MTX_RECURSE)
268#define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
269#define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
270#define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
271#define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
272
273static int	uipc_connect2(struct socket *, struct socket *);
274static int	uipc_ctloutput(struct socket *, struct sockopt *);
275static int	unp_connect(struct socket *, struct sockaddr *,
276		    struct thread *);
277static int	unp_connectat(int, struct socket *, struct sockaddr *,
278		    struct thread *);
279static int	unp_connect2(struct socket *so, struct socket *so2, int);
280static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
281static void	unp_dispose(struct mbuf *);
282static void	unp_shutdown(struct unpcb *);
283static void	unp_drop(struct unpcb *, int);
284static void	unp_gc(__unused void *, int);
285static void	unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
286static void	unp_discard(struct file *);
287static void	unp_freerights(struct filedescent **, int);
288static void	unp_init(void);
289static int	unp_internalize(struct mbuf **, struct thread *);
290static void	unp_internalize_fp(struct file *);
291static int	unp_externalize(struct mbuf *, struct mbuf **, int);
292static int	unp_externalize_fp(struct file *);
293static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *);
294static void	unp_process_defers(void * __unused, int);
295
296/*
297 * Definitions of protocols supported in the LOCAL domain.
298 */
299static struct domain localdomain;
300static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
301static struct pr_usrreqs uipc_usrreqs_seqpacket;
302static struct protosw localsw[] = {
303{
304	.pr_type =		SOCK_STREAM,
305	.pr_domain =		&localdomain,
306	.pr_flags =		PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
307	.pr_ctloutput =		&uipc_ctloutput,
308	.pr_usrreqs =		&uipc_usrreqs_stream
309},
310{
311	.pr_type =		SOCK_DGRAM,
312	.pr_domain =		&localdomain,
313	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_RIGHTS,
314	.pr_ctloutput =		&uipc_ctloutput,
315	.pr_usrreqs =		&uipc_usrreqs_dgram
316},
317{
318	.pr_type =		SOCK_SEQPACKET,
319	.pr_domain =		&localdomain,
320
321	/*
322	 * XXXRW: For now, PR_ADDR because soreceive will bump into them
323	 * due to our use of sbappendaddr.  A new sbappend variants is needed
324	 * that supports both atomic record writes and control data.
325	 */
326	.pr_flags =		PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD|
327				    PR_RIGHTS,
328	.pr_ctloutput =		&uipc_ctloutput,
329	.pr_usrreqs =		&uipc_usrreqs_seqpacket,
330},
331};
332
333static struct domain localdomain = {
334	.dom_family =		AF_LOCAL,
335	.dom_name =		"local",
336	.dom_init =		unp_init,
337	.dom_externalize =	unp_externalize,
338	.dom_dispose =		unp_dispose,
339	.dom_protosw =		localsw,
340	.dom_protoswNPROTOSW =	&localsw[sizeof(localsw)/sizeof(localsw[0])]
341};
342DOMAIN_SET(local);
343
344static void
345uipc_abort(struct socket *so)
346{
347	struct unpcb *unp, *unp2;
348
349	unp = sotounpcb(so);
350	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
351
352	UNP_LINK_WLOCK();
353	UNP_PCB_LOCK(unp);
354	unp2 = unp->unp_conn;
355	if (unp2 != NULL) {
356		UNP_PCB_LOCK(unp2);
357		unp_drop(unp2, ECONNABORTED);
358		UNP_PCB_UNLOCK(unp2);
359	}
360	UNP_PCB_UNLOCK(unp);
361	UNP_LINK_WUNLOCK();
362}
363
364static int
365uipc_accept(struct socket *so, struct sockaddr **nam)
366{
367	struct unpcb *unp, *unp2;
368	const struct sockaddr *sa;
369
370	/*
371	 * Pass back name of connected socket, if it was bound and we are
372	 * still connected (our peer may have closed already!).
373	 */
374	unp = sotounpcb(so);
375	KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
376
377	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
378	UNP_LINK_RLOCK();
379	unp2 = unp->unp_conn;
380	if (unp2 != NULL && unp2->unp_addr != NULL) {
381		UNP_PCB_LOCK(unp2);
382		sa = (struct sockaddr *) unp2->unp_addr;
383		bcopy(sa, *nam, sa->sa_len);
384		UNP_PCB_UNLOCK(unp2);
385	} else {
386		sa = &sun_noname;
387		bcopy(sa, *nam, sa->sa_len);
388	}
389	UNP_LINK_RUNLOCK();
390	return (0);
391}
392
393static int
394uipc_attach(struct socket *so, int proto, struct thread *td)
395{
396	u_long sendspace, recvspace;
397	struct unpcb *unp;
398	int error;
399
400	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
401	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
402		switch (so->so_type) {
403		case SOCK_STREAM:
404			sendspace = unpst_sendspace;
405			recvspace = unpst_recvspace;
406			break;
407
408		case SOCK_DGRAM:
409			sendspace = unpdg_sendspace;
410			recvspace = unpdg_recvspace;
411			break;
412
413		case SOCK_SEQPACKET:
414			sendspace = unpsp_sendspace;
415			recvspace = unpsp_recvspace;
416			break;
417
418		default:
419			panic("uipc_attach");
420		}
421		error = soreserve(so, sendspace, recvspace);
422		if (error)
423			return (error);
424	}
425	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
426	if (unp == NULL)
427		return (ENOBUFS);
428	LIST_INIT(&unp->unp_refs);
429	UNP_PCB_LOCK_INIT(unp);
430	unp->unp_socket = so;
431	so->so_pcb = unp;
432	unp->unp_refcount = 1;
433
434	UNP_LIST_LOCK();
435	unp->unp_gencnt = ++unp_gencnt;
436	unp_count++;
437	switch (so->so_type) {
438	case SOCK_STREAM:
439		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
440		break;
441
442	case SOCK_DGRAM:
443		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
444		break;
445
446	case SOCK_SEQPACKET:
447		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
448		break;
449
450	default:
451		panic("uipc_attach");
452	}
453	UNP_LIST_UNLOCK();
454
455	return (0);
456}
457
458static int
459uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
460{
461	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
462	struct vattr vattr;
463	int error, namelen;
464	struct nameidata nd;
465	struct unpcb *unp;
466	struct vnode *vp;
467	struct mount *mp;
468	cap_rights_t rights;
469	char *buf;
470
471	unp = sotounpcb(so);
472	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
473
474	if (soun->sun_len > sizeof(struct sockaddr_un))
475		return (EINVAL);
476	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
477	if (namelen <= 0)
478		return (EINVAL);
479
480	/*
481	 * We don't allow simultaneous bind() calls on a single UNIX domain
482	 * socket, so flag in-progress operations, and return an error if an
483	 * operation is already in progress.
484	 *
485	 * Historically, we have not allowed a socket to be rebound, so this
486	 * also returns an error.  Not allowing re-binding simplifies the
487	 * implementation and avoids a great many possible failure modes.
488	 */
489	UNP_PCB_LOCK(unp);
490	if (unp->unp_vnode != NULL) {
491		UNP_PCB_UNLOCK(unp);
492		return (EINVAL);
493	}
494	if (unp->unp_flags & UNP_BINDING) {
495		UNP_PCB_UNLOCK(unp);
496		return (EALREADY);
497	}
498	unp->unp_flags |= UNP_BINDING;
499	UNP_PCB_UNLOCK(unp);
500
501	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
502	bcopy(soun->sun_path, buf, namelen);
503	buf[namelen] = 0;
504
505restart:
506	NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME,
507	    UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_BINDAT), td);
508/* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
509	error = namei(&nd);
510	if (error)
511		goto error;
512	vp = nd.ni_vp;
513	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
514		NDFREE(&nd, NDF_ONLY_PNBUF);
515		if (nd.ni_dvp == vp)
516			vrele(nd.ni_dvp);
517		else
518			vput(nd.ni_dvp);
519		if (vp != NULL) {
520			vrele(vp);
521			error = EADDRINUSE;
522			goto error;
523		}
524		error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
525		if (error)
526			goto error;
527		goto restart;
528	}
529	VATTR_NULL(&vattr);
530	vattr.va_type = VSOCK;
531	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
532#ifdef MAC
533	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
534	    &vattr);
535#endif
536	if (error == 0)
537		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
538	NDFREE(&nd, NDF_ONLY_PNBUF);
539	vput(nd.ni_dvp);
540	if (error) {
541		vn_finished_write(mp);
542		goto error;
543	}
544	vp = nd.ni_vp;
545	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
546	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
547
548	UNP_LINK_WLOCK();
549	UNP_PCB_LOCK(unp);
550	VOP_UNP_BIND(vp, unp->unp_socket);
551	unp->unp_vnode = vp;
552	unp->unp_addr = soun;
553	unp->unp_flags &= ~UNP_BINDING;
554	UNP_PCB_UNLOCK(unp);
555	UNP_LINK_WUNLOCK();
556	VOP_UNLOCK(vp, 0);
557	vn_finished_write(mp);
558	free(buf, M_TEMP);
559	return (0);
560
561error:
562	UNP_PCB_LOCK(unp);
563	unp->unp_flags &= ~UNP_BINDING;
564	UNP_PCB_UNLOCK(unp);
565	free(buf, M_TEMP);
566	return (error);
567}
568
569static int
570uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
571{
572
573	return (uipc_bindat(AT_FDCWD, so, nam, td));
574}
575
576static int
577uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
578{
579	int error;
580
581	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
582	UNP_LINK_WLOCK();
583	error = unp_connect(so, nam, td);
584	UNP_LINK_WUNLOCK();
585	return (error);
586}
587
588static int
589uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
590    struct thread *td)
591{
592	int error;
593
594	KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
595	UNP_LINK_WLOCK();
596	error = unp_connectat(fd, so, nam, td);
597	UNP_LINK_WUNLOCK();
598	return (error);
599}
600
601static void
602uipc_close(struct socket *so)
603{
604	struct unpcb *unp, *unp2;
605
606	unp = sotounpcb(so);
607	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
608
609	UNP_LINK_WLOCK();
610	UNP_PCB_LOCK(unp);
611	unp2 = unp->unp_conn;
612	if (unp2 != NULL) {
613		UNP_PCB_LOCK(unp2);
614		unp_disconnect(unp, unp2);
615		UNP_PCB_UNLOCK(unp2);
616	}
617	UNP_PCB_UNLOCK(unp);
618	UNP_LINK_WUNLOCK();
619}
620
621static int
622uipc_connect2(struct socket *so1, struct socket *so2)
623{
624	struct unpcb *unp, *unp2;
625	int error;
626
627	UNP_LINK_WLOCK();
628	unp = so1->so_pcb;
629	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
630	UNP_PCB_LOCK(unp);
631	unp2 = so2->so_pcb;
632	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
633	UNP_PCB_LOCK(unp2);
634	error = unp_connect2(so1, so2, PRU_CONNECT2);
635	UNP_PCB_UNLOCK(unp2);
636	UNP_PCB_UNLOCK(unp);
637	UNP_LINK_WUNLOCK();
638	return (error);
639}
640
641static void
642uipc_detach(struct socket *so)
643{
644	struct unpcb *unp, *unp2;
645	struct sockaddr_un *saved_unp_addr;
646	struct vnode *vp;
647	int freeunp, local_unp_rights;
648
649	unp = sotounpcb(so);
650	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
651
652	UNP_LINK_WLOCK();
653	UNP_LIST_LOCK();
654	UNP_PCB_LOCK(unp);
655	LIST_REMOVE(unp, unp_link);
656	unp->unp_gencnt = ++unp_gencnt;
657	--unp_count;
658	UNP_LIST_UNLOCK();
659
660	/*
661	 * XXXRW: Should assert vp->v_socket == so.
662	 */
663	if ((vp = unp->unp_vnode) != NULL) {
664		VOP_UNP_DETACH(vp);
665		unp->unp_vnode = NULL;
666	}
667	unp2 = unp->unp_conn;
668	if (unp2 != NULL) {
669		UNP_PCB_LOCK(unp2);
670		unp_disconnect(unp, unp2);
671		UNP_PCB_UNLOCK(unp2);
672	}
673
674	/*
675	 * We hold the linkage lock exclusively, so it's OK to acquire
676	 * multiple pcb locks at a time.
677	 */
678	while (!LIST_EMPTY(&unp->unp_refs)) {
679		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
680
681		UNP_PCB_LOCK(ref);
682		unp_drop(ref, ECONNRESET);
683		UNP_PCB_UNLOCK(ref);
684	}
685	local_unp_rights = unp_rights;
686	UNP_LINK_WUNLOCK();
687	unp->unp_socket->so_pcb = NULL;
688	saved_unp_addr = unp->unp_addr;
689	unp->unp_addr = NULL;
690	unp->unp_refcount--;
691	freeunp = (unp->unp_refcount == 0);
692	if (saved_unp_addr != NULL)
693		free(saved_unp_addr, M_SONAME);
694	if (freeunp) {
695		UNP_PCB_LOCK_DESTROY(unp);
696		uma_zfree(unp_zone, unp);
697	} else
698		UNP_PCB_UNLOCK(unp);
699	if (vp)
700		vrele(vp);
701	if (local_unp_rights)
702		taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
703}
704
705static int
706uipc_disconnect(struct socket *so)
707{
708	struct unpcb *unp, *unp2;
709
710	unp = sotounpcb(so);
711	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
712
713	UNP_LINK_WLOCK();
714	UNP_PCB_LOCK(unp);
715	unp2 = unp->unp_conn;
716	if (unp2 != NULL) {
717		UNP_PCB_LOCK(unp2);
718		unp_disconnect(unp, unp2);
719		UNP_PCB_UNLOCK(unp2);
720	}
721	UNP_PCB_UNLOCK(unp);
722	UNP_LINK_WUNLOCK();
723	return (0);
724}
725
726static int
727uipc_listen(struct socket *so, int backlog, struct thread *td)
728{
729	struct unpcb *unp;
730	int error;
731
732	unp = sotounpcb(so);
733	KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
734
735	UNP_PCB_LOCK(unp);
736	if (unp->unp_vnode == NULL) {
737		UNP_PCB_UNLOCK(unp);
738		return (EINVAL);
739	}
740
741	SOCK_LOCK(so);
742	error = solisten_proto_check(so);
743	if (error == 0) {
744		cru2x(td->td_ucred, &unp->unp_peercred);
745		unp->unp_flags |= UNP_HAVEPCCACHED;
746		solisten_proto(so, backlog);
747	}
748	SOCK_UNLOCK(so);
749	UNP_PCB_UNLOCK(unp);
750	return (error);
751}
752
753static int
754uipc_peeraddr(struct socket *so, struct sockaddr **nam)
755{
756	struct unpcb *unp, *unp2;
757	const struct sockaddr *sa;
758
759	unp = sotounpcb(so);
760	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
761
762	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
763	UNP_LINK_RLOCK();
764	/*
765	 * XXX: It seems that this test always fails even when connection is
766	 * established.  So, this else clause is added as workaround to
767	 * return PF_LOCAL sockaddr.
768	 */
769	unp2 = unp->unp_conn;
770	if (unp2 != NULL) {
771		UNP_PCB_LOCK(unp2);
772		if (unp2->unp_addr != NULL)
773			sa = (struct sockaddr *) unp2->unp_addr;
774		else
775			sa = &sun_noname;
776		bcopy(sa, *nam, sa->sa_len);
777		UNP_PCB_UNLOCK(unp2);
778	} else {
779		sa = &sun_noname;
780		bcopy(sa, *nam, sa->sa_len);
781	}
782	UNP_LINK_RUNLOCK();
783	return (0);
784}
785
786static int
787uipc_rcvd(struct socket *so, int flags)
788{
789	struct unpcb *unp, *unp2;
790	struct socket *so2;
791	u_int mbcnt, sbcc;
792	u_long newhiwat;
793
794	unp = sotounpcb(so);
795	KASSERT(unp != NULL, ("uipc_rcvd: unp == NULL"));
796
797	if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET)
798		panic("uipc_rcvd socktype %d", so->so_type);
799
800	/*
801	 * Adjust backpressure on sender and wakeup any waiting to write.
802	 *
803	 * The unp lock is acquired to maintain the validity of the unp_conn
804	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
805	 * static as long as we don't permit unp2 to disconnect from unp,
806	 * which is prevented by the lock on unp.  We cache values from
807	 * so_rcv to avoid holding the so_rcv lock over the entire
808	 * transaction on the remote so_snd.
809	 */
810	SOCKBUF_LOCK(&so->so_rcv);
811	mbcnt = so->so_rcv.sb_mbcnt;
812	sbcc = so->so_rcv.sb_cc;
813	SOCKBUF_UNLOCK(&so->so_rcv);
814	UNP_PCB_LOCK(unp);
815	unp2 = unp->unp_conn;
816	if (unp2 == NULL) {
817		UNP_PCB_UNLOCK(unp);
818		return (0);
819	}
820	so2 = unp2->unp_socket;
821	SOCKBUF_LOCK(&so2->so_snd);
822	so2->so_snd.sb_mbmax += unp->unp_mbcnt - mbcnt;
823	newhiwat = so2->so_snd.sb_hiwat + unp->unp_cc - sbcc;
824	(void)chgsbsize(so2->so_cred->cr_uidinfo, &so2->so_snd.sb_hiwat,
825	    newhiwat, RLIM_INFINITY);
826	sowwakeup_locked(so2);
827	unp->unp_mbcnt = mbcnt;
828	unp->unp_cc = sbcc;
829	UNP_PCB_UNLOCK(unp);
830	return (0);
831}
832
833static int
834uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
835    struct mbuf *control, struct thread *td)
836{
837	struct unpcb *unp, *unp2;
838	struct socket *so2;
839	u_int mbcnt_delta, sbcc;
840	u_int newhiwat;
841	int error = 0;
842
843	unp = sotounpcb(so);
844	KASSERT(unp != NULL, ("uipc_send: unp == NULL"));
845
846	if (flags & PRUS_OOB) {
847		error = EOPNOTSUPP;
848		goto release;
849	}
850	if (control != NULL && (error = unp_internalize(&control, td)))
851		goto release;
852	if ((nam != NULL) || (flags & PRUS_EOF))
853		UNP_LINK_WLOCK();
854	else
855		UNP_LINK_RLOCK();
856	switch (so->so_type) {
857	case SOCK_DGRAM:
858	{
859		const struct sockaddr *from;
860
861		unp2 = unp->unp_conn;
862		if (nam != NULL) {
863			UNP_LINK_WLOCK_ASSERT();
864			if (unp2 != NULL) {
865				error = EISCONN;
866				break;
867			}
868			error = unp_connect(so, nam, td);
869			if (error)
870				break;
871			unp2 = unp->unp_conn;
872		}
873
874		/*
875		 * Because connect() and send() are non-atomic in a sendto()
876		 * with a target address, it's possible that the socket will
877		 * have disconnected before the send() can run.  In that case
878		 * return the slightly counter-intuitive but otherwise
879		 * correct error that the socket is not connected.
880		 */
881		if (unp2 == NULL) {
882			error = ENOTCONN;
883			break;
884		}
885		/* Lockless read. */
886		if (unp2->unp_flags & UNP_WANTCRED)
887			control = unp_addsockcred(td, control);
888		UNP_PCB_LOCK(unp);
889		if (unp->unp_addr != NULL)
890			from = (struct sockaddr *)unp->unp_addr;
891		else
892			from = &sun_noname;
893		so2 = unp2->unp_socket;
894		SOCKBUF_LOCK(&so2->so_rcv);
895		if (sbappendaddr_locked(&so2->so_rcv, from, m, control)) {
896			sorwakeup_locked(so2);
897			m = NULL;
898			control = NULL;
899		} else {
900			SOCKBUF_UNLOCK(&so2->so_rcv);
901			error = ENOBUFS;
902		}
903		if (nam != NULL) {
904			UNP_LINK_WLOCK_ASSERT();
905			UNP_PCB_LOCK(unp2);
906			unp_disconnect(unp, unp2);
907			UNP_PCB_UNLOCK(unp2);
908		}
909		UNP_PCB_UNLOCK(unp);
910		break;
911	}
912
913	case SOCK_SEQPACKET:
914	case SOCK_STREAM:
915		if ((so->so_state & SS_ISCONNECTED) == 0) {
916			if (nam != NULL) {
917				UNP_LINK_WLOCK_ASSERT();
918				error = unp_connect(so, nam, td);
919				if (error)
920					break;	/* XXX */
921			} else {
922				error = ENOTCONN;
923				break;
924			}
925		}
926
927		/* Lockless read. */
928		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
929			error = EPIPE;
930			break;
931		}
932
933		/*
934		 * Because connect() and send() are non-atomic in a sendto()
935		 * with a target address, it's possible that the socket will
936		 * have disconnected before the send() can run.  In that case
937		 * return the slightly counter-intuitive but otherwise
938		 * correct error that the socket is not connected.
939		 *
940		 * Locking here must be done carefully: the linkage lock
941		 * prevents interconnections between unpcbs from changing, so
942		 * we can traverse from unp to unp2 without acquiring unp's
943		 * lock.  Socket buffer locks follow unpcb locks, so we can
944		 * acquire both remote and lock socket buffer locks.
945		 */
946		unp2 = unp->unp_conn;
947		if (unp2 == NULL) {
948			error = ENOTCONN;
949			break;
950		}
951		so2 = unp2->unp_socket;
952		UNP_PCB_LOCK(unp2);
953		SOCKBUF_LOCK(&so2->so_rcv);
954		if (unp2->unp_flags & UNP_WANTCRED) {
955			/*
956			 * Credentials are passed only once on SOCK_STREAM
957			 * and SOCK_SEQPACKET.
958			 */
959			unp2->unp_flags &= ~UNP_WANTCRED;
960			control = unp_addsockcred(td, control);
961		}
962		/*
963		 * Send to paired receive port, and then reduce send buffer
964		 * hiwater marks to maintain backpressure.  Wake up readers.
965		 */
966		switch (so->so_type) {
967		case SOCK_STREAM:
968			if (control != NULL) {
969				if (sbappendcontrol_locked(&so2->so_rcv, m,
970				    control))
971					control = NULL;
972			} else
973				sbappend_locked(&so2->so_rcv, m);
974			break;
975
976		case SOCK_SEQPACKET: {
977			const struct sockaddr *from;
978
979			from = &sun_noname;
980			if (sbappendaddr_locked(&so2->so_rcv, from, m,
981			    control))
982				control = NULL;
983			break;
984			}
985		}
986
987		/*
988		 * XXXRW: While fine for SOCK_STREAM, this conflates maximum
989		 * datagram size and back-pressure for SOCK_SEQPACKET, which
990		 * can lead to undesired return of EMSGSIZE on send instead
991		 * of more desirable blocking.
992		 */
993		mbcnt_delta = so2->so_rcv.sb_mbcnt - unp2->unp_mbcnt;
994		unp2->unp_mbcnt = so2->so_rcv.sb_mbcnt;
995		sbcc = so2->so_rcv.sb_cc;
996		sorwakeup_locked(so2);
997
998		SOCKBUF_LOCK(&so->so_snd);
999		if ((int)so->so_snd.sb_hiwat >= (int)(sbcc - unp2->unp_cc))
1000			newhiwat = so->so_snd.sb_hiwat - (sbcc - unp2->unp_cc);
1001		else
1002			newhiwat = 0;
1003		(void)chgsbsize(so->so_cred->cr_uidinfo, &so->so_snd.sb_hiwat,
1004		    newhiwat, RLIM_INFINITY);
1005		so->so_snd.sb_mbmax -= mbcnt_delta;
1006		SOCKBUF_UNLOCK(&so->so_snd);
1007		unp2->unp_cc = sbcc;
1008		UNP_PCB_UNLOCK(unp2);
1009		m = NULL;
1010		break;
1011
1012	default:
1013		panic("uipc_send unknown socktype");
1014	}
1015
1016	/*
1017	 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
1018	 */
1019	if (flags & PRUS_EOF) {
1020		UNP_PCB_LOCK(unp);
1021		socantsendmore(so);
1022		unp_shutdown(unp);
1023		UNP_PCB_UNLOCK(unp);
1024	}
1025
1026	if ((nam != NULL) || (flags & PRUS_EOF))
1027		UNP_LINK_WUNLOCK();
1028	else
1029		UNP_LINK_RUNLOCK();
1030
1031	if (control != NULL && error != 0)
1032		unp_dispose(control);
1033
1034release:
1035	if (control != NULL)
1036		m_freem(control);
1037	if (m != NULL)
1038		m_freem(m);
1039	return (error);
1040}
1041
1042static int
1043uipc_sense(struct socket *so, struct stat *sb)
1044{
1045	struct unpcb *unp, *unp2;
1046	struct socket *so2;
1047
1048	unp = sotounpcb(so);
1049	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1050
1051	sb->st_blksize = so->so_snd.sb_hiwat;
1052	UNP_LINK_RLOCK();
1053	UNP_PCB_LOCK(unp);
1054	unp2 = unp->unp_conn;
1055	if ((so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET) &&
1056	    unp2 != NULL) {
1057		so2 = unp2->unp_socket;
1058		sb->st_blksize += so2->so_rcv.sb_cc;
1059	}
1060	sb->st_dev = NODEV;
1061	if (unp->unp_ino == 0)
1062		unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
1063	sb->st_ino = unp->unp_ino;
1064	UNP_PCB_UNLOCK(unp);
1065	UNP_LINK_RUNLOCK();
1066	return (0);
1067}
1068
1069static int
1070uipc_shutdown(struct socket *so)
1071{
1072	struct unpcb *unp;
1073
1074	unp = sotounpcb(so);
1075	KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1076
1077	UNP_LINK_WLOCK();
1078	UNP_PCB_LOCK(unp);
1079	socantsendmore(so);
1080	unp_shutdown(unp);
1081	UNP_PCB_UNLOCK(unp);
1082	UNP_LINK_WUNLOCK();
1083	return (0);
1084}
1085
1086static int
1087uipc_sockaddr(struct socket *so, struct sockaddr **nam)
1088{
1089	struct unpcb *unp;
1090	const struct sockaddr *sa;
1091
1092	unp = sotounpcb(so);
1093	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1094
1095	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1096	UNP_PCB_LOCK(unp);
1097	if (unp->unp_addr != NULL)
1098		sa = (struct sockaddr *) unp->unp_addr;
1099	else
1100		sa = &sun_noname;
1101	bcopy(sa, *nam, sa->sa_len);
1102	UNP_PCB_UNLOCK(unp);
1103	return (0);
1104}
1105
1106static struct pr_usrreqs uipc_usrreqs_dgram = {
1107	.pru_abort = 		uipc_abort,
1108	.pru_accept =		uipc_accept,
1109	.pru_attach =		uipc_attach,
1110	.pru_bind =		uipc_bind,
1111	.pru_bindat =		uipc_bindat,
1112	.pru_connect =		uipc_connect,
1113	.pru_connectat =	uipc_connectat,
1114	.pru_connect2 =		uipc_connect2,
1115	.pru_detach =		uipc_detach,
1116	.pru_disconnect =	uipc_disconnect,
1117	.pru_listen =		uipc_listen,
1118	.pru_peeraddr =		uipc_peeraddr,
1119	.pru_rcvd =		uipc_rcvd,
1120	.pru_send =		uipc_send,
1121	.pru_sense =		uipc_sense,
1122	.pru_shutdown =		uipc_shutdown,
1123	.pru_sockaddr =		uipc_sockaddr,
1124	.pru_soreceive =	soreceive_dgram,
1125	.pru_close =		uipc_close,
1126};
1127
1128static struct pr_usrreqs uipc_usrreqs_seqpacket = {
1129	.pru_abort =		uipc_abort,
1130	.pru_accept =		uipc_accept,
1131	.pru_attach =		uipc_attach,
1132	.pru_bind =		uipc_bind,
1133	.pru_bindat =		uipc_bindat,
1134	.pru_connect =		uipc_connect,
1135	.pru_connectat =	uipc_connectat,
1136	.pru_connect2 =		uipc_connect2,
1137	.pru_detach =		uipc_detach,
1138	.pru_disconnect =	uipc_disconnect,
1139	.pru_listen =		uipc_listen,
1140	.pru_peeraddr =		uipc_peeraddr,
1141	.pru_rcvd =		uipc_rcvd,
1142	.pru_send =		uipc_send,
1143	.pru_sense =		uipc_sense,
1144	.pru_shutdown =		uipc_shutdown,
1145	.pru_sockaddr =		uipc_sockaddr,
1146	.pru_soreceive =	soreceive_generic,	/* XXX: or...? */
1147	.pru_close =		uipc_close,
1148};
1149
1150static struct pr_usrreqs uipc_usrreqs_stream = {
1151	.pru_abort = 		uipc_abort,
1152	.pru_accept =		uipc_accept,
1153	.pru_attach =		uipc_attach,
1154	.pru_bind =		uipc_bind,
1155	.pru_bindat =		uipc_bindat,
1156	.pru_connect =		uipc_connect,
1157	.pru_connectat =	uipc_connectat,
1158	.pru_connect2 =		uipc_connect2,
1159	.pru_detach =		uipc_detach,
1160	.pru_disconnect =	uipc_disconnect,
1161	.pru_listen =		uipc_listen,
1162	.pru_peeraddr =		uipc_peeraddr,
1163	.pru_rcvd =		uipc_rcvd,
1164	.pru_send =		uipc_send,
1165	.pru_sense =		uipc_sense,
1166	.pru_shutdown =		uipc_shutdown,
1167	.pru_sockaddr =		uipc_sockaddr,
1168	.pru_soreceive =	soreceive_generic,
1169	.pru_close =		uipc_close,
1170};
1171
1172static int
1173uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1174{
1175	struct unpcb *unp;
1176	struct xucred xu;
1177	int error, optval;
1178
1179	if (sopt->sopt_level != 0)
1180		return (EINVAL);
1181
1182	unp = sotounpcb(so);
1183	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1184	error = 0;
1185	switch (sopt->sopt_dir) {
1186	case SOPT_GET:
1187		switch (sopt->sopt_name) {
1188		case LOCAL_PEERCRED:
1189			UNP_PCB_LOCK(unp);
1190			if (unp->unp_flags & UNP_HAVEPC)
1191				xu = unp->unp_peercred;
1192			else {
1193				if (so->so_type == SOCK_STREAM)
1194					error = ENOTCONN;
1195				else
1196					error = EINVAL;
1197			}
1198			UNP_PCB_UNLOCK(unp);
1199			if (error == 0)
1200				error = sooptcopyout(sopt, &xu, sizeof(xu));
1201			break;
1202
1203		case LOCAL_CREDS:
1204			/* Unlocked read. */
1205			optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0;
1206			error = sooptcopyout(sopt, &optval, sizeof(optval));
1207			break;
1208
1209		case LOCAL_CONNWAIT:
1210			/* Unlocked read. */
1211			optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1212			error = sooptcopyout(sopt, &optval, sizeof(optval));
1213			break;
1214
1215		default:
1216			error = EOPNOTSUPP;
1217			break;
1218		}
1219		break;
1220
1221	case SOPT_SET:
1222		switch (sopt->sopt_name) {
1223		case LOCAL_CREDS:
1224		case LOCAL_CONNWAIT:
1225			error = sooptcopyin(sopt, &optval, sizeof(optval),
1226					    sizeof(optval));
1227			if (error)
1228				break;
1229
1230#define	OPTSET(bit) do {						\
1231	UNP_PCB_LOCK(unp);						\
1232	if (optval)							\
1233		unp->unp_flags |= bit;					\
1234	else								\
1235		unp->unp_flags &= ~bit;					\
1236	UNP_PCB_UNLOCK(unp);						\
1237} while (0)
1238
1239			switch (sopt->sopt_name) {
1240			case LOCAL_CREDS:
1241				OPTSET(UNP_WANTCRED);
1242				break;
1243
1244			case LOCAL_CONNWAIT:
1245				OPTSET(UNP_CONNWAIT);
1246				break;
1247
1248			default:
1249				break;
1250			}
1251			break;
1252#undef	OPTSET
1253		default:
1254			error = ENOPROTOOPT;
1255			break;
1256		}
1257		break;
1258
1259	default:
1260		error = EOPNOTSUPP;
1261		break;
1262	}
1263	return (error);
1264}
1265
1266static int
1267unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1268{
1269
1270	return (unp_connectat(AT_FDCWD, so, nam, td));
1271}
1272
1273static int
1274unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
1275    struct thread *td)
1276{
1277	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
1278	struct vnode *vp;
1279	struct socket *so2, *so3;
1280	struct unpcb *unp, *unp2, *unp3;
1281	struct nameidata nd;
1282	char buf[SOCK_MAXADDRLEN];
1283	struct sockaddr *sa;
1284	cap_rights_t rights;
1285	int error, len;
1286
1287	UNP_LINK_WLOCK_ASSERT();
1288
1289	unp = sotounpcb(so);
1290	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1291
1292	if (nam->sa_len > sizeof(struct sockaddr_un))
1293		return (EINVAL);
1294	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1295	if (len <= 0)
1296		return (EINVAL);
1297	bcopy(soun->sun_path, buf, len);
1298	buf[len] = 0;
1299
1300	UNP_PCB_LOCK(unp);
1301	if (unp->unp_flags & UNP_CONNECTING) {
1302		UNP_PCB_UNLOCK(unp);
1303		return (EALREADY);
1304	}
1305	UNP_LINK_WUNLOCK();
1306	unp->unp_flags |= UNP_CONNECTING;
1307	UNP_PCB_UNLOCK(unp);
1308
1309	sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1310	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
1311	    UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_CONNECTAT), td);
1312	error = namei(&nd);
1313	if (error)
1314		vp = NULL;
1315	else
1316		vp = nd.ni_vp;
1317	ASSERT_VOP_LOCKED(vp, "unp_connect");
1318	NDFREE(&nd, NDF_ONLY_PNBUF);
1319	if (error)
1320		goto bad;
1321
1322	if (vp->v_type != VSOCK) {
1323		error = ENOTSOCK;
1324		goto bad;
1325	}
1326#ifdef MAC
1327	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1328	if (error)
1329		goto bad;
1330#endif
1331	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1332	if (error)
1333		goto bad;
1334
1335	unp = sotounpcb(so);
1336	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1337
1338	/*
1339	 * Lock linkage lock for two reasons: make sure v_socket is stable,
1340	 * and to protect simultaneous locking of multiple pcbs.
1341	 */
1342	UNP_LINK_WLOCK();
1343	VOP_UNP_CONNECT(vp, &so2);
1344	if (so2 == NULL) {
1345		error = ECONNREFUSED;
1346		goto bad2;
1347	}
1348	if (so->so_type != so2->so_type) {
1349		error = EPROTOTYPE;
1350		goto bad2;
1351	}
1352	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1353		if (so2->so_options & SO_ACCEPTCONN) {
1354			CURVNET_SET(so2->so_vnet);
1355			so3 = sonewconn(so2, 0);
1356			CURVNET_RESTORE();
1357		} else
1358			so3 = NULL;
1359		if (so3 == NULL) {
1360			error = ECONNREFUSED;
1361			goto bad2;
1362		}
1363		unp = sotounpcb(so);
1364		unp2 = sotounpcb(so2);
1365		unp3 = sotounpcb(so3);
1366		UNP_PCB_LOCK(unp);
1367		UNP_PCB_LOCK(unp2);
1368		UNP_PCB_LOCK(unp3);
1369		if (unp2->unp_addr != NULL) {
1370			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1371			unp3->unp_addr = (struct sockaddr_un *) sa;
1372			sa = NULL;
1373		}
1374
1375		/*
1376		 * The connector's (client's) credentials are copied from its
1377		 * process structure at the time of connect() (which is now).
1378		 */
1379		cru2x(td->td_ucred, &unp3->unp_peercred);
1380		unp3->unp_flags |= UNP_HAVEPC;
1381
1382		/*
1383		 * The receiver's (server's) credentials are copied from the
1384		 * unp_peercred member of socket on which the former called
1385		 * listen(); uipc_listen() cached that process's credentials
1386		 * at that time so we can use them now.
1387		 */
1388		KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
1389		    ("unp_connect: listener without cached peercred"));
1390		memcpy(&unp->unp_peercred, &unp2->unp_peercred,
1391		    sizeof(unp->unp_peercred));
1392		unp->unp_flags |= UNP_HAVEPC;
1393		if (unp2->unp_flags & UNP_WANTCRED)
1394			unp3->unp_flags |= UNP_WANTCRED;
1395		UNP_PCB_UNLOCK(unp3);
1396		UNP_PCB_UNLOCK(unp2);
1397		UNP_PCB_UNLOCK(unp);
1398#ifdef MAC
1399		mac_socketpeer_set_from_socket(so, so3);
1400		mac_socketpeer_set_from_socket(so3, so);
1401#endif
1402
1403		so2 = so3;
1404	}
1405	unp = sotounpcb(so);
1406	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1407	unp2 = sotounpcb(so2);
1408	KASSERT(unp2 != NULL, ("unp_connect: unp2 == NULL"));
1409	UNP_PCB_LOCK(unp);
1410	UNP_PCB_LOCK(unp2);
1411	error = unp_connect2(so, so2, PRU_CONNECT);
1412	UNP_PCB_UNLOCK(unp2);
1413	UNP_PCB_UNLOCK(unp);
1414bad2:
1415	UNP_LINK_WUNLOCK();
1416bad:
1417	if (vp != NULL)
1418		vput(vp);
1419	free(sa, M_SONAME);
1420	UNP_LINK_WLOCK();
1421	UNP_PCB_LOCK(unp);
1422	unp->unp_flags &= ~UNP_CONNECTING;
1423	UNP_PCB_UNLOCK(unp);
1424	return (error);
1425}
1426
1427static int
1428unp_connect2(struct socket *so, struct socket *so2, int req)
1429{
1430	struct unpcb *unp;
1431	struct unpcb *unp2;
1432
1433	unp = sotounpcb(so);
1434	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1435	unp2 = sotounpcb(so2);
1436	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1437
1438	UNP_LINK_WLOCK_ASSERT();
1439	UNP_PCB_LOCK_ASSERT(unp);
1440	UNP_PCB_LOCK_ASSERT(unp2);
1441
1442	if (so2->so_type != so->so_type)
1443		return (EPROTOTYPE);
1444	unp->unp_conn = unp2;
1445
1446	switch (so->so_type) {
1447	case SOCK_DGRAM:
1448		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1449		soisconnected(so);
1450		break;
1451
1452	case SOCK_STREAM:
1453	case SOCK_SEQPACKET:
1454		unp2->unp_conn = unp;
1455		if (req == PRU_CONNECT &&
1456		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1457			soisconnecting(so);
1458		else
1459			soisconnected(so);
1460		soisconnected(so2);
1461		break;
1462
1463	default:
1464		panic("unp_connect2");
1465	}
1466	return (0);
1467}
1468
1469static void
1470unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1471{
1472	struct socket *so;
1473
1474	KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL"));
1475
1476	UNP_LINK_WLOCK_ASSERT();
1477	UNP_PCB_LOCK_ASSERT(unp);
1478	UNP_PCB_LOCK_ASSERT(unp2);
1479
1480	unp->unp_conn = NULL;
1481	switch (unp->unp_socket->so_type) {
1482	case SOCK_DGRAM:
1483		LIST_REMOVE(unp, unp_reflink);
1484		so = unp->unp_socket;
1485		SOCK_LOCK(so);
1486		so->so_state &= ~SS_ISCONNECTED;
1487		SOCK_UNLOCK(so);
1488		break;
1489
1490	case SOCK_STREAM:
1491	case SOCK_SEQPACKET:
1492		soisdisconnected(unp->unp_socket);
1493		unp2->unp_conn = NULL;
1494		soisdisconnected(unp2->unp_socket);
1495		break;
1496	}
1497}
1498
1499/*
1500 * unp_pcblist() walks the global list of struct unpcb's to generate a
1501 * pointer list, bumping the refcount on each unpcb.  It then copies them out
1502 * sequentially, validating the generation number on each to see if it has
1503 * been detached.  All of this is necessary because copyout() may sleep on
1504 * disk I/O.
1505 */
1506static int
1507unp_pcblist(SYSCTL_HANDLER_ARGS)
1508{
1509	int error, i, n;
1510	int freeunp;
1511	struct unpcb *unp, **unp_list;
1512	unp_gen_t gencnt;
1513	struct xunpgen *xug;
1514	struct unp_head *head;
1515	struct xunpcb *xu;
1516
1517	switch ((intptr_t)arg1) {
1518	case SOCK_STREAM:
1519		head = &unp_shead;
1520		break;
1521
1522	case SOCK_DGRAM:
1523		head = &unp_dhead;
1524		break;
1525
1526	case SOCK_SEQPACKET:
1527		head = &unp_sphead;
1528		break;
1529
1530	default:
1531		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
1532	}
1533
1534	/*
1535	 * The process of preparing the PCB list is too time-consuming and
1536	 * resource-intensive to repeat twice on every request.
1537	 */
1538	if (req->oldptr == NULL) {
1539		n = unp_count;
1540		req->oldidx = 2 * (sizeof *xug)
1541			+ (n + n/8) * sizeof(struct xunpcb);
1542		return (0);
1543	}
1544
1545	if (req->newptr != NULL)
1546		return (EPERM);
1547
1548	/*
1549	 * OK, now we're committed to doing something.
1550	 */
1551	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK);
1552	UNP_LIST_LOCK();
1553	gencnt = unp_gencnt;
1554	n = unp_count;
1555	UNP_LIST_UNLOCK();
1556
1557	xug->xug_len = sizeof *xug;
1558	xug->xug_count = n;
1559	xug->xug_gen = gencnt;
1560	xug->xug_sogen = so_gencnt;
1561	error = SYSCTL_OUT(req, xug, sizeof *xug);
1562	if (error) {
1563		free(xug, M_TEMP);
1564		return (error);
1565	}
1566
1567	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1568
1569	UNP_LIST_LOCK();
1570	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1571	     unp = LIST_NEXT(unp, unp_link)) {
1572		UNP_PCB_LOCK(unp);
1573		if (unp->unp_gencnt <= gencnt) {
1574			if (cr_cansee(req->td->td_ucred,
1575			    unp->unp_socket->so_cred)) {
1576				UNP_PCB_UNLOCK(unp);
1577				continue;
1578			}
1579			unp_list[i++] = unp;
1580			unp->unp_refcount++;
1581		}
1582		UNP_PCB_UNLOCK(unp);
1583	}
1584	UNP_LIST_UNLOCK();
1585	n = i;			/* In case we lost some during malloc. */
1586
1587	error = 0;
1588	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1589	for (i = 0; i < n; i++) {
1590		unp = unp_list[i];
1591		UNP_PCB_LOCK(unp);
1592		unp->unp_refcount--;
1593	        if (unp->unp_refcount != 0 && unp->unp_gencnt <= gencnt) {
1594			xu->xu_len = sizeof *xu;
1595			xu->xu_unpp = unp;
1596			/*
1597			 * XXX - need more locking here to protect against
1598			 * connect/disconnect races for SMP.
1599			 */
1600			if (unp->unp_addr != NULL)
1601				bcopy(unp->unp_addr, &xu->xu_addr,
1602				      unp->unp_addr->sun_len);
1603			if (unp->unp_conn != NULL &&
1604			    unp->unp_conn->unp_addr != NULL)
1605				bcopy(unp->unp_conn->unp_addr,
1606				      &xu->xu_caddr,
1607				      unp->unp_conn->unp_addr->sun_len);
1608			bcopy(unp, &xu->xu_unp, sizeof *unp);
1609			sotoxsocket(unp->unp_socket, &xu->xu_socket);
1610			UNP_PCB_UNLOCK(unp);
1611			error = SYSCTL_OUT(req, xu, sizeof *xu);
1612		} else {
1613			freeunp = (unp->unp_refcount == 0);
1614			UNP_PCB_UNLOCK(unp);
1615			if (freeunp) {
1616				UNP_PCB_LOCK_DESTROY(unp);
1617				uma_zfree(unp_zone, unp);
1618			}
1619		}
1620	}
1621	free(xu, M_TEMP);
1622	if (!error) {
1623		/*
1624		 * Give the user an updated idea of our state.  If the
1625		 * generation differs from what we told her before, she knows
1626		 * that something happened while we were processing this
1627		 * request, and it might be necessary to retry.
1628		 */
1629		xug->xug_gen = unp_gencnt;
1630		xug->xug_sogen = so_gencnt;
1631		xug->xug_count = unp_count;
1632		error = SYSCTL_OUT(req, xug, sizeof *xug);
1633	}
1634	free(unp_list, M_TEMP);
1635	free(xug, M_TEMP);
1636	return (error);
1637}
1638
1639SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1640    (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1641    "List of active local datagram sockets");
1642SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1643    (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1644    "List of active local stream sockets");
1645SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
1646    CTLTYPE_OPAQUE | CTLFLAG_RD,
1647    (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1648    "List of active local seqpacket sockets");
1649
1650static void
1651unp_shutdown(struct unpcb *unp)
1652{
1653	struct unpcb *unp2;
1654	struct socket *so;
1655
1656	UNP_LINK_WLOCK_ASSERT();
1657	UNP_PCB_LOCK_ASSERT(unp);
1658
1659	unp2 = unp->unp_conn;
1660	if ((unp->unp_socket->so_type == SOCK_STREAM ||
1661	    (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
1662		so = unp2->unp_socket;
1663		if (so != NULL)
1664			socantrcvmore(so);
1665	}
1666}
1667
1668static void
1669unp_drop(struct unpcb *unp, int errno)
1670{
1671	struct socket *so = unp->unp_socket;
1672	struct unpcb *unp2;
1673
1674	UNP_LINK_WLOCK_ASSERT();
1675	UNP_PCB_LOCK_ASSERT(unp);
1676
1677	so->so_error = errno;
1678	unp2 = unp->unp_conn;
1679	if (unp2 == NULL)
1680		return;
1681	UNP_PCB_LOCK(unp2);
1682	unp_disconnect(unp, unp2);
1683	UNP_PCB_UNLOCK(unp2);
1684}
1685
1686static void
1687unp_freerights(struct filedescent **fdep, int fdcount)
1688{
1689	struct file *fp;
1690	int i;
1691
1692	KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
1693
1694	for (i = 0; i < fdcount; i++) {
1695		fp = fdep[i]->fde_file;
1696		filecaps_free(&fdep[i]->fde_caps);
1697		unp_discard(fp);
1698	}
1699	free(fdep[0], M_FILECAPS);
1700}
1701
1702static int
1703unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
1704{
1705	struct thread *td = curthread;		/* XXX */
1706	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1707	int i;
1708	int *fdp;
1709	struct filedesc *fdesc = td->td_proc->p_fd;
1710	struct filedescent *fde, **fdep;
1711	void *data;
1712	socklen_t clen = control->m_len, datalen;
1713	int error, newfds;
1714	u_int newlen;
1715
1716	UNP_LINK_UNLOCK_ASSERT();
1717
1718	error = 0;
1719	if (controlp != NULL) /* controlp == NULL => free control messages */
1720		*controlp = NULL;
1721	while (cm != NULL) {
1722		if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
1723			error = EINVAL;
1724			break;
1725		}
1726		data = CMSG_DATA(cm);
1727		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1728		if (cm->cmsg_level == SOL_SOCKET
1729		    && cm->cmsg_type == SCM_RIGHTS) {
1730			newfds = datalen / sizeof(*fdep);
1731			if (newfds == 0)
1732				goto next;
1733			fdep = data;
1734
1735			/* If we're not outputting the descriptors free them. */
1736			if (error || controlp == NULL) {
1737				unp_freerights(fdep, newfds);
1738				goto next;
1739			}
1740			FILEDESC_XLOCK(fdesc);
1741
1742			/*
1743			 * Now change each pointer to an fd in the global
1744			 * table to an integer that is the index to the local
1745			 * fd table entry that we set up to point to the
1746			 * global one we are transferring.
1747			 */
1748			newlen = newfds * sizeof(int);
1749			*controlp = sbcreatecontrol(NULL, newlen,
1750			    SCM_RIGHTS, SOL_SOCKET);
1751			if (*controlp == NULL) {
1752				FILEDESC_XUNLOCK(fdesc);
1753				error = E2BIG;
1754				unp_freerights(fdep, newfds);
1755				goto next;
1756			}
1757
1758			fdp = (int *)
1759			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1760			if (fdallocn(td, 0, fdp, newfds) != 0) {
1761				FILEDESC_XUNLOCK(td->td_proc->p_fd);
1762				error = EMSGSIZE;
1763				unp_freerights(fdep, newfds);
1764				m_freem(*controlp);
1765				*controlp = NULL;
1766				goto next;
1767			}
1768			for (i = 0; i < newfds; i++, fdp++) {
1769				fde = &fdesc->fd_ofiles[*fdp];
1770				fde->fde_file = fdep[i]->fde_file;
1771				filecaps_move(&fdep[i]->fde_caps,
1772				    &fde->fde_caps);
1773				if ((flags & MSG_CMSG_CLOEXEC) != 0)
1774					fde->fde_flags |= UF_EXCLOSE;
1775				unp_externalize_fp(fde->fde_file);
1776			}
1777			FILEDESC_XUNLOCK(fdesc);
1778			free(fdep[0], M_FILECAPS);
1779		} else {
1780			/* We can just copy anything else across. */
1781			if (error || controlp == NULL)
1782				goto next;
1783			*controlp = sbcreatecontrol(NULL, datalen,
1784			    cm->cmsg_type, cm->cmsg_level);
1785			if (*controlp == NULL) {
1786				error = ENOBUFS;
1787				goto next;
1788			}
1789			bcopy(data,
1790			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
1791			    datalen);
1792		}
1793		controlp = &(*controlp)->m_next;
1794
1795next:
1796		if (CMSG_SPACE(datalen) < clen) {
1797			clen -= CMSG_SPACE(datalen);
1798			cm = (struct cmsghdr *)
1799			    ((caddr_t)cm + CMSG_SPACE(datalen));
1800		} else {
1801			clen = 0;
1802			cm = NULL;
1803		}
1804	}
1805
1806	m_freem(control);
1807	return (error);
1808}
1809
1810static void
1811unp_zone_change(void *tag)
1812{
1813
1814	uma_zone_set_max(unp_zone, maxsockets);
1815}
1816
1817static void
1818unp_init(void)
1819{
1820
1821#ifdef VIMAGE
1822	if (!IS_DEFAULT_VNET(curvnet))
1823		return;
1824#endif
1825	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
1826	    NULL, NULL, UMA_ALIGN_PTR, 0);
1827	if (unp_zone == NULL)
1828		panic("unp_init");
1829	uma_zone_set_max(unp_zone, maxsockets);
1830	uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
1831	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
1832	    NULL, EVENTHANDLER_PRI_ANY);
1833	LIST_INIT(&unp_dhead);
1834	LIST_INIT(&unp_shead);
1835	LIST_INIT(&unp_sphead);
1836	SLIST_INIT(&unp_defers);
1837	TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
1838	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
1839	UNP_LINK_LOCK_INIT();
1840	UNP_LIST_LOCK_INIT();
1841	UNP_DEFERRED_LOCK_INIT();
1842}
1843
1844static int
1845unp_internalize(struct mbuf **controlp, struct thread *td)
1846{
1847	struct mbuf *control = *controlp;
1848	struct proc *p = td->td_proc;
1849	struct filedesc *fdesc = p->p_fd;
1850	struct bintime *bt;
1851	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1852	struct cmsgcred *cmcred;
1853	struct filedescent *fde, **fdep, *fdev;
1854	struct file *fp;
1855	struct timeval *tv;
1856	int i, fd, *fdp;
1857	void *data;
1858	socklen_t clen = control->m_len, datalen;
1859	int error, oldfds;
1860	u_int newlen;
1861
1862	UNP_LINK_UNLOCK_ASSERT();
1863
1864	error = 0;
1865	*controlp = NULL;
1866	while (cm != NULL) {
1867		if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
1868		    || cm->cmsg_len > clen) {
1869			error = EINVAL;
1870			goto out;
1871		}
1872		data = CMSG_DATA(cm);
1873		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1874
1875		switch (cm->cmsg_type) {
1876		/*
1877		 * Fill in credential information.
1878		 */
1879		case SCM_CREDS:
1880			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
1881			    SCM_CREDS, SOL_SOCKET);
1882			if (*controlp == NULL) {
1883				error = ENOBUFS;
1884				goto out;
1885			}
1886			cmcred = (struct cmsgcred *)
1887			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1888			cmcred->cmcred_pid = p->p_pid;
1889			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
1890			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
1891			cmcred->cmcred_euid = td->td_ucred->cr_uid;
1892			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
1893			    CMGROUP_MAX);
1894			for (i = 0; i < cmcred->cmcred_ngroups; i++)
1895				cmcred->cmcred_groups[i] =
1896				    td->td_ucred->cr_groups[i];
1897			break;
1898
1899		case SCM_RIGHTS:
1900			oldfds = datalen / sizeof (int);
1901			if (oldfds == 0)
1902				break;
1903			/*
1904			 * Check that all the FDs passed in refer to legal
1905			 * files.  If not, reject the entire operation.
1906			 */
1907			fdp = data;
1908			FILEDESC_SLOCK(fdesc);
1909			for (i = 0; i < oldfds; i++) {
1910				fd = *fdp++;
1911				if (fget_locked(fdesc, fd) == NULL) {
1912					FILEDESC_SUNLOCK(fdesc);
1913					error = EBADF;
1914					goto out;
1915				}
1916				fp = fdesc->fd_ofiles[fd].fde_file;
1917				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
1918					FILEDESC_SUNLOCK(fdesc);
1919					error = EOPNOTSUPP;
1920					goto out;
1921				}
1922
1923			}
1924
1925			/*
1926			 * Now replace the integer FDs with pointers to the
1927			 * file structure and capability rights.
1928			 */
1929			newlen = oldfds * sizeof(fdep[0]);
1930			*controlp = sbcreatecontrol(NULL, newlen,
1931			    SCM_RIGHTS, SOL_SOCKET);
1932			if (*controlp == NULL) {
1933				FILEDESC_SUNLOCK(fdesc);
1934				error = E2BIG;
1935				goto out;
1936			}
1937			fdp = data;
1938			fdep = (struct filedescent **)
1939			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1940			fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
1941			    M_WAITOK);
1942			for (i = 0; i < oldfds; i++, fdev++, fdp++) {
1943				fde = &fdesc->fd_ofiles[*fdp];
1944				fdep[i] = fdev;
1945				fdep[i]->fde_file = fde->fde_file;
1946				filecaps_copy(&fde->fde_caps,
1947				    &fdep[i]->fde_caps);
1948				unp_internalize_fp(fdep[i]->fde_file);
1949			}
1950			FILEDESC_SUNLOCK(fdesc);
1951			break;
1952
1953		case SCM_TIMESTAMP:
1954			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
1955			    SCM_TIMESTAMP, SOL_SOCKET);
1956			if (*controlp == NULL) {
1957				error = ENOBUFS;
1958				goto out;
1959			}
1960			tv = (struct timeval *)
1961			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1962			microtime(tv);
1963			break;
1964
1965		case SCM_BINTIME:
1966			*controlp = sbcreatecontrol(NULL, sizeof(*bt),
1967			    SCM_BINTIME, SOL_SOCKET);
1968			if (*controlp == NULL) {
1969				error = ENOBUFS;
1970				goto out;
1971			}
1972			bt = (struct bintime *)
1973			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1974			bintime(bt);
1975			break;
1976
1977		default:
1978			error = EINVAL;
1979			goto out;
1980		}
1981
1982		controlp = &(*controlp)->m_next;
1983		if (CMSG_SPACE(datalen) < clen) {
1984			clen -= CMSG_SPACE(datalen);
1985			cm = (struct cmsghdr *)
1986			    ((caddr_t)cm + CMSG_SPACE(datalen));
1987		} else {
1988			clen = 0;
1989			cm = NULL;
1990		}
1991	}
1992
1993out:
1994	m_freem(control);
1995	return (error);
1996}
1997
1998static struct mbuf *
1999unp_addsockcred(struct thread *td, struct mbuf *control)
2000{
2001	struct mbuf *m, *n, *n_prev;
2002	struct sockcred *sc;
2003	const struct cmsghdr *cm;
2004	int ngroups;
2005	int i;
2006
2007	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
2008	m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET);
2009	if (m == NULL)
2010		return (control);
2011
2012	sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *));
2013	sc->sc_uid = td->td_ucred->cr_ruid;
2014	sc->sc_euid = td->td_ucred->cr_uid;
2015	sc->sc_gid = td->td_ucred->cr_rgid;
2016	sc->sc_egid = td->td_ucred->cr_gid;
2017	sc->sc_ngroups = ngroups;
2018	for (i = 0; i < sc->sc_ngroups; i++)
2019		sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2020
2021	/*
2022	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
2023	 * created SCM_CREDS control message (struct sockcred) has another
2024	 * format.
2025	 */
2026	if (control != NULL)
2027		for (n = control, n_prev = NULL; n != NULL;) {
2028			cm = mtod(n, struct cmsghdr *);
2029    			if (cm->cmsg_level == SOL_SOCKET &&
2030			    cm->cmsg_type == SCM_CREDS) {
2031    				if (n_prev == NULL)
2032					control = n->m_next;
2033				else
2034					n_prev->m_next = n->m_next;
2035				n = m_free(n);
2036			} else {
2037				n_prev = n;
2038				n = n->m_next;
2039			}
2040		}
2041
2042	/* Prepend it to the head. */
2043	m->m_next = control;
2044	return (m);
2045}
2046
2047static struct unpcb *
2048fptounp(struct file *fp)
2049{
2050	struct socket *so;
2051
2052	if (fp->f_type != DTYPE_SOCKET)
2053		return (NULL);
2054	if ((so = fp->f_data) == NULL)
2055		return (NULL);
2056	if (so->so_proto->pr_domain != &localdomain)
2057		return (NULL);
2058	return sotounpcb(so);
2059}
2060
2061static void
2062unp_discard(struct file *fp)
2063{
2064	struct unp_defer *dr;
2065
2066	if (unp_externalize_fp(fp)) {
2067		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2068		dr->ud_fp = fp;
2069		UNP_DEFERRED_LOCK();
2070		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2071		UNP_DEFERRED_UNLOCK();
2072		atomic_add_int(&unp_defers_count, 1);
2073		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2074	} else
2075		(void) closef(fp, (struct thread *)NULL);
2076}
2077
2078static void
2079unp_process_defers(void *arg __unused, int pending)
2080{
2081	struct unp_defer *dr;
2082	SLIST_HEAD(, unp_defer) drl;
2083	int count;
2084
2085	SLIST_INIT(&drl);
2086	for (;;) {
2087		UNP_DEFERRED_LOCK();
2088		if (SLIST_FIRST(&unp_defers) == NULL) {
2089			UNP_DEFERRED_UNLOCK();
2090			break;
2091		}
2092		SLIST_SWAP(&unp_defers, &drl, unp_defer);
2093		UNP_DEFERRED_UNLOCK();
2094		count = 0;
2095		while ((dr = SLIST_FIRST(&drl)) != NULL) {
2096			SLIST_REMOVE_HEAD(&drl, ud_link);
2097			closef(dr->ud_fp, NULL);
2098			free(dr, M_TEMP);
2099			count++;
2100		}
2101		atomic_add_int(&unp_defers_count, -count);
2102	}
2103}
2104
2105static void
2106unp_internalize_fp(struct file *fp)
2107{
2108	struct unpcb *unp;
2109
2110	UNP_LINK_WLOCK();
2111	if ((unp = fptounp(fp)) != NULL) {
2112		unp->unp_file = fp;
2113		unp->unp_msgcount++;
2114	}
2115	fhold(fp);
2116	unp_rights++;
2117	UNP_LINK_WUNLOCK();
2118}
2119
2120static int
2121unp_externalize_fp(struct file *fp)
2122{
2123	struct unpcb *unp;
2124	int ret;
2125
2126	UNP_LINK_WLOCK();
2127	if ((unp = fptounp(fp)) != NULL) {
2128		unp->unp_msgcount--;
2129		ret = 1;
2130	} else
2131		ret = 0;
2132	unp_rights--;
2133	UNP_LINK_WUNLOCK();
2134	return (ret);
2135}
2136
2137/*
2138 * unp_defer indicates whether additional work has been defered for a future
2139 * pass through unp_gc().  It is thread local and does not require explicit
2140 * synchronization.
2141 */
2142static int	unp_marked;
2143static int	unp_unreachable;
2144
2145static void
2146unp_accessable(struct filedescent **fdep, int fdcount)
2147{
2148	struct unpcb *unp;
2149	struct file *fp;
2150	int i;
2151
2152	for (i = 0; i < fdcount; i++) {
2153		fp = fdep[i]->fde_file;
2154		if ((unp = fptounp(fp)) == NULL)
2155			continue;
2156		if (unp->unp_gcflag & UNPGC_REF)
2157			continue;
2158		unp->unp_gcflag &= ~UNPGC_DEAD;
2159		unp->unp_gcflag |= UNPGC_REF;
2160		unp_marked++;
2161	}
2162}
2163
2164static void
2165unp_gc_process(struct unpcb *unp)
2166{
2167	struct socket *soa;
2168	struct socket *so;
2169	struct file *fp;
2170
2171	/* Already processed. */
2172	if (unp->unp_gcflag & UNPGC_SCANNED)
2173		return;
2174	fp = unp->unp_file;
2175
2176	/*
2177	 * Check for a socket potentially in a cycle.  It must be in a
2178	 * queue as indicated by msgcount, and this must equal the file
2179	 * reference count.  Note that when msgcount is 0 the file is NULL.
2180	 */
2181	if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp &&
2182	    unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) {
2183		unp->unp_gcflag |= UNPGC_DEAD;
2184		unp_unreachable++;
2185		return;
2186	}
2187
2188	/*
2189	 * Mark all sockets we reference with RIGHTS.
2190	 */
2191	so = unp->unp_socket;
2192	SOCKBUF_LOCK(&so->so_rcv);
2193	unp_scan(so->so_rcv.sb_mb, unp_accessable);
2194	SOCKBUF_UNLOCK(&so->so_rcv);
2195
2196	/*
2197	 * Mark all sockets in our accept queue.
2198	 */
2199	ACCEPT_LOCK();
2200	TAILQ_FOREACH(soa, &so->so_comp, so_list) {
2201		SOCKBUF_LOCK(&soa->so_rcv);
2202		unp_scan(soa->so_rcv.sb_mb, unp_accessable);
2203		SOCKBUF_UNLOCK(&soa->so_rcv);
2204	}
2205	ACCEPT_UNLOCK();
2206	unp->unp_gcflag |= UNPGC_SCANNED;
2207}
2208
2209static int unp_recycled;
2210SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
2211    "Number of unreachable sockets claimed by the garbage collector.");
2212
2213static int unp_taskcount;
2214SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
2215    "Number of times the garbage collector has run.");
2216
2217static void
2218unp_gc(__unused void *arg, int pending)
2219{
2220	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
2221				    NULL };
2222	struct unp_head **head;
2223	struct file *f, **unref;
2224	struct unpcb *unp;
2225	int i, total;
2226
2227	unp_taskcount++;
2228	UNP_LIST_LOCK();
2229	/*
2230	 * First clear all gc flags from previous runs.
2231	 */
2232	for (head = heads; *head != NULL; head++)
2233		LIST_FOREACH(unp, *head, unp_link)
2234			unp->unp_gcflag = 0;
2235
2236	/*
2237	 * Scan marking all reachable sockets with UNPGC_REF.  Once a socket
2238	 * is reachable all of the sockets it references are reachable.
2239	 * Stop the scan once we do a complete loop without discovering
2240	 * a new reachable socket.
2241	 */
2242	do {
2243		unp_unreachable = 0;
2244		unp_marked = 0;
2245		for (head = heads; *head != NULL; head++)
2246			LIST_FOREACH(unp, *head, unp_link)
2247				unp_gc_process(unp);
2248	} while (unp_marked);
2249	UNP_LIST_UNLOCK();
2250	if (unp_unreachable == 0)
2251		return;
2252
2253	/*
2254	 * Allocate space for a local list of dead unpcbs.
2255	 */
2256	unref = malloc(unp_unreachable * sizeof(struct file *),
2257	    M_TEMP, M_WAITOK);
2258
2259	/*
2260	 * Iterate looking for sockets which have been specifically marked
2261	 * as as unreachable and store them locally.
2262	 */
2263	UNP_LINK_RLOCK();
2264	UNP_LIST_LOCK();
2265	for (total = 0, head = heads; *head != NULL; head++)
2266		LIST_FOREACH(unp, *head, unp_link)
2267			if ((unp->unp_gcflag & UNPGC_DEAD) != 0) {
2268				f = unp->unp_file;
2269				if (unp->unp_msgcount == 0 || f == NULL ||
2270				    f->f_count != unp->unp_msgcount)
2271					continue;
2272				unref[total++] = f;
2273				fhold(f);
2274				KASSERT(total <= unp_unreachable,
2275				    ("unp_gc: incorrect unreachable count."));
2276			}
2277	UNP_LIST_UNLOCK();
2278	UNP_LINK_RUNLOCK();
2279
2280	/*
2281	 * Now flush all sockets, free'ing rights.  This will free the
2282	 * struct files associated with these sockets but leave each socket
2283	 * with one remaining ref.
2284	 */
2285	for (i = 0; i < total; i++) {
2286		struct socket *so;
2287
2288		so = unref[i]->f_data;
2289		CURVNET_SET(so->so_vnet);
2290		sorflush(so);
2291		CURVNET_RESTORE();
2292	}
2293
2294	/*
2295	 * And finally release the sockets so they can be reclaimed.
2296	 */
2297	for (i = 0; i < total; i++)
2298		fdrop(unref[i], NULL);
2299	unp_recycled += total;
2300	free(unref, M_TEMP);
2301}
2302
2303static void
2304unp_dispose(struct mbuf *m)
2305{
2306
2307	if (m)
2308		unp_scan(m, unp_freerights);
2309}
2310
2311static void
2312unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
2313{
2314	struct mbuf *m;
2315	struct cmsghdr *cm;
2316	void *data;
2317	socklen_t clen, datalen;
2318
2319	while (m0 != NULL) {
2320		for (m = m0; m; m = m->m_next) {
2321			if (m->m_type != MT_CONTROL)
2322				continue;
2323
2324			cm = mtod(m, struct cmsghdr *);
2325			clen = m->m_len;
2326
2327			while (cm != NULL) {
2328				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2329					break;
2330
2331				data = CMSG_DATA(cm);
2332				datalen = (caddr_t)cm + cm->cmsg_len
2333				    - (caddr_t)data;
2334
2335				if (cm->cmsg_level == SOL_SOCKET &&
2336				    cm->cmsg_type == SCM_RIGHTS) {
2337					(*op)(data, datalen /
2338					    sizeof(struct filedescent *));
2339				}
2340
2341				if (CMSG_SPACE(datalen) < clen) {
2342					clen -= CMSG_SPACE(datalen);
2343					cm = (struct cmsghdr *)
2344					    ((caddr_t)cm + CMSG_SPACE(datalen));
2345				} else {
2346					clen = 0;
2347					cm = NULL;
2348				}
2349			}
2350		}
2351		m0 = m0->m_act;
2352	}
2353}
2354
2355/*
2356 * A helper function called by VFS before socket-type vnode reclamation.
2357 * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
2358 * use count.
2359 */
2360void
2361vfs_unp_reclaim(struct vnode *vp)
2362{
2363	struct socket *so;
2364	struct unpcb *unp;
2365	int active;
2366
2367	ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
2368	KASSERT(vp->v_type == VSOCK,
2369	    ("vfs_unp_reclaim: vp->v_type != VSOCK"));
2370
2371	active = 0;
2372	UNP_LINK_WLOCK();
2373	VOP_UNP_CONNECT(vp, &so);
2374	if (so == NULL)
2375		goto done;
2376	unp = sotounpcb(so);
2377	if (unp == NULL)
2378		goto done;
2379	UNP_PCB_LOCK(unp);
2380	if (unp->unp_vnode == vp) {
2381		VOP_UNP_DETACH(vp);
2382		unp->unp_vnode = NULL;
2383		active = 1;
2384	}
2385	UNP_PCB_UNLOCK(unp);
2386done:
2387	UNP_LINK_WUNLOCK();
2388	if (active)
2389		vunref(vp);
2390}
2391
2392#ifdef DDB
2393static void
2394db_print_indent(int indent)
2395{
2396	int i;
2397
2398	for (i = 0; i < indent; i++)
2399		db_printf(" ");
2400}
2401
2402static void
2403db_print_unpflags(int unp_flags)
2404{
2405	int comma;
2406
2407	comma = 0;
2408	if (unp_flags & UNP_HAVEPC) {
2409		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
2410		comma = 1;
2411	}
2412	if (unp_flags & UNP_HAVEPCCACHED) {
2413		db_printf("%sUNP_HAVEPCCACHED", comma ? ", " : "");
2414		comma = 1;
2415	}
2416	if (unp_flags & UNP_WANTCRED) {
2417		db_printf("%sUNP_WANTCRED", comma ? ", " : "");
2418		comma = 1;
2419	}
2420	if (unp_flags & UNP_CONNWAIT) {
2421		db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
2422		comma = 1;
2423	}
2424	if (unp_flags & UNP_CONNECTING) {
2425		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
2426		comma = 1;
2427	}
2428	if (unp_flags & UNP_BINDING) {
2429		db_printf("%sUNP_BINDING", comma ? ", " : "");
2430		comma = 1;
2431	}
2432}
2433
2434static void
2435db_print_xucred(int indent, struct xucred *xu)
2436{
2437	int comma, i;
2438
2439	db_print_indent(indent);
2440	db_printf("cr_version: %u   cr_uid: %u   cr_ngroups: %d\n",
2441	    xu->cr_version, xu->cr_uid, xu->cr_ngroups);
2442	db_print_indent(indent);
2443	db_printf("cr_groups: ");
2444	comma = 0;
2445	for (i = 0; i < xu->cr_ngroups; i++) {
2446		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
2447		comma = 1;
2448	}
2449	db_printf("\n");
2450}
2451
2452static void
2453db_print_unprefs(int indent, struct unp_head *uh)
2454{
2455	struct unpcb *unp;
2456	int counter;
2457
2458	counter = 0;
2459	LIST_FOREACH(unp, uh, unp_reflink) {
2460		if (counter % 4 == 0)
2461			db_print_indent(indent);
2462		db_printf("%p  ", unp);
2463		if (counter % 4 == 3)
2464			db_printf("\n");
2465		counter++;
2466	}
2467	if (counter != 0 && counter % 4 != 0)
2468		db_printf("\n");
2469}
2470
2471DB_SHOW_COMMAND(unpcb, db_show_unpcb)
2472{
2473	struct unpcb *unp;
2474
2475        if (!have_addr) {
2476                db_printf("usage: show unpcb <addr>\n");
2477                return;
2478        }
2479        unp = (struct unpcb *)addr;
2480
2481	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
2482	    unp->unp_vnode);
2483
2484	db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
2485	    unp->unp_conn);
2486
2487	db_printf("unp_refs:\n");
2488	db_print_unprefs(2, &unp->unp_refs);
2489
2490	/* XXXRW: Would be nice to print the full address, if any. */
2491	db_printf("unp_addr: %p\n", unp->unp_addr);
2492
2493	db_printf("unp_cc: %d   unp_mbcnt: %d   unp_gencnt: %llu\n",
2494	    unp->unp_cc, unp->unp_mbcnt,
2495	    (unsigned long long)unp->unp_gencnt);
2496
2497	db_printf("unp_flags: %x (", unp->unp_flags);
2498	db_print_unpflags(unp->unp_flags);
2499	db_printf(")\n");
2500
2501	db_printf("unp_peercred:\n");
2502	db_print_xucred(2, &unp->unp_peercred);
2503
2504	db_printf("unp_refcount: %u\n", unp->unp_refcount);
2505}
2506#endif
2507