1/*-
2 * Copyright (c) 1982, 1986, 1988, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)uipc_mbuf.c	8.2 (Berkeley) 1/4/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD$");
34
35#include "opt_param.h"
36#include "opt_mbuf_stress_test.h"
37#include "opt_mbuf_profiling.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/kernel.h>
42#include <sys/limits.h>
43#include <sys/lock.h>
44#include <sys/malloc.h>
45#include <sys/mbuf.h>
46#include <sys/sysctl.h>
47#include <sys/domain.h>
48#include <sys/protosw.h>
49#include <sys/uio.h>
50
51int	max_linkhdr;
52int	max_protohdr;
53int	max_hdr;
54int	max_datalen;
55#ifdef MBUF_STRESS_TEST
56int	m_defragpackets;
57int	m_defragbytes;
58int	m_defraguseless;
59int	m_defragfailure;
60int	m_defragrandomfailures;
61#endif
62
63/*
64 * sysctl(8) exported objects
65 */
66SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD,
67	   &max_linkhdr, 0, "Size of largest link layer header");
68SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD,
69	   &max_protohdr, 0, "Size of largest protocol layer header");
70SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD,
71	   &max_hdr, 0, "Size of largest link plus protocol header");
72SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD,
73	   &max_datalen, 0, "Minimum space left in mbuf after max_hdr");
74#ifdef MBUF_STRESS_TEST
75SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
76	   &m_defragpackets, 0, "");
77SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
78	   &m_defragbytes, 0, "");
79SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
80	   &m_defraguseless, 0, "");
81SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
82	   &m_defragfailure, 0, "");
83SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
84	   &m_defragrandomfailures, 0, "");
85#endif
86
87/*
88 * Ensure the correct size of various mbuf parameters.  It could be off due
89 * to compiler-induced padding and alignment artifacts.
90 */
91CTASSERT(sizeof(struct mbuf) == MSIZE);
92CTASSERT(MSIZE - offsetof(struct mbuf, m_dat) == MLEN);
93CTASSERT(MSIZE - offsetof(struct mbuf, m_pktdat) == MHLEN);
94
95/*
96 * m_get2() allocates minimum mbuf that would fit "size" argument.
97 */
98struct mbuf *
99m_get2(int size, int how, short type, int flags)
100{
101	struct mb_args args;
102	struct mbuf *m, *n;
103
104	args.flags = flags;
105	args.type = type;
106
107	if (size <= MHLEN || (size <= MLEN && (flags & M_PKTHDR) == 0))
108		return (uma_zalloc_arg(zone_mbuf, &args, how));
109	if (size <= MCLBYTES)
110		return (uma_zalloc_arg(zone_pack, &args, how));
111
112	if (size > MJUMPAGESIZE)
113		return (NULL);
114
115	m = uma_zalloc_arg(zone_mbuf, &args, how);
116	if (m == NULL)
117		return (NULL);
118
119	n = uma_zalloc_arg(zone_jumbop, m, how);
120	if (n == NULL) {
121		uma_zfree(zone_mbuf, m);
122		return (NULL);
123	}
124
125	return (m);
126}
127
128/*
129 * m_getjcl() returns an mbuf with a cluster of the specified size attached.
130 * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES.
131 */
132struct mbuf *
133m_getjcl(int how, short type, int flags, int size)
134{
135	struct mb_args args;
136	struct mbuf *m, *n;
137	uma_zone_t zone;
138
139	if (size == MCLBYTES)
140		return m_getcl(how, type, flags);
141
142	args.flags = flags;
143	args.type = type;
144
145	m = uma_zalloc_arg(zone_mbuf, &args, how);
146	if (m == NULL)
147		return (NULL);
148
149	zone = m_getzone(size);
150	n = uma_zalloc_arg(zone, m, how);
151	if (n == NULL) {
152		uma_zfree(zone_mbuf, m);
153		return (NULL);
154	}
155	return (m);
156}
157
158/*
159 * Allocate a given length worth of mbufs and/or clusters (whatever fits
160 * best) and return a pointer to the top of the allocated chain.  If an
161 * existing mbuf chain is provided, then we will append the new chain
162 * to the existing one but still return the top of the newly allocated
163 * chain.
164 */
165struct mbuf *
166m_getm2(struct mbuf *m, int len, int how, short type, int flags)
167{
168	struct mbuf *mb, *nm = NULL, *mtail = NULL;
169
170	KASSERT(len >= 0, ("%s: len is < 0", __func__));
171
172	/* Validate flags. */
173	flags &= (M_PKTHDR | M_EOR);
174
175	/* Packet header mbuf must be first in chain. */
176	if ((flags & M_PKTHDR) && m != NULL)
177		flags &= ~M_PKTHDR;
178
179	/* Loop and append maximum sized mbufs to the chain tail. */
180	while (len > 0) {
181		if (len > MCLBYTES)
182			mb = m_getjcl(how, type, (flags & M_PKTHDR),
183			    MJUMPAGESIZE);
184		else if (len >= MINCLSIZE)
185			mb = m_getcl(how, type, (flags & M_PKTHDR));
186		else if (flags & M_PKTHDR)
187			mb = m_gethdr(how, type);
188		else
189			mb = m_get(how, type);
190
191		/* Fail the whole operation if one mbuf can't be allocated. */
192		if (mb == NULL) {
193			if (nm != NULL)
194				m_freem(nm);
195			return (NULL);
196		}
197
198		/* Book keeping. */
199		len -= (mb->m_flags & M_EXT) ? mb->m_ext.ext_size :
200			((mb->m_flags & M_PKTHDR) ? MHLEN : MLEN);
201		if (mtail != NULL)
202			mtail->m_next = mb;
203		else
204			nm = mb;
205		mtail = mb;
206		flags &= ~M_PKTHDR;	/* Only valid on the first mbuf. */
207	}
208	if (flags & M_EOR)
209		mtail->m_flags |= M_EOR;  /* Only valid on the last mbuf. */
210
211	/* If mbuf was supplied, append new chain to the end of it. */
212	if (m != NULL) {
213		for (mtail = m; mtail->m_next != NULL; mtail = mtail->m_next)
214			;
215		mtail->m_next = nm;
216		mtail->m_flags &= ~M_EOR;
217	} else
218		m = nm;
219
220	return (m);
221}
222
223/*
224 * Free an entire chain of mbufs and associated external buffers, if
225 * applicable.
226 */
227void
228m_freem(struct mbuf *mb)
229{
230
231	while (mb != NULL)
232		mb = m_free(mb);
233}
234
235/*-
236 * Configure a provided mbuf to refer to the provided external storage
237 * buffer and setup a reference count for said buffer.  If the setting
238 * up of the reference count fails, the M_EXT bit will not be set.  If
239 * successfull, the M_EXT bit is set in the mbuf's flags.
240 *
241 * Arguments:
242 *    mb     The existing mbuf to which to attach the provided buffer.
243 *    buf    The address of the provided external storage buffer.
244 *    size   The size of the provided buffer.
245 *    freef  A pointer to a routine that is responsible for freeing the
246 *           provided external storage buffer.
247 *    args   A pointer to an argument structure (of any type) to be passed
248 *           to the provided freef routine (may be NULL).
249 *    flags  Any other flags to be passed to the provided mbuf.
250 *    type   The type that the external storage buffer should be
251 *           labeled with.
252 *
253 * Returns:
254 *    Nothing.
255 */
256int
257m_extadd(struct mbuf *mb, caddr_t buf, u_int size,
258    int (*freef)(struct mbuf *, void *, void *), void *arg1, void *arg2,
259    int flags, int type, int wait)
260{
261	KASSERT(type != EXT_CLUSTER, ("%s: EXT_CLUSTER not allowed", __func__));
262
263	if (type != EXT_EXTREF)
264		mb->m_ext.ref_cnt = uma_zalloc(zone_ext_refcnt, wait);
265
266	if (mb->m_ext.ref_cnt == NULL)
267		return (ENOMEM);
268
269	*(mb->m_ext.ref_cnt) = 1;
270	mb->m_flags |= (M_EXT | flags);
271	mb->m_ext.ext_buf = buf;
272	mb->m_data = mb->m_ext.ext_buf;
273	mb->m_ext.ext_size = size;
274	mb->m_ext.ext_free = freef;
275	mb->m_ext.ext_arg1 = arg1;
276	mb->m_ext.ext_arg2 = arg2;
277	mb->m_ext.ext_type = type;
278	mb->m_ext.ext_flags = 0;
279
280	return (0);
281}
282
283/*
284 * Non-directly-exported function to clean up after mbufs with M_EXT
285 * storage attached to them if the reference count hits 1.
286 */
287void
288mb_free_ext(struct mbuf *m)
289{
290	int skipmbuf;
291
292	KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__));
293	KASSERT(m->m_ext.ref_cnt != NULL, ("%s: ref_cnt not set", __func__));
294
295	/*
296	 * check if the header is embedded in the cluster
297	 */
298	skipmbuf = (m->m_flags & M_NOFREE);
299
300	/* Free attached storage if this mbuf is the only reference to it. */
301	if (*(m->m_ext.ref_cnt) == 1 ||
302	    atomic_fetchadd_int(m->m_ext.ref_cnt, -1) == 1) {
303		switch (m->m_ext.ext_type) {
304		case EXT_PACKET:	/* The packet zone is special. */
305			if (*(m->m_ext.ref_cnt) == 0)
306				*(m->m_ext.ref_cnt) = 1;
307			uma_zfree(zone_pack, m);
308			return;		/* Job done. */
309		case EXT_CLUSTER:
310			uma_zfree(zone_clust, m->m_ext.ext_buf);
311			break;
312		case EXT_JUMBOP:
313			uma_zfree(zone_jumbop, m->m_ext.ext_buf);
314			break;
315		case EXT_JUMBO9:
316			uma_zfree(zone_jumbo9, m->m_ext.ext_buf);
317			break;
318		case EXT_JUMBO16:
319			uma_zfree(zone_jumbo16, m->m_ext.ext_buf);
320			break;
321		case EXT_SFBUF:
322		case EXT_NET_DRV:
323		case EXT_MOD_TYPE:
324		case EXT_DISPOSABLE:
325			*(m->m_ext.ref_cnt) = 0;
326			uma_zfree(zone_ext_refcnt, __DEVOLATILE(u_int *,
327				m->m_ext.ref_cnt));
328			/* FALLTHROUGH */
329		case EXT_EXTREF:
330			KASSERT(m->m_ext.ext_free != NULL,
331				("%s: ext_free not set", __func__));
332			(void)(*(m->m_ext.ext_free))(m, m->m_ext.ext_arg1,
333			    m->m_ext.ext_arg2);
334			break;
335		default:
336			KASSERT(m->m_ext.ext_type == 0,
337				("%s: unknown ext_type", __func__));
338		}
339	}
340	if (skipmbuf)
341		return;
342
343	/*
344	 * Free this mbuf back to the mbuf zone with all m_ext
345	 * information purged.
346	 */
347	m->m_ext.ext_buf = NULL;
348	m->m_ext.ext_free = NULL;
349	m->m_ext.ext_arg1 = NULL;
350	m->m_ext.ext_arg2 = NULL;
351	m->m_ext.ref_cnt = NULL;
352	m->m_ext.ext_size = 0;
353	m->m_ext.ext_type = 0;
354	m->m_ext.ext_flags = 0;
355	m->m_flags &= ~M_EXT;
356	uma_zfree(zone_mbuf, m);
357}
358
359/*
360 * Attach the cluster from *m to *n, set up m_ext in *n
361 * and bump the refcount of the cluster.
362 */
363static void
364mb_dupcl(struct mbuf *n, struct mbuf *m)
365{
366	KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__));
367	KASSERT(m->m_ext.ref_cnt != NULL, ("%s: ref_cnt not set", __func__));
368	KASSERT((n->m_flags & M_EXT) == 0, ("%s: M_EXT set", __func__));
369
370	if (*(m->m_ext.ref_cnt) == 1)
371		*(m->m_ext.ref_cnt) += 1;
372	else
373		atomic_add_int(m->m_ext.ref_cnt, 1);
374	n->m_ext.ext_buf = m->m_ext.ext_buf;
375	n->m_ext.ext_free = m->m_ext.ext_free;
376	n->m_ext.ext_arg1 = m->m_ext.ext_arg1;
377	n->m_ext.ext_arg2 = m->m_ext.ext_arg2;
378	n->m_ext.ext_size = m->m_ext.ext_size;
379	n->m_ext.ref_cnt = m->m_ext.ref_cnt;
380	n->m_ext.ext_type = m->m_ext.ext_type;
381	n->m_ext.ext_flags = m->m_ext.ext_flags;
382	n->m_flags |= M_EXT;
383	n->m_flags |= m->m_flags & M_RDONLY;
384}
385
386/*
387 * Clean up mbuf (chain) from any tags and packet headers.
388 * If "all" is set then the first mbuf in the chain will be
389 * cleaned too.
390 */
391void
392m_demote(struct mbuf *m0, int all)
393{
394	struct mbuf *m;
395
396	for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) {
397		if (m->m_flags & M_PKTHDR) {
398			m_tag_delete_chain(m, NULL);
399			m->m_flags &= ~M_PKTHDR;
400			bzero(&m->m_pkthdr, sizeof(struct pkthdr));
401		}
402		if (m != m0 && m->m_nextpkt != NULL) {
403			KASSERT(m->m_nextpkt == NULL,
404			    ("%s: m_nextpkt not NULL", __func__));
405			m_freem(m->m_nextpkt);
406			m->m_nextpkt = NULL;
407		}
408		m->m_flags = m->m_flags & (M_EXT|M_RDONLY|M_NOFREE);
409	}
410}
411
412/*
413 * Sanity checks on mbuf (chain) for use in KASSERT() and general
414 * debugging.
415 * Returns 0 or panics when bad and 1 on all tests passed.
416 * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they
417 * blow up later.
418 */
419int
420m_sanity(struct mbuf *m0, int sanitize)
421{
422	struct mbuf *m;
423	caddr_t a, b;
424	int pktlen = 0;
425
426#ifdef INVARIANTS
427#define	M_SANITY_ACTION(s)	panic("mbuf %p: " s, m)
428#else
429#define	M_SANITY_ACTION(s)	printf("mbuf %p: " s, m)
430#endif
431
432	for (m = m0; m != NULL; m = m->m_next) {
433		/*
434		 * Basic pointer checks.  If any of these fails then some
435		 * unrelated kernel memory before or after us is trashed.
436		 * No way to recover from that.
437		 */
438		a = ((m->m_flags & M_EXT) ? m->m_ext.ext_buf :
439			((m->m_flags & M_PKTHDR) ? (caddr_t)(&m->m_pktdat) :
440			 (caddr_t)(&m->m_dat)) );
441		b = (caddr_t)(a + (m->m_flags & M_EXT ? m->m_ext.ext_size :
442			((m->m_flags & M_PKTHDR) ? MHLEN : MLEN)));
443		if ((caddr_t)m->m_data < a)
444			M_SANITY_ACTION("m_data outside mbuf data range left");
445		if ((caddr_t)m->m_data > b)
446			M_SANITY_ACTION("m_data outside mbuf data range right");
447		if ((caddr_t)m->m_data + m->m_len > b)
448			M_SANITY_ACTION("m_data + m_len exeeds mbuf space");
449
450		/* m->m_nextpkt may only be set on first mbuf in chain. */
451		if (m != m0 && m->m_nextpkt != NULL) {
452			if (sanitize) {
453				m_freem(m->m_nextpkt);
454				m->m_nextpkt = (struct mbuf *)0xDEADC0DE;
455			} else
456				M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf");
457		}
458
459		/* packet length (not mbuf length!) calculation */
460		if (m0->m_flags & M_PKTHDR)
461			pktlen += m->m_len;
462
463		/* m_tags may only be attached to first mbuf in chain. */
464		if (m != m0 && m->m_flags & M_PKTHDR &&
465		    !SLIST_EMPTY(&m->m_pkthdr.tags)) {
466			if (sanitize) {
467				m_tag_delete_chain(m, NULL);
468				/* put in 0xDEADC0DE perhaps? */
469			} else
470				M_SANITY_ACTION("m_tags on in-chain mbuf");
471		}
472
473		/* M_PKTHDR may only be set on first mbuf in chain */
474		if (m != m0 && m->m_flags & M_PKTHDR) {
475			if (sanitize) {
476				bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
477				m->m_flags &= ~M_PKTHDR;
478				/* put in 0xDEADCODE and leave hdr flag in */
479			} else
480				M_SANITY_ACTION("M_PKTHDR on in-chain mbuf");
481		}
482	}
483	m = m0;
484	if (pktlen && pktlen != m->m_pkthdr.len) {
485		if (sanitize)
486			m->m_pkthdr.len = 0;
487		else
488			M_SANITY_ACTION("m_pkthdr.len != mbuf chain length");
489	}
490	return 1;
491
492#undef	M_SANITY_ACTION
493}
494
495
496/*
497 * "Move" mbuf pkthdr from "from" to "to".
498 * "from" must have M_PKTHDR set, and "to" must be empty.
499 */
500void
501m_move_pkthdr(struct mbuf *to, struct mbuf *from)
502{
503
504#if 0
505	/* see below for why these are not enabled */
506	M_ASSERTPKTHDR(to);
507	/* Note: with MAC, this may not be a good assertion. */
508	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags),
509	    ("m_move_pkthdr: to has tags"));
510#endif
511#ifdef MAC
512	/*
513	 * XXXMAC: It could be this should also occur for non-MAC?
514	 */
515	if (to->m_flags & M_PKTHDR)
516		m_tag_delete_chain(to, NULL);
517#endif
518	to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
519	if ((to->m_flags & M_EXT) == 0)
520		to->m_data = to->m_pktdat;
521	to->m_pkthdr = from->m_pkthdr;		/* especially tags */
522	SLIST_INIT(&from->m_pkthdr.tags);	/* purge tags from src */
523	from->m_flags &= ~M_PKTHDR;
524}
525
526/*
527 * Duplicate "from"'s mbuf pkthdr in "to".
528 * "from" must have M_PKTHDR set, and "to" must be empty.
529 * In particular, this does a deep copy of the packet tags.
530 */
531int
532m_dup_pkthdr(struct mbuf *to, struct mbuf *from, int how)
533{
534
535#if 0
536	/*
537	 * The mbuf allocator only initializes the pkthdr
538	 * when the mbuf is allocated with m_gethdr(). Many users
539	 * (e.g. m_copy*, m_prepend) use m_get() and then
540	 * smash the pkthdr as needed causing these
541	 * assertions to trip.  For now just disable them.
542	 */
543	M_ASSERTPKTHDR(to);
544	/* Note: with MAC, this may not be a good assertion. */
545	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags"));
546#endif
547	MBUF_CHECKSLEEP(how);
548#ifdef MAC
549	if (to->m_flags & M_PKTHDR)
550		m_tag_delete_chain(to, NULL);
551#endif
552	to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
553	if ((to->m_flags & M_EXT) == 0)
554		to->m_data = to->m_pktdat;
555	to->m_pkthdr = from->m_pkthdr;
556	SLIST_INIT(&to->m_pkthdr.tags);
557	return (m_tag_copy_chain(to, from, MBTOM(how)));
558}
559
560/*
561 * Lesser-used path for M_PREPEND:
562 * allocate new mbuf to prepend to chain,
563 * copy junk along.
564 */
565struct mbuf *
566m_prepend(struct mbuf *m, int len, int how)
567{
568	struct mbuf *mn;
569
570	if (m->m_flags & M_PKTHDR)
571		mn = m_gethdr(how, m->m_type);
572	else
573		mn = m_get(how, m->m_type);
574	if (mn == NULL) {
575		m_freem(m);
576		return (NULL);
577	}
578	if (m->m_flags & M_PKTHDR)
579		m_move_pkthdr(mn, m);
580	mn->m_next = m;
581	m = mn;
582	if(m->m_flags & M_PKTHDR) {
583		if (len < MHLEN)
584			MH_ALIGN(m, len);
585	} else {
586		if (len < MLEN)
587			M_ALIGN(m, len);
588	}
589	m->m_len = len;
590	return (m);
591}
592
593/*
594 * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
595 * continuing for "len" bytes.  If len is M_COPYALL, copy to end of mbuf.
596 * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller.
597 * Note that the copy is read-only, because clusters are not copied,
598 * only their reference counts are incremented.
599 */
600struct mbuf *
601m_copym(struct mbuf *m, int off0, int len, int wait)
602{
603	struct mbuf *n, **np;
604	int off = off0;
605	struct mbuf *top;
606	int copyhdr = 0;
607
608	KASSERT(off >= 0, ("m_copym, negative off %d", off));
609	KASSERT(len >= 0, ("m_copym, negative len %d", len));
610	MBUF_CHECKSLEEP(wait);
611	if (off == 0 && m->m_flags & M_PKTHDR)
612		copyhdr = 1;
613	while (off > 0) {
614		KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
615		if (off < m->m_len)
616			break;
617		off -= m->m_len;
618		m = m->m_next;
619	}
620	np = &top;
621	top = 0;
622	while (len > 0) {
623		if (m == NULL) {
624			KASSERT(len == M_COPYALL,
625			    ("m_copym, length > size of mbuf chain"));
626			break;
627		}
628		if (copyhdr)
629			n = m_gethdr(wait, m->m_type);
630		else
631			n = m_get(wait, m->m_type);
632		*np = n;
633		if (n == NULL)
634			goto nospace;
635		if (copyhdr) {
636			if (!m_dup_pkthdr(n, m, wait))
637				goto nospace;
638			if (len == M_COPYALL)
639				n->m_pkthdr.len -= off0;
640			else
641				n->m_pkthdr.len = len;
642			copyhdr = 0;
643		}
644		n->m_len = min(len, m->m_len - off);
645		if (m->m_flags & M_EXT) {
646			n->m_data = m->m_data + off;
647			mb_dupcl(n, m);
648		} else
649			bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
650			    (u_int)n->m_len);
651		if (len != M_COPYALL)
652			len -= n->m_len;
653		off = 0;
654		m = m->m_next;
655		np = &n->m_next;
656	}
657
658	return (top);
659nospace:
660	m_freem(top);
661	return (NULL);
662}
663
664/*
665 * Returns mbuf chain with new head for the prepending case.
666 * Copies from mbuf (chain) n from off for len to mbuf (chain) m
667 * either prepending or appending the data.
668 * The resulting mbuf (chain) m is fully writeable.
669 * m is destination (is made writeable)
670 * n is source, off is offset in source, len is len from offset
671 * dir, 0 append, 1 prepend
672 * how, wait or nowait
673 */
674
675static int
676m_bcopyxxx(void *s, void *t, u_int len)
677{
678	bcopy(s, t, (size_t)len);
679	return 0;
680}
681
682struct mbuf *
683m_copymdata(struct mbuf *m, struct mbuf *n, int off, int len,
684    int prep, int how)
685{
686	struct mbuf *mm, *x, *z, *prev = NULL;
687	caddr_t p;
688	int i, nlen = 0;
689	caddr_t buf[MLEN];
690
691	KASSERT(m != NULL && n != NULL, ("m_copymdata, no target or source"));
692	KASSERT(off >= 0, ("m_copymdata, negative off %d", off));
693	KASSERT(len >= 0, ("m_copymdata, negative len %d", len));
694	KASSERT(prep == 0 || prep == 1, ("m_copymdata, unknown direction %d", prep));
695
696	mm = m;
697	if (!prep) {
698		while(mm->m_next) {
699			prev = mm;
700			mm = mm->m_next;
701		}
702	}
703	for (z = n; z != NULL; z = z->m_next)
704		nlen += z->m_len;
705	if (len == M_COPYALL)
706		len = nlen - off;
707	if (off + len > nlen || len < 1)
708		return NULL;
709
710	if (!M_WRITABLE(mm)) {
711		/* XXX: Use proper m_xxx function instead. */
712		x = m_getcl(how, MT_DATA, mm->m_flags);
713		if (x == NULL)
714			return NULL;
715		bcopy(mm->m_ext.ext_buf, x->m_ext.ext_buf, x->m_ext.ext_size);
716		p = x->m_ext.ext_buf + (mm->m_data - mm->m_ext.ext_buf);
717		x->m_data = p;
718		mm->m_next = NULL;
719		if (mm != m)
720			prev->m_next = x;
721		m_free(mm);
722		mm = x;
723	}
724
725	/*
726	 * Append/prepend the data.  Allocating mbufs as necessary.
727	 */
728	/* Shortcut if enough free space in first/last mbuf. */
729	if (!prep && M_TRAILINGSPACE(mm) >= len) {
730		m_apply(n, off, len, m_bcopyxxx, mtod(mm, caddr_t) +
731			 mm->m_len);
732		mm->m_len += len;
733		mm->m_pkthdr.len += len;
734		return m;
735	}
736	if (prep && M_LEADINGSPACE(mm) >= len) {
737		mm->m_data = mtod(mm, caddr_t) - len;
738		m_apply(n, off, len, m_bcopyxxx, mtod(mm, caddr_t));
739		mm->m_len += len;
740		mm->m_pkthdr.len += len;
741		return mm;
742	}
743
744	/* Expand first/last mbuf to cluster if possible. */
745	if (!prep && !(mm->m_flags & M_EXT) && len > M_TRAILINGSPACE(mm)) {
746		bcopy(mm->m_data, &buf, mm->m_len);
747		m_clget(mm, how);
748		if (!(mm->m_flags & M_EXT))
749			return NULL;
750		bcopy(&buf, mm->m_ext.ext_buf, mm->m_len);
751		mm->m_data = mm->m_ext.ext_buf;
752	}
753	if (prep && !(mm->m_flags & M_EXT) && len > M_LEADINGSPACE(mm)) {
754		bcopy(mm->m_data, &buf, mm->m_len);
755		m_clget(mm, how);
756		if (!(mm->m_flags & M_EXT))
757			return NULL;
758		bcopy(&buf, (caddr_t *)mm->m_ext.ext_buf +
759		       mm->m_ext.ext_size - mm->m_len, mm->m_len);
760		mm->m_data = (caddr_t)mm->m_ext.ext_buf +
761			      mm->m_ext.ext_size - mm->m_len;
762	}
763
764	/* Append/prepend as many mbuf (clusters) as necessary to fit len. */
765	if (!prep && len > M_TRAILINGSPACE(mm)) {
766		if (!m_getm(mm, len - M_TRAILINGSPACE(mm), how, MT_DATA))
767			return NULL;
768	}
769	if (prep && len > M_LEADINGSPACE(mm)) {
770		if (!(z = m_getm(NULL, len - M_LEADINGSPACE(mm), how, MT_DATA)))
771			return NULL;
772		i = 0;
773		for (x = z; x != NULL; x = x->m_next) {
774			i += x->m_flags & M_EXT ? x->m_ext.ext_size :
775			      (x->m_flags & M_PKTHDR ? MHLEN : MLEN);
776			if (!x->m_next)
777				break;
778		}
779		z->m_data += i - len;
780		m_move_pkthdr(mm, z);
781		x->m_next = mm;
782		mm = z;
783	}
784
785	/* Seek to start position in source mbuf. Optimization for long chains. */
786	while (off > 0) {
787		if (off < n->m_len)
788			break;
789		off -= n->m_len;
790		n = n->m_next;
791	}
792
793	/* Copy data into target mbuf. */
794	z = mm;
795	while (len > 0) {
796		KASSERT(z != NULL, ("m_copymdata, falling off target edge"));
797		i = M_TRAILINGSPACE(z);
798		m_apply(n, off, i, m_bcopyxxx, mtod(z, caddr_t) + z->m_len);
799		z->m_len += i;
800		/* fixup pkthdr.len if necessary */
801		if ((prep ? mm : m)->m_flags & M_PKTHDR)
802			(prep ? mm : m)->m_pkthdr.len += i;
803		off += i;
804		len -= i;
805		z = z->m_next;
806	}
807	return (prep ? mm : m);
808}
809
810/*
811 * Copy an entire packet, including header (which must be present).
812 * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
813 * Note that the copy is read-only, because clusters are not copied,
814 * only their reference counts are incremented.
815 * Preserve alignment of the first mbuf so if the creator has left
816 * some room at the beginning (e.g. for inserting protocol headers)
817 * the copies still have the room available.
818 */
819struct mbuf *
820m_copypacket(struct mbuf *m, int how)
821{
822	struct mbuf *top, *n, *o;
823
824	MBUF_CHECKSLEEP(how);
825	n = m_get(how, m->m_type);
826	top = n;
827	if (n == NULL)
828		goto nospace;
829
830	if (!m_dup_pkthdr(n, m, how))
831		goto nospace;
832	n->m_len = m->m_len;
833	if (m->m_flags & M_EXT) {
834		n->m_data = m->m_data;
835		mb_dupcl(n, m);
836	} else {
837		n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
838		bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
839	}
840
841	m = m->m_next;
842	while (m) {
843		o = m_get(how, m->m_type);
844		if (o == NULL)
845			goto nospace;
846
847		n->m_next = o;
848		n = n->m_next;
849
850		n->m_len = m->m_len;
851		if (m->m_flags & M_EXT) {
852			n->m_data = m->m_data;
853			mb_dupcl(n, m);
854		} else {
855			bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
856		}
857
858		m = m->m_next;
859	}
860	return top;
861nospace:
862	m_freem(top);
863	return (NULL);
864}
865
866/*
867 * Copy data from an mbuf chain starting "off" bytes from the beginning,
868 * continuing for "len" bytes, into the indicated buffer.
869 */
870void
871m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
872{
873	u_int count;
874
875	KASSERT(off >= 0, ("m_copydata, negative off %d", off));
876	KASSERT(len >= 0, ("m_copydata, negative len %d", len));
877	while (off > 0) {
878		KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
879		if (off < m->m_len)
880			break;
881		off -= m->m_len;
882		m = m->m_next;
883	}
884	while (len > 0) {
885		KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
886		count = min(m->m_len - off, len);
887		bcopy(mtod(m, caddr_t) + off, cp, count);
888		len -= count;
889		cp += count;
890		off = 0;
891		m = m->m_next;
892	}
893}
894
895/*
896 * Copy a packet header mbuf chain into a completely new chain, including
897 * copying any mbuf clusters.  Use this instead of m_copypacket() when
898 * you need a writable copy of an mbuf chain.
899 */
900struct mbuf *
901m_dup(struct mbuf *m, int how)
902{
903	struct mbuf **p, *top = NULL;
904	int remain, moff, nsize;
905
906	MBUF_CHECKSLEEP(how);
907	/* Sanity check */
908	if (m == NULL)
909		return (NULL);
910	M_ASSERTPKTHDR(m);
911
912	/* While there's more data, get a new mbuf, tack it on, and fill it */
913	remain = m->m_pkthdr.len;
914	moff = 0;
915	p = &top;
916	while (remain > 0 || top == NULL) {	/* allow m->m_pkthdr.len == 0 */
917		struct mbuf *n;
918
919		/* Get the next new mbuf */
920		if (remain >= MINCLSIZE) {
921			n = m_getcl(how, m->m_type, 0);
922			nsize = MCLBYTES;
923		} else {
924			n = m_get(how, m->m_type);
925			nsize = MLEN;
926		}
927		if (n == NULL)
928			goto nospace;
929
930		if (top == NULL) {		/* First one, must be PKTHDR */
931			if (!m_dup_pkthdr(n, m, how)) {
932				m_free(n);
933				goto nospace;
934			}
935			if ((n->m_flags & M_EXT) == 0)
936				nsize = MHLEN;
937		}
938		n->m_len = 0;
939
940		/* Link it into the new chain */
941		*p = n;
942		p = &n->m_next;
943
944		/* Copy data from original mbuf(s) into new mbuf */
945		while (n->m_len < nsize && m != NULL) {
946			int chunk = min(nsize - n->m_len, m->m_len - moff);
947
948			bcopy(m->m_data + moff, n->m_data + n->m_len, chunk);
949			moff += chunk;
950			n->m_len += chunk;
951			remain -= chunk;
952			if (moff == m->m_len) {
953				m = m->m_next;
954				moff = 0;
955			}
956		}
957
958		/* Check correct total mbuf length */
959		KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
960		    	("%s: bogus m_pkthdr.len", __func__));
961	}
962	return (top);
963
964nospace:
965	m_freem(top);
966	return (NULL);
967}
968
969/*
970 * Concatenate mbuf chain n to m.
971 * Both chains must be of the same type (e.g. MT_DATA).
972 * Any m_pkthdr is not updated.
973 */
974void
975m_cat(struct mbuf *m, struct mbuf *n)
976{
977	while (m->m_next)
978		m = m->m_next;
979	while (n) {
980		if (!M_WRITABLE(m) ||
981		    M_TRAILINGSPACE(m) < n->m_len) {
982			/* just join the two chains */
983			m->m_next = n;
984			return;
985		}
986		/* splat the data from one into the other */
987		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
988		    (u_int)n->m_len);
989		m->m_len += n->m_len;
990		n = m_free(n);
991	}
992}
993
994void
995m_adj(struct mbuf *mp, int req_len)
996{
997	int len = req_len;
998	struct mbuf *m;
999	int count;
1000
1001	if ((m = mp) == NULL)
1002		return;
1003	if (len >= 0) {
1004		/*
1005		 * Trim from head.
1006		 */
1007		while (m != NULL && len > 0) {
1008			if (m->m_len <= len) {
1009				len -= m->m_len;
1010				m->m_len = 0;
1011				m = m->m_next;
1012			} else {
1013				m->m_len -= len;
1014				m->m_data += len;
1015				len = 0;
1016			}
1017		}
1018		if (mp->m_flags & M_PKTHDR)
1019			mp->m_pkthdr.len -= (req_len - len);
1020	} else {
1021		/*
1022		 * Trim from tail.  Scan the mbuf chain,
1023		 * calculating its length and finding the last mbuf.
1024		 * If the adjustment only affects this mbuf, then just
1025		 * adjust and return.  Otherwise, rescan and truncate
1026		 * after the remaining size.
1027		 */
1028		len = -len;
1029		count = 0;
1030		for (;;) {
1031			count += m->m_len;
1032			if (m->m_next == (struct mbuf *)0)
1033				break;
1034			m = m->m_next;
1035		}
1036		if (m->m_len >= len) {
1037			m->m_len -= len;
1038			if (mp->m_flags & M_PKTHDR)
1039				mp->m_pkthdr.len -= len;
1040			return;
1041		}
1042		count -= len;
1043		if (count < 0)
1044			count = 0;
1045		/*
1046		 * Correct length for chain is "count".
1047		 * Find the mbuf with last data, adjust its length,
1048		 * and toss data from remaining mbufs on chain.
1049		 */
1050		m = mp;
1051		if (m->m_flags & M_PKTHDR)
1052			m->m_pkthdr.len = count;
1053		for (; m; m = m->m_next) {
1054			if (m->m_len >= count) {
1055				m->m_len = count;
1056				if (m->m_next != NULL) {
1057					m_freem(m->m_next);
1058					m->m_next = NULL;
1059				}
1060				break;
1061			}
1062			count -= m->m_len;
1063		}
1064	}
1065}
1066
1067/*
1068 * Rearange an mbuf chain so that len bytes are contiguous
1069 * and in the data area of an mbuf (so that mtod will work
1070 * for a structure of size len).  Returns the resulting
1071 * mbuf chain on success, frees it and returns null on failure.
1072 * If there is room, it will add up to max_protohdr-len extra bytes to the
1073 * contiguous region in an attempt to avoid being called next time.
1074 */
1075struct mbuf *
1076m_pullup(struct mbuf *n, int len)
1077{
1078	struct mbuf *m;
1079	int count;
1080	int space;
1081
1082	/*
1083	 * If first mbuf has no cluster, and has room for len bytes
1084	 * without shifting current data, pullup into it,
1085	 * otherwise allocate a new mbuf to prepend to the chain.
1086	 */
1087	if ((n->m_flags & M_EXT) == 0 &&
1088	    n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
1089		if (n->m_len >= len)
1090			return (n);
1091		m = n;
1092		n = n->m_next;
1093		len -= m->m_len;
1094	} else {
1095		if (len > MHLEN)
1096			goto bad;
1097		m = m_get(M_NOWAIT, n->m_type);
1098		if (m == NULL)
1099			goto bad;
1100		if (n->m_flags & M_PKTHDR)
1101			m_move_pkthdr(m, n);
1102	}
1103	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1104	do {
1105		count = min(min(max(len, max_protohdr), space), n->m_len);
1106		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
1107		  (u_int)count);
1108		len -= count;
1109		m->m_len += count;
1110		n->m_len -= count;
1111		space -= count;
1112		if (n->m_len)
1113			n->m_data += count;
1114		else
1115			n = m_free(n);
1116	} while (len > 0 && n);
1117	if (len > 0) {
1118		(void) m_free(m);
1119		goto bad;
1120	}
1121	m->m_next = n;
1122	return (m);
1123bad:
1124	m_freem(n);
1125	return (NULL);
1126}
1127
1128/*
1129 * Like m_pullup(), except a new mbuf is always allocated, and we allow
1130 * the amount of empty space before the data in the new mbuf to be specified
1131 * (in the event that the caller expects to prepend later).
1132 */
1133int MSFail;
1134
1135struct mbuf *
1136m_copyup(struct mbuf *n, int len, int dstoff)
1137{
1138	struct mbuf *m;
1139	int count, space;
1140
1141	if (len > (MHLEN - dstoff))
1142		goto bad;
1143	m = m_get(M_NOWAIT, n->m_type);
1144	if (m == NULL)
1145		goto bad;
1146	if (n->m_flags & M_PKTHDR)
1147		m_move_pkthdr(m, n);
1148	m->m_data += dstoff;
1149	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1150	do {
1151		count = min(min(max(len, max_protohdr), space), n->m_len);
1152		memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t),
1153		    (unsigned)count);
1154		len -= count;
1155		m->m_len += count;
1156		n->m_len -= count;
1157		space -= count;
1158		if (n->m_len)
1159			n->m_data += count;
1160		else
1161			n = m_free(n);
1162	} while (len > 0 && n);
1163	if (len > 0) {
1164		(void) m_free(m);
1165		goto bad;
1166	}
1167	m->m_next = n;
1168	return (m);
1169 bad:
1170	m_freem(n);
1171	MSFail++;
1172	return (NULL);
1173}
1174
1175/*
1176 * Partition an mbuf chain in two pieces, returning the tail --
1177 * all but the first len0 bytes.  In case of failure, it returns NULL and
1178 * attempts to restore the chain to its original state.
1179 *
1180 * Note that the resulting mbufs might be read-only, because the new
1181 * mbuf can end up sharing an mbuf cluster with the original mbuf if
1182 * the "breaking point" happens to lie within a cluster mbuf. Use the
1183 * M_WRITABLE() macro to check for this case.
1184 */
1185struct mbuf *
1186m_split(struct mbuf *m0, int len0, int wait)
1187{
1188	struct mbuf *m, *n;
1189	u_int len = len0, remain;
1190
1191	MBUF_CHECKSLEEP(wait);
1192	for (m = m0; m && len > m->m_len; m = m->m_next)
1193		len -= m->m_len;
1194	if (m == NULL)
1195		return (NULL);
1196	remain = m->m_len - len;
1197	if (m0->m_flags & M_PKTHDR && remain == 0) {
1198		n = m_gethdr(wait, m0->m_type);
1199		if (n == NULL)
1200			return (NULL);
1201		n->m_next = m->m_next;
1202		m->m_next = NULL;
1203		n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1204		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1205		m0->m_pkthdr.len = len0;
1206		return (n);
1207	} else if (m0->m_flags & M_PKTHDR) {
1208		n = m_gethdr(wait, m0->m_type);
1209		if (n == NULL)
1210			return (NULL);
1211		n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1212		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1213		m0->m_pkthdr.len = len0;
1214		if (m->m_flags & M_EXT)
1215			goto extpacket;
1216		if (remain > MHLEN) {
1217			/* m can't be the lead packet */
1218			MH_ALIGN(n, 0);
1219			n->m_next = m_split(m, len, wait);
1220			if (n->m_next == NULL) {
1221				(void) m_free(n);
1222				return (NULL);
1223			} else {
1224				n->m_len = 0;
1225				return (n);
1226			}
1227		} else
1228			MH_ALIGN(n, remain);
1229	} else if (remain == 0) {
1230		n = m->m_next;
1231		m->m_next = NULL;
1232		return (n);
1233	} else {
1234		n = m_get(wait, m->m_type);
1235		if (n == NULL)
1236			return (NULL);
1237		M_ALIGN(n, remain);
1238	}
1239extpacket:
1240	if (m->m_flags & M_EXT) {
1241		n->m_data = m->m_data + len;
1242		mb_dupcl(n, m);
1243	} else {
1244		bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
1245	}
1246	n->m_len = remain;
1247	m->m_len = len;
1248	n->m_next = m->m_next;
1249	m->m_next = NULL;
1250	return (n);
1251}
1252/*
1253 * Routine to copy from device local memory into mbufs.
1254 * Note that `off' argument is offset into first mbuf of target chain from
1255 * which to begin copying the data to.
1256 */
1257struct mbuf *
1258m_devget(char *buf, int totlen, int off, struct ifnet *ifp,
1259    void (*copy)(char *from, caddr_t to, u_int len))
1260{
1261	struct mbuf *m;
1262	struct mbuf *top = NULL, **mp = &top;
1263	int len;
1264
1265	if (off < 0 || off > MHLEN)
1266		return (NULL);
1267
1268	while (totlen > 0) {
1269		if (top == NULL) {	/* First one, must be PKTHDR */
1270			if (totlen + off >= MINCLSIZE) {
1271				m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1272				len = MCLBYTES;
1273			} else {
1274				m = m_gethdr(M_NOWAIT, MT_DATA);
1275				len = MHLEN;
1276
1277				/* Place initial small packet/header at end of mbuf */
1278				if (m && totlen + off + max_linkhdr <= MLEN) {
1279					m->m_data += max_linkhdr;
1280					len -= max_linkhdr;
1281				}
1282			}
1283			if (m == NULL)
1284				return NULL;
1285			m->m_pkthdr.rcvif = ifp;
1286			m->m_pkthdr.len = totlen;
1287		} else {
1288			if (totlen + off >= MINCLSIZE) {
1289				m = m_getcl(M_NOWAIT, MT_DATA, 0);
1290				len = MCLBYTES;
1291			} else {
1292				m = m_get(M_NOWAIT, MT_DATA);
1293				len = MLEN;
1294			}
1295			if (m == NULL) {
1296				m_freem(top);
1297				return NULL;
1298			}
1299		}
1300		if (off) {
1301			m->m_data += off;
1302			len -= off;
1303			off = 0;
1304		}
1305		m->m_len = len = min(totlen, len);
1306		if (copy)
1307			copy(buf, mtod(m, caddr_t), (u_int)len);
1308		else
1309			bcopy(buf, mtod(m, caddr_t), (u_int)len);
1310		buf += len;
1311		*mp = m;
1312		mp = &m->m_next;
1313		totlen -= len;
1314	}
1315	return (top);
1316}
1317
1318/*
1319 * Copy data from a buffer back into the indicated mbuf chain,
1320 * starting "off" bytes from the beginning, extending the mbuf
1321 * chain if necessary.
1322 */
1323void
1324m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp)
1325{
1326	int mlen;
1327	struct mbuf *m = m0, *n;
1328	int totlen = 0;
1329
1330	if (m0 == NULL)
1331		return;
1332	while (off > (mlen = m->m_len)) {
1333		off -= mlen;
1334		totlen += mlen;
1335		if (m->m_next == NULL) {
1336			n = m_get(M_NOWAIT, m->m_type);
1337			if (n == NULL)
1338				goto out;
1339			bzero(mtod(n, caddr_t), MLEN);
1340			n->m_len = min(MLEN, len + off);
1341			m->m_next = n;
1342		}
1343		m = m->m_next;
1344	}
1345	while (len > 0) {
1346		if (m->m_next == NULL && (len > m->m_len - off)) {
1347			m->m_len += min(len - (m->m_len - off),
1348			    M_TRAILINGSPACE(m));
1349		}
1350		mlen = min (m->m_len - off, len);
1351		bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen);
1352		cp += mlen;
1353		len -= mlen;
1354		mlen += off;
1355		off = 0;
1356		totlen += mlen;
1357		if (len == 0)
1358			break;
1359		if (m->m_next == NULL) {
1360			n = m_get(M_NOWAIT, m->m_type);
1361			if (n == NULL)
1362				break;
1363			n->m_len = min(MLEN, len);
1364			m->m_next = n;
1365		}
1366		m = m->m_next;
1367	}
1368out:	if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
1369		m->m_pkthdr.len = totlen;
1370}
1371
1372/*
1373 * Append the specified data to the indicated mbuf chain,
1374 * Extend the mbuf chain if the new data does not fit in
1375 * existing space.
1376 *
1377 * Return 1 if able to complete the job; otherwise 0.
1378 */
1379int
1380m_append(struct mbuf *m0, int len, c_caddr_t cp)
1381{
1382	struct mbuf *m, *n;
1383	int remainder, space;
1384
1385	for (m = m0; m->m_next != NULL; m = m->m_next)
1386		;
1387	remainder = len;
1388	space = M_TRAILINGSPACE(m);
1389	if (space > 0) {
1390		/*
1391		 * Copy into available space.
1392		 */
1393		if (space > remainder)
1394			space = remainder;
1395		bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
1396		m->m_len += space;
1397		cp += space, remainder -= space;
1398	}
1399	while (remainder > 0) {
1400		/*
1401		 * Allocate a new mbuf; could check space
1402		 * and allocate a cluster instead.
1403		 */
1404		n = m_get(M_NOWAIT, m->m_type);
1405		if (n == NULL)
1406			break;
1407		n->m_len = min(MLEN, remainder);
1408		bcopy(cp, mtod(n, caddr_t), n->m_len);
1409		cp += n->m_len, remainder -= n->m_len;
1410		m->m_next = n;
1411		m = n;
1412	}
1413	if (m0->m_flags & M_PKTHDR)
1414		m0->m_pkthdr.len += len - remainder;
1415	return (remainder == 0);
1416}
1417
1418/*
1419 * Apply function f to the data in an mbuf chain starting "off" bytes from
1420 * the beginning, continuing for "len" bytes.
1421 */
1422int
1423m_apply(struct mbuf *m, int off, int len,
1424    int (*f)(void *, void *, u_int), void *arg)
1425{
1426	u_int count;
1427	int rval;
1428
1429	KASSERT(off >= 0, ("m_apply, negative off %d", off));
1430	KASSERT(len >= 0, ("m_apply, negative len %d", len));
1431	while (off > 0) {
1432		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1433		if (off < m->m_len)
1434			break;
1435		off -= m->m_len;
1436		m = m->m_next;
1437	}
1438	while (len > 0) {
1439		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1440		count = min(m->m_len - off, len);
1441		rval = (*f)(arg, mtod(m, caddr_t) + off, count);
1442		if (rval)
1443			return (rval);
1444		len -= count;
1445		off = 0;
1446		m = m->m_next;
1447	}
1448	return (0);
1449}
1450
1451/*
1452 * Return a pointer to mbuf/offset of location in mbuf chain.
1453 */
1454struct mbuf *
1455m_getptr(struct mbuf *m, int loc, int *off)
1456{
1457
1458	while (loc >= 0) {
1459		/* Normal end of search. */
1460		if (m->m_len > loc) {
1461			*off = loc;
1462			return (m);
1463		} else {
1464			loc -= m->m_len;
1465			if (m->m_next == NULL) {
1466				if (loc == 0) {
1467					/* Point at the end of valid data. */
1468					*off = m->m_len;
1469					return (m);
1470				}
1471				return (NULL);
1472			}
1473			m = m->m_next;
1474		}
1475	}
1476	return (NULL);
1477}
1478
1479void
1480m_print(const struct mbuf *m, int maxlen)
1481{
1482	int len;
1483	int pdata;
1484	const struct mbuf *m2;
1485
1486	if (m == NULL) {
1487		printf("mbuf: %p\n", m);
1488		return;
1489	}
1490
1491	if (m->m_flags & M_PKTHDR)
1492		len = m->m_pkthdr.len;
1493	else
1494		len = -1;
1495	m2 = m;
1496	while (m2 != NULL && (len == -1 || len)) {
1497		pdata = m2->m_len;
1498		if (maxlen != -1 && pdata > maxlen)
1499			pdata = maxlen;
1500		printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len,
1501		    m2->m_next, m2->m_flags, "\20\20freelist\17skipfw"
1502		    "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly"
1503		    "\3eor\2pkthdr\1ext", pdata ? "" : "\n");
1504		if (pdata)
1505			printf(", %*D\n", pdata, (u_char *)m2->m_data, "-");
1506		if (len != -1)
1507			len -= m2->m_len;
1508		m2 = m2->m_next;
1509	}
1510	if (len > 0)
1511		printf("%d bytes unaccounted for.\n", len);
1512	return;
1513}
1514
1515u_int
1516m_fixhdr(struct mbuf *m0)
1517{
1518	u_int len;
1519
1520	len = m_length(m0, NULL);
1521	m0->m_pkthdr.len = len;
1522	return (len);
1523}
1524
1525u_int
1526m_length(struct mbuf *m0, struct mbuf **last)
1527{
1528	struct mbuf *m;
1529	u_int len;
1530
1531	len = 0;
1532	for (m = m0; m != NULL; m = m->m_next) {
1533		len += m->m_len;
1534		if (m->m_next == NULL)
1535			break;
1536	}
1537	if (last != NULL)
1538		*last = m;
1539	return (len);
1540}
1541
1542/*
1543 * Defragment a mbuf chain, returning the shortest possible
1544 * chain of mbufs and clusters.  If allocation fails and
1545 * this cannot be completed, NULL will be returned, but
1546 * the passed in chain will be unchanged.  Upon success,
1547 * the original chain will be freed, and the new chain
1548 * will be returned.
1549 *
1550 * If a non-packet header is passed in, the original
1551 * mbuf (chain?) will be returned unharmed.
1552 */
1553struct mbuf *
1554m_defrag(struct mbuf *m0, int how)
1555{
1556	struct mbuf *m_new = NULL, *m_final = NULL;
1557	int progress = 0, length;
1558
1559	MBUF_CHECKSLEEP(how);
1560	if (!(m0->m_flags & M_PKTHDR))
1561		return (m0);
1562
1563	m_fixhdr(m0); /* Needed sanity check */
1564
1565#ifdef MBUF_STRESS_TEST
1566	if (m_defragrandomfailures) {
1567		int temp = arc4random() & 0xff;
1568		if (temp == 0xba)
1569			goto nospace;
1570	}
1571#endif
1572
1573	if (m0->m_pkthdr.len > MHLEN)
1574		m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1575	else
1576		m_final = m_gethdr(how, MT_DATA);
1577
1578	if (m_final == NULL)
1579		goto nospace;
1580
1581	if (m_dup_pkthdr(m_final, m0, how) == 0)
1582		goto nospace;
1583
1584	m_new = m_final;
1585
1586	while (progress < m0->m_pkthdr.len) {
1587		length = m0->m_pkthdr.len - progress;
1588		if (length > MCLBYTES)
1589			length = MCLBYTES;
1590
1591		if (m_new == NULL) {
1592			if (length > MLEN)
1593				m_new = m_getcl(how, MT_DATA, 0);
1594			else
1595				m_new = m_get(how, MT_DATA);
1596			if (m_new == NULL)
1597				goto nospace;
1598		}
1599
1600		m_copydata(m0, progress, length, mtod(m_new, caddr_t));
1601		progress += length;
1602		m_new->m_len = length;
1603		if (m_new != m_final)
1604			m_cat(m_final, m_new);
1605		m_new = NULL;
1606	}
1607#ifdef MBUF_STRESS_TEST
1608	if (m0->m_next == NULL)
1609		m_defraguseless++;
1610#endif
1611	m_freem(m0);
1612	m0 = m_final;
1613#ifdef MBUF_STRESS_TEST
1614	m_defragpackets++;
1615	m_defragbytes += m0->m_pkthdr.len;
1616#endif
1617	return (m0);
1618nospace:
1619#ifdef MBUF_STRESS_TEST
1620	m_defragfailure++;
1621#endif
1622	if (m_final)
1623		m_freem(m_final);
1624	return (NULL);
1625}
1626
1627/*
1628 * Defragment an mbuf chain, returning at most maxfrags separate
1629 * mbufs+clusters.  If this is not possible NULL is returned and
1630 * the original mbuf chain is left in it's present (potentially
1631 * modified) state.  We use two techniques: collapsing consecutive
1632 * mbufs and replacing consecutive mbufs by a cluster.
1633 *
1634 * NB: this should really be named m_defrag but that name is taken
1635 */
1636struct mbuf *
1637m_collapse(struct mbuf *m0, int how, int maxfrags)
1638{
1639	struct mbuf *m, *n, *n2, **prev;
1640	u_int curfrags;
1641
1642	/*
1643	 * Calculate the current number of frags.
1644	 */
1645	curfrags = 0;
1646	for (m = m0; m != NULL; m = m->m_next)
1647		curfrags++;
1648	/*
1649	 * First, try to collapse mbufs.  Note that we always collapse
1650	 * towards the front so we don't need to deal with moving the
1651	 * pkthdr.  This may be suboptimal if the first mbuf has much
1652	 * less data than the following.
1653	 */
1654	m = m0;
1655again:
1656	for (;;) {
1657		n = m->m_next;
1658		if (n == NULL)
1659			break;
1660		if (M_WRITABLE(m) &&
1661		    n->m_len < M_TRAILINGSPACE(m)) {
1662			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
1663				n->m_len);
1664			m->m_len += n->m_len;
1665			m->m_next = n->m_next;
1666			m_free(n);
1667			if (--curfrags <= maxfrags)
1668				return m0;
1669		} else
1670			m = n;
1671	}
1672	KASSERT(maxfrags > 1,
1673		("maxfrags %u, but normal collapse failed", maxfrags));
1674	/*
1675	 * Collapse consecutive mbufs to a cluster.
1676	 */
1677	prev = &m0->m_next;		/* NB: not the first mbuf */
1678	while ((n = *prev) != NULL) {
1679		if ((n2 = n->m_next) != NULL &&
1680		    n->m_len + n2->m_len < MCLBYTES) {
1681			m = m_getcl(how, MT_DATA, 0);
1682			if (m == NULL)
1683				goto bad;
1684			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
1685			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
1686				n2->m_len);
1687			m->m_len = n->m_len + n2->m_len;
1688			m->m_next = n2->m_next;
1689			*prev = m;
1690			m_free(n);
1691			m_free(n2);
1692			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
1693				return m0;
1694			/*
1695			 * Still not there, try the normal collapse
1696			 * again before we allocate another cluster.
1697			 */
1698			goto again;
1699		}
1700		prev = &n->m_next;
1701	}
1702	/*
1703	 * No place where we can collapse to a cluster; punt.
1704	 * This can occur if, for example, you request 2 frags
1705	 * but the packet requires that both be clusters (we
1706	 * never reallocate the first mbuf to avoid moving the
1707	 * packet header).
1708	 */
1709bad:
1710	return NULL;
1711}
1712
1713#ifdef MBUF_STRESS_TEST
1714
1715/*
1716 * Fragment an mbuf chain.  There's no reason you'd ever want to do
1717 * this in normal usage, but it's great for stress testing various
1718 * mbuf consumers.
1719 *
1720 * If fragmentation is not possible, the original chain will be
1721 * returned.
1722 *
1723 * Possible length values:
1724 * 0	 no fragmentation will occur
1725 * > 0	each fragment will be of the specified length
1726 * -1	each fragment will be the same random value in length
1727 * -2	each fragment's length will be entirely random
1728 * (Random values range from 1 to 256)
1729 */
1730struct mbuf *
1731m_fragment(struct mbuf *m0, int how, int length)
1732{
1733	struct mbuf *m_new = NULL, *m_final = NULL;
1734	int progress = 0;
1735
1736	if (!(m0->m_flags & M_PKTHDR))
1737		return (m0);
1738
1739	if ((length == 0) || (length < -2))
1740		return (m0);
1741
1742	m_fixhdr(m0); /* Needed sanity check */
1743
1744	m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1745
1746	if (m_final == NULL)
1747		goto nospace;
1748
1749	if (m_dup_pkthdr(m_final, m0, how) == 0)
1750		goto nospace;
1751
1752	m_new = m_final;
1753
1754	if (length == -1)
1755		length = 1 + (arc4random() & 255);
1756
1757	while (progress < m0->m_pkthdr.len) {
1758		int fraglen;
1759
1760		if (length > 0)
1761			fraglen = length;
1762		else
1763			fraglen = 1 + (arc4random() & 255);
1764		if (fraglen > m0->m_pkthdr.len - progress)
1765			fraglen = m0->m_pkthdr.len - progress;
1766
1767		if (fraglen > MCLBYTES)
1768			fraglen = MCLBYTES;
1769
1770		if (m_new == NULL) {
1771			m_new = m_getcl(how, MT_DATA, 0);
1772			if (m_new == NULL)
1773				goto nospace;
1774		}
1775
1776		m_copydata(m0, progress, fraglen, mtod(m_new, caddr_t));
1777		progress += fraglen;
1778		m_new->m_len = fraglen;
1779		if (m_new != m_final)
1780			m_cat(m_final, m_new);
1781		m_new = NULL;
1782	}
1783	m_freem(m0);
1784	m0 = m_final;
1785	return (m0);
1786nospace:
1787	if (m_final)
1788		m_freem(m_final);
1789	/* Return the original chain on failure */
1790	return (m0);
1791}
1792
1793#endif
1794
1795/*
1796 * Copy the contents of uio into a properly sized mbuf chain.
1797 */
1798struct mbuf *
1799m_uiotombuf(struct uio *uio, int how, int len, int align, int flags)
1800{
1801	struct mbuf *m, *mb;
1802	int error, length;
1803	ssize_t total;
1804	int progress = 0;
1805
1806	/*
1807	 * len can be zero or an arbitrary large value bound by
1808	 * the total data supplied by the uio.
1809	 */
1810	if (len > 0)
1811		total = min(uio->uio_resid, len);
1812	else
1813		total = uio->uio_resid;
1814
1815	/*
1816	 * The smallest unit returned by m_getm2() is a single mbuf
1817	 * with pkthdr.  We can't align past it.
1818	 */
1819	if (align >= MHLEN)
1820		return (NULL);
1821
1822	/*
1823	 * Give us the full allocation or nothing.
1824	 * If len is zero return the smallest empty mbuf.
1825	 */
1826	m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags);
1827	if (m == NULL)
1828		return (NULL);
1829	m->m_data += align;
1830
1831	/* Fill all mbufs with uio data and update header information. */
1832	for (mb = m; mb != NULL; mb = mb->m_next) {
1833		length = min(M_TRAILINGSPACE(mb), total - progress);
1834
1835		error = uiomove(mtod(mb, void *), length, uio);
1836		if (error) {
1837			m_freem(m);
1838			return (NULL);
1839		}
1840
1841		mb->m_len = length;
1842		progress += length;
1843		if (flags & M_PKTHDR)
1844			m->m_pkthdr.len += length;
1845	}
1846	KASSERT(progress == total, ("%s: progress != total", __func__));
1847
1848	return (m);
1849}
1850
1851/*
1852 * Copy an mbuf chain into a uio limited by len if set.
1853 */
1854int
1855m_mbuftouio(struct uio *uio, struct mbuf *m, int len)
1856{
1857	int error, length, total;
1858	int progress = 0;
1859
1860	if (len > 0)
1861		total = min(uio->uio_resid, len);
1862	else
1863		total = uio->uio_resid;
1864
1865	/* Fill the uio with data from the mbufs. */
1866	for (; m != NULL; m = m->m_next) {
1867		length = min(m->m_len, total - progress);
1868
1869		error = uiomove(mtod(m, void *), length, uio);
1870		if (error)
1871			return (error);
1872
1873		progress += length;
1874	}
1875
1876	return (0);
1877}
1878
1879/*
1880 * Set the m_data pointer of a newly-allocated mbuf
1881 * to place an object of the specified size at the
1882 * end of the mbuf, longword aligned.
1883 */
1884void
1885m_align(struct mbuf *m, int len)
1886{
1887#ifdef INVARIANTS
1888	const char *msg = "%s: not a virgin mbuf";
1889#endif
1890	int adjust;
1891
1892	if (m->m_flags & M_EXT) {
1893		KASSERT(m->m_data == m->m_ext.ext_buf, (msg, __func__));
1894		adjust = m->m_ext.ext_size - len;
1895	} else if (m->m_flags & M_PKTHDR) {
1896		KASSERT(m->m_data == m->m_pktdat, (msg, __func__));
1897		adjust = MHLEN - len;
1898	} else {
1899		KASSERT(m->m_data == m->m_dat, (msg, __func__));
1900		adjust = MLEN - len;
1901	}
1902
1903	m->m_data += adjust &~ (sizeof(long)-1);
1904}
1905
1906/*
1907 * Create a writable copy of the mbuf chain.  While doing this
1908 * we compact the chain with a goal of producing a chain with
1909 * at most two mbufs.  The second mbuf in this chain is likely
1910 * to be a cluster.  The primary purpose of this work is to create
1911 * a writable packet for encryption, compression, etc.  The
1912 * secondary goal is to linearize the data so the data can be
1913 * passed to crypto hardware in the most efficient manner possible.
1914 */
1915struct mbuf *
1916m_unshare(struct mbuf *m0, int how)
1917{
1918	struct mbuf *m, *mprev;
1919	struct mbuf *n, *mfirst, *mlast;
1920	int len, off;
1921
1922	mprev = NULL;
1923	for (m = m0; m != NULL; m = mprev->m_next) {
1924		/*
1925		 * Regular mbufs are ignored unless there's a cluster
1926		 * in front of it that we can use to coalesce.  We do
1927		 * the latter mainly so later clusters can be coalesced
1928		 * also w/o having to handle them specially (i.e. convert
1929		 * mbuf+cluster -> cluster).  This optimization is heavily
1930		 * influenced by the assumption that we're running over
1931		 * Ethernet where MCLBYTES is large enough that the max
1932		 * packet size will permit lots of coalescing into a
1933		 * single cluster.  This in turn permits efficient
1934		 * crypto operations, especially when using hardware.
1935		 */
1936		if ((m->m_flags & M_EXT) == 0) {
1937			if (mprev && (mprev->m_flags & M_EXT) &&
1938			    m->m_len <= M_TRAILINGSPACE(mprev)) {
1939				/* XXX: this ignores mbuf types */
1940				memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1941				       mtod(m, caddr_t), m->m_len);
1942				mprev->m_len += m->m_len;
1943				mprev->m_next = m->m_next;	/* unlink from chain */
1944				m_free(m);			/* reclaim mbuf */
1945#if 0
1946				newipsecstat.ips_mbcoalesced++;
1947#endif
1948			} else {
1949				mprev = m;
1950			}
1951			continue;
1952		}
1953		/*
1954		 * Writable mbufs are left alone (for now).
1955		 */
1956		if (M_WRITABLE(m)) {
1957			mprev = m;
1958			continue;
1959		}
1960
1961		/*
1962		 * Not writable, replace with a copy or coalesce with
1963		 * the previous mbuf if possible (since we have to copy
1964		 * it anyway, we try to reduce the number of mbufs and
1965		 * clusters so that future work is easier).
1966		 */
1967		KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags));
1968		/* NB: we only coalesce into a cluster or larger */
1969		if (mprev != NULL && (mprev->m_flags & M_EXT) &&
1970		    m->m_len <= M_TRAILINGSPACE(mprev)) {
1971			/* XXX: this ignores mbuf types */
1972			memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1973			       mtod(m, caddr_t), m->m_len);
1974			mprev->m_len += m->m_len;
1975			mprev->m_next = m->m_next;	/* unlink from chain */
1976			m_free(m);			/* reclaim mbuf */
1977#if 0
1978			newipsecstat.ips_clcoalesced++;
1979#endif
1980			continue;
1981		}
1982
1983		/*
1984		 * Allocate new space to hold the copy and copy the data.
1985		 * We deal with jumbo mbufs (i.e. m_len > MCLBYTES) by
1986		 * splitting them into clusters.  We could just malloc a
1987		 * buffer and make it external but too many device drivers
1988		 * don't know how to break up the non-contiguous memory when
1989		 * doing DMA.
1990		 */
1991		n = m_getcl(how, m->m_type, m->m_flags);
1992		if (n == NULL) {
1993			m_freem(m0);
1994			return (NULL);
1995		}
1996		len = m->m_len;
1997		off = 0;
1998		mfirst = n;
1999		mlast = NULL;
2000		for (;;) {
2001			int cc = min(len, MCLBYTES);
2002			memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc);
2003			n->m_len = cc;
2004			if (mlast != NULL)
2005				mlast->m_next = n;
2006			mlast = n;
2007#if 0
2008			newipsecstat.ips_clcopied++;
2009#endif
2010
2011			len -= cc;
2012			if (len <= 0)
2013				break;
2014			off += cc;
2015
2016			n = m_getcl(how, m->m_type, m->m_flags);
2017			if (n == NULL) {
2018				m_freem(mfirst);
2019				m_freem(m0);
2020				return (NULL);
2021			}
2022		}
2023		n->m_next = m->m_next;
2024		if (mprev == NULL)
2025			m0 = mfirst;		/* new head of chain */
2026		else
2027			mprev->m_next = mfirst;	/* replace old mbuf */
2028		m_free(m);			/* release old mbuf */
2029		mprev = mfirst;
2030	}
2031	return (m0);
2032}
2033
2034#ifdef MBUF_PROFILING
2035
2036#define MP_BUCKETS 32 /* don't just change this as things may overflow.*/
2037struct mbufprofile {
2038	uintmax_t wasted[MP_BUCKETS];
2039	uintmax_t used[MP_BUCKETS];
2040	uintmax_t segments[MP_BUCKETS];
2041} mbprof;
2042
2043#define MP_MAXDIGITS 21	/* strlen("16,000,000,000,000,000,000") == 21 */
2044#define MP_NUMLINES 6
2045#define MP_NUMSPERLINE 16
2046#define MP_EXTRABYTES 64	/* > strlen("used:\nwasted:\nsegments:\n") */
2047/* work out max space needed and add a bit of spare space too */
2048#define MP_MAXLINE ((MP_MAXDIGITS+1) * MP_NUMSPERLINE)
2049#define MP_BUFSIZE ((MP_MAXLINE * MP_NUMLINES) + 1 + MP_EXTRABYTES)
2050
2051char mbprofbuf[MP_BUFSIZE];
2052
2053void
2054m_profile(struct mbuf *m)
2055{
2056	int segments = 0;
2057	int used = 0;
2058	int wasted = 0;
2059
2060	while (m) {
2061		segments++;
2062		used += m->m_len;
2063		if (m->m_flags & M_EXT) {
2064			wasted += MHLEN - sizeof(m->m_ext) +
2065			    m->m_ext.ext_size - m->m_len;
2066		} else {
2067			if (m->m_flags & M_PKTHDR)
2068				wasted += MHLEN - m->m_len;
2069			else
2070				wasted += MLEN - m->m_len;
2071		}
2072		m = m->m_next;
2073	}
2074	/* be paranoid.. it helps */
2075	if (segments > MP_BUCKETS - 1)
2076		segments = MP_BUCKETS - 1;
2077	if (used > 100000)
2078		used = 100000;
2079	if (wasted > 100000)
2080		wasted = 100000;
2081	/* store in the appropriate bucket */
2082	/* don't bother locking. if it's slightly off, so what? */
2083	mbprof.segments[segments]++;
2084	mbprof.used[fls(used)]++;
2085	mbprof.wasted[fls(wasted)]++;
2086}
2087
2088static void
2089mbprof_textify(void)
2090{
2091	int offset;
2092	char *c;
2093	uint64_t *p;
2094
2095
2096	p = &mbprof.wasted[0];
2097	c = mbprofbuf;
2098	offset = snprintf(c, MP_MAXLINE + 10,
2099	    "wasted:\n"
2100	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2101	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2102	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2103	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2104#ifdef BIG_ARRAY
2105	p = &mbprof.wasted[16];
2106	c += offset;
2107	offset = snprintf(c, MP_MAXLINE,
2108	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2109	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2110	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2111	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2112#endif
2113	p = &mbprof.used[0];
2114	c += offset;
2115	offset = snprintf(c, MP_MAXLINE + 10,
2116	    "used:\n"
2117	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2118	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2119	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2120	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2121#ifdef BIG_ARRAY
2122	p = &mbprof.used[16];
2123	c += offset;
2124	offset = snprintf(c, MP_MAXLINE,
2125	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2126	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2127	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2128	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2129#endif
2130	p = &mbprof.segments[0];
2131	c += offset;
2132	offset = snprintf(c, MP_MAXLINE + 10,
2133	    "segments:\n"
2134	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2135	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2136	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2137	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2138#ifdef BIG_ARRAY
2139	p = &mbprof.segments[16];
2140	c += offset;
2141	offset = snprintf(c, MP_MAXLINE,
2142	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2143	    "%ju %ju %ju %ju %ju %ju %ju %jju",
2144	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2145	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2146#endif
2147}
2148
2149static int
2150mbprof_handler(SYSCTL_HANDLER_ARGS)
2151{
2152	int error;
2153
2154	mbprof_textify();
2155	error = SYSCTL_OUT(req, mbprofbuf, strlen(mbprofbuf) + 1);
2156	return (error);
2157}
2158
2159static int
2160mbprof_clr_handler(SYSCTL_HANDLER_ARGS)
2161{
2162	int clear, error;
2163
2164	clear = 0;
2165	error = sysctl_handle_int(oidp, &clear, 0, req);
2166	if (error || !req->newptr)
2167		return (error);
2168
2169	if (clear) {
2170		bzero(&mbprof, sizeof(mbprof));
2171	}
2172
2173	return (error);
2174}
2175
2176
2177SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile, CTLTYPE_STRING|CTLFLAG_RD,
2178	    NULL, 0, mbprof_handler, "A", "mbuf profiling statistics");
2179
2180SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr, CTLTYPE_INT|CTLFLAG_RW,
2181	    NULL, 0, mbprof_clr_handler, "I", "clear mbuf profiling statistics");
2182#endif
2183
2184