1/*-
2 * Copyright (c) 2004
3 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD$");
35
36/*
37 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46 * combines a tri-speed ethernet MAC and PHY, with the following
47 * features:
48 *
49 *	o Jumbo frame support up to 16K
50 *	o Transmit and receive flow control
51 *	o IPv4 checksum offload
52 *	o VLAN tag insertion and stripping
53 *	o TCP large send
54 *	o 64-bit multicast hash table filter
55 *	o 64 entry CAM filter
56 *	o 16K RX FIFO and 48K TX FIFO memory
57 *	o Interrupt moderation
58 *
59 * The VT6122 supports up to four transmit DMA queues. The descriptors
60 * in the transmit ring can address up to 7 data fragments; frames which
61 * span more than 7 data buffers must be coalesced, but in general the
62 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63 * long. The receive descriptors address only a single buffer.
64 *
65 * There are two peculiar design issues with the VT6122. One is that
66 * receive data buffers must be aligned on a 32-bit boundary. This is
67 * not a problem where the VT6122 is used as a LOM device in x86-based
68 * systems, but on architectures that generate unaligned access traps, we
69 * have to do some copying.
70 *
71 * The other issue has to do with the way 64-bit addresses are handled.
72 * The DMA descriptors only allow you to specify 48 bits of addressing
73 * information. The remaining 16 bits are specified using one of the
74 * I/O registers. If you only have a 32-bit system, then this isn't
75 * an issue, but if you have a 64-bit system and more than 4GB of
76 * memory, you must have to make sure your network data buffers reside
77 * in the same 48-bit 'segment.'
78 *
79 * Special thanks to Ryan Fu at VIA Networking for providing documentation
80 * and sample NICs for testing.
81 */
82
83#ifdef HAVE_KERNEL_OPTION_HEADERS
84#include "opt_device_polling.h"
85#endif
86
87#include <sys/param.h>
88#include <sys/endian.h>
89#include <sys/systm.h>
90#include <sys/sockio.h>
91#include <sys/mbuf.h>
92#include <sys/malloc.h>
93#include <sys/module.h>
94#include <sys/kernel.h>
95#include <sys/socket.h>
96#include <sys/sysctl.h>
97
98#include <net/if.h>
99#include <net/if_arp.h>
100#include <net/ethernet.h>
101#include <net/if_dl.h>
102#include <net/if_media.h>
103#include <net/if_types.h>
104#include <net/if_vlan_var.h>
105
106#include <net/bpf.h>
107
108#include <machine/bus.h>
109#include <machine/resource.h>
110#include <sys/bus.h>
111#include <sys/rman.h>
112
113#include <dev/mii/mii.h>
114#include <dev/mii/miivar.h>
115
116#include <dev/pci/pcireg.h>
117#include <dev/pci/pcivar.h>
118
119MODULE_DEPEND(vge, pci, 1, 1, 1);
120MODULE_DEPEND(vge, ether, 1, 1, 1);
121MODULE_DEPEND(vge, miibus, 1, 1, 1);
122
123/* "device miibus" required.  See GENERIC if you get errors here. */
124#include "miibus_if.h"
125
126#include <dev/vge/if_vgereg.h>
127#include <dev/vge/if_vgevar.h>
128
129#define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
130
131/* Tunables */
132static int msi_disable = 0;
133TUNABLE_INT("hw.vge.msi_disable", &msi_disable);
134
135/*
136 * The SQE error counter of MIB seems to report bogus value.
137 * Vendor's workaround does not seem to work on PCIe based
138 * controllers. Disable it until we find better workaround.
139 */
140#undef VGE_ENABLE_SQEERR
141
142/*
143 * Various supported device vendors/types and their names.
144 */
145static struct vge_type vge_devs[] = {
146	{ VIA_VENDORID, VIA_DEVICEID_61XX,
147		"VIA Networking Velocity Gigabit Ethernet" },
148	{ 0, 0, NULL }
149};
150
151static int	vge_attach(device_t);
152static int	vge_detach(device_t);
153static int	vge_probe(device_t);
154static int	vge_resume(device_t);
155static int	vge_shutdown(device_t);
156static int	vge_suspend(device_t);
157
158static void	vge_cam_clear(struct vge_softc *);
159static int	vge_cam_set(struct vge_softc *, uint8_t *);
160static void	vge_clrwol(struct vge_softc *);
161static void	vge_discard_rxbuf(struct vge_softc *, int);
162static int	vge_dma_alloc(struct vge_softc *);
163static void	vge_dma_free(struct vge_softc *);
164static void	vge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
165#ifdef VGE_EEPROM
166static void	vge_eeprom_getword(struct vge_softc *, int, uint16_t *);
167#endif
168static int	vge_encap(struct vge_softc *, struct mbuf **);
169#ifndef __NO_STRICT_ALIGNMENT
170static __inline void
171		vge_fixup_rx(struct mbuf *);
172#endif
173static void	vge_freebufs(struct vge_softc *);
174static void	vge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
175static int	vge_ifmedia_upd(struct ifnet *);
176static int	vge_ifmedia_upd_locked(struct vge_softc *);
177static void	vge_init(void *);
178static void	vge_init_locked(struct vge_softc *);
179static void	vge_intr(void *);
180static void	vge_intr_holdoff(struct vge_softc *);
181static int	vge_ioctl(struct ifnet *, u_long, caddr_t);
182static void	vge_link_statchg(void *);
183static int	vge_miibus_readreg(device_t, int, int);
184static int	vge_miibus_writereg(device_t, int, int, int);
185static void	vge_miipoll_start(struct vge_softc *);
186static void	vge_miipoll_stop(struct vge_softc *);
187static int	vge_newbuf(struct vge_softc *, int);
188static void	vge_read_eeprom(struct vge_softc *, caddr_t, int, int, int);
189static void	vge_reset(struct vge_softc *);
190static int	vge_rx_list_init(struct vge_softc *);
191static int	vge_rxeof(struct vge_softc *, int);
192static void	vge_rxfilter(struct vge_softc *);
193static void	vge_setmedia(struct vge_softc *);
194static void	vge_setvlan(struct vge_softc *);
195static void	vge_setwol(struct vge_softc *);
196static void	vge_start(struct ifnet *);
197static void	vge_start_locked(struct ifnet *);
198static void	vge_stats_clear(struct vge_softc *);
199static void	vge_stats_update(struct vge_softc *);
200static void	vge_stop(struct vge_softc *);
201static void	vge_sysctl_node(struct vge_softc *);
202static int	vge_tx_list_init(struct vge_softc *);
203static void	vge_txeof(struct vge_softc *);
204static void	vge_watchdog(void *);
205
206static device_method_t vge_methods[] = {
207	/* Device interface */
208	DEVMETHOD(device_probe,		vge_probe),
209	DEVMETHOD(device_attach,	vge_attach),
210	DEVMETHOD(device_detach,	vge_detach),
211	DEVMETHOD(device_suspend,	vge_suspend),
212	DEVMETHOD(device_resume,	vge_resume),
213	DEVMETHOD(device_shutdown,	vge_shutdown),
214
215	/* MII interface */
216	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
217	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
218
219	DEVMETHOD_END
220};
221
222static driver_t vge_driver = {
223	"vge",
224	vge_methods,
225	sizeof(struct vge_softc)
226};
227
228static devclass_t vge_devclass;
229
230DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
231DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
232
233#ifdef VGE_EEPROM
234/*
235 * Read a word of data stored in the EEPROM at address 'addr.'
236 */
237static void
238vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t *dest)
239{
240	int i;
241	uint16_t word = 0;
242
243	/*
244	 * Enter EEPROM embedded programming mode. In order to
245	 * access the EEPROM at all, we first have to set the
246	 * EELOAD bit in the CHIPCFG2 register.
247	 */
248	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
249	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
250
251	/* Select the address of the word we want to read */
252	CSR_WRITE_1(sc, VGE_EEADDR, addr);
253
254	/* Issue read command */
255	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
256
257	/* Wait for the done bit to be set. */
258	for (i = 0; i < VGE_TIMEOUT; i++) {
259		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
260			break;
261	}
262
263	if (i == VGE_TIMEOUT) {
264		device_printf(sc->vge_dev, "EEPROM read timed out\n");
265		*dest = 0;
266		return;
267	}
268
269	/* Read the result */
270	word = CSR_READ_2(sc, VGE_EERDDAT);
271
272	/* Turn off EEPROM access mode. */
273	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
274	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
275
276	*dest = word;
277}
278#endif
279
280/*
281 * Read a sequence of words from the EEPROM.
282 */
283static void
284vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt, int swap)
285{
286	int i;
287#ifdef VGE_EEPROM
288	uint16_t word = 0, *ptr;
289
290	for (i = 0; i < cnt; i++) {
291		vge_eeprom_getword(sc, off + i, &word);
292		ptr = (uint16_t *)(dest + (i * 2));
293		if (swap)
294			*ptr = ntohs(word);
295		else
296			*ptr = word;
297	}
298#else
299	for (i = 0; i < ETHER_ADDR_LEN; i++)
300		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
301#endif
302}
303
304static void
305vge_miipoll_stop(struct vge_softc *sc)
306{
307	int i;
308
309	CSR_WRITE_1(sc, VGE_MIICMD, 0);
310
311	for (i = 0; i < VGE_TIMEOUT; i++) {
312		DELAY(1);
313		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
314			break;
315	}
316
317	if (i == VGE_TIMEOUT)
318		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
319}
320
321static void
322vge_miipoll_start(struct vge_softc *sc)
323{
324	int i;
325
326	/* First, make sure we're idle. */
327
328	CSR_WRITE_1(sc, VGE_MIICMD, 0);
329	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
330
331	for (i = 0; i < VGE_TIMEOUT; i++) {
332		DELAY(1);
333		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
334			break;
335	}
336
337	if (i == VGE_TIMEOUT) {
338		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
339		return;
340	}
341
342	/* Now enable auto poll mode. */
343
344	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
345
346	/* And make sure it started. */
347
348	for (i = 0; i < VGE_TIMEOUT; i++) {
349		DELAY(1);
350		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
351			break;
352	}
353
354	if (i == VGE_TIMEOUT)
355		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
356}
357
358static int
359vge_miibus_readreg(device_t dev, int phy, int reg)
360{
361	struct vge_softc *sc;
362	int i;
363	uint16_t rval = 0;
364
365	sc = device_get_softc(dev);
366
367	vge_miipoll_stop(sc);
368
369	/* Specify the register we want to read. */
370	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
371
372	/* Issue read command. */
373	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
374
375	/* Wait for the read command bit to self-clear. */
376	for (i = 0; i < VGE_TIMEOUT; i++) {
377		DELAY(1);
378		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
379			break;
380	}
381
382	if (i == VGE_TIMEOUT)
383		device_printf(sc->vge_dev, "MII read timed out\n");
384	else
385		rval = CSR_READ_2(sc, VGE_MIIDATA);
386
387	vge_miipoll_start(sc);
388
389	return (rval);
390}
391
392static int
393vge_miibus_writereg(device_t dev, int phy, int reg, int data)
394{
395	struct vge_softc *sc;
396	int i, rval = 0;
397
398	sc = device_get_softc(dev);
399
400	vge_miipoll_stop(sc);
401
402	/* Specify the register we want to write. */
403	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
404
405	/* Specify the data we want to write. */
406	CSR_WRITE_2(sc, VGE_MIIDATA, data);
407
408	/* Issue write command. */
409	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
410
411	/* Wait for the write command bit to self-clear. */
412	for (i = 0; i < VGE_TIMEOUT; i++) {
413		DELAY(1);
414		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
415			break;
416	}
417
418	if (i == VGE_TIMEOUT) {
419		device_printf(sc->vge_dev, "MII write timed out\n");
420		rval = EIO;
421	}
422
423	vge_miipoll_start(sc);
424
425	return (rval);
426}
427
428static void
429vge_cam_clear(struct vge_softc *sc)
430{
431	int i;
432
433	/*
434	 * Turn off all the mask bits. This tells the chip
435	 * that none of the entries in the CAM filter are valid.
436	 * desired entries will be enabled as we fill the filter in.
437	 */
438
439	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
440	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
441	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
442	for (i = 0; i < 8; i++)
443		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
444
445	/* Clear the VLAN filter too. */
446
447	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
448	for (i = 0; i < 8; i++)
449		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
450
451	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
452	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
453	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
454
455	sc->vge_camidx = 0;
456}
457
458static int
459vge_cam_set(struct vge_softc *sc, uint8_t *addr)
460{
461	int i, error = 0;
462
463	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
464		return (ENOSPC);
465
466	/* Select the CAM data page. */
467	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
468	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
469
470	/* Set the filter entry we want to update and enable writing. */
471	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
472
473	/* Write the address to the CAM registers */
474	for (i = 0; i < ETHER_ADDR_LEN; i++)
475		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
476
477	/* Issue a write command. */
478	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
479
480	/* Wake for it to clear. */
481	for (i = 0; i < VGE_TIMEOUT; i++) {
482		DELAY(1);
483		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
484			break;
485	}
486
487	if (i == VGE_TIMEOUT) {
488		device_printf(sc->vge_dev, "setting CAM filter failed\n");
489		error = EIO;
490		goto fail;
491	}
492
493	/* Select the CAM mask page. */
494	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
495	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
496
497	/* Set the mask bit that enables this filter. */
498	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
499	    1<<(sc->vge_camidx & 7));
500
501	sc->vge_camidx++;
502
503fail:
504	/* Turn off access to CAM. */
505	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
506	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
507	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
508
509	return (error);
510}
511
512static void
513vge_setvlan(struct vge_softc *sc)
514{
515	struct ifnet *ifp;
516	uint8_t cfg;
517
518	VGE_LOCK_ASSERT(sc);
519
520	ifp = sc->vge_ifp;
521	cfg = CSR_READ_1(sc, VGE_RXCFG);
522	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
523		cfg |= VGE_VTAG_OPT2;
524	else
525		cfg &= ~VGE_VTAG_OPT2;
526	CSR_WRITE_1(sc, VGE_RXCFG, cfg);
527}
528
529/*
530 * Program the multicast filter. We use the 64-entry CAM filter
531 * for perfect filtering. If there's more than 64 multicast addresses,
532 * we use the hash filter instead.
533 */
534static void
535vge_rxfilter(struct vge_softc *sc)
536{
537	struct ifnet *ifp;
538	struct ifmultiaddr *ifma;
539	uint32_t h, hashes[2];
540	uint8_t rxcfg;
541	int error = 0;
542
543	VGE_LOCK_ASSERT(sc);
544
545	/* First, zot all the multicast entries. */
546	hashes[0] = 0;
547	hashes[1] = 0;
548
549	rxcfg = CSR_READ_1(sc, VGE_RXCTL);
550	rxcfg &= ~(VGE_RXCTL_RX_MCAST | VGE_RXCTL_RX_BCAST |
551	    VGE_RXCTL_RX_PROMISC);
552	/*
553	 * Always allow VLAN oversized frames and frames for
554	 * this host.
555	 */
556	rxcfg |= VGE_RXCTL_RX_GIANT | VGE_RXCTL_RX_UCAST;
557
558	ifp = sc->vge_ifp;
559	if ((ifp->if_flags & IFF_BROADCAST) != 0)
560		rxcfg |= VGE_RXCTL_RX_BCAST;
561	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
562		if ((ifp->if_flags & IFF_PROMISC) != 0)
563			rxcfg |= VGE_RXCTL_RX_PROMISC;
564		if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
565			hashes[0] = 0xFFFFFFFF;
566			hashes[1] = 0xFFFFFFFF;
567		}
568		goto done;
569	}
570
571	vge_cam_clear(sc);
572	/* Now program new ones */
573	if_maddr_rlock(ifp);
574	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
575		if (ifma->ifma_addr->sa_family != AF_LINK)
576			continue;
577		error = vge_cam_set(sc,
578		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
579		if (error)
580			break;
581	}
582
583	/* If there were too many addresses, use the hash filter. */
584	if (error) {
585		vge_cam_clear(sc);
586
587		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
588			if (ifma->ifma_addr->sa_family != AF_LINK)
589				continue;
590			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
591			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
592			if (h < 32)
593				hashes[0] |= (1 << h);
594			else
595				hashes[1] |= (1 << (h - 32));
596		}
597	}
598	if_maddr_runlock(ifp);
599
600done:
601	if (hashes[0] != 0 || hashes[1] != 0)
602		rxcfg |= VGE_RXCTL_RX_MCAST;
603	CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
604	CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
605	CSR_WRITE_1(sc, VGE_RXCTL, rxcfg);
606}
607
608static void
609vge_reset(struct vge_softc *sc)
610{
611	int i;
612
613	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
614
615	for (i = 0; i < VGE_TIMEOUT; i++) {
616		DELAY(5);
617		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
618			break;
619	}
620
621	if (i == VGE_TIMEOUT) {
622		device_printf(sc->vge_dev, "soft reset timed out\n");
623		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
624		DELAY(2000);
625	}
626
627	DELAY(5000);
628}
629
630/*
631 * Probe for a VIA gigabit chip. Check the PCI vendor and device
632 * IDs against our list and return a device name if we find a match.
633 */
634static int
635vge_probe(device_t dev)
636{
637	struct vge_type	*t;
638
639	t = vge_devs;
640
641	while (t->vge_name != NULL) {
642		if ((pci_get_vendor(dev) == t->vge_vid) &&
643		    (pci_get_device(dev) == t->vge_did)) {
644			device_set_desc(dev, t->vge_name);
645			return (BUS_PROBE_DEFAULT);
646		}
647		t++;
648	}
649
650	return (ENXIO);
651}
652
653/*
654 * Map a single buffer address.
655 */
656
657struct vge_dmamap_arg {
658	bus_addr_t	vge_busaddr;
659};
660
661static void
662vge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
663{
664	struct vge_dmamap_arg *ctx;
665
666	if (error != 0)
667		return;
668
669	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
670
671	ctx = (struct vge_dmamap_arg *)arg;
672	ctx->vge_busaddr = segs[0].ds_addr;
673}
674
675static int
676vge_dma_alloc(struct vge_softc *sc)
677{
678	struct vge_dmamap_arg ctx;
679	struct vge_txdesc *txd;
680	struct vge_rxdesc *rxd;
681	bus_addr_t lowaddr, tx_ring_end, rx_ring_end;
682	int error, i;
683
684	/*
685	 * It seems old PCI controllers do not support DAC.  DAC
686	 * configuration can be enabled by accessing VGE_CHIPCFG3
687	 * register but honor EEPROM configuration instead of
688	 * blindly overriding DAC configuration.  PCIe based
689	 * controllers are supposed to support 64bit DMA so enable
690	 * 64bit DMA on these controllers.
691	 */
692	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
693		lowaddr = BUS_SPACE_MAXADDR;
694	else
695		lowaddr = BUS_SPACE_MAXADDR_32BIT;
696
697again:
698	/* Create parent ring tag. */
699	error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
700	    1, 0,			/* algnmnt, boundary */
701	    lowaddr,			/* lowaddr */
702	    BUS_SPACE_MAXADDR,		/* highaddr */
703	    NULL, NULL,			/* filter, filterarg */
704	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
705	    0,				/* nsegments */
706	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
707	    0,				/* flags */
708	    NULL, NULL,			/* lockfunc, lockarg */
709	    &sc->vge_cdata.vge_ring_tag);
710	if (error != 0) {
711		device_printf(sc->vge_dev,
712		    "could not create parent DMA tag.\n");
713		goto fail;
714	}
715
716	/* Create tag for Tx ring. */
717	error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
718	    VGE_TX_RING_ALIGN, 0,	/* algnmnt, boundary */
719	    BUS_SPACE_MAXADDR,		/* lowaddr */
720	    BUS_SPACE_MAXADDR,		/* highaddr */
721	    NULL, NULL,			/* filter, filterarg */
722	    VGE_TX_LIST_SZ,		/* maxsize */
723	    1,				/* nsegments */
724	    VGE_TX_LIST_SZ,		/* maxsegsize */
725	    0,				/* flags */
726	    NULL, NULL,			/* lockfunc, lockarg */
727	    &sc->vge_cdata.vge_tx_ring_tag);
728	if (error != 0) {
729		device_printf(sc->vge_dev,
730		    "could not allocate Tx ring DMA tag.\n");
731		goto fail;
732	}
733
734	/* Create tag for Rx ring. */
735	error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
736	    VGE_RX_RING_ALIGN, 0,	/* algnmnt, boundary */
737	    BUS_SPACE_MAXADDR,		/* lowaddr */
738	    BUS_SPACE_MAXADDR,		/* highaddr */
739	    NULL, NULL,			/* filter, filterarg */
740	    VGE_RX_LIST_SZ,		/* maxsize */
741	    1,				/* nsegments */
742	    VGE_RX_LIST_SZ,		/* maxsegsize */
743	    0,				/* flags */
744	    NULL, NULL,			/* lockfunc, lockarg */
745	    &sc->vge_cdata.vge_rx_ring_tag);
746	if (error != 0) {
747		device_printf(sc->vge_dev,
748		    "could not allocate Rx ring DMA tag.\n");
749		goto fail;
750	}
751
752	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
753	error = bus_dmamem_alloc(sc->vge_cdata.vge_tx_ring_tag,
754	    (void **)&sc->vge_rdata.vge_tx_ring,
755	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
756	    &sc->vge_cdata.vge_tx_ring_map);
757	if (error != 0) {
758		device_printf(sc->vge_dev,
759		    "could not allocate DMA'able memory for Tx ring.\n");
760		goto fail;
761	}
762
763	ctx.vge_busaddr = 0;
764	error = bus_dmamap_load(sc->vge_cdata.vge_tx_ring_tag,
765	    sc->vge_cdata.vge_tx_ring_map, sc->vge_rdata.vge_tx_ring,
766	    VGE_TX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
767	if (error != 0 || ctx.vge_busaddr == 0) {
768		device_printf(sc->vge_dev,
769		    "could not load DMA'able memory for Tx ring.\n");
770		goto fail;
771	}
772	sc->vge_rdata.vge_tx_ring_paddr = ctx.vge_busaddr;
773
774	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
775	error = bus_dmamem_alloc(sc->vge_cdata.vge_rx_ring_tag,
776	    (void **)&sc->vge_rdata.vge_rx_ring,
777	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
778	    &sc->vge_cdata.vge_rx_ring_map);
779	if (error != 0) {
780		device_printf(sc->vge_dev,
781		    "could not allocate DMA'able memory for Rx ring.\n");
782		goto fail;
783	}
784
785	ctx.vge_busaddr = 0;
786	error = bus_dmamap_load(sc->vge_cdata.vge_rx_ring_tag,
787	    sc->vge_cdata.vge_rx_ring_map, sc->vge_rdata.vge_rx_ring,
788	    VGE_RX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
789	if (error != 0 || ctx.vge_busaddr == 0) {
790		device_printf(sc->vge_dev,
791		    "could not load DMA'able memory for Rx ring.\n");
792		goto fail;
793	}
794	sc->vge_rdata.vge_rx_ring_paddr = ctx.vge_busaddr;
795
796	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
797	tx_ring_end = sc->vge_rdata.vge_tx_ring_paddr + VGE_TX_LIST_SZ;
798	rx_ring_end = sc->vge_rdata.vge_rx_ring_paddr + VGE_RX_LIST_SZ;
799	if ((VGE_ADDR_HI(tx_ring_end) !=
800	    VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr)) ||
801	    (VGE_ADDR_HI(rx_ring_end) !=
802	    VGE_ADDR_HI(sc->vge_rdata.vge_rx_ring_paddr)) ||
803	    VGE_ADDR_HI(tx_ring_end) != VGE_ADDR_HI(rx_ring_end)) {
804		device_printf(sc->vge_dev, "4GB boundary crossed, "
805		    "switching to 32bit DMA address mode.\n");
806		vge_dma_free(sc);
807		/* Limit DMA address space to 32bit and try again. */
808		lowaddr = BUS_SPACE_MAXADDR_32BIT;
809		goto again;
810	}
811
812	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
813		lowaddr = VGE_BUF_DMA_MAXADDR;
814	else
815		lowaddr = BUS_SPACE_MAXADDR_32BIT;
816	/* Create parent buffer tag. */
817	error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
818	    1, 0,			/* algnmnt, boundary */
819	    lowaddr,			/* lowaddr */
820	    BUS_SPACE_MAXADDR,		/* highaddr */
821	    NULL, NULL,			/* filter, filterarg */
822	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
823	    0,				/* nsegments */
824	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
825	    0,				/* flags */
826	    NULL, NULL,			/* lockfunc, lockarg */
827	    &sc->vge_cdata.vge_buffer_tag);
828	if (error != 0) {
829		device_printf(sc->vge_dev,
830		    "could not create parent buffer DMA tag.\n");
831		goto fail;
832	}
833
834	/* Create tag for Tx buffers. */
835	error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
836	    1, 0,			/* algnmnt, boundary */
837	    BUS_SPACE_MAXADDR,		/* lowaddr */
838	    BUS_SPACE_MAXADDR,		/* highaddr */
839	    NULL, NULL,			/* filter, filterarg */
840	    MCLBYTES * VGE_MAXTXSEGS,	/* maxsize */
841	    VGE_MAXTXSEGS,		/* nsegments */
842	    MCLBYTES,			/* maxsegsize */
843	    0,				/* flags */
844	    NULL, NULL,			/* lockfunc, lockarg */
845	    &sc->vge_cdata.vge_tx_tag);
846	if (error != 0) {
847		device_printf(sc->vge_dev, "could not create Tx DMA tag.\n");
848		goto fail;
849	}
850
851	/* Create tag for Rx buffers. */
852	error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
853	    VGE_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
854	    BUS_SPACE_MAXADDR,		/* lowaddr */
855	    BUS_SPACE_MAXADDR,		/* highaddr */
856	    NULL, NULL,			/* filter, filterarg */
857	    MCLBYTES,			/* maxsize */
858	    1,				/* nsegments */
859	    MCLBYTES,			/* maxsegsize */
860	    0,				/* flags */
861	    NULL, NULL,			/* lockfunc, lockarg */
862	    &sc->vge_cdata.vge_rx_tag);
863	if (error != 0) {
864		device_printf(sc->vge_dev, "could not create Rx DMA tag.\n");
865		goto fail;
866	}
867
868	/* Create DMA maps for Tx buffers. */
869	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
870		txd = &sc->vge_cdata.vge_txdesc[i];
871		txd->tx_m = NULL;
872		txd->tx_dmamap = NULL;
873		error = bus_dmamap_create(sc->vge_cdata.vge_tx_tag, 0,
874		    &txd->tx_dmamap);
875		if (error != 0) {
876			device_printf(sc->vge_dev,
877			    "could not create Tx dmamap.\n");
878			goto fail;
879		}
880	}
881	/* Create DMA maps for Rx buffers. */
882	if ((error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
883	    &sc->vge_cdata.vge_rx_sparemap)) != 0) {
884		device_printf(sc->vge_dev,
885		    "could not create spare Rx dmamap.\n");
886		goto fail;
887	}
888	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
889		rxd = &sc->vge_cdata.vge_rxdesc[i];
890		rxd->rx_m = NULL;
891		rxd->rx_dmamap = NULL;
892		error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
893		    &rxd->rx_dmamap);
894		if (error != 0) {
895			device_printf(sc->vge_dev,
896			    "could not create Rx dmamap.\n");
897			goto fail;
898		}
899	}
900
901fail:
902	return (error);
903}
904
905static void
906vge_dma_free(struct vge_softc *sc)
907{
908	struct vge_txdesc *txd;
909	struct vge_rxdesc *rxd;
910	int i;
911
912	/* Tx ring. */
913	if (sc->vge_cdata.vge_tx_ring_tag != NULL) {
914		if (sc->vge_cdata.vge_tx_ring_map)
915			bus_dmamap_unload(sc->vge_cdata.vge_tx_ring_tag,
916			    sc->vge_cdata.vge_tx_ring_map);
917		if (sc->vge_cdata.vge_tx_ring_map &&
918		    sc->vge_rdata.vge_tx_ring)
919			bus_dmamem_free(sc->vge_cdata.vge_tx_ring_tag,
920			    sc->vge_rdata.vge_tx_ring,
921			    sc->vge_cdata.vge_tx_ring_map);
922		sc->vge_rdata.vge_tx_ring = NULL;
923		sc->vge_cdata.vge_tx_ring_map = NULL;
924		bus_dma_tag_destroy(sc->vge_cdata.vge_tx_ring_tag);
925		sc->vge_cdata.vge_tx_ring_tag = NULL;
926	}
927	/* Rx ring. */
928	if (sc->vge_cdata.vge_rx_ring_tag != NULL) {
929		if (sc->vge_cdata.vge_rx_ring_map)
930			bus_dmamap_unload(sc->vge_cdata.vge_rx_ring_tag,
931			    sc->vge_cdata.vge_rx_ring_map);
932		if (sc->vge_cdata.vge_rx_ring_map &&
933		    sc->vge_rdata.vge_rx_ring)
934			bus_dmamem_free(sc->vge_cdata.vge_rx_ring_tag,
935			    sc->vge_rdata.vge_rx_ring,
936			    sc->vge_cdata.vge_rx_ring_map);
937		sc->vge_rdata.vge_rx_ring = NULL;
938		sc->vge_cdata.vge_rx_ring_map = NULL;
939		bus_dma_tag_destroy(sc->vge_cdata.vge_rx_ring_tag);
940		sc->vge_cdata.vge_rx_ring_tag = NULL;
941	}
942	/* Tx buffers. */
943	if (sc->vge_cdata.vge_tx_tag != NULL) {
944		for (i = 0; i < VGE_TX_DESC_CNT; i++) {
945			txd = &sc->vge_cdata.vge_txdesc[i];
946			if (txd->tx_dmamap != NULL) {
947				bus_dmamap_destroy(sc->vge_cdata.vge_tx_tag,
948				    txd->tx_dmamap);
949				txd->tx_dmamap = NULL;
950			}
951		}
952		bus_dma_tag_destroy(sc->vge_cdata.vge_tx_tag);
953		sc->vge_cdata.vge_tx_tag = NULL;
954	}
955	/* Rx buffers. */
956	if (sc->vge_cdata.vge_rx_tag != NULL) {
957		for (i = 0; i < VGE_RX_DESC_CNT; i++) {
958			rxd = &sc->vge_cdata.vge_rxdesc[i];
959			if (rxd->rx_dmamap != NULL) {
960				bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
961				    rxd->rx_dmamap);
962				rxd->rx_dmamap = NULL;
963			}
964		}
965		if (sc->vge_cdata.vge_rx_sparemap != NULL) {
966			bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
967			    sc->vge_cdata.vge_rx_sparemap);
968			sc->vge_cdata.vge_rx_sparemap = NULL;
969		}
970		bus_dma_tag_destroy(sc->vge_cdata.vge_rx_tag);
971		sc->vge_cdata.vge_rx_tag = NULL;
972	}
973
974	if (sc->vge_cdata.vge_buffer_tag != NULL) {
975		bus_dma_tag_destroy(sc->vge_cdata.vge_buffer_tag);
976		sc->vge_cdata.vge_buffer_tag = NULL;
977	}
978	if (sc->vge_cdata.vge_ring_tag != NULL) {
979		bus_dma_tag_destroy(sc->vge_cdata.vge_ring_tag);
980		sc->vge_cdata.vge_ring_tag = NULL;
981	}
982}
983
984/*
985 * Attach the interface. Allocate softc structures, do ifmedia
986 * setup and ethernet/BPF attach.
987 */
988static int
989vge_attach(device_t dev)
990{
991	u_char eaddr[ETHER_ADDR_LEN];
992	struct vge_softc *sc;
993	struct ifnet *ifp;
994	int error = 0, cap, i, msic, rid;
995
996	sc = device_get_softc(dev);
997	sc->vge_dev = dev;
998
999	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1000	    MTX_DEF);
1001	callout_init_mtx(&sc->vge_watchdog, &sc->vge_mtx, 0);
1002
1003	/*
1004	 * Map control/status registers.
1005	 */
1006	pci_enable_busmaster(dev);
1007
1008	rid = PCIR_BAR(1);
1009	sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1010	    RF_ACTIVE);
1011
1012	if (sc->vge_res == NULL) {
1013		device_printf(dev, "couldn't map ports/memory\n");
1014		error = ENXIO;
1015		goto fail;
1016	}
1017
1018	if (pci_find_cap(dev, PCIY_EXPRESS, &cap) == 0) {
1019		sc->vge_flags |= VGE_FLAG_PCIE;
1020		sc->vge_expcap = cap;
1021	} else
1022		sc->vge_flags |= VGE_FLAG_JUMBO;
1023	if (pci_find_cap(dev, PCIY_PMG, &cap) == 0) {
1024		sc->vge_flags |= VGE_FLAG_PMCAP;
1025		sc->vge_pmcap = cap;
1026	}
1027	rid = 0;
1028	msic = pci_msi_count(dev);
1029	if (msi_disable == 0 && msic > 0) {
1030		msic = 1;
1031		if (pci_alloc_msi(dev, &msic) == 0) {
1032			if (msic == 1) {
1033				sc->vge_flags |= VGE_FLAG_MSI;
1034				device_printf(dev, "Using %d MSI message\n",
1035				    msic);
1036				rid = 1;
1037			} else
1038				pci_release_msi(dev);
1039		}
1040	}
1041
1042	/* Allocate interrupt */
1043	sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1044	    ((sc->vge_flags & VGE_FLAG_MSI) ? 0 : RF_SHAREABLE) | RF_ACTIVE);
1045	if (sc->vge_irq == NULL) {
1046		device_printf(dev, "couldn't map interrupt\n");
1047		error = ENXIO;
1048		goto fail;
1049	}
1050
1051	/* Reset the adapter. */
1052	vge_reset(sc);
1053	/* Reload EEPROM. */
1054	CSR_WRITE_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
1055	for (i = 0; i < VGE_TIMEOUT; i++) {
1056		DELAY(5);
1057		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
1058			break;
1059	}
1060	if (i == VGE_TIMEOUT)
1061		device_printf(dev, "EEPROM reload timed out\n");
1062	/*
1063	 * Clear PACPI as EEPROM reload will set the bit. Otherwise
1064	 * MAC will receive magic packet which in turn confuses
1065	 * controller.
1066	 */
1067	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
1068
1069	/*
1070	 * Get station address from the EEPROM.
1071	 */
1072	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
1073	/*
1074	 * Save configured PHY address.
1075	 * It seems the PHY address of PCIe controllers just
1076	 * reflects media jump strapping status so we assume the
1077	 * internal PHY address of PCIe controller is at 1.
1078	 */
1079	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
1080		sc->vge_phyaddr = 1;
1081	else
1082		sc->vge_phyaddr = CSR_READ_1(sc, VGE_MIICFG) &
1083		    VGE_MIICFG_PHYADDR;
1084	/* Clear WOL and take hardware from powerdown. */
1085	vge_clrwol(sc);
1086	vge_sysctl_node(sc);
1087	error = vge_dma_alloc(sc);
1088	if (error)
1089		goto fail;
1090
1091	ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
1092	if (ifp == NULL) {
1093		device_printf(dev, "can not if_alloc()\n");
1094		error = ENOSPC;
1095		goto fail;
1096	}
1097
1098	vge_miipoll_start(sc);
1099	/* Do MII setup */
1100	error = mii_attach(dev, &sc->vge_miibus, ifp, vge_ifmedia_upd,
1101	    vge_ifmedia_sts, BMSR_DEFCAPMASK, sc->vge_phyaddr, MII_OFFSET_ANY,
1102	    MIIF_DOPAUSE);
1103	if (error != 0) {
1104		device_printf(dev, "attaching PHYs failed\n");
1105		goto fail;
1106	}
1107
1108	ifp->if_softc = sc;
1109	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1110	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1111	ifp->if_ioctl = vge_ioctl;
1112	ifp->if_capabilities = IFCAP_VLAN_MTU;
1113	ifp->if_start = vge_start;
1114	ifp->if_hwassist = VGE_CSUM_FEATURES;
1115	ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM |
1116	    IFCAP_VLAN_HWTAGGING;
1117	if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0)
1118		ifp->if_capabilities |= IFCAP_WOL;
1119	ifp->if_capenable = ifp->if_capabilities;
1120#ifdef DEVICE_POLLING
1121	ifp->if_capabilities |= IFCAP_POLLING;
1122#endif
1123	ifp->if_init = vge_init;
1124	IFQ_SET_MAXLEN(&ifp->if_snd, VGE_TX_DESC_CNT - 1);
1125	ifp->if_snd.ifq_drv_maxlen = VGE_TX_DESC_CNT - 1;
1126	IFQ_SET_READY(&ifp->if_snd);
1127
1128	/*
1129	 * Call MI attach routine.
1130	 */
1131	ether_ifattach(ifp, eaddr);
1132
1133	/* Tell the upper layer(s) we support long frames. */
1134	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1135
1136	/* Hook interrupt last to avoid having to lock softc */
1137	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1138	    NULL, vge_intr, sc, &sc->vge_intrhand);
1139
1140	if (error) {
1141		device_printf(dev, "couldn't set up irq\n");
1142		ether_ifdetach(ifp);
1143		goto fail;
1144	}
1145
1146fail:
1147	if (error)
1148		vge_detach(dev);
1149
1150	return (error);
1151}
1152
1153/*
1154 * Shutdown hardware and free up resources. This can be called any
1155 * time after the mutex has been initialized. It is called in both
1156 * the error case in attach and the normal detach case so it needs
1157 * to be careful about only freeing resources that have actually been
1158 * allocated.
1159 */
1160static int
1161vge_detach(device_t dev)
1162{
1163	struct vge_softc *sc;
1164	struct ifnet *ifp;
1165
1166	sc = device_get_softc(dev);
1167	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1168	ifp = sc->vge_ifp;
1169
1170#ifdef DEVICE_POLLING
1171	if (ifp->if_capenable & IFCAP_POLLING)
1172		ether_poll_deregister(ifp);
1173#endif
1174
1175	/* These should only be active if attach succeeded */
1176	if (device_is_attached(dev)) {
1177		ether_ifdetach(ifp);
1178		VGE_LOCK(sc);
1179		vge_stop(sc);
1180		VGE_UNLOCK(sc);
1181		callout_drain(&sc->vge_watchdog);
1182	}
1183	if (sc->vge_miibus)
1184		device_delete_child(dev, sc->vge_miibus);
1185	bus_generic_detach(dev);
1186
1187	if (sc->vge_intrhand)
1188		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1189	if (sc->vge_irq)
1190		bus_release_resource(dev, SYS_RES_IRQ,
1191		    sc->vge_flags & VGE_FLAG_MSI ? 1 : 0, sc->vge_irq);
1192	if (sc->vge_flags & VGE_FLAG_MSI)
1193		pci_release_msi(dev);
1194	if (sc->vge_res)
1195		bus_release_resource(dev, SYS_RES_MEMORY,
1196		    PCIR_BAR(1), sc->vge_res);
1197	if (ifp)
1198		if_free(ifp);
1199
1200	vge_dma_free(sc);
1201	mtx_destroy(&sc->vge_mtx);
1202
1203	return (0);
1204}
1205
1206static void
1207vge_discard_rxbuf(struct vge_softc *sc, int prod)
1208{
1209	struct vge_rxdesc *rxd;
1210	int i;
1211
1212	rxd = &sc->vge_cdata.vge_rxdesc[prod];
1213	rxd->rx_desc->vge_sts = 0;
1214	rxd->rx_desc->vge_ctl = 0;
1215
1216	/*
1217	 * Note: the manual fails to document the fact that for
1218	 * proper opration, the driver needs to replentish the RX
1219	 * DMA ring 4 descriptors at a time (rather than one at a
1220	 * time, like most chips). We can allocate the new buffers
1221	 * but we should not set the OWN bits until we're ready
1222	 * to hand back 4 of them in one shot.
1223	 */
1224	if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1225		for (i = VGE_RXCHUNK; i > 0; i--) {
1226			rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1227			rxd = rxd->rxd_prev;
1228		}
1229		sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1230	}
1231}
1232
1233static int
1234vge_newbuf(struct vge_softc *sc, int prod)
1235{
1236	struct vge_rxdesc *rxd;
1237	struct mbuf *m;
1238	bus_dma_segment_t segs[1];
1239	bus_dmamap_t map;
1240	int i, nsegs;
1241
1242	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1243	if (m == NULL)
1244		return (ENOBUFS);
1245	/*
1246	 * This is part of an evil trick to deal with strict-alignment
1247	 * architectures. The VIA chip requires RX buffers to be aligned
1248	 * on 32-bit boundaries, but that will hose strict-alignment
1249	 * architectures. To get around this, we leave some empty space
1250	 * at the start of each buffer and for non-strict-alignment hosts,
1251	 * we copy the buffer back two bytes to achieve word alignment.
1252	 * This is slightly more efficient than allocating a new buffer,
1253	 * copying the contents, and discarding the old buffer.
1254	 */
1255	m->m_len = m->m_pkthdr.len = MCLBYTES;
1256	m_adj(m, VGE_RX_BUF_ALIGN);
1257
1258	if (bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_rx_tag,
1259	    sc->vge_cdata.vge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1260		m_freem(m);
1261		return (ENOBUFS);
1262	}
1263	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1264
1265	rxd = &sc->vge_cdata.vge_rxdesc[prod];
1266	if (rxd->rx_m != NULL) {
1267		bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1268		    BUS_DMASYNC_POSTREAD);
1269		bus_dmamap_unload(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap);
1270	}
1271	map = rxd->rx_dmamap;
1272	rxd->rx_dmamap = sc->vge_cdata.vge_rx_sparemap;
1273	sc->vge_cdata.vge_rx_sparemap = map;
1274	bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1275	    BUS_DMASYNC_PREREAD);
1276	rxd->rx_m = m;
1277
1278	rxd->rx_desc->vge_sts = 0;
1279	rxd->rx_desc->vge_ctl = 0;
1280	rxd->rx_desc->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
1281	rxd->rx_desc->vge_addrhi = htole32(VGE_ADDR_HI(segs[0].ds_addr) |
1282	    (VGE_BUFLEN(segs[0].ds_len) << 16) | VGE_RXDESC_I);
1283
1284	/*
1285	 * Note: the manual fails to document the fact that for
1286	 * proper operation, the driver needs to replenish the RX
1287	 * DMA ring 4 descriptors at a time (rather than one at a
1288	 * time, like most chips). We can allocate the new buffers
1289	 * but we should not set the OWN bits until we're ready
1290	 * to hand back 4 of them in one shot.
1291	 */
1292	if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1293		for (i = VGE_RXCHUNK; i > 0; i--) {
1294			rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1295			rxd = rxd->rxd_prev;
1296		}
1297		sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1298	}
1299
1300	return (0);
1301}
1302
1303static int
1304vge_tx_list_init(struct vge_softc *sc)
1305{
1306	struct vge_ring_data *rd;
1307	struct vge_txdesc *txd;
1308	int i;
1309
1310	VGE_LOCK_ASSERT(sc);
1311
1312	sc->vge_cdata.vge_tx_prodidx = 0;
1313	sc->vge_cdata.vge_tx_considx = 0;
1314	sc->vge_cdata.vge_tx_cnt = 0;
1315
1316	rd = &sc->vge_rdata;
1317	bzero(rd->vge_tx_ring, VGE_TX_LIST_SZ);
1318	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1319		txd = &sc->vge_cdata.vge_txdesc[i];
1320		txd->tx_m = NULL;
1321		txd->tx_desc = &rd->vge_tx_ring[i];
1322	}
1323
1324	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1325	    sc->vge_cdata.vge_tx_ring_map,
1326	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1327
1328	return (0);
1329}
1330
1331static int
1332vge_rx_list_init(struct vge_softc *sc)
1333{
1334	struct vge_ring_data *rd;
1335	struct vge_rxdesc *rxd;
1336	int i;
1337
1338	VGE_LOCK_ASSERT(sc);
1339
1340	sc->vge_cdata.vge_rx_prodidx = 0;
1341	sc->vge_cdata.vge_head = NULL;
1342	sc->vge_cdata.vge_tail = NULL;
1343	sc->vge_cdata.vge_rx_commit = 0;
1344
1345	rd = &sc->vge_rdata;
1346	bzero(rd->vge_rx_ring, VGE_RX_LIST_SZ);
1347	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1348		rxd = &sc->vge_cdata.vge_rxdesc[i];
1349		rxd->rx_m = NULL;
1350		rxd->rx_desc = &rd->vge_rx_ring[i];
1351		if (i == 0)
1352			rxd->rxd_prev =
1353			    &sc->vge_cdata.vge_rxdesc[VGE_RX_DESC_CNT - 1];
1354		else
1355			rxd->rxd_prev = &sc->vge_cdata.vge_rxdesc[i - 1];
1356		if (vge_newbuf(sc, i) != 0)
1357			return (ENOBUFS);
1358	}
1359
1360	bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1361	    sc->vge_cdata.vge_rx_ring_map,
1362	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1363
1364	sc->vge_cdata.vge_rx_commit = 0;
1365
1366	return (0);
1367}
1368
1369static void
1370vge_freebufs(struct vge_softc *sc)
1371{
1372	struct vge_txdesc *txd;
1373	struct vge_rxdesc *rxd;
1374	struct ifnet *ifp;
1375	int i;
1376
1377	VGE_LOCK_ASSERT(sc);
1378
1379	ifp = sc->vge_ifp;
1380	/*
1381	 * Free RX and TX mbufs still in the queues.
1382	 */
1383	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1384		rxd = &sc->vge_cdata.vge_rxdesc[i];
1385		if (rxd->rx_m != NULL) {
1386			bus_dmamap_sync(sc->vge_cdata.vge_rx_tag,
1387			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
1388			bus_dmamap_unload(sc->vge_cdata.vge_rx_tag,
1389			    rxd->rx_dmamap);
1390			m_freem(rxd->rx_m);
1391			rxd->rx_m = NULL;
1392		}
1393	}
1394
1395	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1396		txd = &sc->vge_cdata.vge_txdesc[i];
1397		if (txd->tx_m != NULL) {
1398			bus_dmamap_sync(sc->vge_cdata.vge_tx_tag,
1399			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1400			bus_dmamap_unload(sc->vge_cdata.vge_tx_tag,
1401			    txd->tx_dmamap);
1402			m_freem(txd->tx_m);
1403			txd->tx_m = NULL;
1404			ifp->if_oerrors++;
1405		}
1406	}
1407}
1408
1409#ifndef	__NO_STRICT_ALIGNMENT
1410static __inline void
1411vge_fixup_rx(struct mbuf *m)
1412{
1413	int i;
1414	uint16_t *src, *dst;
1415
1416	src = mtod(m, uint16_t *);
1417	dst = src - 1;
1418
1419	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1420		*dst++ = *src++;
1421
1422	m->m_data -= ETHER_ALIGN;
1423}
1424#endif
1425
1426/*
1427 * RX handler. We support the reception of jumbo frames that have
1428 * been fragmented across multiple 2K mbuf cluster buffers.
1429 */
1430static int
1431vge_rxeof(struct vge_softc *sc, int count)
1432{
1433	struct mbuf *m;
1434	struct ifnet *ifp;
1435	int prod, prog, total_len;
1436	struct vge_rxdesc *rxd;
1437	struct vge_rx_desc *cur_rx;
1438	uint32_t rxstat, rxctl;
1439
1440	VGE_LOCK_ASSERT(sc);
1441
1442	ifp = sc->vge_ifp;
1443
1444	bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1445	    sc->vge_cdata.vge_rx_ring_map,
1446	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1447
1448	prod = sc->vge_cdata.vge_rx_prodidx;
1449	for (prog = 0; count > 0 &&
1450	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1451	    VGE_RX_DESC_INC(prod)) {
1452		cur_rx = &sc->vge_rdata.vge_rx_ring[prod];
1453		rxstat = le32toh(cur_rx->vge_sts);
1454		if ((rxstat & VGE_RDSTS_OWN) != 0)
1455			break;
1456		count--;
1457		prog++;
1458		rxctl = le32toh(cur_rx->vge_ctl);
1459		total_len = VGE_RXBYTES(rxstat);
1460		rxd = &sc->vge_cdata.vge_rxdesc[prod];
1461		m = rxd->rx_m;
1462
1463		/*
1464		 * If the 'start of frame' bit is set, this indicates
1465		 * either the first fragment in a multi-fragment receive,
1466		 * or an intermediate fragment. Either way, we want to
1467		 * accumulate the buffers.
1468		 */
1469		if ((rxstat & VGE_RXPKT_SOF) != 0) {
1470			if (vge_newbuf(sc, prod) != 0) {
1471				ifp->if_iqdrops++;
1472				VGE_CHAIN_RESET(sc);
1473				vge_discard_rxbuf(sc, prod);
1474				continue;
1475			}
1476			m->m_len = MCLBYTES - VGE_RX_BUF_ALIGN;
1477			if (sc->vge_cdata.vge_head == NULL) {
1478				sc->vge_cdata.vge_head = m;
1479				sc->vge_cdata.vge_tail = m;
1480			} else {
1481				m->m_flags &= ~M_PKTHDR;
1482				sc->vge_cdata.vge_tail->m_next = m;
1483				sc->vge_cdata.vge_tail = m;
1484			}
1485			continue;
1486		}
1487
1488		/*
1489		 * Bad/error frames will have the RXOK bit cleared.
1490		 * However, there's one error case we want to allow:
1491		 * if a VLAN tagged frame arrives and the chip can't
1492		 * match it against the CAM filter, it considers this
1493		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1494		 * We don't want to drop the frame though: our VLAN
1495		 * filtering is done in software.
1496		 * We also want to receive bad-checksummed frames and
1497		 * and frames with bad-length.
1498		 */
1499		if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
1500		    (rxstat & (VGE_RDSTS_VIDM | VGE_RDSTS_RLERR |
1501		    VGE_RDSTS_CSUMERR)) == 0) {
1502			ifp->if_ierrors++;
1503			/*
1504			 * If this is part of a multi-fragment packet,
1505			 * discard all the pieces.
1506			 */
1507			VGE_CHAIN_RESET(sc);
1508			vge_discard_rxbuf(sc, prod);
1509			continue;
1510		}
1511
1512		if (vge_newbuf(sc, prod) != 0) {
1513			ifp->if_iqdrops++;
1514			VGE_CHAIN_RESET(sc);
1515			vge_discard_rxbuf(sc, prod);
1516			continue;
1517		}
1518
1519		/* Chain received mbufs. */
1520		if (sc->vge_cdata.vge_head != NULL) {
1521			m->m_len = total_len % (MCLBYTES - VGE_RX_BUF_ALIGN);
1522			/*
1523			 * Special case: if there's 4 bytes or less
1524			 * in this buffer, the mbuf can be discarded:
1525			 * the last 4 bytes is the CRC, which we don't
1526			 * care about anyway.
1527			 */
1528			if (m->m_len <= ETHER_CRC_LEN) {
1529				sc->vge_cdata.vge_tail->m_len -=
1530				    (ETHER_CRC_LEN - m->m_len);
1531				m_freem(m);
1532			} else {
1533				m->m_len -= ETHER_CRC_LEN;
1534				m->m_flags &= ~M_PKTHDR;
1535				sc->vge_cdata.vge_tail->m_next = m;
1536			}
1537			m = sc->vge_cdata.vge_head;
1538			m->m_flags |= M_PKTHDR;
1539			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1540		} else {
1541			m->m_flags |= M_PKTHDR;
1542			m->m_pkthdr.len = m->m_len =
1543			    (total_len - ETHER_CRC_LEN);
1544		}
1545
1546#ifndef	__NO_STRICT_ALIGNMENT
1547		vge_fixup_rx(m);
1548#endif
1549		m->m_pkthdr.rcvif = ifp;
1550
1551		/* Do RX checksumming if enabled */
1552		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
1553		    (rxctl & VGE_RDCTL_FRAG) == 0) {
1554			/* Check IP header checksum */
1555			if ((rxctl & VGE_RDCTL_IPPKT) != 0)
1556				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1557			if ((rxctl & VGE_RDCTL_IPCSUMOK) != 0)
1558				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1559
1560			/* Check TCP/UDP checksum */
1561			if (rxctl & (VGE_RDCTL_TCPPKT | VGE_RDCTL_UDPPKT) &&
1562			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1563				m->m_pkthdr.csum_flags |=
1564				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1565				m->m_pkthdr.csum_data = 0xffff;
1566			}
1567		}
1568
1569		if ((rxstat & VGE_RDSTS_VTAG) != 0) {
1570			/*
1571			 * The 32-bit rxctl register is stored in little-endian.
1572			 * However, the 16-bit vlan tag is stored in big-endian,
1573			 * so we have to byte swap it.
1574			 */
1575			m->m_pkthdr.ether_vtag =
1576			    bswap16(rxctl & VGE_RDCTL_VLANID);
1577			m->m_flags |= M_VLANTAG;
1578		}
1579
1580		VGE_UNLOCK(sc);
1581		(*ifp->if_input)(ifp, m);
1582		VGE_LOCK(sc);
1583		sc->vge_cdata.vge_head = NULL;
1584		sc->vge_cdata.vge_tail = NULL;
1585	}
1586
1587	if (prog > 0) {
1588		sc->vge_cdata.vge_rx_prodidx = prod;
1589		bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1590		    sc->vge_cdata.vge_rx_ring_map,
1591		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1592		/* Update residue counter. */
1593		if (sc->vge_cdata.vge_rx_commit != 0) {
1594			CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT,
1595			    sc->vge_cdata.vge_rx_commit);
1596			sc->vge_cdata.vge_rx_commit = 0;
1597		}
1598	}
1599	return (prog);
1600}
1601
1602static void
1603vge_txeof(struct vge_softc *sc)
1604{
1605	struct ifnet *ifp;
1606	struct vge_tx_desc *cur_tx;
1607	struct vge_txdesc *txd;
1608	uint32_t txstat;
1609	int cons, prod;
1610
1611	VGE_LOCK_ASSERT(sc);
1612
1613	ifp = sc->vge_ifp;
1614
1615	if (sc->vge_cdata.vge_tx_cnt == 0)
1616		return;
1617
1618	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1619	    sc->vge_cdata.vge_tx_ring_map,
1620	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1621
1622	/*
1623	 * Go through our tx list and free mbufs for those
1624	 * frames that have been transmitted.
1625	 */
1626	cons = sc->vge_cdata.vge_tx_considx;
1627	prod = sc->vge_cdata.vge_tx_prodidx;
1628	for (; cons != prod; VGE_TX_DESC_INC(cons)) {
1629		cur_tx = &sc->vge_rdata.vge_tx_ring[cons];
1630		txstat = le32toh(cur_tx->vge_sts);
1631		if ((txstat & VGE_TDSTS_OWN) != 0)
1632			break;
1633		sc->vge_cdata.vge_tx_cnt--;
1634		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1635
1636		txd = &sc->vge_cdata.vge_txdesc[cons];
1637		bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1638		    BUS_DMASYNC_POSTWRITE);
1639		bus_dmamap_unload(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap);
1640
1641		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1642		    __func__));
1643		m_freem(txd->tx_m);
1644		txd->tx_m = NULL;
1645		txd->tx_desc->vge_frag[0].vge_addrhi = 0;
1646	}
1647	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1648	    sc->vge_cdata.vge_tx_ring_map,
1649	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1650	sc->vge_cdata.vge_tx_considx = cons;
1651	if (sc->vge_cdata.vge_tx_cnt == 0)
1652		sc->vge_timer = 0;
1653}
1654
1655static void
1656vge_link_statchg(void *xsc)
1657{
1658	struct vge_softc *sc;
1659	struct ifnet *ifp;
1660	uint8_t physts;
1661
1662	sc = xsc;
1663	ifp = sc->vge_ifp;
1664	VGE_LOCK_ASSERT(sc);
1665
1666	physts = CSR_READ_1(sc, VGE_PHYSTS0);
1667	if ((physts & VGE_PHYSTS_RESETSTS) == 0) {
1668		if ((physts & VGE_PHYSTS_LINK) == 0) {
1669			sc->vge_flags &= ~VGE_FLAG_LINK;
1670			if_link_state_change(sc->vge_ifp,
1671			    LINK_STATE_DOWN);
1672		} else {
1673			sc->vge_flags |= VGE_FLAG_LINK;
1674			if_link_state_change(sc->vge_ifp,
1675			    LINK_STATE_UP);
1676			CSR_WRITE_1(sc, VGE_CRC2, VGE_CR2_FDX_TXFLOWCTL_ENABLE |
1677			    VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1678			if ((physts & VGE_PHYSTS_FDX) != 0) {
1679				if ((physts & VGE_PHYSTS_TXFLOWCAP) != 0)
1680					CSR_WRITE_1(sc, VGE_CRS2,
1681					    VGE_CR2_FDX_TXFLOWCTL_ENABLE);
1682				if ((physts & VGE_PHYSTS_RXFLOWCAP) != 0)
1683					CSR_WRITE_1(sc, VGE_CRS2,
1684					    VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1685			}
1686			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1687				vge_start_locked(ifp);
1688		}
1689	}
1690	/*
1691	 * Restart MII auto-polling because link state change interrupt
1692	 * will disable it.
1693	 */
1694	vge_miipoll_start(sc);
1695}
1696
1697#ifdef DEVICE_POLLING
1698static int
1699vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1700{
1701	struct vge_softc *sc = ifp->if_softc;
1702	int rx_npkts = 0;
1703
1704	VGE_LOCK(sc);
1705	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1706		goto done;
1707
1708	rx_npkts = vge_rxeof(sc, count);
1709	vge_txeof(sc);
1710
1711	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1712		vge_start_locked(ifp);
1713
1714	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1715		uint32_t       status;
1716		status = CSR_READ_4(sc, VGE_ISR);
1717		if (status == 0xFFFFFFFF)
1718			goto done;
1719		if (status)
1720			CSR_WRITE_4(sc, VGE_ISR, status);
1721
1722		/*
1723		 * XXX check behaviour on receiver stalls.
1724		 */
1725
1726		if (status & VGE_ISR_TXDMA_STALL ||
1727		    status & VGE_ISR_RXDMA_STALL) {
1728			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1729			vge_init_locked(sc);
1730		}
1731
1732		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1733			vge_rxeof(sc, count);
1734			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1735			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1736		}
1737	}
1738done:
1739	VGE_UNLOCK(sc);
1740	return (rx_npkts);
1741}
1742#endif /* DEVICE_POLLING */
1743
1744static void
1745vge_intr(void *arg)
1746{
1747	struct vge_softc *sc;
1748	struct ifnet *ifp;
1749	uint32_t status;
1750
1751	sc = arg;
1752	VGE_LOCK(sc);
1753
1754	ifp = sc->vge_ifp;
1755	if ((sc->vge_flags & VGE_FLAG_SUSPENDED) != 0 ||
1756	    (ifp->if_flags & IFF_UP) == 0) {
1757		VGE_UNLOCK(sc);
1758		return;
1759	}
1760
1761#ifdef DEVICE_POLLING
1762	if  (ifp->if_capenable & IFCAP_POLLING) {
1763		status = CSR_READ_4(sc, VGE_ISR);
1764		CSR_WRITE_4(sc, VGE_ISR, status);
1765		if (status != 0xFFFFFFFF && (status & VGE_ISR_LINKSTS) != 0)
1766			vge_link_statchg(sc);
1767		VGE_UNLOCK(sc);
1768		return;
1769	}
1770#endif
1771
1772	/* Disable interrupts */
1773	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1774	status = CSR_READ_4(sc, VGE_ISR);
1775	CSR_WRITE_4(sc, VGE_ISR, status | VGE_ISR_HOLDOFF_RELOAD);
1776	/* If the card has gone away the read returns 0xffff. */
1777	if (status == 0xFFFFFFFF || (status & VGE_INTRS) == 0)
1778		goto done;
1779	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1780		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1781			vge_rxeof(sc, VGE_RX_DESC_CNT);
1782		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1783			vge_rxeof(sc, VGE_RX_DESC_CNT);
1784			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1785			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1786		}
1787
1788		if (status & (VGE_ISR_TXOK0|VGE_ISR_TXOK_HIPRIO))
1789			vge_txeof(sc);
1790
1791		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) {
1792			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1793			vge_init_locked(sc);
1794		}
1795
1796		if (status & VGE_ISR_LINKSTS)
1797			vge_link_statchg(sc);
1798	}
1799done:
1800	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1801		/* Re-enable interrupts */
1802		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1803
1804		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1805			vge_start_locked(ifp);
1806	}
1807	VGE_UNLOCK(sc);
1808}
1809
1810static int
1811vge_encap(struct vge_softc *sc, struct mbuf **m_head)
1812{
1813	struct vge_txdesc *txd;
1814	struct vge_tx_frag *frag;
1815	struct mbuf *m;
1816	bus_dma_segment_t txsegs[VGE_MAXTXSEGS];
1817	int error, i, nsegs, padlen;
1818	uint32_t cflags;
1819
1820	VGE_LOCK_ASSERT(sc);
1821
1822	M_ASSERTPKTHDR((*m_head));
1823
1824	/* Argh. This chip does not autopad short frames. */
1825	if ((*m_head)->m_pkthdr.len < VGE_MIN_FRAMELEN) {
1826		m = *m_head;
1827		padlen = VGE_MIN_FRAMELEN - m->m_pkthdr.len;
1828		if (M_WRITABLE(m) == 0) {
1829			/* Get a writable copy. */
1830			m = m_dup(*m_head, M_NOWAIT);
1831			m_freem(*m_head);
1832			if (m == NULL) {
1833				*m_head = NULL;
1834				return (ENOBUFS);
1835			}
1836			*m_head = m;
1837		}
1838		if (M_TRAILINGSPACE(m) < padlen) {
1839			m = m_defrag(m, M_NOWAIT);
1840			if (m == NULL) {
1841				m_freem(*m_head);
1842				*m_head = NULL;
1843				return (ENOBUFS);
1844			}
1845		}
1846		/*
1847		 * Manually pad short frames, and zero the pad space
1848		 * to avoid leaking data.
1849		 */
1850		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1851		m->m_pkthdr.len += padlen;
1852		m->m_len = m->m_pkthdr.len;
1853		*m_head = m;
1854	}
1855
1856	txd = &sc->vge_cdata.vge_txdesc[sc->vge_cdata.vge_tx_prodidx];
1857
1858	error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1859	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1860	if (error == EFBIG) {
1861		m = m_collapse(*m_head, M_NOWAIT, VGE_MAXTXSEGS);
1862		if (m == NULL) {
1863			m_freem(*m_head);
1864			*m_head = NULL;
1865			return (ENOMEM);
1866		}
1867		*m_head = m;
1868		error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1869		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1870		if (error != 0) {
1871			m_freem(*m_head);
1872			*m_head = NULL;
1873			return (error);
1874		}
1875	} else if (error != 0)
1876		return (error);
1877	bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1878	    BUS_DMASYNC_PREWRITE);
1879
1880	m = *m_head;
1881	cflags = 0;
1882
1883	/* Configure checksum offload. */
1884	if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1885		cflags |= VGE_TDCTL_IPCSUM;
1886	if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1887		cflags |= VGE_TDCTL_TCPCSUM;
1888	if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1889		cflags |= VGE_TDCTL_UDPCSUM;
1890
1891	/* Configure VLAN. */
1892	if ((m->m_flags & M_VLANTAG) != 0)
1893		cflags |= m->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG;
1894	txd->tx_desc->vge_sts = htole32(m->m_pkthdr.len << 16);
1895	/*
1896	 * XXX
1897	 * Velocity family seems to support TSO but no information
1898	 * for MSS configuration is available. Also the number of
1899	 * fragments supported by a descriptor is too small to hold
1900	 * entire 64KB TCP/IP segment. Maybe VGE_TD_LS_MOF,
1901	 * VGE_TD_LS_SOF and VGE_TD_LS_EOF could be used to build
1902	 * longer chain of buffers but no additional information is
1903	 * available.
1904	 *
1905	 * When telling the chip how many segments there are, we
1906	 * must use nsegs + 1 instead of just nsegs. Darned if I
1907	 * know why. This also means we can't use the last fragment
1908	 * field of Tx descriptor.
1909	 */
1910	txd->tx_desc->vge_ctl = htole32(cflags | ((nsegs + 1) << 28) |
1911	    VGE_TD_LS_NORM);
1912	for (i = 0; i < nsegs; i++) {
1913		frag = &txd->tx_desc->vge_frag[i];
1914		frag->vge_addrlo = htole32(VGE_ADDR_LO(txsegs[i].ds_addr));
1915		frag->vge_addrhi = htole32(VGE_ADDR_HI(txsegs[i].ds_addr) |
1916		    (VGE_BUFLEN(txsegs[i].ds_len) << 16));
1917	}
1918
1919	sc->vge_cdata.vge_tx_cnt++;
1920	VGE_TX_DESC_INC(sc->vge_cdata.vge_tx_prodidx);
1921
1922	/*
1923	 * Finally request interrupt and give the first descriptor
1924	 * ownership to hardware.
1925	 */
1926	txd->tx_desc->vge_ctl |= htole32(VGE_TDCTL_TIC);
1927	txd->tx_desc->vge_sts |= htole32(VGE_TDSTS_OWN);
1928	txd->tx_m = m;
1929
1930	return (0);
1931}
1932
1933/*
1934 * Main transmit routine.
1935 */
1936
1937static void
1938vge_start(struct ifnet *ifp)
1939{
1940	struct vge_softc *sc;
1941
1942	sc = ifp->if_softc;
1943	VGE_LOCK(sc);
1944	vge_start_locked(ifp);
1945	VGE_UNLOCK(sc);
1946}
1947
1948
1949static void
1950vge_start_locked(struct ifnet *ifp)
1951{
1952	struct vge_softc *sc;
1953	struct vge_txdesc *txd;
1954	struct mbuf *m_head;
1955	int enq, idx;
1956
1957	sc = ifp->if_softc;
1958
1959	VGE_LOCK_ASSERT(sc);
1960
1961	if ((sc->vge_flags & VGE_FLAG_LINK) == 0 ||
1962	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1963	    IFF_DRV_RUNNING)
1964		return;
1965
1966	idx = sc->vge_cdata.vge_tx_prodidx;
1967	VGE_TX_DESC_DEC(idx);
1968	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1969	    sc->vge_cdata.vge_tx_cnt < VGE_TX_DESC_CNT - 1; ) {
1970		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1971		if (m_head == NULL)
1972			break;
1973		/*
1974		 * Pack the data into the transmit ring. If we
1975		 * don't have room, set the OACTIVE flag and wait
1976		 * for the NIC to drain the ring.
1977		 */
1978		if (vge_encap(sc, &m_head)) {
1979			if (m_head == NULL)
1980				break;
1981			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1982			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1983			break;
1984		}
1985
1986		txd = &sc->vge_cdata.vge_txdesc[idx];
1987		txd->tx_desc->vge_frag[0].vge_addrhi |= htole32(VGE_TXDESC_Q);
1988		VGE_TX_DESC_INC(idx);
1989
1990		enq++;
1991		/*
1992		 * If there's a BPF listener, bounce a copy of this frame
1993		 * to him.
1994		 */
1995		ETHER_BPF_MTAP(ifp, m_head);
1996	}
1997
1998	if (enq > 0) {
1999		bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
2000		    sc->vge_cdata.vge_tx_ring_map,
2001		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2002		/* Issue a transmit command. */
2003		CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
2004		/*
2005		 * Set a timeout in case the chip goes out to lunch.
2006		 */
2007		sc->vge_timer = 5;
2008	}
2009}
2010
2011static void
2012vge_init(void *xsc)
2013{
2014	struct vge_softc *sc = xsc;
2015
2016	VGE_LOCK(sc);
2017	vge_init_locked(sc);
2018	VGE_UNLOCK(sc);
2019}
2020
2021static void
2022vge_init_locked(struct vge_softc *sc)
2023{
2024	struct ifnet *ifp = sc->vge_ifp;
2025	int error, i;
2026
2027	VGE_LOCK_ASSERT(sc);
2028
2029	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2030		return;
2031
2032	/*
2033	 * Cancel pending I/O and free all RX/TX buffers.
2034	 */
2035	vge_stop(sc);
2036	vge_reset(sc);
2037	vge_miipoll_start(sc);
2038
2039	/*
2040	 * Initialize the RX and TX descriptors and mbufs.
2041	 */
2042
2043	error = vge_rx_list_init(sc);
2044	if (error != 0) {
2045                device_printf(sc->vge_dev, "no memory for Rx buffers.\n");
2046                return;
2047	}
2048	vge_tx_list_init(sc);
2049	/* Clear MAC statistics. */
2050	vge_stats_clear(sc);
2051	/* Set our station address */
2052	for (i = 0; i < ETHER_ADDR_LEN; i++)
2053		CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
2054
2055	/*
2056	 * Set receive FIFO threshold. Also allow transmission and
2057	 * reception of VLAN tagged frames.
2058	 */
2059	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
2060	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES);
2061
2062	/* Set DMA burst length */
2063	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
2064	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
2065
2066	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
2067
2068	/* Set collision backoff algorithm */
2069	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
2070	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
2071	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
2072
2073	/* Disable LPSEL field in priority resolution */
2074	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
2075
2076	/*
2077	 * Load the addresses of the DMA queues into the chip.
2078	 * Note that we only use one transmit queue.
2079	 */
2080
2081	CSR_WRITE_4(sc, VGE_TXDESC_HIADDR,
2082	    VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr));
2083	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
2084	    VGE_ADDR_LO(sc->vge_rdata.vge_tx_ring_paddr));
2085	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
2086
2087	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
2088	    VGE_ADDR_LO(sc->vge_rdata.vge_rx_ring_paddr));
2089	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
2090	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
2091
2092	/* Configure interrupt moderation. */
2093	vge_intr_holdoff(sc);
2094
2095	/* Enable and wake up the RX descriptor queue */
2096	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
2097	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
2098
2099	/* Enable the TX descriptor queue */
2100	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
2101
2102	/* Init the cam filter. */
2103	vge_cam_clear(sc);
2104
2105	/* Set up receiver filter. */
2106	vge_rxfilter(sc);
2107	vge_setvlan(sc);
2108
2109	/* Initialize pause timer. */
2110	CSR_WRITE_2(sc, VGE_TX_PAUSE_TIMER, 0xFFFF);
2111	/*
2112	 * Initialize flow control parameters.
2113	 *  TX XON high threshold : 48
2114	 *  TX pause low threshold : 24
2115	 *  Disable hald-duplex flow control
2116	 */
2117	CSR_WRITE_1(sc, VGE_CRC2, 0xFF);
2118	CSR_WRITE_1(sc, VGE_CRS2, VGE_CR2_XON_ENABLE | 0x0B);
2119
2120	/* Enable jumbo frame reception (if desired) */
2121
2122	/* Start the MAC. */
2123	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
2124	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
2125	CSR_WRITE_1(sc, VGE_CRS0,
2126	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
2127
2128#ifdef DEVICE_POLLING
2129	/*
2130	 * Disable interrupts except link state change if we are polling.
2131	 */
2132	if (ifp->if_capenable & IFCAP_POLLING) {
2133		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2134	} else	/* otherwise ... */
2135#endif
2136	{
2137	/*
2138	 * Enable interrupts.
2139	 */
2140		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2141	}
2142	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2143	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2144
2145	sc->vge_flags &= ~VGE_FLAG_LINK;
2146	vge_ifmedia_upd_locked(sc);
2147
2148	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2149	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2150	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2151}
2152
2153/*
2154 * Set media options.
2155 */
2156static int
2157vge_ifmedia_upd(struct ifnet *ifp)
2158{
2159	struct vge_softc *sc;
2160	int error;
2161
2162	sc = ifp->if_softc;
2163	VGE_LOCK(sc);
2164	error = vge_ifmedia_upd_locked(sc);
2165	VGE_UNLOCK(sc);
2166
2167	return (error);
2168}
2169
2170static int
2171vge_ifmedia_upd_locked(struct vge_softc *sc)
2172{
2173	struct mii_data *mii;
2174	struct mii_softc *miisc;
2175	int error;
2176
2177	mii = device_get_softc(sc->vge_miibus);
2178	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2179		PHY_RESET(miisc);
2180	vge_setmedia(sc);
2181	error = mii_mediachg(mii);
2182
2183	return (error);
2184}
2185
2186/*
2187 * Report current media status.
2188 */
2189static void
2190vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2191{
2192	struct vge_softc *sc;
2193	struct mii_data *mii;
2194
2195	sc = ifp->if_softc;
2196	mii = device_get_softc(sc->vge_miibus);
2197
2198	VGE_LOCK(sc);
2199	if ((ifp->if_flags & IFF_UP) == 0) {
2200		VGE_UNLOCK(sc);
2201		return;
2202	}
2203	mii_pollstat(mii);
2204	ifmr->ifm_active = mii->mii_media_active;
2205	ifmr->ifm_status = mii->mii_media_status;
2206	VGE_UNLOCK(sc);
2207}
2208
2209static void
2210vge_setmedia(struct vge_softc *sc)
2211{
2212	struct mii_data *mii;
2213	struct ifmedia_entry *ife;
2214
2215	mii = device_get_softc(sc->vge_miibus);
2216	ife = mii->mii_media.ifm_cur;
2217
2218	/*
2219	 * If the user manually selects a media mode, we need to turn
2220	 * on the forced MAC mode bit in the DIAGCTL register. If the
2221	 * user happens to choose a full duplex mode, we also need to
2222	 * set the 'force full duplex' bit. This applies only to
2223	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2224	 * mode is disabled, and in 1000baseT mode, full duplex is
2225	 * always implied, so we turn on the forced mode bit but leave
2226	 * the FDX bit cleared.
2227	 */
2228
2229	switch (IFM_SUBTYPE(ife->ifm_media)) {
2230	case IFM_AUTO:
2231		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2232		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2233		break;
2234	case IFM_1000_T:
2235		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2236		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2237		break;
2238	case IFM_100_TX:
2239	case IFM_10_T:
2240		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2241		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2242			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2243		} else {
2244			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2245		}
2246		break;
2247	default:
2248		device_printf(sc->vge_dev, "unknown media type: %x\n",
2249		    IFM_SUBTYPE(ife->ifm_media));
2250		break;
2251	}
2252}
2253
2254static int
2255vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2256{
2257	struct vge_softc *sc = ifp->if_softc;
2258	struct ifreq *ifr = (struct ifreq *) data;
2259	struct mii_data *mii;
2260	int error = 0, mask;
2261
2262	switch (command) {
2263	case SIOCSIFMTU:
2264		VGE_LOCK(sc);
2265		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > VGE_JUMBO_MTU)
2266			error = EINVAL;
2267		else if (ifp->if_mtu != ifr->ifr_mtu) {
2268			if (ifr->ifr_mtu > ETHERMTU &&
2269			    (sc->vge_flags & VGE_FLAG_JUMBO) == 0)
2270				error = EINVAL;
2271			else
2272				ifp->if_mtu = ifr->ifr_mtu;
2273		}
2274		VGE_UNLOCK(sc);
2275		break;
2276	case SIOCSIFFLAGS:
2277		VGE_LOCK(sc);
2278		if ((ifp->if_flags & IFF_UP) != 0) {
2279			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2280			    ((ifp->if_flags ^ sc->vge_if_flags) &
2281			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2282				vge_rxfilter(sc);
2283			else
2284				vge_init_locked(sc);
2285		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2286			vge_stop(sc);
2287		sc->vge_if_flags = ifp->if_flags;
2288		VGE_UNLOCK(sc);
2289		break;
2290	case SIOCADDMULTI:
2291	case SIOCDELMULTI:
2292		VGE_LOCK(sc);
2293		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2294			vge_rxfilter(sc);
2295		VGE_UNLOCK(sc);
2296		break;
2297	case SIOCGIFMEDIA:
2298	case SIOCSIFMEDIA:
2299		mii = device_get_softc(sc->vge_miibus);
2300		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2301		break;
2302	case SIOCSIFCAP:
2303		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2304#ifdef DEVICE_POLLING
2305		if (mask & IFCAP_POLLING) {
2306			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2307				error = ether_poll_register(vge_poll, ifp);
2308				if (error)
2309					return (error);
2310				VGE_LOCK(sc);
2311					/* Disable interrupts */
2312				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2313				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2314				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2315				ifp->if_capenable |= IFCAP_POLLING;
2316				VGE_UNLOCK(sc);
2317			} else {
2318				error = ether_poll_deregister(ifp);
2319				/* Enable interrupts. */
2320				VGE_LOCK(sc);
2321				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2322				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2323				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2324				ifp->if_capenable &= ~IFCAP_POLLING;
2325				VGE_UNLOCK(sc);
2326			}
2327		}
2328#endif /* DEVICE_POLLING */
2329		VGE_LOCK(sc);
2330		if ((mask & IFCAP_TXCSUM) != 0 &&
2331		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2332			ifp->if_capenable ^= IFCAP_TXCSUM;
2333			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2334				ifp->if_hwassist |= VGE_CSUM_FEATURES;
2335			else
2336				ifp->if_hwassist &= ~VGE_CSUM_FEATURES;
2337		}
2338		if ((mask & IFCAP_RXCSUM) != 0 &&
2339		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2340			ifp->if_capenable ^= IFCAP_RXCSUM;
2341		if ((mask & IFCAP_WOL_UCAST) != 0 &&
2342		    (ifp->if_capabilities & IFCAP_WOL_UCAST) != 0)
2343			ifp->if_capenable ^= IFCAP_WOL_UCAST;
2344		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2345		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2346			ifp->if_capenable ^= IFCAP_WOL_MCAST;
2347		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2348		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2349			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2350		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2351		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2352			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2353		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2354		    (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
2355			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2356			vge_setvlan(sc);
2357		}
2358		VGE_UNLOCK(sc);
2359		VLAN_CAPABILITIES(ifp);
2360		break;
2361	default:
2362		error = ether_ioctl(ifp, command, data);
2363		break;
2364	}
2365
2366	return (error);
2367}
2368
2369static void
2370vge_watchdog(void *arg)
2371{
2372	struct vge_softc *sc;
2373	struct ifnet *ifp;
2374
2375	sc = arg;
2376	VGE_LOCK_ASSERT(sc);
2377	vge_stats_update(sc);
2378	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2379	if (sc->vge_timer == 0 || --sc->vge_timer > 0)
2380		return;
2381
2382	ifp = sc->vge_ifp;
2383	if_printf(ifp, "watchdog timeout\n");
2384	ifp->if_oerrors++;
2385
2386	vge_txeof(sc);
2387	vge_rxeof(sc, VGE_RX_DESC_CNT);
2388
2389	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2390	vge_init_locked(sc);
2391}
2392
2393/*
2394 * Stop the adapter and free any mbufs allocated to the
2395 * RX and TX lists.
2396 */
2397static void
2398vge_stop(struct vge_softc *sc)
2399{
2400	struct ifnet *ifp;
2401
2402	VGE_LOCK_ASSERT(sc);
2403	ifp = sc->vge_ifp;
2404	sc->vge_timer = 0;
2405	callout_stop(&sc->vge_watchdog);
2406
2407	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2408
2409	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2410	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2411	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2412	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2413	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2414	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2415
2416	vge_stats_update(sc);
2417	VGE_CHAIN_RESET(sc);
2418	vge_txeof(sc);
2419	vge_freebufs(sc);
2420}
2421
2422/*
2423 * Device suspend routine.  Stop the interface and save some PCI
2424 * settings in case the BIOS doesn't restore them properly on
2425 * resume.
2426 */
2427static int
2428vge_suspend(device_t dev)
2429{
2430	struct vge_softc *sc;
2431
2432	sc = device_get_softc(dev);
2433
2434	VGE_LOCK(sc);
2435	vge_stop(sc);
2436	vge_setwol(sc);
2437	sc->vge_flags |= VGE_FLAG_SUSPENDED;
2438	VGE_UNLOCK(sc);
2439
2440	return (0);
2441}
2442
2443/*
2444 * Device resume routine.  Restore some PCI settings in case the BIOS
2445 * doesn't, re-enable busmastering, and restart the interface if
2446 * appropriate.
2447 */
2448static int
2449vge_resume(device_t dev)
2450{
2451	struct vge_softc *sc;
2452	struct ifnet *ifp;
2453	uint16_t pmstat;
2454
2455	sc = device_get_softc(dev);
2456	VGE_LOCK(sc);
2457	if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0) {
2458		/* Disable PME and clear PME status. */
2459		pmstat = pci_read_config(sc->vge_dev,
2460		    sc->vge_pmcap + PCIR_POWER_STATUS, 2);
2461		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2462			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2463			pci_write_config(sc->vge_dev,
2464			    sc->vge_pmcap + PCIR_POWER_STATUS, pmstat, 2);
2465		}
2466	}
2467	vge_clrwol(sc);
2468	/* Restart MII auto-polling. */
2469	vge_miipoll_start(sc);
2470	ifp = sc->vge_ifp;
2471	/* Reinitialize interface if necessary. */
2472	if ((ifp->if_flags & IFF_UP) != 0) {
2473		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2474		vge_init_locked(sc);
2475	}
2476	sc->vge_flags &= ~VGE_FLAG_SUSPENDED;
2477	VGE_UNLOCK(sc);
2478
2479	return (0);
2480}
2481
2482/*
2483 * Stop all chip I/O so that the kernel's probe routines don't
2484 * get confused by errant DMAs when rebooting.
2485 */
2486static int
2487vge_shutdown(device_t dev)
2488{
2489
2490	return (vge_suspend(dev));
2491}
2492
2493#define	VGE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2494	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2495
2496static void
2497vge_sysctl_node(struct vge_softc *sc)
2498{
2499	struct sysctl_ctx_list *ctx;
2500	struct sysctl_oid_list *child, *parent;
2501	struct sysctl_oid *tree;
2502	struct vge_hw_stats *stats;
2503
2504	stats = &sc->vge_stats;
2505	ctx = device_get_sysctl_ctx(sc->vge_dev);
2506	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vge_dev));
2507
2508	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_holdoff",
2509	    CTLFLAG_RW, &sc->vge_int_holdoff, 0, "interrupt holdoff");
2510	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_coal_pkt",
2511	    CTLFLAG_RW, &sc->vge_rx_coal_pkt, 0, "rx coalescing packet");
2512	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_coal_pkt",
2513	    CTLFLAG_RW, &sc->vge_tx_coal_pkt, 0, "tx coalescing packet");
2514
2515	/* Pull in device tunables. */
2516	sc->vge_int_holdoff = VGE_INT_HOLDOFF_DEFAULT;
2517	resource_int_value(device_get_name(sc->vge_dev),
2518	    device_get_unit(sc->vge_dev), "int_holdoff", &sc->vge_int_holdoff);
2519	sc->vge_rx_coal_pkt = VGE_RX_COAL_PKT_DEFAULT;
2520	resource_int_value(device_get_name(sc->vge_dev),
2521	    device_get_unit(sc->vge_dev), "rx_coal_pkt", &sc->vge_rx_coal_pkt);
2522	sc->vge_tx_coal_pkt = VGE_TX_COAL_PKT_DEFAULT;
2523	resource_int_value(device_get_name(sc->vge_dev),
2524	    device_get_unit(sc->vge_dev), "tx_coal_pkt", &sc->vge_tx_coal_pkt);
2525
2526	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2527	    NULL, "VGE statistics");
2528	parent = SYSCTL_CHILDREN(tree);
2529
2530	/* Rx statistics. */
2531	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
2532	    NULL, "RX MAC statistics");
2533	child = SYSCTL_CHILDREN(tree);
2534	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames",
2535	    &stats->rx_frames, "frames");
2536	VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2537	    &stats->rx_good_frames, "Good frames");
2538	VGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2539	    &stats->rx_fifo_oflows, "FIFO overflows");
2540	VGE_SYSCTL_STAT_ADD32(ctx, child, "runts",
2541	    &stats->rx_runts, "Too short frames");
2542	VGE_SYSCTL_STAT_ADD32(ctx, child, "runts_errs",
2543	    &stats->rx_runts_errs, "Too short frames with errors");
2544	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2545	    &stats->rx_pkts_64, "64 bytes frames");
2546	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2547	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
2548	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2549	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
2550	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2551	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
2552	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2553	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
2554	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2555	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
2556	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
2557	    &stats->rx_pkts_1519_max, "1519 to max frames");
2558	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max_errs",
2559	    &stats->rx_pkts_1519_max_errs, "1519 to max frames with error");
2560	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2561	    &stats->rx_jumbos, "Jumbo frames");
2562	VGE_SYSCTL_STAT_ADD32(ctx, child, "crcerrs",
2563	    &stats->rx_crcerrs, "CRC errors");
2564	VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2565	    &stats->rx_pause_frames, "CRC errors");
2566	VGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2567	    &stats->rx_alignerrs, "Alignment errors");
2568	VGE_SYSCTL_STAT_ADD32(ctx, child, "nobufs",
2569	    &stats->rx_nobufs, "Frames with no buffer event");
2570	VGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2571	    &stats->rx_symerrs, "Frames with symbol errors");
2572	VGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2573	    &stats->rx_lenerrs, "Frames with length mismatched");
2574
2575	/* Tx statistics. */
2576	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
2577	    NULL, "TX MAC statistics");
2578	child = SYSCTL_CHILDREN(tree);
2579	VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2580	    &stats->tx_good_frames, "Good frames");
2581	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2582	    &stats->tx_pkts_64, "64 bytes frames");
2583	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2584	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
2585	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2586	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
2587	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2588	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
2589	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2590	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
2591	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2592	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
2593	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2594	    &stats->tx_jumbos, "Jumbo frames");
2595	VGE_SYSCTL_STAT_ADD32(ctx, child, "colls",
2596	    &stats->tx_colls, "Collisions");
2597	VGE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2598	    &stats->tx_latecolls, "Late collisions");
2599	VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2600	    &stats->tx_pause, "Pause frames");
2601#ifdef VGE_ENABLE_SQEERR
2602	VGE_SYSCTL_STAT_ADD32(ctx, child, "sqeerrs",
2603	    &stats->tx_sqeerrs, "SQE errors");
2604#endif
2605	/* Clear MAC statistics. */
2606	vge_stats_clear(sc);
2607}
2608
2609#undef	VGE_SYSCTL_STAT_ADD32
2610
2611static void
2612vge_stats_clear(struct vge_softc *sc)
2613{
2614	int i;
2615
2616	CSR_WRITE_1(sc, VGE_MIBCSR,
2617	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FREEZE);
2618	CSR_WRITE_1(sc, VGE_MIBCSR,
2619	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_CLR);
2620	for (i = VGE_TIMEOUT; i > 0; i--) {
2621		DELAY(1);
2622		if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_CLR) == 0)
2623			break;
2624	}
2625	if (i == 0)
2626		device_printf(sc->vge_dev, "MIB clear timed out!\n");
2627	CSR_WRITE_1(sc, VGE_MIBCSR, CSR_READ_1(sc, VGE_MIBCSR) &
2628	    ~VGE_MIBCSR_FREEZE);
2629}
2630
2631static void
2632vge_stats_update(struct vge_softc *sc)
2633{
2634	struct vge_hw_stats *stats;
2635	struct ifnet *ifp;
2636	uint32_t mib[VGE_MIB_CNT], val;
2637	int i;
2638
2639	VGE_LOCK_ASSERT(sc);
2640
2641	stats = &sc->vge_stats;
2642	ifp = sc->vge_ifp;
2643
2644	CSR_WRITE_1(sc, VGE_MIBCSR,
2645	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FLUSH);
2646	for (i = VGE_TIMEOUT; i > 0; i--) {
2647		DELAY(1);
2648		if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_FLUSH) == 0)
2649			break;
2650	}
2651	if (i == 0) {
2652		device_printf(sc->vge_dev, "MIB counter dump timed out!\n");
2653		vge_stats_clear(sc);
2654		return;
2655	}
2656
2657	bzero(mib, sizeof(mib));
2658reset_idx:
2659	/* Set MIB read index to 0. */
2660	CSR_WRITE_1(sc, VGE_MIBCSR,
2661	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_RINI);
2662	for (i = 0; i < VGE_MIB_CNT; i++) {
2663		val = CSR_READ_4(sc, VGE_MIBDATA);
2664		if (i != VGE_MIB_DATA_IDX(val)) {
2665			/* Reading interrupted. */
2666			goto reset_idx;
2667		}
2668		mib[i] = val & VGE_MIB_DATA_MASK;
2669	}
2670
2671	/* Rx stats. */
2672	stats->rx_frames += mib[VGE_MIB_RX_FRAMES];
2673	stats->rx_good_frames += mib[VGE_MIB_RX_GOOD_FRAMES];
2674	stats->rx_fifo_oflows += mib[VGE_MIB_RX_FIFO_OVERRUNS];
2675	stats->rx_runts += mib[VGE_MIB_RX_RUNTS];
2676	stats->rx_runts_errs += mib[VGE_MIB_RX_RUNTS_ERRS];
2677	stats->rx_pkts_64 += mib[VGE_MIB_RX_PKTS_64];
2678	stats->rx_pkts_65_127 += mib[VGE_MIB_RX_PKTS_65_127];
2679	stats->rx_pkts_128_255 += mib[VGE_MIB_RX_PKTS_128_255];
2680	stats->rx_pkts_256_511 += mib[VGE_MIB_RX_PKTS_256_511];
2681	stats->rx_pkts_512_1023 += mib[VGE_MIB_RX_PKTS_512_1023];
2682	stats->rx_pkts_1024_1518 += mib[VGE_MIB_RX_PKTS_1024_1518];
2683	stats->rx_pkts_1519_max += mib[VGE_MIB_RX_PKTS_1519_MAX];
2684	stats->rx_pkts_1519_max_errs += mib[VGE_MIB_RX_PKTS_1519_MAX_ERRS];
2685	stats->rx_jumbos += mib[VGE_MIB_RX_JUMBOS];
2686	stats->rx_crcerrs += mib[VGE_MIB_RX_CRCERRS];
2687	stats->rx_pause_frames += mib[VGE_MIB_RX_PAUSE];
2688	stats->rx_alignerrs += mib[VGE_MIB_RX_ALIGNERRS];
2689	stats->rx_nobufs += mib[VGE_MIB_RX_NOBUFS];
2690	stats->rx_symerrs += mib[VGE_MIB_RX_SYMERRS];
2691	stats->rx_lenerrs += mib[VGE_MIB_RX_LENERRS];
2692
2693	/* Tx stats. */
2694	stats->tx_good_frames += mib[VGE_MIB_TX_GOOD_FRAMES];
2695	stats->tx_pkts_64 += mib[VGE_MIB_TX_PKTS_64];
2696	stats->tx_pkts_65_127 += mib[VGE_MIB_TX_PKTS_65_127];
2697	stats->tx_pkts_128_255 += mib[VGE_MIB_TX_PKTS_128_255];
2698	stats->tx_pkts_256_511 += mib[VGE_MIB_TX_PKTS_256_511];
2699	stats->tx_pkts_512_1023 += mib[VGE_MIB_TX_PKTS_512_1023];
2700	stats->tx_pkts_1024_1518 += mib[VGE_MIB_TX_PKTS_1024_1518];
2701	stats->tx_jumbos += mib[VGE_MIB_TX_JUMBOS];
2702	stats->tx_colls += mib[VGE_MIB_TX_COLLS];
2703	stats->tx_pause += mib[VGE_MIB_TX_PAUSE];
2704#ifdef VGE_ENABLE_SQEERR
2705	stats->tx_sqeerrs += mib[VGE_MIB_TX_SQEERRS];
2706#endif
2707	stats->tx_latecolls += mib[VGE_MIB_TX_LATECOLLS];
2708
2709	/* Update counters in ifnet. */
2710	ifp->if_opackets += mib[VGE_MIB_TX_GOOD_FRAMES];
2711
2712	ifp->if_collisions += mib[VGE_MIB_TX_COLLS] +
2713	    mib[VGE_MIB_TX_LATECOLLS];
2714
2715	ifp->if_oerrors += mib[VGE_MIB_TX_COLLS] +
2716	    mib[VGE_MIB_TX_LATECOLLS];
2717
2718	ifp->if_ipackets += mib[VGE_MIB_RX_GOOD_FRAMES];
2719
2720	ifp->if_ierrors += mib[VGE_MIB_RX_FIFO_OVERRUNS] +
2721	    mib[VGE_MIB_RX_RUNTS] +
2722	    mib[VGE_MIB_RX_RUNTS_ERRS] +
2723	    mib[VGE_MIB_RX_CRCERRS] +
2724	    mib[VGE_MIB_RX_ALIGNERRS] +
2725	    mib[VGE_MIB_RX_NOBUFS] +
2726	    mib[VGE_MIB_RX_SYMERRS] +
2727	    mib[VGE_MIB_RX_LENERRS];
2728}
2729
2730static void
2731vge_intr_holdoff(struct vge_softc *sc)
2732{
2733	uint8_t intctl;
2734
2735	VGE_LOCK_ASSERT(sc);
2736
2737	/*
2738	 * Set Tx interrupt supression threshold.
2739	 * It's possible to use single-shot timer in VGE_CRS1 register
2740	 * in Tx path such that driver can remove most of Tx completion
2741	 * interrupts. However this requires additional access to
2742	 * VGE_CRS1 register to reload the timer in addintion to
2743	 * activating Tx kick command. Another downside is we don't know
2744	 * what single-shot timer value should be used in advance so
2745	 * reclaiming transmitted mbufs could be delayed a lot which in
2746	 * turn slows down Tx operation.
2747	 */
2748	CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_TXSUPPTHR);
2749	CSR_WRITE_1(sc, VGE_TXSUPPTHR, sc->vge_tx_coal_pkt);
2750
2751	/* Set Rx interrupt suppresion threshold. */
2752	CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2753	CSR_WRITE_1(sc, VGE_RXSUPPTHR, sc->vge_rx_coal_pkt);
2754
2755	intctl = CSR_READ_1(sc, VGE_INTCTL1);
2756	intctl &= ~VGE_INTCTL_SC_RELOAD;
2757	intctl |= VGE_INTCTL_HC_RELOAD;
2758	if (sc->vge_tx_coal_pkt <= 0)
2759		intctl |= VGE_INTCTL_TXINTSUP_DISABLE;
2760	else
2761		intctl &= ~VGE_INTCTL_TXINTSUP_DISABLE;
2762	if (sc->vge_rx_coal_pkt <= 0)
2763		intctl |= VGE_INTCTL_RXINTSUP_DISABLE;
2764	else
2765		intctl &= ~VGE_INTCTL_RXINTSUP_DISABLE;
2766	CSR_WRITE_1(sc, VGE_INTCTL1, intctl);
2767	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_HOLDOFF);
2768	if (sc->vge_int_holdoff > 0) {
2769		/* Set interrupt holdoff timer. */
2770		CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2771		CSR_WRITE_1(sc, VGE_INTHOLDOFF,
2772		    VGE_INT_HOLDOFF_USEC(sc->vge_int_holdoff));
2773		/* Enable holdoff timer. */
2774		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2775	}
2776}
2777
2778static void
2779vge_setlinkspeed(struct vge_softc *sc)
2780{
2781	struct mii_data *mii;
2782	int aneg, i;
2783
2784	VGE_LOCK_ASSERT(sc);
2785
2786	mii = device_get_softc(sc->vge_miibus);
2787	mii_pollstat(mii);
2788	aneg = 0;
2789	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
2790	    (IFM_ACTIVE | IFM_AVALID)) {
2791		switch IFM_SUBTYPE(mii->mii_media_active) {
2792		case IFM_10_T:
2793		case IFM_100_TX:
2794			return;
2795		case IFM_1000_T:
2796			aneg++;
2797		default:
2798			break;
2799		}
2800	}
2801	/* Clear forced MAC speed/duplex configuration. */
2802	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2803	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2804	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_100T2CR, 0);
2805	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_ANAR,
2806	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
2807	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2808	    BMCR_AUTOEN | BMCR_STARTNEG);
2809	DELAY(1000);
2810	if (aneg != 0) {
2811		/* Poll link state until vge(4) get a 10/100 link. */
2812		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
2813			mii_pollstat(mii);
2814			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
2815			    == (IFM_ACTIVE | IFM_AVALID)) {
2816				switch (IFM_SUBTYPE(mii->mii_media_active)) {
2817				case IFM_10_T:
2818				case IFM_100_TX:
2819					return;
2820				default:
2821					break;
2822				}
2823			}
2824			VGE_UNLOCK(sc);
2825			pause("vgelnk", hz);
2826			VGE_LOCK(sc);
2827		}
2828		if (i == MII_ANEGTICKS_GIGE)
2829			device_printf(sc->vge_dev, "establishing link failed, "
2830			    "WOL may not work!");
2831	}
2832	/*
2833	 * No link, force MAC to have 100Mbps, full-duplex link.
2834	 * This is the last resort and may/may not work.
2835	 */
2836	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
2837	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
2838}
2839
2840static void
2841vge_setwol(struct vge_softc *sc)
2842{
2843	struct ifnet *ifp;
2844	uint16_t pmstat;
2845	uint8_t val;
2846
2847	VGE_LOCK_ASSERT(sc);
2848
2849	if ((sc->vge_flags & VGE_FLAG_PMCAP) == 0) {
2850		/* No PME capability, PHY power down. */
2851		vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2852		    BMCR_PDOWN);
2853		vge_miipoll_stop(sc);
2854		return;
2855	}
2856
2857	ifp = sc->vge_ifp;
2858
2859	/* Clear WOL on pattern match. */
2860	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2861	/* Disable WOL on magic/unicast packet. */
2862	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2863	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2864	    VGE_WOLCFG_PMEOVR);
2865	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
2866		vge_setlinkspeed(sc);
2867		val = 0;
2868		if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2869			val |= VGE_WOLCR1_UCAST;
2870		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2871			val |= VGE_WOLCR1_MAGIC;
2872		CSR_WRITE_1(sc, VGE_WOLCR1S, val);
2873		val = 0;
2874		if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2875			val |= VGE_WOLCFG_SAM | VGE_WOLCFG_SAB;
2876		CSR_WRITE_1(sc, VGE_WOLCFGS, val | VGE_WOLCFG_PMEOVR);
2877		/* Disable MII auto-polling. */
2878		vge_miipoll_stop(sc);
2879	}
2880	CSR_SETBIT_1(sc, VGE_DIAGCTL,
2881	    VGE_DIAGCTL_MACFORCE | VGE_DIAGCTL_FDXFORCE);
2882	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2883
2884	/* Clear WOL status on pattern match. */
2885	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2886	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2887
2888	val = CSR_READ_1(sc, VGE_PWRSTAT);
2889	val |= VGE_STICKHW_SWPTAG;
2890	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2891	/* Put hardware into sleep. */
2892	val = CSR_READ_1(sc, VGE_PWRSTAT);
2893	val |= VGE_STICKHW_DS0 | VGE_STICKHW_DS1;
2894	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2895	/* Request PME if WOL is requested. */
2896	pmstat = pci_read_config(sc->vge_dev, sc->vge_pmcap +
2897	    PCIR_POWER_STATUS, 2);
2898	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2899	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2900		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2901	pci_write_config(sc->vge_dev, sc->vge_pmcap + PCIR_POWER_STATUS,
2902	    pmstat, 2);
2903}
2904
2905static void
2906vge_clrwol(struct vge_softc *sc)
2907{
2908	uint8_t val;
2909
2910	val = CSR_READ_1(sc, VGE_PWRSTAT);
2911	val &= ~VGE_STICKHW_SWPTAG;
2912	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2913	/* Disable WOL and clear power state indicator. */
2914	val = CSR_READ_1(sc, VGE_PWRSTAT);
2915	val &= ~(VGE_STICKHW_DS0 | VGE_STICKHW_DS1);
2916	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2917
2918	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2919	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2920
2921	/* Clear WOL on pattern match. */
2922	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2923	/* Disable WOL on magic/unicast packet. */
2924	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2925	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2926	    VGE_WOLCFG_PMEOVR);
2927	/* Clear WOL status on pattern match. */
2928	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2929	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2930}
2931