1/*-
2 * Copyright (c) 1982, 1986, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_resource.c	8.5 (Berkeley) 1/21/94
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD$");
39
40#include "opt_compat.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/sysproto.h>
45#include <sys/file.h>
46#include <sys/kernel.h>
47#include <sys/lock.h>
48#include <sys/malloc.h>
49#include <sys/mutex.h>
50#include <sys/priv.h>
51#include <sys/proc.h>
52#include <sys/refcount.h>
53#include <sys/racct.h>
54#include <sys/resourcevar.h>
55#include <sys/rwlock.h>
56#include <sys/sched.h>
57#include <sys/sx.h>
58#include <sys/syscallsubr.h>
59#include <sys/sysctl.h>
60#include <sys/sysent.h>
61#include <sys/time.h>
62#include <sys/umtx.h>
63
64#include <vm/vm.h>
65#include <vm/vm_param.h>
66#include <vm/pmap.h>
67#include <vm/vm_map.h>
68
69
70static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures");
71static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures");
72#define	UIHASH(uid)	(&uihashtbl[(uid) & uihash])
73static struct rwlock uihashtbl_lock;
74static LIST_HEAD(uihashhead, uidinfo) *uihashtbl;
75static u_long uihash;		/* size of hash table - 1 */
76
77static void	calcru1(struct proc *p, struct rusage_ext *ruxp,
78		    struct timeval *up, struct timeval *sp);
79static int	donice(struct thread *td, struct proc *chgp, int n);
80static struct uidinfo *uilookup(uid_t uid);
81static void	ruxagg_locked(struct rusage_ext *rux, struct thread *td);
82
83/*
84 * Resource controls and accounting.
85 */
86#ifndef _SYS_SYSPROTO_H_
87struct getpriority_args {
88	int	which;
89	int	who;
90};
91#endif
92int
93sys_getpriority(td, uap)
94	struct thread *td;
95	register struct getpriority_args *uap;
96{
97	struct proc *p;
98	struct pgrp *pg;
99	int error, low;
100
101	error = 0;
102	low = PRIO_MAX + 1;
103	switch (uap->which) {
104
105	case PRIO_PROCESS:
106		if (uap->who == 0)
107			low = td->td_proc->p_nice;
108		else {
109			p = pfind(uap->who);
110			if (p == NULL)
111				break;
112			if (p_cansee(td, p) == 0)
113				low = p->p_nice;
114			PROC_UNLOCK(p);
115		}
116		break;
117
118	case PRIO_PGRP:
119		sx_slock(&proctree_lock);
120		if (uap->who == 0) {
121			pg = td->td_proc->p_pgrp;
122			PGRP_LOCK(pg);
123		} else {
124			pg = pgfind(uap->who);
125			if (pg == NULL) {
126				sx_sunlock(&proctree_lock);
127				break;
128			}
129		}
130		sx_sunlock(&proctree_lock);
131		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
132			PROC_LOCK(p);
133			if (p->p_state == PRS_NORMAL &&
134			    p_cansee(td, p) == 0) {
135				if (p->p_nice < low)
136					low = p->p_nice;
137			}
138			PROC_UNLOCK(p);
139		}
140		PGRP_UNLOCK(pg);
141		break;
142
143	case PRIO_USER:
144		if (uap->who == 0)
145			uap->who = td->td_ucred->cr_uid;
146		sx_slock(&allproc_lock);
147		FOREACH_PROC_IN_SYSTEM(p) {
148			PROC_LOCK(p);
149			if (p->p_state == PRS_NORMAL &&
150			    p_cansee(td, p) == 0 &&
151			    p->p_ucred->cr_uid == uap->who) {
152				if (p->p_nice < low)
153					low = p->p_nice;
154			}
155			PROC_UNLOCK(p);
156		}
157		sx_sunlock(&allproc_lock);
158		break;
159
160	default:
161		error = EINVAL;
162		break;
163	}
164	if (low == PRIO_MAX + 1 && error == 0)
165		error = ESRCH;
166	td->td_retval[0] = low;
167	return (error);
168}
169
170#ifndef _SYS_SYSPROTO_H_
171struct setpriority_args {
172	int	which;
173	int	who;
174	int	prio;
175};
176#endif
177int
178sys_setpriority(td, uap)
179	struct thread *td;
180	struct setpriority_args *uap;
181{
182	struct proc *curp, *p;
183	struct pgrp *pg;
184	int found = 0, error = 0;
185
186	curp = td->td_proc;
187	switch (uap->which) {
188	case PRIO_PROCESS:
189		if (uap->who == 0) {
190			PROC_LOCK(curp);
191			error = donice(td, curp, uap->prio);
192			PROC_UNLOCK(curp);
193		} else {
194			p = pfind(uap->who);
195			if (p == NULL)
196				break;
197			error = p_cansee(td, p);
198			if (error == 0)
199				error = donice(td, p, uap->prio);
200			PROC_UNLOCK(p);
201		}
202		found++;
203		break;
204
205	case PRIO_PGRP:
206		sx_slock(&proctree_lock);
207		if (uap->who == 0) {
208			pg = curp->p_pgrp;
209			PGRP_LOCK(pg);
210		} else {
211			pg = pgfind(uap->who);
212			if (pg == NULL) {
213				sx_sunlock(&proctree_lock);
214				break;
215			}
216		}
217		sx_sunlock(&proctree_lock);
218		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
219			PROC_LOCK(p);
220			if (p->p_state == PRS_NORMAL &&
221			    p_cansee(td, p) == 0) {
222				error = donice(td, p, uap->prio);
223				found++;
224			}
225			PROC_UNLOCK(p);
226		}
227		PGRP_UNLOCK(pg);
228		break;
229
230	case PRIO_USER:
231		if (uap->who == 0)
232			uap->who = td->td_ucred->cr_uid;
233		sx_slock(&allproc_lock);
234		FOREACH_PROC_IN_SYSTEM(p) {
235			PROC_LOCK(p);
236			if (p->p_state == PRS_NORMAL &&
237			    p->p_ucred->cr_uid == uap->who &&
238			    p_cansee(td, p) == 0) {
239				error = donice(td, p, uap->prio);
240				found++;
241			}
242			PROC_UNLOCK(p);
243		}
244		sx_sunlock(&allproc_lock);
245		break;
246
247	default:
248		error = EINVAL;
249		break;
250	}
251	if (found == 0 && error == 0)
252		error = ESRCH;
253	return (error);
254}
255
256/*
257 * Set "nice" for a (whole) process.
258 */
259static int
260donice(struct thread *td, struct proc *p, int n)
261{
262	int error;
263
264	PROC_LOCK_ASSERT(p, MA_OWNED);
265	if ((error = p_cansched(td, p)))
266		return (error);
267	if (n > PRIO_MAX)
268		n = PRIO_MAX;
269	if (n < PRIO_MIN)
270		n = PRIO_MIN;
271	if (n < p->p_nice && priv_check(td, PRIV_SCHED_SETPRIORITY) != 0)
272		return (EACCES);
273	sched_nice(p, n);
274	return (0);
275}
276
277static int unprivileged_idprio;
278SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_idprio, CTLFLAG_RW,
279    &unprivileged_idprio, 0, "Allow non-root users to set an idle priority");
280
281/*
282 * Set realtime priority for LWP.
283 */
284#ifndef _SYS_SYSPROTO_H_
285struct rtprio_thread_args {
286	int		function;
287	lwpid_t		lwpid;
288	struct rtprio	*rtp;
289};
290#endif
291int
292sys_rtprio_thread(struct thread *td, struct rtprio_thread_args *uap)
293{
294	struct proc *p;
295	struct rtprio rtp;
296	struct thread *td1;
297	int cierror, error;
298
299	/* Perform copyin before acquiring locks if needed. */
300	if (uap->function == RTP_SET)
301		cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
302	else
303		cierror = 0;
304
305	if (uap->lwpid == 0 || uap->lwpid == td->td_tid) {
306		p = td->td_proc;
307		td1 = td;
308		PROC_LOCK(p);
309	} else {
310		/* Only look up thread in current process */
311		td1 = tdfind(uap->lwpid, curproc->p_pid);
312		if (td1 == NULL)
313			return (ESRCH);
314		p = td1->td_proc;
315	}
316
317	switch (uap->function) {
318	case RTP_LOOKUP:
319		if ((error = p_cansee(td, p)))
320			break;
321		pri_to_rtp(td1, &rtp);
322		PROC_UNLOCK(p);
323		return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
324	case RTP_SET:
325		if ((error = p_cansched(td, p)) || (error = cierror))
326			break;
327
328		/* Disallow setting rtprio in most cases if not superuser. */
329
330		/*
331		 * Realtime priority has to be restricted for reasons which
332		 * should be obvious.  However, for idleprio processes, there is
333		 * a potential for system deadlock if an idleprio process gains
334		 * a lock on a resource that other processes need (and the
335		 * idleprio process can't run due to a CPU-bound normal
336		 * process).  Fix me!  XXX
337		 *
338		 * This problem is not only related to idleprio process.
339		 * A user level program can obtain a file lock and hold it
340		 * indefinitely.  Additionally, without idleprio processes it is
341		 * still conceivable that a program with low priority will never
342		 * get to run.  In short, allowing this feature might make it
343		 * easier to lock a resource indefinitely, but it is not the
344		 * only thing that makes it possible.
345		 */
346		if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME ||
347		    (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE &&
348		    unprivileged_idprio == 0)) {
349			error = priv_check(td, PRIV_SCHED_RTPRIO);
350			if (error)
351				break;
352		}
353		error = rtp_to_pri(&rtp, td1);
354		break;
355	default:
356		error = EINVAL;
357		break;
358	}
359	PROC_UNLOCK(p);
360	return (error);
361}
362
363/*
364 * Set realtime priority.
365 */
366#ifndef _SYS_SYSPROTO_H_
367struct rtprio_args {
368	int		function;
369	pid_t		pid;
370	struct rtprio	*rtp;
371};
372#endif
373int
374sys_rtprio(td, uap)
375	struct thread *td;		/* curthread */
376	register struct rtprio_args *uap;
377{
378	struct proc *p;
379	struct thread *tdp;
380	struct rtprio rtp;
381	int cierror, error;
382
383	/* Perform copyin before acquiring locks if needed. */
384	if (uap->function == RTP_SET)
385		cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
386	else
387		cierror = 0;
388
389	if (uap->pid == 0) {
390		p = td->td_proc;
391		PROC_LOCK(p);
392	} else {
393		p = pfind(uap->pid);
394		if (p == NULL)
395			return (ESRCH);
396	}
397
398	switch (uap->function) {
399	case RTP_LOOKUP:
400		if ((error = p_cansee(td, p)))
401			break;
402		/*
403		 * Return OUR priority if no pid specified,
404		 * or if one is, report the highest priority
405		 * in the process.  There isn't much more you can do as
406		 * there is only room to return a single priority.
407		 * Note: specifying our own pid is not the same
408		 * as leaving it zero.
409		 */
410		if (uap->pid == 0) {
411			pri_to_rtp(td, &rtp);
412		} else {
413			struct rtprio rtp2;
414
415			rtp.type = RTP_PRIO_IDLE;
416			rtp.prio = RTP_PRIO_MAX;
417			FOREACH_THREAD_IN_PROC(p, tdp) {
418				pri_to_rtp(tdp, &rtp2);
419				if (rtp2.type <  rtp.type ||
420				    (rtp2.type == rtp.type &&
421				    rtp2.prio < rtp.prio)) {
422					rtp.type = rtp2.type;
423					rtp.prio = rtp2.prio;
424				}
425			}
426		}
427		PROC_UNLOCK(p);
428		return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
429	case RTP_SET:
430		if ((error = p_cansched(td, p)) || (error = cierror))
431			break;
432
433		/*
434		 * Disallow setting rtprio in most cases if not superuser.
435		 * See the comment in sys_rtprio_thread about idprio
436		 * threads holding a lock.
437		 */
438		if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME ||
439		    (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE &&
440		    !unprivileged_idprio)) {
441			error = priv_check(td, PRIV_SCHED_RTPRIO);
442			if (error)
443				break;
444		}
445
446		/*
447		 * If we are setting our own priority, set just our
448		 * thread but if we are doing another process,
449		 * do all the threads on that process. If we
450		 * specify our own pid we do the latter.
451		 */
452		if (uap->pid == 0) {
453			error = rtp_to_pri(&rtp, td);
454		} else {
455			FOREACH_THREAD_IN_PROC(p, td) {
456				if ((error = rtp_to_pri(&rtp, td)) != 0)
457					break;
458			}
459		}
460		break;
461	default:
462		error = EINVAL;
463		break;
464	}
465	PROC_UNLOCK(p);
466	return (error);
467}
468
469int
470rtp_to_pri(struct rtprio *rtp, struct thread *td)
471{
472	u_char  newpri, oldclass, oldpri;
473
474	switch (RTP_PRIO_BASE(rtp->type)) {
475	case RTP_PRIO_REALTIME:
476		if (rtp->prio > RTP_PRIO_MAX)
477			return (EINVAL);
478		newpri = PRI_MIN_REALTIME + rtp->prio;
479		break;
480	case RTP_PRIO_NORMAL:
481		if (rtp->prio > (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE))
482			return (EINVAL);
483		newpri = PRI_MIN_TIMESHARE + rtp->prio;
484		break;
485	case RTP_PRIO_IDLE:
486		if (rtp->prio > RTP_PRIO_MAX)
487			return (EINVAL);
488		newpri = PRI_MIN_IDLE + rtp->prio;
489		break;
490	default:
491		return (EINVAL);
492	}
493
494	thread_lock(td);
495	oldclass = td->td_pri_class;
496	sched_class(td, rtp->type);	/* XXX fix */
497	oldpri = td->td_user_pri;
498	sched_user_prio(td, newpri);
499	if (td->td_user_pri != oldpri && (oldclass != RTP_PRIO_NORMAL ||
500	    td->td_pri_class != RTP_PRIO_NORMAL))
501		sched_prio(td, td->td_user_pri);
502	if (TD_ON_UPILOCK(td) && oldpri != newpri) {
503		critical_enter();
504		thread_unlock(td);
505		umtx_pi_adjust(td, oldpri);
506		critical_exit();
507	} else
508		thread_unlock(td);
509	return (0);
510}
511
512void
513pri_to_rtp(struct thread *td, struct rtprio *rtp)
514{
515
516	thread_lock(td);
517	switch (PRI_BASE(td->td_pri_class)) {
518	case PRI_REALTIME:
519		rtp->prio = td->td_base_user_pri - PRI_MIN_REALTIME;
520		break;
521	case PRI_TIMESHARE:
522		rtp->prio = td->td_base_user_pri - PRI_MIN_TIMESHARE;
523		break;
524	case PRI_IDLE:
525		rtp->prio = td->td_base_user_pri - PRI_MIN_IDLE;
526		break;
527	default:
528		break;
529	}
530	rtp->type = td->td_pri_class;
531	thread_unlock(td);
532}
533
534#if defined(COMPAT_43)
535#ifndef _SYS_SYSPROTO_H_
536struct osetrlimit_args {
537	u_int	which;
538	struct	orlimit *rlp;
539};
540#endif
541int
542osetrlimit(td, uap)
543	struct thread *td;
544	register struct osetrlimit_args *uap;
545{
546	struct orlimit olim;
547	struct rlimit lim;
548	int error;
549
550	if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit))))
551		return (error);
552	lim.rlim_cur = olim.rlim_cur;
553	lim.rlim_max = olim.rlim_max;
554	error = kern_setrlimit(td, uap->which, &lim);
555	return (error);
556}
557
558#ifndef _SYS_SYSPROTO_H_
559struct ogetrlimit_args {
560	u_int	which;
561	struct	orlimit *rlp;
562};
563#endif
564int
565ogetrlimit(td, uap)
566	struct thread *td;
567	register struct ogetrlimit_args *uap;
568{
569	struct orlimit olim;
570	struct rlimit rl;
571	struct proc *p;
572	int error;
573
574	if (uap->which >= RLIM_NLIMITS)
575		return (EINVAL);
576	p = td->td_proc;
577	PROC_LOCK(p);
578	lim_rlimit(p, uap->which, &rl);
579	PROC_UNLOCK(p);
580
581	/*
582	 * XXX would be more correct to convert only RLIM_INFINITY to the
583	 * old RLIM_INFINITY and fail with EOVERFLOW for other larger
584	 * values.  Most 64->32 and 32->16 conversions, including not
585	 * unimportant ones of uids are even more broken than what we
586	 * do here (they blindly truncate).  We don't do this correctly
587	 * here since we have little experience with EOVERFLOW yet.
588	 * Elsewhere, getuid() can't fail...
589	 */
590	olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur;
591	olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max;
592	error = copyout(&olim, uap->rlp, sizeof(olim));
593	return (error);
594}
595#endif /* COMPAT_43 */
596
597#ifndef _SYS_SYSPROTO_H_
598struct __setrlimit_args {
599	u_int	which;
600	struct	rlimit *rlp;
601};
602#endif
603int
604sys_setrlimit(td, uap)
605	struct thread *td;
606	register struct __setrlimit_args *uap;
607{
608	struct rlimit alim;
609	int error;
610
611	if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit))))
612		return (error);
613	error = kern_setrlimit(td, uap->which, &alim);
614	return (error);
615}
616
617static void
618lim_cb(void *arg)
619{
620	struct rlimit rlim;
621	struct thread *td;
622	struct proc *p;
623
624	p = arg;
625	PROC_LOCK_ASSERT(p, MA_OWNED);
626	/*
627	 * Check if the process exceeds its cpu resource allocation.  If
628	 * it reaches the max, arrange to kill the process in ast().
629	 */
630	if (p->p_cpulimit == RLIM_INFINITY)
631		return;
632	PROC_SLOCK(p);
633	FOREACH_THREAD_IN_PROC(p, td) {
634		ruxagg(p, td);
635	}
636	PROC_SUNLOCK(p);
637	if (p->p_rux.rux_runtime > p->p_cpulimit * cpu_tickrate()) {
638		lim_rlimit(p, RLIMIT_CPU, &rlim);
639		if (p->p_rux.rux_runtime >= rlim.rlim_max * cpu_tickrate()) {
640			killproc(p, "exceeded maximum CPU limit");
641		} else {
642			if (p->p_cpulimit < rlim.rlim_max)
643				p->p_cpulimit += 5;
644			kern_psignal(p, SIGXCPU);
645		}
646	}
647	if ((p->p_flag & P_WEXIT) == 0)
648		callout_reset_sbt(&p->p_limco, SBT_1S, 0,
649		    lim_cb, p, C_PREL(1));
650}
651
652int
653kern_setrlimit(struct thread *td, u_int which, struct rlimit *limp)
654{
655
656	return (kern_proc_setrlimit(td, td->td_proc, which, limp));
657}
658
659int
660kern_proc_setrlimit(struct thread *td, struct proc *p, u_int which,
661    struct rlimit *limp)
662{
663	struct plimit *newlim, *oldlim;
664	register struct rlimit *alimp;
665	struct rlimit oldssiz;
666	int error;
667
668	if (which >= RLIM_NLIMITS)
669		return (EINVAL);
670
671	/*
672	 * Preserve historical bugs by treating negative limits as unsigned.
673	 */
674	if (limp->rlim_cur < 0)
675		limp->rlim_cur = RLIM_INFINITY;
676	if (limp->rlim_max < 0)
677		limp->rlim_max = RLIM_INFINITY;
678
679	oldssiz.rlim_cur = 0;
680	newlim = lim_alloc();
681	PROC_LOCK(p);
682	oldlim = p->p_limit;
683	alimp = &oldlim->pl_rlimit[which];
684	if (limp->rlim_cur > alimp->rlim_max ||
685	    limp->rlim_max > alimp->rlim_max)
686		if ((error = priv_check(td, PRIV_PROC_SETRLIMIT))) {
687			PROC_UNLOCK(p);
688			lim_free(newlim);
689			return (error);
690		}
691	if (limp->rlim_cur > limp->rlim_max)
692		limp->rlim_cur = limp->rlim_max;
693	lim_copy(newlim, oldlim);
694	alimp = &newlim->pl_rlimit[which];
695
696	switch (which) {
697
698	case RLIMIT_CPU:
699		if (limp->rlim_cur != RLIM_INFINITY &&
700		    p->p_cpulimit == RLIM_INFINITY)
701			callout_reset_sbt(&p->p_limco, SBT_1S, 0,
702			    lim_cb, p, C_PREL(1));
703		p->p_cpulimit = limp->rlim_cur;
704		break;
705	case RLIMIT_DATA:
706		if (limp->rlim_cur > maxdsiz)
707			limp->rlim_cur = maxdsiz;
708		if (limp->rlim_max > maxdsiz)
709			limp->rlim_max = maxdsiz;
710		break;
711
712	case RLIMIT_STACK:
713		if (limp->rlim_cur > maxssiz)
714			limp->rlim_cur = maxssiz;
715		if (limp->rlim_max > maxssiz)
716			limp->rlim_max = maxssiz;
717		oldssiz = *alimp;
718		if (p->p_sysent->sv_fixlimit != NULL)
719			p->p_sysent->sv_fixlimit(&oldssiz,
720			    RLIMIT_STACK);
721		break;
722
723	case RLIMIT_NOFILE:
724		if (limp->rlim_cur > maxfilesperproc)
725			limp->rlim_cur = maxfilesperproc;
726		if (limp->rlim_max > maxfilesperproc)
727			limp->rlim_max = maxfilesperproc;
728		break;
729
730	case RLIMIT_NPROC:
731		if (limp->rlim_cur > maxprocperuid)
732			limp->rlim_cur = maxprocperuid;
733		if (limp->rlim_max > maxprocperuid)
734			limp->rlim_max = maxprocperuid;
735		if (limp->rlim_cur < 1)
736			limp->rlim_cur = 1;
737		if (limp->rlim_max < 1)
738			limp->rlim_max = 1;
739		break;
740	}
741	if (p->p_sysent->sv_fixlimit != NULL)
742		p->p_sysent->sv_fixlimit(limp, which);
743	*alimp = *limp;
744	p->p_limit = newlim;
745	PROC_UNLOCK(p);
746	lim_free(oldlim);
747
748	if (which == RLIMIT_STACK) {
749		/*
750		 * Stack is allocated to the max at exec time with only
751		 * "rlim_cur" bytes accessible.  If stack limit is going
752		 * up make more accessible, if going down make inaccessible.
753		 */
754		if (limp->rlim_cur != oldssiz.rlim_cur) {
755			vm_offset_t addr;
756			vm_size_t size;
757			vm_prot_t prot;
758
759			if (limp->rlim_cur > oldssiz.rlim_cur) {
760				prot = p->p_sysent->sv_stackprot;
761				size = limp->rlim_cur - oldssiz.rlim_cur;
762				addr = p->p_sysent->sv_usrstack -
763				    limp->rlim_cur;
764			} else {
765				prot = VM_PROT_NONE;
766				size = oldssiz.rlim_cur - limp->rlim_cur;
767				addr = p->p_sysent->sv_usrstack -
768				    oldssiz.rlim_cur;
769			}
770			addr = trunc_page(addr);
771			size = round_page(size);
772			(void)vm_map_protect(&p->p_vmspace->vm_map,
773			    addr, addr + size, prot, FALSE);
774		}
775	}
776
777	return (0);
778}
779
780#ifndef _SYS_SYSPROTO_H_
781struct __getrlimit_args {
782	u_int	which;
783	struct	rlimit *rlp;
784};
785#endif
786/* ARGSUSED */
787int
788sys_getrlimit(td, uap)
789	struct thread *td;
790	register struct __getrlimit_args *uap;
791{
792	struct rlimit rlim;
793	struct proc *p;
794	int error;
795
796	if (uap->which >= RLIM_NLIMITS)
797		return (EINVAL);
798	p = td->td_proc;
799	PROC_LOCK(p);
800	lim_rlimit(p, uap->which, &rlim);
801	PROC_UNLOCK(p);
802	error = copyout(&rlim, uap->rlp, sizeof(struct rlimit));
803	return (error);
804}
805
806/*
807 * Transform the running time and tick information for children of proc p
808 * into user and system time usage.
809 */
810void
811calccru(p, up, sp)
812	struct proc *p;
813	struct timeval *up;
814	struct timeval *sp;
815{
816
817	PROC_LOCK_ASSERT(p, MA_OWNED);
818	calcru1(p, &p->p_crux, up, sp);
819}
820
821/*
822 * Transform the running time and tick information in proc p into user
823 * and system time usage.  If appropriate, include the current time slice
824 * on this CPU.
825 */
826void
827calcru(struct proc *p, struct timeval *up, struct timeval *sp)
828{
829	struct thread *td;
830	uint64_t runtime, u;
831
832	PROC_LOCK_ASSERT(p, MA_OWNED);
833	PROC_SLOCK_ASSERT(p, MA_OWNED);
834	/*
835	 * If we are getting stats for the current process, then add in the
836	 * stats that this thread has accumulated in its current time slice.
837	 * We reset the thread and CPU state as if we had performed a context
838	 * switch right here.
839	 */
840	td = curthread;
841	if (td->td_proc == p) {
842		u = cpu_ticks();
843		runtime = u - PCPU_GET(switchtime);
844		td->td_runtime += runtime;
845		td->td_incruntime += runtime;
846		PCPU_SET(switchtime, u);
847	}
848	/* Make sure the per-thread stats are current. */
849	FOREACH_THREAD_IN_PROC(p, td) {
850		if (td->td_incruntime == 0)
851			continue;
852		ruxagg(p, td);
853	}
854	calcru1(p, &p->p_rux, up, sp);
855}
856
857/* Collect resource usage for a single thread. */
858void
859rufetchtd(struct thread *td, struct rusage *ru)
860{
861	struct proc *p;
862	uint64_t runtime, u;
863
864	p = td->td_proc;
865	PROC_SLOCK_ASSERT(p, MA_OWNED);
866	THREAD_LOCK_ASSERT(td, MA_OWNED);
867	/*
868	 * If we are getting stats for the current thread, then add in the
869	 * stats that this thread has accumulated in its current time slice.
870	 * We reset the thread and CPU state as if we had performed a context
871	 * switch right here.
872	 */
873	if (td == curthread) {
874		u = cpu_ticks();
875		runtime = u - PCPU_GET(switchtime);
876		td->td_runtime += runtime;
877		td->td_incruntime += runtime;
878		PCPU_SET(switchtime, u);
879	}
880	ruxagg(p, td);
881	*ru = td->td_ru;
882	calcru1(p, &td->td_rux, &ru->ru_utime, &ru->ru_stime);
883}
884
885static void
886calcru1(struct proc *p, struct rusage_ext *ruxp, struct timeval *up,
887    struct timeval *sp)
888{
889	/* {user, system, interrupt, total} {ticks, usec}: */
890	uint64_t ut, uu, st, su, it, tt, tu;
891
892	ut = ruxp->rux_uticks;
893	st = ruxp->rux_sticks;
894	it = ruxp->rux_iticks;
895	tt = ut + st + it;
896	if (tt == 0) {
897		/* Avoid divide by zero */
898		st = 1;
899		tt = 1;
900	}
901	tu = cputick2usec(ruxp->rux_runtime);
902	if ((int64_t)tu < 0) {
903		/* XXX: this should be an assert /phk */
904		printf("calcru: negative runtime of %jd usec for pid %d (%s)\n",
905		    (intmax_t)tu, p->p_pid, p->p_comm);
906		tu = ruxp->rux_tu;
907	}
908
909	if (tu >= ruxp->rux_tu) {
910		/*
911		 * The normal case, time increased.
912		 * Enforce monotonicity of bucketed numbers.
913		 */
914		uu = (tu * ut) / tt;
915		if (uu < ruxp->rux_uu)
916			uu = ruxp->rux_uu;
917		su = (tu * st) / tt;
918		if (su < ruxp->rux_su)
919			su = ruxp->rux_su;
920	} else if (tu + 3 > ruxp->rux_tu || 101 * tu > 100 * ruxp->rux_tu) {
921		/*
922		 * When we calibrate the cputicker, it is not uncommon to
923		 * see the presumably fixed frequency increase slightly over
924		 * time as a result of thermal stabilization and NTP
925		 * discipline (of the reference clock).  We therefore ignore
926		 * a bit of backwards slop because we  expect to catch up
927		 * shortly.  We use a 3 microsecond limit to catch low
928		 * counts and a 1% limit for high counts.
929		 */
930		uu = ruxp->rux_uu;
931		su = ruxp->rux_su;
932		tu = ruxp->rux_tu;
933	} else { /* tu < ruxp->rux_tu */
934		/*
935		 * What happened here was likely that a laptop, which ran at
936		 * a reduced clock frequency at boot, kicked into high gear.
937		 * The wisdom of spamming this message in that case is
938		 * dubious, but it might also be indicative of something
939		 * serious, so lets keep it and hope laptops can be made
940		 * more truthful about their CPU speed via ACPI.
941		 */
942		printf("calcru: runtime went backwards from %ju usec "
943		    "to %ju usec for pid %d (%s)\n",
944		    (uintmax_t)ruxp->rux_tu, (uintmax_t)tu,
945		    p->p_pid, p->p_comm);
946		uu = (tu * ut) / tt;
947		su = (tu * st) / tt;
948	}
949
950	ruxp->rux_uu = uu;
951	ruxp->rux_su = su;
952	ruxp->rux_tu = tu;
953
954	up->tv_sec = uu / 1000000;
955	up->tv_usec = uu % 1000000;
956	sp->tv_sec = su / 1000000;
957	sp->tv_usec = su % 1000000;
958}
959
960#ifndef _SYS_SYSPROTO_H_
961struct getrusage_args {
962	int	who;
963	struct	rusage *rusage;
964};
965#endif
966int
967sys_getrusage(td, uap)
968	register struct thread *td;
969	register struct getrusage_args *uap;
970{
971	struct rusage ru;
972	int error;
973
974	error = kern_getrusage(td, uap->who, &ru);
975	if (error == 0)
976		error = copyout(&ru, uap->rusage, sizeof(struct rusage));
977	return (error);
978}
979
980int
981kern_getrusage(struct thread *td, int who, struct rusage *rup)
982{
983	struct proc *p;
984	int error;
985
986	error = 0;
987	p = td->td_proc;
988	PROC_LOCK(p);
989	switch (who) {
990	case RUSAGE_SELF:
991		rufetchcalc(p, rup, &rup->ru_utime,
992		    &rup->ru_stime);
993		break;
994
995	case RUSAGE_CHILDREN:
996		*rup = p->p_stats->p_cru;
997		calccru(p, &rup->ru_utime, &rup->ru_stime);
998		break;
999
1000	case RUSAGE_THREAD:
1001		PROC_SLOCK(p);
1002		thread_lock(td);
1003		rufetchtd(td, rup);
1004		thread_unlock(td);
1005		PROC_SUNLOCK(p);
1006		break;
1007
1008	default:
1009		error = EINVAL;
1010	}
1011	PROC_UNLOCK(p);
1012	return (error);
1013}
1014
1015void
1016rucollect(struct rusage *ru, struct rusage *ru2)
1017{
1018	long *ip, *ip2;
1019	int i;
1020
1021	if (ru->ru_maxrss < ru2->ru_maxrss)
1022		ru->ru_maxrss = ru2->ru_maxrss;
1023	ip = &ru->ru_first;
1024	ip2 = &ru2->ru_first;
1025	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
1026		*ip++ += *ip2++;
1027}
1028
1029void
1030ruadd(struct rusage *ru, struct rusage_ext *rux, struct rusage *ru2,
1031    struct rusage_ext *rux2)
1032{
1033
1034	rux->rux_runtime += rux2->rux_runtime;
1035	rux->rux_uticks += rux2->rux_uticks;
1036	rux->rux_sticks += rux2->rux_sticks;
1037	rux->rux_iticks += rux2->rux_iticks;
1038	rux->rux_uu += rux2->rux_uu;
1039	rux->rux_su += rux2->rux_su;
1040	rux->rux_tu += rux2->rux_tu;
1041	rucollect(ru, ru2);
1042}
1043
1044/*
1045 * Aggregate tick counts into the proc's rusage_ext.
1046 */
1047static void
1048ruxagg_locked(struct rusage_ext *rux, struct thread *td)
1049{
1050
1051	THREAD_LOCK_ASSERT(td, MA_OWNED);
1052	PROC_SLOCK_ASSERT(td->td_proc, MA_OWNED);
1053	rux->rux_runtime += td->td_incruntime;
1054	rux->rux_uticks += td->td_uticks;
1055	rux->rux_sticks += td->td_sticks;
1056	rux->rux_iticks += td->td_iticks;
1057}
1058
1059void
1060ruxagg(struct proc *p, struct thread *td)
1061{
1062
1063	thread_lock(td);
1064	ruxagg_locked(&p->p_rux, td);
1065	ruxagg_locked(&td->td_rux, td);
1066	td->td_incruntime = 0;
1067	td->td_uticks = 0;
1068	td->td_iticks = 0;
1069	td->td_sticks = 0;
1070	thread_unlock(td);
1071}
1072
1073/*
1074 * Update the rusage_ext structure and fetch a valid aggregate rusage
1075 * for proc p if storage for one is supplied.
1076 */
1077void
1078rufetch(struct proc *p, struct rusage *ru)
1079{
1080	struct thread *td;
1081
1082	PROC_SLOCK_ASSERT(p, MA_OWNED);
1083
1084	*ru = p->p_ru;
1085	if (p->p_numthreads > 0)  {
1086		FOREACH_THREAD_IN_PROC(p, td) {
1087			ruxagg(p, td);
1088			rucollect(ru, &td->td_ru);
1089		}
1090	}
1091}
1092
1093/*
1094 * Atomically perform a rufetch and a calcru together.
1095 * Consumers, can safely assume the calcru is executed only once
1096 * rufetch is completed.
1097 */
1098void
1099rufetchcalc(struct proc *p, struct rusage *ru, struct timeval *up,
1100    struct timeval *sp)
1101{
1102
1103	PROC_SLOCK(p);
1104	rufetch(p, ru);
1105	calcru(p, up, sp);
1106	PROC_SUNLOCK(p);
1107}
1108
1109/*
1110 * Allocate a new resource limits structure and initialize its
1111 * reference count and mutex pointer.
1112 */
1113struct plimit *
1114lim_alloc()
1115{
1116	struct plimit *limp;
1117
1118	limp = malloc(sizeof(struct plimit), M_PLIMIT, M_WAITOK);
1119	refcount_init(&limp->pl_refcnt, 1);
1120	return (limp);
1121}
1122
1123struct plimit *
1124lim_hold(limp)
1125	struct plimit *limp;
1126{
1127
1128	refcount_acquire(&limp->pl_refcnt);
1129	return (limp);
1130}
1131
1132void
1133lim_fork(struct proc *p1, struct proc *p2)
1134{
1135
1136	PROC_LOCK_ASSERT(p1, MA_OWNED);
1137	PROC_LOCK_ASSERT(p2, MA_OWNED);
1138
1139	p2->p_limit = lim_hold(p1->p_limit);
1140	callout_init_mtx(&p2->p_limco, &p2->p_mtx, 0);
1141	if (p1->p_cpulimit != RLIM_INFINITY)
1142		callout_reset_sbt(&p2->p_limco, SBT_1S, 0,
1143		    lim_cb, p2, C_PREL(1));
1144}
1145
1146void
1147lim_free(limp)
1148	struct plimit *limp;
1149{
1150
1151	KASSERT(limp->pl_refcnt > 0, ("plimit refcnt underflow"));
1152	if (refcount_release(&limp->pl_refcnt))
1153		free((void *)limp, M_PLIMIT);
1154}
1155
1156/*
1157 * Make a copy of the plimit structure.
1158 * We share these structures copy-on-write after fork.
1159 */
1160void
1161lim_copy(dst, src)
1162	struct plimit *dst, *src;
1163{
1164
1165	KASSERT(dst->pl_refcnt == 1, ("lim_copy to shared limit"));
1166	bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit));
1167}
1168
1169/*
1170 * Return the hard limit for a particular system resource.  The
1171 * which parameter specifies the index into the rlimit array.
1172 */
1173rlim_t
1174lim_max(struct proc *p, int which)
1175{
1176	struct rlimit rl;
1177
1178	lim_rlimit(p, which, &rl);
1179	return (rl.rlim_max);
1180}
1181
1182/*
1183 * Return the current (soft) limit for a particular system resource.
1184 * The which parameter which specifies the index into the rlimit array
1185 */
1186rlim_t
1187lim_cur(struct proc *p, int which)
1188{
1189	struct rlimit rl;
1190
1191	lim_rlimit(p, which, &rl);
1192	return (rl.rlim_cur);
1193}
1194
1195/*
1196 * Return a copy of the entire rlimit structure for the system limit
1197 * specified by 'which' in the rlimit structure pointed to by 'rlp'.
1198 */
1199void
1200lim_rlimit(struct proc *p, int which, struct rlimit *rlp)
1201{
1202
1203	PROC_LOCK_ASSERT(p, MA_OWNED);
1204	KASSERT(which >= 0 && which < RLIM_NLIMITS,
1205	    ("request for invalid resource limit"));
1206	*rlp = p->p_limit->pl_rlimit[which];
1207	if (p->p_sysent->sv_fixlimit != NULL)
1208		p->p_sysent->sv_fixlimit(rlp, which);
1209}
1210
1211void
1212uihashinit()
1213{
1214
1215	uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash);
1216	rw_init(&uihashtbl_lock, "uidinfo hash");
1217}
1218
1219/*
1220 * Look up a uidinfo struct for the parameter uid.
1221 * uihashtbl_lock must be locked.
1222 */
1223static struct uidinfo *
1224uilookup(uid)
1225	uid_t uid;
1226{
1227	struct uihashhead *uipp;
1228	struct uidinfo *uip;
1229
1230	rw_assert(&uihashtbl_lock, RA_LOCKED);
1231	uipp = UIHASH(uid);
1232	LIST_FOREACH(uip, uipp, ui_hash)
1233		if (uip->ui_uid == uid)
1234			break;
1235
1236	return (uip);
1237}
1238
1239/*
1240 * Find or allocate a struct uidinfo for a particular uid.
1241 * Increase refcount on uidinfo struct returned.
1242 * uifree() should be called on a struct uidinfo when released.
1243 */
1244struct uidinfo *
1245uifind(uid)
1246	uid_t uid;
1247{
1248	struct uidinfo *old_uip, *uip;
1249
1250	rw_rlock(&uihashtbl_lock);
1251	uip = uilookup(uid);
1252	if (uip == NULL) {
1253		rw_runlock(&uihashtbl_lock);
1254		uip = malloc(sizeof(*uip), M_UIDINFO, M_WAITOK | M_ZERO);
1255		racct_create(&uip->ui_racct);
1256		rw_wlock(&uihashtbl_lock);
1257		/*
1258		 * There's a chance someone created our uidinfo while we
1259		 * were in malloc and not holding the lock, so we have to
1260		 * make sure we don't insert a duplicate uidinfo.
1261		 */
1262		if ((old_uip = uilookup(uid)) != NULL) {
1263			/* Someone else beat us to it. */
1264			racct_destroy(&uip->ui_racct);
1265			free(uip, M_UIDINFO);
1266			uip = old_uip;
1267		} else {
1268			refcount_init(&uip->ui_ref, 0);
1269			uip->ui_uid = uid;
1270			mtx_init(&uip->ui_vmsize_mtx, "ui_vmsize", NULL,
1271			    MTX_DEF);
1272			LIST_INSERT_HEAD(UIHASH(uid), uip, ui_hash);
1273		}
1274	}
1275	uihold(uip);
1276	rw_unlock(&uihashtbl_lock);
1277	return (uip);
1278}
1279
1280/*
1281 * Place another refcount on a uidinfo struct.
1282 */
1283void
1284uihold(uip)
1285	struct uidinfo *uip;
1286{
1287
1288	refcount_acquire(&uip->ui_ref);
1289}
1290
1291/*-
1292 * Since uidinfo structs have a long lifetime, we use an
1293 * opportunistic refcounting scheme to avoid locking the lookup hash
1294 * for each release.
1295 *
1296 * If the refcount hits 0, we need to free the structure,
1297 * which means we need to lock the hash.
1298 * Optimal case:
1299 *   After locking the struct and lowering the refcount, if we find
1300 *   that we don't need to free, simply unlock and return.
1301 * Suboptimal case:
1302 *   If refcount lowering results in need to free, bump the count
1303 *   back up, lose the lock and acquire the locks in the proper
1304 *   order to try again.
1305 */
1306void
1307uifree(uip)
1308	struct uidinfo *uip;
1309{
1310	int old;
1311
1312	/* Prepare for optimal case. */
1313	old = uip->ui_ref;
1314	if (old > 1 && atomic_cmpset_int(&uip->ui_ref, old, old - 1))
1315		return;
1316
1317	/* Prepare for suboptimal case. */
1318	rw_wlock(&uihashtbl_lock);
1319	if (refcount_release(&uip->ui_ref)) {
1320		racct_destroy(&uip->ui_racct);
1321		LIST_REMOVE(uip, ui_hash);
1322		rw_wunlock(&uihashtbl_lock);
1323		if (uip->ui_sbsize != 0)
1324			printf("freeing uidinfo: uid = %d, sbsize = %ld\n",
1325			    uip->ui_uid, uip->ui_sbsize);
1326		if (uip->ui_proccnt != 0)
1327			printf("freeing uidinfo: uid = %d, proccnt = %ld\n",
1328			    uip->ui_uid, uip->ui_proccnt);
1329		if (uip->ui_vmsize != 0)
1330			printf("freeing uidinfo: uid = %d, swapuse = %lld\n",
1331			    uip->ui_uid, (unsigned long long)uip->ui_vmsize);
1332		mtx_destroy(&uip->ui_vmsize_mtx);
1333		free(uip, M_UIDINFO);
1334		return;
1335	}
1336	/*
1337	 * Someone added a reference between atomic_cmpset_int() and
1338	 * rw_wlock(&uihashtbl_lock).
1339	 */
1340	rw_wunlock(&uihashtbl_lock);
1341}
1342
1343void
1344ui_racct_foreach(void (*callback)(struct racct *racct,
1345    void *arg2, void *arg3), void *arg2, void *arg3)
1346{
1347	struct uidinfo *uip;
1348	struct uihashhead *uih;
1349
1350	rw_rlock(&uihashtbl_lock);
1351	for (uih = &uihashtbl[uihash]; uih >= uihashtbl; uih--) {
1352		LIST_FOREACH(uip, uih, ui_hash) {
1353			(callback)(uip->ui_racct, arg2, arg3);
1354		}
1355	}
1356	rw_runlock(&uihashtbl_lock);
1357}
1358
1359/*
1360 * Change the count associated with number of processes
1361 * a given user is using.  When 'max' is 0, don't enforce a limit
1362 */
1363int
1364chgproccnt(uip, diff, max)
1365	struct	uidinfo	*uip;
1366	int	diff;
1367	rlim_t	max;
1368{
1369
1370	/* Don't allow them to exceed max, but allow subtraction. */
1371	if (diff > 0 && max != 0) {
1372		if (atomic_fetchadd_long(&uip->ui_proccnt, (long)diff) + diff > max) {
1373			atomic_subtract_long(&uip->ui_proccnt, (long)diff);
1374			return (0);
1375		}
1376	} else {
1377		atomic_add_long(&uip->ui_proccnt, (long)diff);
1378		if (uip->ui_proccnt < 0)
1379			printf("negative proccnt for uid = %d\n", uip->ui_uid);
1380	}
1381	return (1);
1382}
1383
1384/*
1385 * Change the total socket buffer size a user has used.
1386 */
1387int
1388chgsbsize(uip, hiwat, to, max)
1389	struct	uidinfo	*uip;
1390	u_int  *hiwat;
1391	u_int	to;
1392	rlim_t	max;
1393{
1394	int diff;
1395
1396	diff = to - *hiwat;
1397	if (diff > 0) {
1398		if (atomic_fetchadd_long(&uip->ui_sbsize, (long)diff) + diff > max) {
1399			atomic_subtract_long(&uip->ui_sbsize, (long)diff);
1400			return (0);
1401		}
1402	} else {
1403		atomic_add_long(&uip->ui_sbsize, (long)diff);
1404		if (uip->ui_sbsize < 0)
1405			printf("negative sbsize for uid = %d\n", uip->ui_uid);
1406	}
1407	*hiwat = to;
1408	return (1);
1409}
1410
1411/*
1412 * Change the count associated with number of pseudo-terminals
1413 * a given user is using.  When 'max' is 0, don't enforce a limit
1414 */
1415int
1416chgptscnt(uip, diff, max)
1417	struct	uidinfo	*uip;
1418	int	diff;
1419	rlim_t	max;
1420{
1421
1422	/* Don't allow them to exceed max, but allow subtraction. */
1423	if (diff > 0 && max != 0) {
1424		if (atomic_fetchadd_long(&uip->ui_ptscnt, (long)diff) + diff > max) {
1425			atomic_subtract_long(&uip->ui_ptscnt, (long)diff);
1426			return (0);
1427		}
1428	} else {
1429		atomic_add_long(&uip->ui_ptscnt, (long)diff);
1430		if (uip->ui_ptscnt < 0)
1431			printf("negative ptscnt for uid = %d\n", uip->ui_uid);
1432	}
1433	return (1);
1434}
1435