1/*-
2 * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 * 3. Berkeley Software Design Inc's name may not be used to endorse or
13 *    promote products derived from this software without specific prior
14 *    written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29 *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30 */
31
32/*
33 * Machine independent bits of mutex implementation.
34 */
35
36#include <sys/cdefs.h>
37__FBSDID("$FreeBSD$");
38
39#include "opt_adaptive_mutexes.h"
40#include "opt_ddb.h"
41#include "opt_global.h"
42#include "opt_hwpmc_hooks.h"
43#include "opt_kdtrace.h"
44#include "opt_sched.h"
45
46#include <sys/param.h>
47#include <sys/systm.h>
48#include <sys/bus.h>
49#include <sys/conf.h>
50#include <sys/kdb.h>
51#include <sys/kernel.h>
52#include <sys/ktr.h>
53#include <sys/lock.h>
54#include <sys/malloc.h>
55#include <sys/mutex.h>
56#include <sys/proc.h>
57#include <sys/resourcevar.h>
58#include <sys/sched.h>
59#include <sys/sbuf.h>
60#include <sys/sysctl.h>
61#include <sys/turnstile.h>
62#include <sys/vmmeter.h>
63#include <sys/lock_profile.h>
64
65#include <machine/atomic.h>
66#include <machine/bus.h>
67#include <machine/cpu.h>
68
69#include <ddb/ddb.h>
70
71#include <fs/devfs/devfs_int.h>
72
73#include <vm/vm.h>
74#include <vm/vm_extern.h>
75
76#if defined(SMP) && !defined(NO_ADAPTIVE_MUTEXES)
77#define	ADAPTIVE_MUTEXES
78#endif
79
80#ifdef HWPMC_HOOKS
81#include <sys/pmckern.h>
82PMC_SOFT_DEFINE( , , lock, failed);
83#endif
84
85/*
86 * Return the mutex address when the lock cookie address is provided.
87 * This functionality assumes that struct mtx* have a member named mtx_lock.
88 */
89#define	mtxlock2mtx(c)	(__containerof(c, struct mtx, mtx_lock))
90
91/*
92 * Internal utility macros.
93 */
94#define mtx_unowned(m)	((m)->mtx_lock == MTX_UNOWNED)
95
96#define	mtx_destroyed(m) ((m)->mtx_lock == MTX_DESTROYED)
97
98#define	mtx_owner(m)	((struct thread *)((m)->mtx_lock & ~MTX_FLAGMASK))
99
100static void	assert_mtx(const struct lock_object *lock, int what);
101#ifdef DDB
102static void	db_show_mtx(const struct lock_object *lock);
103#endif
104static void	lock_mtx(struct lock_object *lock, uintptr_t how);
105static void	lock_spin(struct lock_object *lock, uintptr_t how);
106#ifdef KDTRACE_HOOKS
107static int	owner_mtx(const struct lock_object *lock,
108		    struct thread **owner);
109#endif
110static uintptr_t unlock_mtx(struct lock_object *lock);
111static uintptr_t unlock_spin(struct lock_object *lock);
112
113/*
114 * Lock classes for sleep and spin mutexes.
115 */
116struct lock_class lock_class_mtx_sleep = {
117	.lc_name = "sleep mutex",
118	.lc_flags = LC_SLEEPLOCK | LC_RECURSABLE,
119	.lc_assert = assert_mtx,
120#ifdef DDB
121	.lc_ddb_show = db_show_mtx,
122#endif
123	.lc_lock = lock_mtx,
124	.lc_unlock = unlock_mtx,
125#ifdef KDTRACE_HOOKS
126	.lc_owner = owner_mtx,
127#endif
128};
129struct lock_class lock_class_mtx_spin = {
130	.lc_name = "spin mutex",
131	.lc_flags = LC_SPINLOCK | LC_RECURSABLE,
132	.lc_assert = assert_mtx,
133#ifdef DDB
134	.lc_ddb_show = db_show_mtx,
135#endif
136	.lc_lock = lock_spin,
137	.lc_unlock = unlock_spin,
138#ifdef KDTRACE_HOOKS
139	.lc_owner = owner_mtx,
140#endif
141};
142
143/*
144 * System-wide mutexes
145 */
146struct mtx blocked_lock;
147struct mtx Giant;
148
149void
150assert_mtx(const struct lock_object *lock, int what)
151{
152
153	mtx_assert((const struct mtx *)lock, what);
154}
155
156void
157lock_mtx(struct lock_object *lock, uintptr_t how)
158{
159
160	mtx_lock((struct mtx *)lock);
161}
162
163void
164lock_spin(struct lock_object *lock, uintptr_t how)
165{
166
167	panic("spin locks can only use msleep_spin");
168}
169
170uintptr_t
171unlock_mtx(struct lock_object *lock)
172{
173	struct mtx *m;
174
175	m = (struct mtx *)lock;
176	mtx_assert(m, MA_OWNED | MA_NOTRECURSED);
177	mtx_unlock(m);
178	return (0);
179}
180
181uintptr_t
182unlock_spin(struct lock_object *lock)
183{
184
185	panic("spin locks can only use msleep_spin");
186}
187
188#ifdef KDTRACE_HOOKS
189int
190owner_mtx(const struct lock_object *lock, struct thread **owner)
191{
192	const struct mtx *m = (const struct mtx *)lock;
193
194	*owner = mtx_owner(m);
195	return (mtx_unowned(m) == 0);
196}
197#endif
198
199/*
200 * Function versions of the inlined __mtx_* macros.  These are used by
201 * modules and can also be called from assembly language if needed.
202 */
203void
204__mtx_lock_flags(volatile uintptr_t *c, int opts, const char *file, int line)
205{
206	struct mtx *m;
207
208	if (SCHEDULER_STOPPED())
209		return;
210
211	m = mtxlock2mtx(c);
212
213	KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(curthread),
214	    ("mtx_lock() by idle thread %p on sleep mutex %s @ %s:%d",
215	    curthread, m->lock_object.lo_name, file, line));
216	KASSERT(m->mtx_lock != MTX_DESTROYED,
217	    ("mtx_lock() of destroyed mutex @ %s:%d", file, line));
218	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
219	    ("mtx_lock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
220	    file, line));
221	WITNESS_CHECKORDER(&m->lock_object, (opts & ~MTX_RECURSE) |
222	    LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL);
223
224	__mtx_lock(m, curthread, opts, file, line);
225	LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
226	    line);
227	WITNESS_LOCK(&m->lock_object, (opts & ~MTX_RECURSE) | LOP_EXCLUSIVE,
228	    file, line);
229	curthread->td_locks++;
230}
231
232void
233__mtx_unlock_flags(volatile uintptr_t *c, int opts, const char *file, int line)
234{
235	struct mtx *m;
236
237	if (SCHEDULER_STOPPED())
238		return;
239
240	m = mtxlock2mtx(c);
241
242	KASSERT(m->mtx_lock != MTX_DESTROYED,
243	    ("mtx_unlock() of destroyed mutex @ %s:%d", file, line));
244	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
245	    ("mtx_unlock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
246	    file, line));
247	WITNESS_UNLOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
248	LOCK_LOG_LOCK("UNLOCK", &m->lock_object, opts, m->mtx_recurse, file,
249	    line);
250	mtx_assert(m, MA_OWNED);
251
252	if (m->mtx_recurse == 0)
253		LOCKSTAT_PROFILE_RELEASE_LOCK(LS_MTX_UNLOCK_RELEASE, m);
254	__mtx_unlock(m, curthread, opts, file, line);
255	curthread->td_locks--;
256}
257
258void
259__mtx_lock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
260    int line)
261{
262	struct mtx *m;
263
264	if (SCHEDULER_STOPPED())
265		return;
266
267	m = mtxlock2mtx(c);
268
269	KASSERT(m->mtx_lock != MTX_DESTROYED,
270	    ("mtx_lock_spin() of destroyed mutex @ %s:%d", file, line));
271	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
272	    ("mtx_lock_spin() of sleep mutex %s @ %s:%d",
273	    m->lock_object.lo_name, file, line));
274	if (mtx_owned(m))
275		KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
276		    (opts & MTX_RECURSE) != 0,
277	    ("mtx_lock_spin: recursed on non-recursive mutex %s @ %s:%d\n",
278		    m->lock_object.lo_name, file, line));
279	opts &= ~MTX_RECURSE;
280	WITNESS_CHECKORDER(&m->lock_object, opts | LOP_NEWORDER | LOP_EXCLUSIVE,
281	    file, line, NULL);
282	__mtx_lock_spin(m, curthread, opts, file, line);
283	LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
284	    line);
285	WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
286}
287
288void
289__mtx_unlock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
290    int line)
291{
292	struct mtx *m;
293
294	if (SCHEDULER_STOPPED())
295		return;
296
297	m = mtxlock2mtx(c);
298
299	KASSERT(m->mtx_lock != MTX_DESTROYED,
300	    ("mtx_unlock_spin() of destroyed mutex @ %s:%d", file, line));
301	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
302	    ("mtx_unlock_spin() of sleep mutex %s @ %s:%d",
303	    m->lock_object.lo_name, file, line));
304	WITNESS_UNLOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
305	LOCK_LOG_LOCK("UNLOCK", &m->lock_object, opts, m->mtx_recurse, file,
306	    line);
307	mtx_assert(m, MA_OWNED);
308
309	__mtx_unlock_spin(m);
310}
311
312/*
313 * The important part of mtx_trylock{,_flags}()
314 * Tries to acquire lock `m.'  If this function is called on a mutex that
315 * is already owned, it will recursively acquire the lock.
316 */
317int
318_mtx_trylock_flags_(volatile uintptr_t *c, int opts, const char *file, int line)
319{
320	struct mtx *m;
321#ifdef LOCK_PROFILING
322	uint64_t waittime = 0;
323	int contested = 0;
324#endif
325	int rval;
326
327	if (SCHEDULER_STOPPED())
328		return (1);
329
330	m = mtxlock2mtx(c);
331
332	KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(curthread),
333	    ("mtx_trylock() by idle thread %p on sleep mutex %s @ %s:%d",
334	    curthread, m->lock_object.lo_name, file, line));
335	KASSERT(m->mtx_lock != MTX_DESTROYED,
336	    ("mtx_trylock() of destroyed mutex @ %s:%d", file, line));
337	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
338	    ("mtx_trylock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
339	    file, line));
340
341	if (mtx_owned(m) && ((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
342	    (opts & MTX_RECURSE) != 0)) {
343		m->mtx_recurse++;
344		atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
345		rval = 1;
346	} else
347		rval = _mtx_obtain_lock(m, (uintptr_t)curthread);
348	opts &= ~MTX_RECURSE;
349
350	LOCK_LOG_TRY("LOCK", &m->lock_object, opts, rval, file, line);
351	if (rval) {
352		WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE | LOP_TRYLOCK,
353		    file, line);
354		curthread->td_locks++;
355		if (m->mtx_recurse == 0)
356			LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(LS_MTX_LOCK_ACQUIRE,
357			    m, contested, waittime, file, line);
358
359	}
360
361	return (rval);
362}
363
364/*
365 * __mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock.
366 *
367 * We call this if the lock is either contested (i.e. we need to go to
368 * sleep waiting for it), or if we need to recurse on it.
369 */
370void
371__mtx_lock_sleep(volatile uintptr_t *c, uintptr_t tid, int opts,
372    const char *file, int line)
373{
374	struct mtx *m;
375	struct turnstile *ts;
376	uintptr_t v;
377#ifdef ADAPTIVE_MUTEXES
378	volatile struct thread *owner;
379#endif
380#ifdef KTR
381	int cont_logged = 0;
382#endif
383#ifdef LOCK_PROFILING
384	int contested = 0;
385	uint64_t waittime = 0;
386#endif
387#ifdef KDTRACE_HOOKS
388	uint64_t spin_cnt = 0;
389	uint64_t sleep_cnt = 0;
390	int64_t sleep_time = 0;
391#endif
392
393	if (SCHEDULER_STOPPED())
394		return;
395
396	m = mtxlock2mtx(c);
397
398	if (mtx_owned(m)) {
399		KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
400		    (opts & MTX_RECURSE) != 0,
401	    ("_mtx_lock_sleep: recursed on non-recursive mutex %s @ %s:%d\n",
402		    m->lock_object.lo_name, file, line));
403		opts &= ~MTX_RECURSE;
404		m->mtx_recurse++;
405		atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
406		if (LOCK_LOG_TEST(&m->lock_object, opts))
407			CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m);
408		return;
409	}
410	opts &= ~MTX_RECURSE;
411
412#ifdef HWPMC_HOOKS
413	PMC_SOFT_CALL( , , lock, failed);
414#endif
415	lock_profile_obtain_lock_failed(&m->lock_object,
416		    &contested, &waittime);
417	if (LOCK_LOG_TEST(&m->lock_object, opts))
418		CTR4(KTR_LOCK,
419		    "_mtx_lock_sleep: %s contested (lock=%p) at %s:%d",
420		    m->lock_object.lo_name, (void *)m->mtx_lock, file, line);
421
422	while (!_mtx_obtain_lock(m, tid)) {
423#ifdef KDTRACE_HOOKS
424		spin_cnt++;
425#endif
426#ifdef ADAPTIVE_MUTEXES
427		/*
428		 * If the owner is running on another CPU, spin until the
429		 * owner stops running or the state of the lock changes.
430		 */
431		v = m->mtx_lock;
432		if (v != MTX_UNOWNED) {
433			owner = (struct thread *)(v & ~MTX_FLAGMASK);
434			if (TD_IS_RUNNING(owner)) {
435				if (LOCK_LOG_TEST(&m->lock_object, 0))
436					CTR3(KTR_LOCK,
437					    "%s: spinning on %p held by %p",
438					    __func__, m, owner);
439				while (mtx_owner(m) == owner &&
440				    TD_IS_RUNNING(owner)) {
441					cpu_spinwait();
442#ifdef KDTRACE_HOOKS
443					spin_cnt++;
444#endif
445				}
446				continue;
447			}
448		}
449#endif
450
451		ts = turnstile_trywait(&m->lock_object);
452		v = m->mtx_lock;
453
454		/*
455		 * Check if the lock has been released while spinning for
456		 * the turnstile chain lock.
457		 */
458		if (v == MTX_UNOWNED) {
459			turnstile_cancel(ts);
460			continue;
461		}
462
463#ifdef ADAPTIVE_MUTEXES
464		/*
465		 * The current lock owner might have started executing
466		 * on another CPU (or the lock could have changed
467		 * owners) while we were waiting on the turnstile
468		 * chain lock.  If so, drop the turnstile lock and try
469		 * again.
470		 */
471		owner = (struct thread *)(v & ~MTX_FLAGMASK);
472		if (TD_IS_RUNNING(owner)) {
473			turnstile_cancel(ts);
474			continue;
475		}
476#endif
477
478		/*
479		 * If the mutex isn't already contested and a failure occurs
480		 * setting the contested bit, the mutex was either released
481		 * or the state of the MTX_RECURSED bit changed.
482		 */
483		if ((v & MTX_CONTESTED) == 0 &&
484		    !atomic_cmpset_ptr(&m->mtx_lock, v, v | MTX_CONTESTED)) {
485			turnstile_cancel(ts);
486			continue;
487		}
488
489		/*
490		 * We definitely must sleep for this lock.
491		 */
492		mtx_assert(m, MA_NOTOWNED);
493
494#ifdef KTR
495		if (!cont_logged) {
496			CTR6(KTR_CONTENTION,
497			    "contention: %p at %s:%d wants %s, taken by %s:%d",
498			    (void *)tid, file, line, m->lock_object.lo_name,
499			    WITNESS_FILE(&m->lock_object),
500			    WITNESS_LINE(&m->lock_object));
501			cont_logged = 1;
502		}
503#endif
504
505		/*
506		 * Block on the turnstile.
507		 */
508#ifdef KDTRACE_HOOKS
509		sleep_time -= lockstat_nsecs();
510#endif
511		turnstile_wait(ts, mtx_owner(m), TS_EXCLUSIVE_QUEUE);
512#ifdef KDTRACE_HOOKS
513		sleep_time += lockstat_nsecs();
514		sleep_cnt++;
515#endif
516	}
517#ifdef KTR
518	if (cont_logged) {
519		CTR4(KTR_CONTENTION,
520		    "contention end: %s acquired by %p at %s:%d",
521		    m->lock_object.lo_name, (void *)tid, file, line);
522	}
523#endif
524	LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(LS_MTX_LOCK_ACQUIRE, m, contested,
525	    waittime, file, line);
526#ifdef KDTRACE_HOOKS
527	if (sleep_time)
528		LOCKSTAT_RECORD1(LS_MTX_LOCK_BLOCK, m, sleep_time);
529
530	/*
531	 * Only record the loops spinning and not sleeping.
532	 */
533	if (spin_cnt > sleep_cnt)
534		LOCKSTAT_RECORD1(LS_MTX_LOCK_SPIN, m, (spin_cnt - sleep_cnt));
535#endif
536}
537
538static void
539_mtx_lock_spin_failed(struct mtx *m)
540{
541	struct thread *td;
542
543	td = mtx_owner(m);
544
545	/* If the mutex is unlocked, try again. */
546	if (td == NULL)
547		return;
548
549	printf( "spin lock %p (%s) held by %p (tid %d) too long\n",
550	    m, m->lock_object.lo_name, td, td->td_tid);
551#ifdef WITNESS
552	witness_display_spinlock(&m->lock_object, td, printf);
553#endif
554	panic("spin lock held too long");
555}
556
557#ifdef SMP
558/*
559 * _mtx_lock_spin_cookie: the tougher part of acquiring an MTX_SPIN lock.
560 *
561 * This is only called if we need to actually spin for the lock. Recursion
562 * is handled inline.
563 */
564void
565_mtx_lock_spin_cookie(volatile uintptr_t *c, uintptr_t tid, int opts,
566    const char *file, int line)
567{
568	struct mtx *m;
569	int i = 0;
570#ifdef LOCK_PROFILING
571	int contested = 0;
572	uint64_t waittime = 0;
573#endif
574
575	if (SCHEDULER_STOPPED())
576		return;
577
578	m = mtxlock2mtx(c);
579
580	if (LOCK_LOG_TEST(&m->lock_object, opts))
581		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m);
582
583#ifdef HWPMC_HOOKS
584	PMC_SOFT_CALL( , , lock, failed);
585#endif
586	lock_profile_obtain_lock_failed(&m->lock_object, &contested, &waittime);
587	while (!_mtx_obtain_lock(m, tid)) {
588
589		/* Give interrupts a chance while we spin. */
590		spinlock_exit();
591		while (m->mtx_lock != MTX_UNOWNED) {
592			if (i++ < 10000000) {
593				cpu_spinwait();
594				continue;
595			}
596			if (i < 60000000 || kdb_active || panicstr != NULL)
597				DELAY(1);
598			else
599				_mtx_lock_spin_failed(m);
600			cpu_spinwait();
601		}
602		spinlock_enter();
603	}
604
605	if (LOCK_LOG_TEST(&m->lock_object, opts))
606		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m);
607
608	LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(LS_MTX_SPIN_LOCK_ACQUIRE, m,
609	    contested, waittime, (file), (line));
610	LOCKSTAT_RECORD1(LS_MTX_SPIN_LOCK_SPIN, m, i);
611}
612#endif /* SMP */
613
614void
615thread_lock_flags_(struct thread *td, int opts, const char *file, int line)
616{
617	struct mtx *m;
618	uintptr_t tid;
619	int i;
620#ifdef LOCK_PROFILING
621	int contested = 0;
622	uint64_t waittime = 0;
623#endif
624#ifdef KDTRACE_HOOKS
625	uint64_t spin_cnt = 0;
626#endif
627
628	i = 0;
629	tid = (uintptr_t)curthread;
630
631	if (SCHEDULER_STOPPED())
632		return;
633
634	for (;;) {
635retry:
636		spinlock_enter();
637		m = td->td_lock;
638		KASSERT(m->mtx_lock != MTX_DESTROYED,
639		    ("thread_lock() of destroyed mutex @ %s:%d", file, line));
640		KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
641		    ("thread_lock() of sleep mutex %s @ %s:%d",
642		    m->lock_object.lo_name, file, line));
643		if (mtx_owned(m))
644			KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0,
645	    ("thread_lock: recursed on non-recursive mutex %s @ %s:%d\n",
646			    m->lock_object.lo_name, file, line));
647		WITNESS_CHECKORDER(&m->lock_object,
648		    opts | LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL);
649		while (!_mtx_obtain_lock(m, tid)) {
650#ifdef KDTRACE_HOOKS
651			spin_cnt++;
652#endif
653			if (m->mtx_lock == tid) {
654				m->mtx_recurse++;
655				break;
656			}
657#ifdef HWPMC_HOOKS
658			PMC_SOFT_CALL( , , lock, failed);
659#endif
660			lock_profile_obtain_lock_failed(&m->lock_object,
661			    &contested, &waittime);
662			/* Give interrupts a chance while we spin. */
663			spinlock_exit();
664			while (m->mtx_lock != MTX_UNOWNED) {
665				if (i++ < 10000000)
666					cpu_spinwait();
667				else if (i < 60000000 ||
668				    kdb_active || panicstr != NULL)
669					DELAY(1);
670				else
671					_mtx_lock_spin_failed(m);
672				cpu_spinwait();
673				if (m != td->td_lock)
674					goto retry;
675			}
676			spinlock_enter();
677		}
678		if (m == td->td_lock)
679			break;
680		__mtx_unlock_spin(m);	/* does spinlock_exit() */
681#ifdef KDTRACE_HOOKS
682		spin_cnt++;
683#endif
684	}
685	if (m->mtx_recurse == 0)
686		LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(LS_MTX_SPIN_LOCK_ACQUIRE,
687		    m, contested, waittime, (file), (line));
688	LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
689	    line);
690	WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
691	LOCKSTAT_RECORD1(LS_THREAD_LOCK_SPIN, m, spin_cnt);
692}
693
694struct mtx *
695thread_lock_block(struct thread *td)
696{
697	struct mtx *lock;
698
699	THREAD_LOCK_ASSERT(td, MA_OWNED);
700	lock = td->td_lock;
701	td->td_lock = &blocked_lock;
702	mtx_unlock_spin(lock);
703
704	return (lock);
705}
706
707void
708thread_lock_unblock(struct thread *td, struct mtx *new)
709{
710	mtx_assert(new, MA_OWNED);
711	MPASS(td->td_lock == &blocked_lock);
712	atomic_store_rel_ptr((volatile void *)&td->td_lock, (uintptr_t)new);
713}
714
715void
716thread_lock_set(struct thread *td, struct mtx *new)
717{
718	struct mtx *lock;
719
720	mtx_assert(new, MA_OWNED);
721	THREAD_LOCK_ASSERT(td, MA_OWNED);
722	lock = td->td_lock;
723	td->td_lock = new;
724	mtx_unlock_spin(lock);
725}
726
727/*
728 * __mtx_unlock_sleep: the tougher part of releasing an MTX_DEF lock.
729 *
730 * We are only called here if the lock is recursed or contested (i.e. we
731 * need to wake up a blocked thread).
732 */
733void
734__mtx_unlock_sleep(volatile uintptr_t *c, int opts, const char *file, int line)
735{
736	struct mtx *m;
737	struct turnstile *ts;
738
739	if (SCHEDULER_STOPPED())
740		return;
741
742	m = mtxlock2mtx(c);
743
744	if (mtx_recursed(m)) {
745		if (--(m->mtx_recurse) == 0)
746			atomic_clear_ptr(&m->mtx_lock, MTX_RECURSED);
747		if (LOCK_LOG_TEST(&m->lock_object, opts))
748			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p unrecurse", m);
749		return;
750	}
751
752	/*
753	 * We have to lock the chain before the turnstile so this turnstile
754	 * can be removed from the hash list if it is empty.
755	 */
756	turnstile_chain_lock(&m->lock_object);
757	ts = turnstile_lookup(&m->lock_object);
758	if (LOCK_LOG_TEST(&m->lock_object, opts))
759		CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p contested", m);
760	MPASS(ts != NULL);
761	turnstile_broadcast(ts, TS_EXCLUSIVE_QUEUE);
762	_mtx_release_lock_quick(m);
763
764	/*
765	 * This turnstile is now no longer associated with the mutex.  We can
766	 * unlock the chain lock so a new turnstile may take it's place.
767	 */
768	turnstile_unpend(ts, TS_EXCLUSIVE_LOCK);
769	turnstile_chain_unlock(&m->lock_object);
770}
771
772/*
773 * All the unlocking of MTX_SPIN locks is done inline.
774 * See the __mtx_unlock_spin() macro for the details.
775 */
776
777/*
778 * The backing function for the INVARIANTS-enabled mtx_assert()
779 */
780#ifdef INVARIANT_SUPPORT
781void
782__mtx_assert(const volatile uintptr_t *c, int what, const char *file, int line)
783{
784	const struct mtx *m;
785
786	if (panicstr != NULL || dumping)
787		return;
788
789	m = mtxlock2mtx(c);
790
791	switch (what) {
792	case MA_OWNED:
793	case MA_OWNED | MA_RECURSED:
794	case MA_OWNED | MA_NOTRECURSED:
795		if (!mtx_owned(m))
796			panic("mutex %s not owned at %s:%d",
797			    m->lock_object.lo_name, file, line);
798		if (mtx_recursed(m)) {
799			if ((what & MA_NOTRECURSED) != 0)
800				panic("mutex %s recursed at %s:%d",
801				    m->lock_object.lo_name, file, line);
802		} else if ((what & MA_RECURSED) != 0) {
803			panic("mutex %s unrecursed at %s:%d",
804			    m->lock_object.lo_name, file, line);
805		}
806		break;
807	case MA_NOTOWNED:
808		if (mtx_owned(m))
809			panic("mutex %s owned at %s:%d",
810			    m->lock_object.lo_name, file, line);
811		break;
812	default:
813		panic("unknown mtx_assert at %s:%d", file, line);
814	}
815}
816#endif
817
818/*
819 * The MUTEX_DEBUG-enabled mtx_validate()
820 *
821 * Most of these checks have been moved off into the LO_INITIALIZED flag
822 * maintained by the witness code.
823 */
824#ifdef MUTEX_DEBUG
825
826void	mtx_validate(struct mtx *);
827
828void
829mtx_validate(struct mtx *m)
830{
831
832/*
833 * XXX: When kernacc() does not require Giant we can reenable this check
834 */
835#ifdef notyet
836	/*
837	 * Can't call kernacc() from early init386(), especially when
838	 * initializing Giant mutex, because some stuff in kernacc()
839	 * requires Giant itself.
840	 */
841	if (!cold)
842		if (!kernacc((caddr_t)m, sizeof(m),
843		    VM_PROT_READ | VM_PROT_WRITE))
844			panic("Can't read and write to mutex %p", m);
845#endif
846}
847#endif
848
849/*
850 * General init routine used by the MTX_SYSINIT() macro.
851 */
852void
853mtx_sysinit(void *arg)
854{
855	struct mtx_args *margs = arg;
856
857	mtx_init((struct mtx *)margs->ma_mtx, margs->ma_desc, NULL,
858	    margs->ma_opts);
859}
860
861/*
862 * Mutex initialization routine; initialize lock `m' of type contained in
863 * `opts' with options contained in `opts' and name `name.'  The optional
864 * lock type `type' is used as a general lock category name for use with
865 * witness.
866 */
867void
868_mtx_init(volatile uintptr_t *c, const char *name, const char *type, int opts)
869{
870	struct mtx *m;
871	struct lock_class *class;
872	int flags;
873
874	m = mtxlock2mtx(c);
875
876	MPASS((opts & ~(MTX_SPIN | MTX_QUIET | MTX_RECURSE |
877		MTX_NOWITNESS | MTX_DUPOK | MTX_NOPROFILE)) == 0);
878	ASSERT_ATOMIC_LOAD_PTR(m->mtx_lock,
879	    ("%s: mtx_lock not aligned for %s: %p", __func__, name,
880	    &m->mtx_lock));
881
882#ifdef MUTEX_DEBUG
883	/* Diagnostic and error correction */
884	mtx_validate(m);
885#endif
886
887	/* Determine lock class and lock flags. */
888	if (opts & MTX_SPIN)
889		class = &lock_class_mtx_spin;
890	else
891		class = &lock_class_mtx_sleep;
892	flags = 0;
893	if (opts & MTX_QUIET)
894		flags |= LO_QUIET;
895	if (opts & MTX_RECURSE)
896		flags |= LO_RECURSABLE;
897	if ((opts & MTX_NOWITNESS) == 0)
898		flags |= LO_WITNESS;
899	if (opts & MTX_DUPOK)
900		flags |= LO_DUPOK;
901	if (opts & MTX_NOPROFILE)
902		flags |= LO_NOPROFILE;
903
904	/* Initialize mutex. */
905	lock_init(&m->lock_object, class, name, type, flags);
906
907	m->mtx_lock = MTX_UNOWNED;
908	m->mtx_recurse = 0;
909}
910
911/*
912 * Remove lock `m' from all_mtx queue.  We don't allow MTX_QUIET to be
913 * passed in as a flag here because if the corresponding mtx_init() was
914 * called with MTX_QUIET set, then it will already be set in the mutex's
915 * flags.
916 */
917void
918_mtx_destroy(volatile uintptr_t *c)
919{
920	struct mtx *m;
921
922	m = mtxlock2mtx(c);
923
924	if (!mtx_owned(m))
925		MPASS(mtx_unowned(m));
926	else {
927		MPASS((m->mtx_lock & (MTX_RECURSED|MTX_CONTESTED)) == 0);
928
929		/* Perform the non-mtx related part of mtx_unlock_spin(). */
930		if (LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin)
931			spinlock_exit();
932		else
933			curthread->td_locks--;
934
935		lock_profile_release_lock(&m->lock_object);
936		/* Tell witness this isn't locked to make it happy. */
937		WITNESS_UNLOCK(&m->lock_object, LOP_EXCLUSIVE, __FILE__,
938		    __LINE__);
939	}
940
941	m->mtx_lock = MTX_DESTROYED;
942	lock_destroy(&m->lock_object);
943}
944
945/*
946 * Intialize the mutex code and system mutexes.  This is called from the MD
947 * startup code prior to mi_startup().  The per-CPU data space needs to be
948 * setup before this is called.
949 */
950void
951mutex_init(void)
952{
953
954	/* Setup turnstiles so that sleep mutexes work. */
955	init_turnstiles();
956
957	/*
958	 * Initialize mutexes.
959	 */
960	mtx_init(&Giant, "Giant", NULL, MTX_DEF | MTX_RECURSE);
961	mtx_init(&blocked_lock, "blocked lock", NULL, MTX_SPIN);
962	blocked_lock.mtx_lock = 0xdeadc0de;	/* Always blocked. */
963	mtx_init(&proc0.p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
964	mtx_init(&proc0.p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE);
965	mtx_init(&devmtx, "cdev", NULL, MTX_DEF);
966	mtx_lock(&Giant);
967}
968
969#ifdef DDB
970void
971db_show_mtx(const struct lock_object *lock)
972{
973	struct thread *td;
974	const struct mtx *m;
975
976	m = (const struct mtx *)lock;
977
978	db_printf(" flags: {");
979	if (LOCK_CLASS(lock) == &lock_class_mtx_spin)
980		db_printf("SPIN");
981	else
982		db_printf("DEF");
983	if (m->lock_object.lo_flags & LO_RECURSABLE)
984		db_printf(", RECURSE");
985	if (m->lock_object.lo_flags & LO_DUPOK)
986		db_printf(", DUPOK");
987	db_printf("}\n");
988	db_printf(" state: {");
989	if (mtx_unowned(m))
990		db_printf("UNOWNED");
991	else if (mtx_destroyed(m))
992		db_printf("DESTROYED");
993	else {
994		db_printf("OWNED");
995		if (m->mtx_lock & MTX_CONTESTED)
996			db_printf(", CONTESTED");
997		if (m->mtx_lock & MTX_RECURSED)
998			db_printf(", RECURSED");
999	}
1000	db_printf("}\n");
1001	if (!mtx_unowned(m) && !mtx_destroyed(m)) {
1002		td = mtx_owner(m);
1003		db_printf(" owner: %p (tid %d, pid %d, \"%s\")\n", td,
1004		    td->td_tid, td->td_proc->p_pid, td->td_name);
1005		if (mtx_recursed(m))
1006			db_printf(" recursed: %d\n", m->mtx_recurse);
1007	}
1008}
1009#endif
1010