1/*-
2 * Copyright (c) 2001 Wind River Systems
3 * Copyright (c) 1997, 1998, 1999, 2000, 2001
4 *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 *    must display the following acknowledgement:
16 *	This product includes software developed by Bill Paul.
17 * 4. Neither the name of the author nor the names of any co-contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD$");
36
37/*
38 * National Semiconductor DP83820/DP83821 gigabit ethernet driver
39 * for FreeBSD. Datasheets are available from:
40 *
41 * http://www.national.com/ds/DP/DP83820.pdf
42 * http://www.national.com/ds/DP/DP83821.pdf
43 *
44 * These chips are used on several low cost gigabit ethernet NICs
45 * sold by D-Link, Addtron, SMC and Asante. Both parts are
46 * virtually the same, except the 83820 is a 64-bit/32-bit part,
47 * while the 83821 is 32-bit only.
48 *
49 * Many cards also use National gigE transceivers, such as the
50 * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
51 * contains a full register description that applies to all of these
52 * components:
53 *
54 * http://www.national.com/ds/DP/DP83861.pdf
55 *
56 * Written by Bill Paul <wpaul@bsdi.com>
57 * BSDi Open Source Solutions
58 */
59
60/*
61 * The NatSemi DP83820 and 83821 controllers are enhanced versions
62 * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
63 * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
64 * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
65 * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
66 * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
67 * matching buffers, one perfect address filter buffer and interrupt
68 * moderation. The 83820 supports both 64-bit and 32-bit addressing
69 * and data transfers: the 64-bit support can be toggled on or off
70 * via software. This affects the size of certain fields in the DMA
71 * descriptors.
72 *
73 * There are two bugs/misfeatures in the 83820/83821 that I have
74 * discovered so far:
75 *
76 * - Receive buffers must be aligned on 64-bit boundaries, which means
77 *   you must resort to copying data in order to fix up the payload
78 *   alignment.
79 *
80 * - In order to transmit jumbo frames larger than 8170 bytes, you have
81 *   to turn off transmit checksum offloading, because the chip can't
82 *   compute the checksum on an outgoing frame unless it fits entirely
83 *   within the TX FIFO, which is only 8192 bytes in size. If you have
84 *   TX checksum offload enabled and you transmit attempt to transmit a
85 *   frame larger than 8170 bytes, the transmitter will wedge.
86 *
87 * To work around the latter problem, TX checksum offload is disabled
88 * if the user selects an MTU larger than 8152 (8170 - 18).
89 */
90
91#ifdef HAVE_KERNEL_OPTION_HEADERS
92#include "opt_device_polling.h"
93#endif
94
95#include <sys/param.h>
96#include <sys/systm.h>
97#include <sys/bus.h>
98#include <sys/endian.h>
99#include <sys/kernel.h>
100#include <sys/lock.h>
101#include <sys/malloc.h>
102#include <sys/mbuf.h>
103#include <sys/module.h>
104#include <sys/mutex.h>
105#include <sys/rman.h>
106#include <sys/socket.h>
107#include <sys/sockio.h>
108#include <sys/sysctl.h>
109
110#include <net/bpf.h>
111#include <net/if.h>
112#include <net/if_arp.h>
113#include <net/ethernet.h>
114#include <net/if_dl.h>
115#include <net/if_media.h>
116#include <net/if_types.h>
117#include <net/if_vlan_var.h>
118
119#include <dev/mii/mii.h>
120#include <dev/mii/mii_bitbang.h>
121#include <dev/mii/miivar.h>
122
123#include <dev/pci/pcireg.h>
124#include <dev/pci/pcivar.h>
125
126#include <machine/bus.h>
127
128#include <dev/nge/if_ngereg.h>
129
130/* "device miibus" required.  See GENERIC if you get errors here. */
131#include "miibus_if.h"
132
133MODULE_DEPEND(nge, pci, 1, 1, 1);
134MODULE_DEPEND(nge, ether, 1, 1, 1);
135MODULE_DEPEND(nge, miibus, 1, 1, 1);
136
137#define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
138
139/*
140 * Various supported device vendors/types and their names.
141 */
142static const struct nge_type nge_devs[] = {
143	{ NGE_VENDORID, NGE_DEVICEID,
144	    "National Semiconductor Gigabit Ethernet" },
145	{ 0, 0, NULL }
146};
147
148static int nge_probe(device_t);
149static int nge_attach(device_t);
150static int nge_detach(device_t);
151static int nge_shutdown(device_t);
152static int nge_suspend(device_t);
153static int nge_resume(device_t);
154
155static __inline void nge_discard_rxbuf(struct nge_softc *, int);
156static int nge_newbuf(struct nge_softc *, int);
157static int nge_encap(struct nge_softc *, struct mbuf **);
158#ifndef __NO_STRICT_ALIGNMENT
159static __inline void nge_fixup_rx(struct mbuf *);
160#endif
161static int nge_rxeof(struct nge_softc *);
162static void nge_txeof(struct nge_softc *);
163static void nge_intr(void *);
164static void nge_tick(void *);
165static void nge_stats_update(struct nge_softc *);
166static void nge_start(struct ifnet *);
167static void nge_start_locked(struct ifnet *);
168static int nge_ioctl(struct ifnet *, u_long, caddr_t);
169static void nge_init(void *);
170static void nge_init_locked(struct nge_softc *);
171static int nge_stop_mac(struct nge_softc *);
172static void nge_stop(struct nge_softc *);
173static void nge_wol(struct nge_softc *);
174static void nge_watchdog(struct nge_softc *);
175static int nge_mediachange(struct ifnet *);
176static void nge_mediastatus(struct ifnet *, struct ifmediareq *);
177
178static void nge_delay(struct nge_softc *);
179static void nge_eeprom_idle(struct nge_softc *);
180static void nge_eeprom_putbyte(struct nge_softc *, int);
181static void nge_eeprom_getword(struct nge_softc *, int, uint16_t *);
182static void nge_read_eeprom(struct nge_softc *, caddr_t, int, int);
183
184static int nge_miibus_readreg(device_t, int, int);
185static int nge_miibus_writereg(device_t, int, int, int);
186static void nge_miibus_statchg(device_t);
187
188static void nge_rxfilter(struct nge_softc *);
189static void nge_reset(struct nge_softc *);
190static void nge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
191static int nge_dma_alloc(struct nge_softc *);
192static void nge_dma_free(struct nge_softc *);
193static int nge_list_rx_init(struct nge_softc *);
194static int nge_list_tx_init(struct nge_softc *);
195static void nge_sysctl_node(struct nge_softc *);
196static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
197static int sysctl_hw_nge_int_holdoff(SYSCTL_HANDLER_ARGS);
198
199/*
200 * MII bit-bang glue
201 */
202static uint32_t nge_mii_bitbang_read(device_t);
203static void nge_mii_bitbang_write(device_t, uint32_t);
204
205static const struct mii_bitbang_ops nge_mii_bitbang_ops = {
206	nge_mii_bitbang_read,
207	nge_mii_bitbang_write,
208	{
209		NGE_MEAR_MII_DATA,	/* MII_BIT_MDO */
210		NGE_MEAR_MII_DATA,	/* MII_BIT_MDI */
211		NGE_MEAR_MII_CLK,	/* MII_BIT_MDC */
212		NGE_MEAR_MII_DIR,	/* MII_BIT_DIR_HOST_PHY */
213		0,			/* MII_BIT_DIR_PHY_HOST */
214	}
215};
216
217static device_method_t nge_methods[] = {
218	/* Device interface */
219	DEVMETHOD(device_probe,		nge_probe),
220	DEVMETHOD(device_attach,	nge_attach),
221	DEVMETHOD(device_detach,	nge_detach),
222	DEVMETHOD(device_shutdown,	nge_shutdown),
223	DEVMETHOD(device_suspend,	nge_suspend),
224	DEVMETHOD(device_resume,	nge_resume),
225
226	/* MII interface */
227	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
228	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
229	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
230
231	DEVMETHOD_END
232};
233
234static driver_t nge_driver = {
235	"nge",
236	nge_methods,
237	sizeof(struct nge_softc)
238};
239
240static devclass_t nge_devclass;
241
242DRIVER_MODULE(nge, pci, nge_driver, nge_devclass, 0, 0);
243DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
244
245#define NGE_SETBIT(sc, reg, x)				\
246	CSR_WRITE_4(sc, reg,				\
247		CSR_READ_4(sc, reg) | (x))
248
249#define NGE_CLRBIT(sc, reg, x)				\
250	CSR_WRITE_4(sc, reg,				\
251		CSR_READ_4(sc, reg) & ~(x))
252
253#define SIO_SET(x)					\
254	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
255
256#define SIO_CLR(x)					\
257	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
258
259static void
260nge_delay(struct nge_softc *sc)
261{
262	int idx;
263
264	for (idx = (300 / 33) + 1; idx > 0; idx--)
265		CSR_READ_4(sc, NGE_CSR);
266}
267
268static void
269nge_eeprom_idle(struct nge_softc *sc)
270{
271	int i;
272
273	SIO_SET(NGE_MEAR_EE_CSEL);
274	nge_delay(sc);
275	SIO_SET(NGE_MEAR_EE_CLK);
276	nge_delay(sc);
277
278	for (i = 0; i < 25; i++) {
279		SIO_CLR(NGE_MEAR_EE_CLK);
280		nge_delay(sc);
281		SIO_SET(NGE_MEAR_EE_CLK);
282		nge_delay(sc);
283	}
284
285	SIO_CLR(NGE_MEAR_EE_CLK);
286	nge_delay(sc);
287	SIO_CLR(NGE_MEAR_EE_CSEL);
288	nge_delay(sc);
289	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
290}
291
292/*
293 * Send a read command and address to the EEPROM, check for ACK.
294 */
295static void
296nge_eeprom_putbyte(struct nge_softc *sc, int addr)
297{
298	int d, i;
299
300	d = addr | NGE_EECMD_READ;
301
302	/*
303	 * Feed in each bit and stobe the clock.
304	 */
305	for (i = 0x400; i; i >>= 1) {
306		if (d & i) {
307			SIO_SET(NGE_MEAR_EE_DIN);
308		} else {
309			SIO_CLR(NGE_MEAR_EE_DIN);
310		}
311		nge_delay(sc);
312		SIO_SET(NGE_MEAR_EE_CLK);
313		nge_delay(sc);
314		SIO_CLR(NGE_MEAR_EE_CLK);
315		nge_delay(sc);
316	}
317}
318
319/*
320 * Read a word of data stored in the EEPROM at address 'addr.'
321 */
322static void
323nge_eeprom_getword(struct nge_softc *sc, int addr, uint16_t *dest)
324{
325	int i;
326	uint16_t word = 0;
327
328	/* Force EEPROM to idle state. */
329	nge_eeprom_idle(sc);
330
331	/* Enter EEPROM access mode. */
332	nge_delay(sc);
333	SIO_CLR(NGE_MEAR_EE_CLK);
334	nge_delay(sc);
335	SIO_SET(NGE_MEAR_EE_CSEL);
336	nge_delay(sc);
337
338	/*
339	 * Send address of word we want to read.
340	 */
341	nge_eeprom_putbyte(sc, addr);
342
343	/*
344	 * Start reading bits from EEPROM.
345	 */
346	for (i = 0x8000; i; i >>= 1) {
347		SIO_SET(NGE_MEAR_EE_CLK);
348		nge_delay(sc);
349		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
350			word |= i;
351		nge_delay(sc);
352		SIO_CLR(NGE_MEAR_EE_CLK);
353		nge_delay(sc);
354	}
355
356	/* Turn off EEPROM access mode. */
357	nge_eeprom_idle(sc);
358
359	*dest = word;
360}
361
362/*
363 * Read a sequence of words from the EEPROM.
364 */
365static void
366nge_read_eeprom(struct nge_softc *sc, caddr_t dest, int off, int cnt)
367{
368	int i;
369	uint16_t word = 0, *ptr;
370
371	for (i = 0; i < cnt; i++) {
372		nge_eeprom_getword(sc, off + i, &word);
373		ptr = (uint16_t *)(dest + (i * 2));
374		*ptr = word;
375	}
376}
377
378/*
379 * Read the MII serial port for the MII bit-bang module.
380 */
381static uint32_t
382nge_mii_bitbang_read(device_t dev)
383{
384	struct nge_softc *sc;
385	uint32_t val;
386
387	sc = device_get_softc(dev);
388
389	val = CSR_READ_4(sc, NGE_MEAR);
390	CSR_BARRIER_4(sc, NGE_MEAR,
391	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
392
393	return (val);
394}
395
396/*
397 * Write the MII serial port for the MII bit-bang module.
398 */
399static void
400nge_mii_bitbang_write(device_t dev, uint32_t val)
401{
402	struct nge_softc *sc;
403
404	sc = device_get_softc(dev);
405
406	CSR_WRITE_4(sc, NGE_MEAR, val);
407	CSR_BARRIER_4(sc, NGE_MEAR,
408	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
409}
410
411static int
412nge_miibus_readreg(device_t dev, int phy, int reg)
413{
414	struct nge_softc *sc;
415	int rv;
416
417	sc = device_get_softc(dev);
418	if ((sc->nge_flags & NGE_FLAG_TBI) != 0) {
419		/* Pretend PHY is at address 0. */
420		if (phy != 0)
421			return (0);
422		switch (reg) {
423		case MII_BMCR:
424			reg = NGE_TBI_BMCR;
425			break;
426		case MII_BMSR:
427			/* 83820/83821 has different bit layout for BMSR. */
428			rv = BMSR_ANEG | BMSR_EXTCAP | BMSR_EXTSTAT;
429			reg = CSR_READ_4(sc, NGE_TBI_BMSR);
430			if ((reg & NGE_TBIBMSR_ANEG_DONE) != 0)
431				rv |= BMSR_ACOMP;
432			if ((reg & NGE_TBIBMSR_LINKSTAT) != 0)
433				rv |= BMSR_LINK;
434			return (rv);
435		case MII_ANAR:
436			reg = NGE_TBI_ANAR;
437			break;
438		case MII_ANLPAR:
439			reg = NGE_TBI_ANLPAR;
440			break;
441		case MII_ANER:
442			reg = NGE_TBI_ANER;
443			break;
444		case MII_EXTSR:
445			reg = NGE_TBI_ESR;
446			break;
447		case MII_PHYIDR1:
448		case MII_PHYIDR2:
449			return (0);
450		default:
451			device_printf(sc->nge_dev,
452			    "bad phy register read : %d\n", reg);
453			return (0);
454		}
455		return (CSR_READ_4(sc, reg));
456	}
457
458	return (mii_bitbang_readreg(dev, &nge_mii_bitbang_ops, phy, reg));
459}
460
461static int
462nge_miibus_writereg(device_t dev, int phy, int reg, int data)
463{
464	struct nge_softc *sc;
465
466	sc = device_get_softc(dev);
467	if ((sc->nge_flags & NGE_FLAG_TBI) != 0) {
468		/* Pretend PHY is at address 0. */
469		if (phy != 0)
470			return (0);
471		switch (reg) {
472		case MII_BMCR:
473			reg = NGE_TBI_BMCR;
474			break;
475		case MII_BMSR:
476			return (0);
477		case MII_ANAR:
478			reg = NGE_TBI_ANAR;
479			break;
480		case MII_ANLPAR:
481			reg = NGE_TBI_ANLPAR;
482			break;
483		case MII_ANER:
484			reg = NGE_TBI_ANER;
485			break;
486		case MII_EXTSR:
487			reg = NGE_TBI_ESR;
488			break;
489		case MII_PHYIDR1:
490		case MII_PHYIDR2:
491			return (0);
492		default:
493			device_printf(sc->nge_dev,
494			    "bad phy register write : %d\n", reg);
495			return (0);
496		}
497		CSR_WRITE_4(sc, reg, data);
498		return (0);
499	}
500
501	mii_bitbang_writereg(dev, &nge_mii_bitbang_ops, phy, reg, data);
502
503	return (0);
504}
505
506/*
507 * media status/link state change handler.
508 */
509static void
510nge_miibus_statchg(device_t dev)
511{
512	struct nge_softc *sc;
513	struct mii_data *mii;
514	struct ifnet *ifp;
515	struct nge_txdesc *txd;
516	uint32_t done, reg, status;
517	int i;
518
519	sc = device_get_softc(dev);
520	NGE_LOCK_ASSERT(sc);
521
522	mii = device_get_softc(sc->nge_miibus);
523	ifp = sc->nge_ifp;
524	if (mii == NULL || ifp == NULL ||
525	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
526		return;
527
528	sc->nge_flags &= ~NGE_FLAG_LINK;
529	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
530	    (IFM_AVALID | IFM_ACTIVE)) {
531		switch (IFM_SUBTYPE(mii->mii_media_active)) {
532		case IFM_10_T:
533		case IFM_100_TX:
534		case IFM_1000_T:
535		case IFM_1000_SX:
536		case IFM_1000_LX:
537		case IFM_1000_CX:
538			sc->nge_flags |= NGE_FLAG_LINK;
539			break;
540		default:
541			break;
542		}
543	}
544
545	/* Stop Tx/Rx MACs. */
546	if (nge_stop_mac(sc) == ETIMEDOUT)
547		device_printf(sc->nge_dev,
548		    "%s: unable to stop Tx/Rx MAC\n", __func__);
549	nge_txeof(sc);
550	nge_rxeof(sc);
551	if (sc->nge_head != NULL) {
552		m_freem(sc->nge_head);
553		sc->nge_head = sc->nge_tail = NULL;
554	}
555
556	/* Release queued frames. */
557	for (i = 0; i < NGE_TX_RING_CNT; i++) {
558		txd = &sc->nge_cdata.nge_txdesc[i];
559		if (txd->tx_m != NULL) {
560			bus_dmamap_sync(sc->nge_cdata.nge_tx_tag,
561			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
562			bus_dmamap_unload(sc->nge_cdata.nge_tx_tag,
563			    txd->tx_dmamap);
564			m_freem(txd->tx_m);
565			txd->tx_m = NULL;
566		}
567	}
568
569	/* Program MAC with resolved speed/duplex. */
570	if ((sc->nge_flags & NGE_FLAG_LINK) != 0) {
571		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
572			NGE_SETBIT(sc, NGE_TX_CFG,
573			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
574			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
575#ifdef notyet
576			/* Enable flow-control. */
577			if ((IFM_OPTIONS(mii->mii_media_active) &
578			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) != 0)
579				NGE_SETBIT(sc, NGE_PAUSECSR,
580				    NGE_PAUSECSR_PAUSE_ENB);
581#endif
582		} else {
583			NGE_CLRBIT(sc, NGE_TX_CFG,
584			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
585			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
586			NGE_CLRBIT(sc, NGE_PAUSECSR, NGE_PAUSECSR_PAUSE_ENB);
587		}
588		/* If we have a 1000Mbps link, set the mode_1000 bit. */
589		reg = CSR_READ_4(sc, NGE_CFG);
590		switch (IFM_SUBTYPE(mii->mii_media_active)) {
591		case IFM_1000_SX:
592		case IFM_1000_LX:
593		case IFM_1000_CX:
594		case IFM_1000_T:
595			reg |= NGE_CFG_MODE_1000;
596			break;
597		default:
598			reg &= ~NGE_CFG_MODE_1000;
599			break;
600		}
601		CSR_WRITE_4(sc, NGE_CFG, reg);
602
603		/* Reset Tx/Rx MAC. */
604		reg = CSR_READ_4(sc, NGE_CSR);
605		reg |= NGE_CSR_TX_RESET | NGE_CSR_RX_RESET;
606		CSR_WRITE_4(sc, NGE_CSR, reg);
607		/* Check the completion of reset. */
608		done = 0;
609		for (i = 0; i < NGE_TIMEOUT; i++) {
610			DELAY(1);
611			status = CSR_READ_4(sc, NGE_ISR);
612			if ((status & NGE_ISR_RX_RESET_DONE) != 0)
613				done |= NGE_ISR_RX_RESET_DONE;
614			if ((status & NGE_ISR_TX_RESET_DONE) != 0)
615				done |= NGE_ISR_TX_RESET_DONE;
616			if (done ==
617			    (NGE_ISR_TX_RESET_DONE | NGE_ISR_RX_RESET_DONE))
618				break;
619		}
620		if (i == NGE_TIMEOUT)
621			device_printf(sc->nge_dev,
622			    "%s: unable to reset Tx/Rx MAC\n", __func__);
623		/* Reuse Rx buffer and reset consumer pointer. */
624		sc->nge_cdata.nge_rx_cons = 0;
625		/*
626		 * It seems that resetting Rx/Tx MAC results in
627		 * resetting Tx/Rx descriptor pointer registers such
628		 * that reloading Tx/Rx lists address are needed.
629		 */
630		CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI,
631		    NGE_ADDR_HI(sc->nge_rdata.nge_rx_ring_paddr));
632		CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO,
633		    NGE_ADDR_LO(sc->nge_rdata.nge_rx_ring_paddr));
634		CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI,
635		    NGE_ADDR_HI(sc->nge_rdata.nge_tx_ring_paddr));
636		CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO,
637		    NGE_ADDR_LO(sc->nge_rdata.nge_tx_ring_paddr));
638		/* Reinitialize Tx buffers. */
639		nge_list_tx_init(sc);
640
641		/* Restart Rx MAC. */
642		reg = CSR_READ_4(sc, NGE_CSR);
643		reg |= NGE_CSR_RX_ENABLE;
644		CSR_WRITE_4(sc, NGE_CSR, reg);
645		for (i = 0; i < NGE_TIMEOUT; i++) {
646			if ((CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RX_ENABLE) != 0)
647				break;
648			DELAY(1);
649		}
650		if (i == NGE_TIMEOUT)
651			device_printf(sc->nge_dev,
652			    "%s: unable to restart Rx MAC\n", __func__);
653	}
654
655	/* Data LED off for TBI mode */
656	if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
657		CSR_WRITE_4(sc, NGE_GPIO,
658		    CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT);
659}
660
661static void
662nge_rxfilter(struct nge_softc *sc)
663{
664	struct ifnet *ifp;
665	struct ifmultiaddr *ifma;
666	uint32_t h, i, rxfilt;
667	int bit, index;
668
669	NGE_LOCK_ASSERT(sc);
670	ifp = sc->nge_ifp;
671
672	/* Make sure to stop Rx filtering. */
673	rxfilt = CSR_READ_4(sc, NGE_RXFILT_CTL);
674	rxfilt &= ~NGE_RXFILTCTL_ENABLE;
675	CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
676	CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
677
678	rxfilt &= ~(NGE_RXFILTCTL_ALLMULTI | NGE_RXFILTCTL_ALLPHYS);
679	rxfilt &= ~NGE_RXFILTCTL_BROAD;
680	/*
681	 * We don't want to use the hash table for matching unicast
682	 * addresses.
683	 */
684	rxfilt &= ~(NGE_RXFILTCTL_MCHASH | NGE_RXFILTCTL_UCHASH);
685
686	/*
687	 * For the NatSemi chip, we have to explicitly enable the
688	 * reception of ARP frames, as well as turn on the 'perfect
689	 * match' filter where we store the station address, otherwise
690	 * we won't receive unicasts meant for this host.
691	 */
692	rxfilt |= NGE_RXFILTCTL_ARP | NGE_RXFILTCTL_PERFECT;
693
694	/*
695	 * Set the capture broadcast bit to capture broadcast frames.
696	 */
697	if ((ifp->if_flags & IFF_BROADCAST) != 0)
698		rxfilt |= NGE_RXFILTCTL_BROAD;
699
700	if ((ifp->if_flags & IFF_PROMISC) != 0 ||
701	    (ifp->if_flags & IFF_ALLMULTI) != 0) {
702		rxfilt |= NGE_RXFILTCTL_ALLMULTI;
703		if ((ifp->if_flags & IFF_PROMISC) != 0)
704			rxfilt |= NGE_RXFILTCTL_ALLPHYS;
705		goto done;
706	}
707
708	/*
709	 * We have to explicitly enable the multicast hash table
710	 * on the NatSemi chip if we want to use it, which we do.
711	 */
712	rxfilt |= NGE_RXFILTCTL_MCHASH;
713
714	/* first, zot all the existing hash bits */
715	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
716		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
717		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
718	}
719
720	/*
721	 * From the 11 bits returned by the crc routine, the top 7
722	 * bits represent the 16-bit word in the mcast hash table
723	 * that needs to be updated, and the lower 4 bits represent
724	 * which bit within that byte needs to be set.
725	 */
726	if_maddr_rlock(ifp);
727	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
728		if (ifma->ifma_addr->sa_family != AF_LINK)
729			continue;
730		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
731		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 21;
732		index = (h >> 4) & 0x7F;
733		bit = h & 0xF;
734		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
735		    NGE_FILTADDR_MCAST_LO + (index * 2));
736		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
737	}
738	if_maddr_runlock(ifp);
739
740done:
741	CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
742	/* Turn the receive filter on. */
743	rxfilt |= NGE_RXFILTCTL_ENABLE;
744	CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
745	CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
746}
747
748static void
749nge_reset(struct nge_softc *sc)
750{
751	uint32_t v;
752	int i;
753
754	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
755
756	for (i = 0; i < NGE_TIMEOUT; i++) {
757		if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
758			break;
759		DELAY(1);
760	}
761
762	if (i == NGE_TIMEOUT)
763		device_printf(sc->nge_dev, "reset never completed\n");
764
765	/* Wait a little while for the chip to get its brains in order. */
766	DELAY(1000);
767
768	/*
769	 * If this is a NetSemi chip, make sure to clear
770	 * PME mode.
771	 */
772	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
773	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
774
775	/* Clear WOL events which may interfere normal Rx filter opertaion. */
776	CSR_WRITE_4(sc, NGE_WOLCSR, 0);
777
778	/*
779	 * Only DP83820 supports 64bits addressing/data transfers and
780	 * 64bit addressing requires different descriptor structures.
781	 * To make it simple, disable 64bit addressing/data transfers.
782	 */
783	v = CSR_READ_4(sc, NGE_CFG);
784	v &= ~(NGE_CFG_64BIT_ADDR_ENB | NGE_CFG_64BIT_DATA_ENB);
785	CSR_WRITE_4(sc, NGE_CFG, v);
786}
787
788/*
789 * Probe for a NatSemi chip. Check the PCI vendor and device
790 * IDs against our list and return a device name if we find a match.
791 */
792static int
793nge_probe(device_t dev)
794{
795	const struct nge_type *t;
796
797	t = nge_devs;
798
799	while (t->nge_name != NULL) {
800		if ((pci_get_vendor(dev) == t->nge_vid) &&
801		    (pci_get_device(dev) == t->nge_did)) {
802			device_set_desc(dev, t->nge_name);
803			return (BUS_PROBE_DEFAULT);
804		}
805		t++;
806	}
807
808	return (ENXIO);
809}
810
811/*
812 * Attach the interface. Allocate softc structures, do ifmedia
813 * setup and ethernet/BPF attach.
814 */
815static int
816nge_attach(device_t dev)
817{
818	uint8_t eaddr[ETHER_ADDR_LEN];
819	uint16_t ea[ETHER_ADDR_LEN/2], ea_temp, reg;
820	struct nge_softc *sc;
821	struct ifnet *ifp;
822	int error, i, rid;
823
824	error = 0;
825	sc = device_get_softc(dev);
826	sc->nge_dev = dev;
827
828	NGE_LOCK_INIT(sc, device_get_nameunit(dev));
829	callout_init_mtx(&sc->nge_stat_ch, &sc->nge_mtx, 0);
830
831	/*
832	 * Map control/status registers.
833	 */
834	pci_enable_busmaster(dev);
835
836#ifdef NGE_USEIOSPACE
837	sc->nge_res_type = SYS_RES_IOPORT;
838	sc->nge_res_id = PCIR_BAR(0);
839#else
840	sc->nge_res_type = SYS_RES_MEMORY;
841	sc->nge_res_id = PCIR_BAR(1);
842#endif
843	sc->nge_res = bus_alloc_resource_any(dev, sc->nge_res_type,
844	    &sc->nge_res_id, RF_ACTIVE);
845
846	if (sc->nge_res == NULL) {
847		if (sc->nge_res_type == SYS_RES_MEMORY) {
848			sc->nge_res_type = SYS_RES_IOPORT;
849			sc->nge_res_id = PCIR_BAR(0);
850		} else {
851			sc->nge_res_type = SYS_RES_MEMORY;
852			sc->nge_res_id = PCIR_BAR(1);
853		}
854		sc->nge_res = bus_alloc_resource_any(dev, sc->nge_res_type,
855		    &sc->nge_res_id, RF_ACTIVE);
856		if (sc->nge_res == NULL) {
857			device_printf(dev, "couldn't allocate %s resources\n",
858			    sc->nge_res_type == SYS_RES_MEMORY ? "memory" :
859			    "I/O");
860			NGE_LOCK_DESTROY(sc);
861			return (ENXIO);
862		}
863	}
864
865	/* Allocate interrupt */
866	rid = 0;
867	sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
868	    RF_SHAREABLE | RF_ACTIVE);
869
870	if (sc->nge_irq == NULL) {
871		device_printf(dev, "couldn't map interrupt\n");
872		error = ENXIO;
873		goto fail;
874	}
875
876	/* Enable MWI. */
877	reg = pci_read_config(dev, PCIR_COMMAND, 2);
878	reg |= PCIM_CMD_MWRICEN;
879	pci_write_config(dev, PCIR_COMMAND, reg, 2);
880
881	/* Reset the adapter. */
882	nge_reset(sc);
883
884	/*
885	 * Get station address from the EEPROM.
886	 */
887	nge_read_eeprom(sc, (caddr_t)ea, NGE_EE_NODEADDR, 3);
888	for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
889		ea[i] = le16toh(ea[i]);
890	ea_temp = ea[0];
891	ea[0] = ea[2];
892	ea[2] = ea_temp;
893	bcopy(ea, eaddr, sizeof(eaddr));
894
895	if (nge_dma_alloc(sc) != 0) {
896		error = ENXIO;
897		goto fail;
898	}
899
900	nge_sysctl_node(sc);
901
902	ifp = sc->nge_ifp = if_alloc(IFT_ETHER);
903	if (ifp == NULL) {
904		device_printf(dev, "can not allocate ifnet structure\n");
905		error = ENOSPC;
906		goto fail;
907	}
908	ifp->if_softc = sc;
909	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
910	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
911	ifp->if_ioctl = nge_ioctl;
912	ifp->if_start = nge_start;
913	ifp->if_init = nge_init;
914	ifp->if_snd.ifq_drv_maxlen = NGE_TX_RING_CNT - 1;
915	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
916	IFQ_SET_READY(&ifp->if_snd);
917	ifp->if_hwassist = NGE_CSUM_FEATURES;
918	ifp->if_capabilities = IFCAP_HWCSUM;
919	/*
920	 * It seems that some hardwares doesn't provide 3.3V auxiliary
921	 * supply(3VAUX) to drive PME such that checking PCI power
922	 * management capability is necessary.
923	 */
924	if (pci_find_cap(sc->nge_dev, PCIY_PMG, &i) == 0)
925		ifp->if_capabilities |= IFCAP_WOL;
926	ifp->if_capenable = ifp->if_capabilities;
927
928	if ((CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) != 0) {
929		sc->nge_flags |= NGE_FLAG_TBI;
930		device_printf(dev, "Using TBI\n");
931		/* Configure GPIO. */
932		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
933		    | NGE_GPIO_GP4_OUT
934		    | NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
935		    | NGE_GPIO_GP3_OUTENB
936		    | NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
937	}
938
939	/*
940	 * Do MII setup.
941	 */
942	error = mii_attach(dev, &sc->nge_miibus, ifp, nge_mediachange,
943	    nge_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
944	if (error != 0) {
945		device_printf(dev, "attaching PHYs failed\n");
946		goto fail;
947	}
948
949	/*
950	 * Call MI attach routine.
951	 */
952	ether_ifattach(ifp, eaddr);
953
954	/* VLAN capability setup. */
955	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
956	ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
957	ifp->if_capenable = ifp->if_capabilities;
958#ifdef DEVICE_POLLING
959	ifp->if_capabilities |= IFCAP_POLLING;
960#endif
961	/*
962	 * Tell the upper layer(s) we support long frames.
963	 * Must appear after the call to ether_ifattach() because
964	 * ether_ifattach() sets ifi_hdrlen to the default value.
965	 */
966	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
967
968	/*
969	 * Hookup IRQ last.
970	 */
971	error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET | INTR_MPSAFE,
972	    NULL, nge_intr, sc, &sc->nge_intrhand);
973	if (error) {
974		device_printf(dev, "couldn't set up irq\n");
975		goto fail;
976	}
977
978fail:
979	if (error != 0)
980		nge_detach(dev);
981	return (error);
982}
983
984static int
985nge_detach(device_t dev)
986{
987	struct nge_softc *sc;
988	struct ifnet *ifp;
989
990	sc = device_get_softc(dev);
991	ifp = sc->nge_ifp;
992
993#ifdef DEVICE_POLLING
994	if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
995		ether_poll_deregister(ifp);
996#endif
997
998	if (device_is_attached(dev)) {
999		NGE_LOCK(sc);
1000		sc->nge_flags |= NGE_FLAG_DETACH;
1001		nge_stop(sc);
1002		NGE_UNLOCK(sc);
1003		callout_drain(&sc->nge_stat_ch);
1004		if (ifp != NULL)
1005			ether_ifdetach(ifp);
1006	}
1007
1008	if (sc->nge_miibus != NULL) {
1009		device_delete_child(dev, sc->nge_miibus);
1010		sc->nge_miibus = NULL;
1011	}
1012	bus_generic_detach(dev);
1013	if (sc->nge_intrhand != NULL)
1014		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
1015	if (sc->nge_irq != NULL)
1016		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
1017	if (sc->nge_res != NULL)
1018		bus_release_resource(dev, sc->nge_res_type, sc->nge_res_id,
1019		    sc->nge_res);
1020
1021	nge_dma_free(sc);
1022	if (ifp != NULL)
1023		if_free(ifp);
1024
1025	NGE_LOCK_DESTROY(sc);
1026
1027	return (0);
1028}
1029
1030struct nge_dmamap_arg {
1031	bus_addr_t	nge_busaddr;
1032};
1033
1034static void
1035nge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1036{
1037	struct nge_dmamap_arg *ctx;
1038
1039	if (error != 0)
1040		return;
1041	ctx = arg;
1042	ctx->nge_busaddr = segs[0].ds_addr;
1043}
1044
1045static int
1046nge_dma_alloc(struct nge_softc *sc)
1047{
1048	struct nge_dmamap_arg ctx;
1049	struct nge_txdesc *txd;
1050	struct nge_rxdesc *rxd;
1051	int error, i;
1052
1053	/* Create parent DMA tag. */
1054	error = bus_dma_tag_create(
1055	    bus_get_dma_tag(sc->nge_dev),	/* parent */
1056	    1, 0,			/* alignment, boundary */
1057	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1058	    BUS_SPACE_MAXADDR,		/* highaddr */
1059	    NULL, NULL,			/* filter, filterarg */
1060	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1061	    0,				/* nsegments */
1062	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1063	    0,				/* flags */
1064	    NULL, NULL,			/* lockfunc, lockarg */
1065	    &sc->nge_cdata.nge_parent_tag);
1066	if (error != 0) {
1067		device_printf(sc->nge_dev, "failed to create parent DMA tag\n");
1068		goto fail;
1069	}
1070	/* Create tag for Tx ring. */
1071	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1072	    NGE_RING_ALIGN, 0,		/* alignment, boundary */
1073	    BUS_SPACE_MAXADDR,		/* lowaddr */
1074	    BUS_SPACE_MAXADDR,		/* highaddr */
1075	    NULL, NULL,			/* filter, filterarg */
1076	    NGE_TX_RING_SIZE,		/* maxsize */
1077	    1,				/* nsegments */
1078	    NGE_TX_RING_SIZE,		/* maxsegsize */
1079	    0,				/* flags */
1080	    NULL, NULL,			/* lockfunc, lockarg */
1081	    &sc->nge_cdata.nge_tx_ring_tag);
1082	if (error != 0) {
1083		device_printf(sc->nge_dev, "failed to create Tx ring DMA tag\n");
1084		goto fail;
1085	}
1086
1087	/* Create tag for Rx ring. */
1088	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1089	    NGE_RING_ALIGN, 0,		/* alignment, boundary */
1090	    BUS_SPACE_MAXADDR,		/* lowaddr */
1091	    BUS_SPACE_MAXADDR,		/* highaddr */
1092	    NULL, NULL,			/* filter, filterarg */
1093	    NGE_RX_RING_SIZE,		/* maxsize */
1094	    1,				/* nsegments */
1095	    NGE_RX_RING_SIZE,		/* maxsegsize */
1096	    0,				/* flags */
1097	    NULL, NULL,			/* lockfunc, lockarg */
1098	    &sc->nge_cdata.nge_rx_ring_tag);
1099	if (error != 0) {
1100		device_printf(sc->nge_dev,
1101		    "failed to create Rx ring DMA tag\n");
1102		goto fail;
1103	}
1104
1105	/* Create tag for Tx buffers. */
1106	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1107	    1, 0,			/* alignment, boundary */
1108	    BUS_SPACE_MAXADDR,		/* lowaddr */
1109	    BUS_SPACE_MAXADDR,		/* highaddr */
1110	    NULL, NULL,			/* filter, filterarg */
1111	    MCLBYTES * NGE_MAXTXSEGS,	/* maxsize */
1112	    NGE_MAXTXSEGS,		/* nsegments */
1113	    MCLBYTES,			/* maxsegsize */
1114	    0,				/* flags */
1115	    NULL, NULL,			/* lockfunc, lockarg */
1116	    &sc->nge_cdata.nge_tx_tag);
1117	if (error != 0) {
1118		device_printf(sc->nge_dev, "failed to create Tx DMA tag\n");
1119		goto fail;
1120	}
1121
1122	/* Create tag for Rx buffers. */
1123	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1124	    NGE_RX_ALIGN, 0,		/* alignment, boundary */
1125	    BUS_SPACE_MAXADDR,		/* lowaddr */
1126	    BUS_SPACE_MAXADDR,		/* highaddr */
1127	    NULL, NULL,			/* filter, filterarg */
1128	    MCLBYTES,			/* maxsize */
1129	    1,				/* nsegments */
1130	    MCLBYTES,			/* maxsegsize */
1131	    0,				/* flags */
1132	    NULL, NULL,			/* lockfunc, lockarg */
1133	    &sc->nge_cdata.nge_rx_tag);
1134	if (error != 0) {
1135		device_printf(sc->nge_dev, "failed to create Rx DMA tag\n");
1136		goto fail;
1137	}
1138
1139	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1140	error = bus_dmamem_alloc(sc->nge_cdata.nge_tx_ring_tag,
1141	    (void **)&sc->nge_rdata.nge_tx_ring, BUS_DMA_WAITOK |
1142	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->nge_cdata.nge_tx_ring_map);
1143	if (error != 0) {
1144		device_printf(sc->nge_dev,
1145		    "failed to allocate DMA'able memory for Tx ring\n");
1146		goto fail;
1147	}
1148
1149	ctx.nge_busaddr = 0;
1150	error = bus_dmamap_load(sc->nge_cdata.nge_tx_ring_tag,
1151	    sc->nge_cdata.nge_tx_ring_map, sc->nge_rdata.nge_tx_ring,
1152	    NGE_TX_RING_SIZE, nge_dmamap_cb, &ctx, 0);
1153	if (error != 0 || ctx.nge_busaddr == 0) {
1154		device_printf(sc->nge_dev,
1155		    "failed to load DMA'able memory for Tx ring\n");
1156		goto fail;
1157	}
1158	sc->nge_rdata.nge_tx_ring_paddr = ctx.nge_busaddr;
1159
1160	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1161	error = bus_dmamem_alloc(sc->nge_cdata.nge_rx_ring_tag,
1162	    (void **)&sc->nge_rdata.nge_rx_ring, BUS_DMA_WAITOK |
1163	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->nge_cdata.nge_rx_ring_map);
1164	if (error != 0) {
1165		device_printf(sc->nge_dev,
1166		    "failed to allocate DMA'able memory for Rx ring\n");
1167		goto fail;
1168	}
1169
1170	ctx.nge_busaddr = 0;
1171	error = bus_dmamap_load(sc->nge_cdata.nge_rx_ring_tag,
1172	    sc->nge_cdata.nge_rx_ring_map, sc->nge_rdata.nge_rx_ring,
1173	    NGE_RX_RING_SIZE, nge_dmamap_cb, &ctx, 0);
1174	if (error != 0 || ctx.nge_busaddr == 0) {
1175		device_printf(sc->nge_dev,
1176		    "failed to load DMA'able memory for Rx ring\n");
1177		goto fail;
1178	}
1179	sc->nge_rdata.nge_rx_ring_paddr = ctx.nge_busaddr;
1180
1181	/* Create DMA maps for Tx buffers. */
1182	for (i = 0; i < NGE_TX_RING_CNT; i++) {
1183		txd = &sc->nge_cdata.nge_txdesc[i];
1184		txd->tx_m = NULL;
1185		txd->tx_dmamap = NULL;
1186		error = bus_dmamap_create(sc->nge_cdata.nge_tx_tag, 0,
1187		    &txd->tx_dmamap);
1188		if (error != 0) {
1189			device_printf(sc->nge_dev,
1190			    "failed to create Tx dmamap\n");
1191			goto fail;
1192		}
1193	}
1194	/* Create DMA maps for Rx buffers. */
1195	if ((error = bus_dmamap_create(sc->nge_cdata.nge_rx_tag, 0,
1196	    &sc->nge_cdata.nge_rx_sparemap)) != 0) {
1197		device_printf(sc->nge_dev,
1198		    "failed to create spare Rx dmamap\n");
1199		goto fail;
1200	}
1201	for (i = 0; i < NGE_RX_RING_CNT; i++) {
1202		rxd = &sc->nge_cdata.nge_rxdesc[i];
1203		rxd->rx_m = NULL;
1204		rxd->rx_dmamap = NULL;
1205		error = bus_dmamap_create(sc->nge_cdata.nge_rx_tag, 0,
1206		    &rxd->rx_dmamap);
1207		if (error != 0) {
1208			device_printf(sc->nge_dev,
1209			    "failed to create Rx dmamap\n");
1210			goto fail;
1211		}
1212	}
1213
1214fail:
1215	return (error);
1216}
1217
1218static void
1219nge_dma_free(struct nge_softc *sc)
1220{
1221	struct nge_txdesc *txd;
1222	struct nge_rxdesc *rxd;
1223	int i;
1224
1225	/* Tx ring. */
1226	if (sc->nge_cdata.nge_tx_ring_tag) {
1227		if (sc->nge_cdata.nge_tx_ring_map)
1228			bus_dmamap_unload(sc->nge_cdata.nge_tx_ring_tag,
1229			    sc->nge_cdata.nge_tx_ring_map);
1230		if (sc->nge_cdata.nge_tx_ring_map &&
1231		    sc->nge_rdata.nge_tx_ring)
1232			bus_dmamem_free(sc->nge_cdata.nge_tx_ring_tag,
1233			    sc->nge_rdata.nge_tx_ring,
1234			    sc->nge_cdata.nge_tx_ring_map);
1235		sc->nge_rdata.nge_tx_ring = NULL;
1236		sc->nge_cdata.nge_tx_ring_map = NULL;
1237		bus_dma_tag_destroy(sc->nge_cdata.nge_tx_ring_tag);
1238		sc->nge_cdata.nge_tx_ring_tag = NULL;
1239	}
1240	/* Rx ring. */
1241	if (sc->nge_cdata.nge_rx_ring_tag) {
1242		if (sc->nge_cdata.nge_rx_ring_map)
1243			bus_dmamap_unload(sc->nge_cdata.nge_rx_ring_tag,
1244			    sc->nge_cdata.nge_rx_ring_map);
1245		if (sc->nge_cdata.nge_rx_ring_map &&
1246		    sc->nge_rdata.nge_rx_ring)
1247			bus_dmamem_free(sc->nge_cdata.nge_rx_ring_tag,
1248			    sc->nge_rdata.nge_rx_ring,
1249			    sc->nge_cdata.nge_rx_ring_map);
1250		sc->nge_rdata.nge_rx_ring = NULL;
1251		sc->nge_cdata.nge_rx_ring_map = NULL;
1252		bus_dma_tag_destroy(sc->nge_cdata.nge_rx_ring_tag);
1253		sc->nge_cdata.nge_rx_ring_tag = NULL;
1254	}
1255	/* Tx buffers. */
1256	if (sc->nge_cdata.nge_tx_tag) {
1257		for (i = 0; i < NGE_TX_RING_CNT; i++) {
1258			txd = &sc->nge_cdata.nge_txdesc[i];
1259			if (txd->tx_dmamap) {
1260				bus_dmamap_destroy(sc->nge_cdata.nge_tx_tag,
1261				    txd->tx_dmamap);
1262				txd->tx_dmamap = NULL;
1263			}
1264		}
1265		bus_dma_tag_destroy(sc->nge_cdata.nge_tx_tag);
1266		sc->nge_cdata.nge_tx_tag = NULL;
1267	}
1268	/* Rx buffers. */
1269	if (sc->nge_cdata.nge_rx_tag) {
1270		for (i = 0; i < NGE_RX_RING_CNT; i++) {
1271			rxd = &sc->nge_cdata.nge_rxdesc[i];
1272			if (rxd->rx_dmamap) {
1273				bus_dmamap_destroy(sc->nge_cdata.nge_rx_tag,
1274				    rxd->rx_dmamap);
1275				rxd->rx_dmamap = NULL;
1276			}
1277		}
1278		if (sc->nge_cdata.nge_rx_sparemap) {
1279			bus_dmamap_destroy(sc->nge_cdata.nge_rx_tag,
1280			    sc->nge_cdata.nge_rx_sparemap);
1281			sc->nge_cdata.nge_rx_sparemap = 0;
1282		}
1283		bus_dma_tag_destroy(sc->nge_cdata.nge_rx_tag);
1284		sc->nge_cdata.nge_rx_tag = NULL;
1285	}
1286
1287	if (sc->nge_cdata.nge_parent_tag) {
1288		bus_dma_tag_destroy(sc->nge_cdata.nge_parent_tag);
1289		sc->nge_cdata.nge_parent_tag = NULL;
1290	}
1291}
1292
1293/*
1294 * Initialize the transmit descriptors.
1295 */
1296static int
1297nge_list_tx_init(struct nge_softc *sc)
1298{
1299	struct nge_ring_data *rd;
1300	struct nge_txdesc *txd;
1301	bus_addr_t addr;
1302	int i;
1303
1304	sc->nge_cdata.nge_tx_prod = 0;
1305	sc->nge_cdata.nge_tx_cons = 0;
1306	sc->nge_cdata.nge_tx_cnt = 0;
1307
1308	rd = &sc->nge_rdata;
1309	bzero(rd->nge_tx_ring, sizeof(struct nge_desc) * NGE_TX_RING_CNT);
1310	for (i = 0; i < NGE_TX_RING_CNT; i++) {
1311		if (i == NGE_TX_RING_CNT - 1)
1312			addr = NGE_TX_RING_ADDR(sc, 0);
1313		else
1314			addr = NGE_TX_RING_ADDR(sc, i + 1);
1315		rd->nge_tx_ring[i].nge_next = htole32(NGE_ADDR_LO(addr));
1316		txd = &sc->nge_cdata.nge_txdesc[i];
1317		txd->tx_m = NULL;
1318	}
1319
1320	bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
1321	    sc->nge_cdata.nge_tx_ring_map,
1322	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1323
1324	return (0);
1325}
1326
1327/*
1328 * Initialize the RX descriptors and allocate mbufs for them. Note that
1329 * we arrange the descriptors in a closed ring, so that the last descriptor
1330 * points back to the first.
1331 */
1332static int
1333nge_list_rx_init(struct nge_softc *sc)
1334{
1335	struct nge_ring_data *rd;
1336	bus_addr_t addr;
1337	int i;
1338
1339	sc->nge_cdata.nge_rx_cons = 0;
1340	sc->nge_head = sc->nge_tail = NULL;
1341
1342	rd = &sc->nge_rdata;
1343	bzero(rd->nge_rx_ring, sizeof(struct nge_desc) * NGE_RX_RING_CNT);
1344	for (i = 0; i < NGE_RX_RING_CNT; i++) {
1345		if (nge_newbuf(sc, i) != 0)
1346			return (ENOBUFS);
1347		if (i == NGE_RX_RING_CNT - 1)
1348			addr = NGE_RX_RING_ADDR(sc, 0);
1349		else
1350			addr = NGE_RX_RING_ADDR(sc, i + 1);
1351		rd->nge_rx_ring[i].nge_next = htole32(NGE_ADDR_LO(addr));
1352	}
1353
1354	bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1355	    sc->nge_cdata.nge_rx_ring_map,
1356	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1357
1358	return (0);
1359}
1360
1361static __inline void
1362nge_discard_rxbuf(struct nge_softc *sc, int idx)
1363{
1364	struct nge_desc *desc;
1365
1366	desc = &sc->nge_rdata.nge_rx_ring[idx];
1367	desc->nge_cmdsts = htole32(MCLBYTES - sizeof(uint64_t));
1368	desc->nge_extsts = 0;
1369}
1370
1371/*
1372 * Initialize an RX descriptor and attach an MBUF cluster.
1373 */
1374static int
1375nge_newbuf(struct nge_softc *sc, int idx)
1376{
1377	struct nge_desc *desc;
1378	struct nge_rxdesc *rxd;
1379	struct mbuf *m;
1380	bus_dma_segment_t segs[1];
1381	bus_dmamap_t map;
1382	int nsegs;
1383
1384	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1385	if (m == NULL)
1386		return (ENOBUFS);
1387	m->m_len = m->m_pkthdr.len = MCLBYTES;
1388	m_adj(m, sizeof(uint64_t));
1389
1390	if (bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_rx_tag,
1391	    sc->nge_cdata.nge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1392		m_freem(m);
1393		return (ENOBUFS);
1394	}
1395	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1396
1397	rxd = &sc->nge_cdata.nge_rxdesc[idx];
1398	if (rxd->rx_m != NULL) {
1399		bus_dmamap_sync(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap,
1400		    BUS_DMASYNC_POSTREAD);
1401		bus_dmamap_unload(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap);
1402	}
1403	map = rxd->rx_dmamap;
1404	rxd->rx_dmamap = sc->nge_cdata.nge_rx_sparemap;
1405	sc->nge_cdata.nge_rx_sparemap = map;
1406	bus_dmamap_sync(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap,
1407	    BUS_DMASYNC_PREREAD);
1408	rxd->rx_m = m;
1409	desc = &sc->nge_rdata.nge_rx_ring[idx];
1410	desc->nge_ptr = htole32(NGE_ADDR_LO(segs[0].ds_addr));
1411	desc->nge_cmdsts = htole32(segs[0].ds_len);
1412	desc->nge_extsts = 0;
1413
1414	return (0);
1415}
1416
1417#ifndef __NO_STRICT_ALIGNMENT
1418static __inline void
1419nge_fixup_rx(struct mbuf *m)
1420{
1421	int			i;
1422	uint16_t		*src, *dst;
1423
1424	src = mtod(m, uint16_t *);
1425	dst = src - 1;
1426
1427	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1428		*dst++ = *src++;
1429
1430	m->m_data -= ETHER_ALIGN;
1431}
1432#endif
1433
1434/*
1435 * A frame has been uploaded: pass the resulting mbuf chain up to
1436 * the higher level protocols.
1437 */
1438static int
1439nge_rxeof(struct nge_softc *sc)
1440{
1441	struct mbuf *m;
1442	struct ifnet *ifp;
1443	struct nge_desc *cur_rx;
1444	struct nge_rxdesc *rxd;
1445	int cons, prog, rx_npkts, total_len;
1446	uint32_t cmdsts, extsts;
1447
1448	NGE_LOCK_ASSERT(sc);
1449
1450	ifp = sc->nge_ifp;
1451	cons = sc->nge_cdata.nge_rx_cons;
1452	rx_npkts = 0;
1453
1454	bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1455	    sc->nge_cdata.nge_rx_ring_map,
1456	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1457
1458	for (prog = 0; prog < NGE_RX_RING_CNT &&
1459	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1460	    NGE_INC(cons, NGE_RX_RING_CNT)) {
1461#ifdef DEVICE_POLLING
1462		if (ifp->if_capenable & IFCAP_POLLING) {
1463			if (sc->rxcycles <= 0)
1464				break;
1465			sc->rxcycles--;
1466		}
1467#endif
1468		cur_rx = &sc->nge_rdata.nge_rx_ring[cons];
1469		cmdsts = le32toh(cur_rx->nge_cmdsts);
1470		extsts = le32toh(cur_rx->nge_extsts);
1471		if ((cmdsts & NGE_CMDSTS_OWN) == 0)
1472			break;
1473		prog++;
1474		rxd = &sc->nge_cdata.nge_rxdesc[cons];
1475		m = rxd->rx_m;
1476		total_len = cmdsts & NGE_CMDSTS_BUFLEN;
1477
1478		if ((cmdsts & NGE_CMDSTS_MORE) != 0) {
1479			if (nge_newbuf(sc, cons) != 0) {
1480				ifp->if_iqdrops++;
1481				if (sc->nge_head != NULL) {
1482					m_freem(sc->nge_head);
1483					sc->nge_head = sc->nge_tail = NULL;
1484				}
1485				nge_discard_rxbuf(sc, cons);
1486				continue;
1487			}
1488			m->m_len = total_len;
1489			if (sc->nge_head == NULL) {
1490				m->m_pkthdr.len = total_len;
1491				sc->nge_head = sc->nge_tail = m;
1492			} else {
1493				m->m_flags &= ~M_PKTHDR;
1494				sc->nge_head->m_pkthdr.len += total_len;
1495				sc->nge_tail->m_next = m;
1496				sc->nge_tail = m;
1497			}
1498			continue;
1499		}
1500
1501		/*
1502		 * If an error occurs, update stats, clear the
1503		 * status word and leave the mbuf cluster in place:
1504		 * it should simply get re-used next time this descriptor
1505	 	 * comes up in the ring.
1506		 */
1507		if ((cmdsts & NGE_CMDSTS_PKT_OK) == 0) {
1508			if ((cmdsts & NGE_RXSTAT_RUNT) &&
1509			    total_len >= (ETHER_MIN_LEN - ETHER_CRC_LEN - 4)) {
1510				/*
1511				 * Work-around hardware bug, accept runt frames
1512				 * if its length is larger than or equal to 56.
1513				 */
1514			} else {
1515				/*
1516				 * Input error counters are updated by hardware.
1517				 */
1518				if (sc->nge_head != NULL) {
1519					m_freem(sc->nge_head);
1520					sc->nge_head = sc->nge_tail = NULL;
1521				}
1522				nge_discard_rxbuf(sc, cons);
1523				continue;
1524			}
1525		}
1526
1527		/* Try conjure up a replacement mbuf. */
1528
1529		if (nge_newbuf(sc, cons) != 0) {
1530			ifp->if_iqdrops++;
1531			if (sc->nge_head != NULL) {
1532				m_freem(sc->nge_head);
1533				sc->nge_head = sc->nge_tail = NULL;
1534			}
1535			nge_discard_rxbuf(sc, cons);
1536			continue;
1537		}
1538
1539		/* Chain received mbufs. */
1540		if (sc->nge_head != NULL) {
1541			m->m_len = total_len;
1542			m->m_flags &= ~M_PKTHDR;
1543			sc->nge_tail->m_next = m;
1544			m = sc->nge_head;
1545			m->m_pkthdr.len += total_len;
1546			sc->nge_head = sc->nge_tail = NULL;
1547		} else
1548			m->m_pkthdr.len = m->m_len = total_len;
1549
1550		/*
1551		 * Ok. NatSemi really screwed up here. This is the
1552		 * only gigE chip I know of with alignment constraints
1553		 * on receive buffers. RX buffers must be 64-bit aligned.
1554		 */
1555		/*
1556		 * By popular demand, ignore the alignment problems
1557		 * on the non-strict alignment platform. The performance hit
1558		 * incurred due to unaligned accesses is much smaller
1559		 * than the hit produced by forcing buffer copies all
1560		 * the time, especially with jumbo frames. We still
1561		 * need to fix up the alignment everywhere else though.
1562		 */
1563#ifndef __NO_STRICT_ALIGNMENT
1564		nge_fixup_rx(m);
1565#endif
1566		m->m_pkthdr.rcvif = ifp;
1567		ifp->if_ipackets++;
1568
1569		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1570			/* Do IP checksum checking. */
1571			if ((extsts & NGE_RXEXTSTS_IPPKT) != 0)
1572				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1573			if ((extsts & NGE_RXEXTSTS_IPCSUMERR) == 0)
1574				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1575			if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1576			    !(extsts & NGE_RXEXTSTS_TCPCSUMERR)) ||
1577			    (extsts & NGE_RXEXTSTS_UDPPKT &&
1578			    !(extsts & NGE_RXEXTSTS_UDPCSUMERR))) {
1579				m->m_pkthdr.csum_flags |=
1580				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1581				m->m_pkthdr.csum_data = 0xffff;
1582			}
1583		}
1584
1585		/*
1586		 * If we received a packet with a vlan tag, pass it
1587		 * to vlan_input() instead of ether_input().
1588		 */
1589		if ((extsts & NGE_RXEXTSTS_VLANPKT) != 0 &&
1590		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
1591			m->m_pkthdr.ether_vtag =
1592			    bswap16(extsts & NGE_RXEXTSTS_VTCI);
1593			m->m_flags |= M_VLANTAG;
1594		}
1595		NGE_UNLOCK(sc);
1596		(*ifp->if_input)(ifp, m);
1597		NGE_LOCK(sc);
1598		rx_npkts++;
1599	}
1600
1601	if (prog > 0) {
1602		sc->nge_cdata.nge_rx_cons = cons;
1603		bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1604		    sc->nge_cdata.nge_rx_ring_map,
1605		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1606	}
1607	return (rx_npkts);
1608}
1609
1610/*
1611 * A frame was downloaded to the chip. It's safe for us to clean up
1612 * the list buffers.
1613 */
1614static void
1615nge_txeof(struct nge_softc *sc)
1616{
1617	struct nge_desc	*cur_tx;
1618	struct nge_txdesc *txd;
1619	struct ifnet *ifp;
1620	uint32_t cmdsts;
1621	int cons, prod;
1622
1623	NGE_LOCK_ASSERT(sc);
1624	ifp = sc->nge_ifp;
1625
1626	cons = sc->nge_cdata.nge_tx_cons;
1627	prod = sc->nge_cdata.nge_tx_prod;
1628	if (cons == prod)
1629		return;
1630
1631	bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
1632	    sc->nge_cdata.nge_tx_ring_map,
1633	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1634
1635	/*
1636	 * Go through our tx list and free mbufs for those
1637	 * frames that have been transmitted.
1638	 */
1639	for (; cons != prod; NGE_INC(cons, NGE_TX_RING_CNT)) {
1640		cur_tx = &sc->nge_rdata.nge_tx_ring[cons];
1641		cmdsts = le32toh(cur_tx->nge_cmdsts);
1642		if ((cmdsts & NGE_CMDSTS_OWN) != 0)
1643			break;
1644		sc->nge_cdata.nge_tx_cnt--;
1645		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1646		if ((cmdsts & NGE_CMDSTS_MORE) != 0)
1647			continue;
1648
1649		txd = &sc->nge_cdata.nge_txdesc[cons];
1650		bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap,
1651		    BUS_DMASYNC_POSTWRITE);
1652		bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap);
1653		if ((cmdsts & NGE_CMDSTS_PKT_OK) == 0) {
1654			ifp->if_oerrors++;
1655			if ((cmdsts & NGE_TXSTAT_EXCESSCOLLS) != 0)
1656				ifp->if_collisions++;
1657			if ((cmdsts & NGE_TXSTAT_OUTOFWINCOLL) != 0)
1658				ifp->if_collisions++;
1659		} else
1660			ifp->if_opackets++;
1661
1662		ifp->if_collisions += (cmdsts & NGE_TXSTAT_COLLCNT) >> 16;
1663		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1664		    __func__));
1665		m_freem(txd->tx_m);
1666		txd->tx_m = NULL;
1667	}
1668
1669	sc->nge_cdata.nge_tx_cons = cons;
1670	if (sc->nge_cdata.nge_tx_cnt == 0)
1671		sc->nge_watchdog_timer = 0;
1672}
1673
1674static void
1675nge_tick(void *xsc)
1676{
1677	struct nge_softc *sc;
1678	struct mii_data *mii;
1679
1680	sc = xsc;
1681	NGE_LOCK_ASSERT(sc);
1682	mii = device_get_softc(sc->nge_miibus);
1683	mii_tick(mii);
1684	/*
1685	 * For PHYs that does not reset established link, it is
1686	 * necessary to check whether driver still have a valid
1687	 * link(e.g link state change callback is not called).
1688	 * Otherwise, driver think it lost link because driver
1689	 * initialization routine clears link state flag.
1690	 */
1691	if ((sc->nge_flags & NGE_FLAG_LINK) == 0)
1692		nge_miibus_statchg(sc->nge_dev);
1693	nge_stats_update(sc);
1694	nge_watchdog(sc);
1695	callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc);
1696}
1697
1698static void
1699nge_stats_update(struct nge_softc *sc)
1700{
1701	struct ifnet *ifp;
1702	struct nge_stats now, *stats, *nstats;
1703
1704	NGE_LOCK_ASSERT(sc);
1705
1706	ifp = sc->nge_ifp;
1707	stats = &now;
1708	stats->rx_pkts_errs =
1709	    CSR_READ_4(sc, NGE_MIB_RXERRPKT) & 0xFFFF;
1710	stats->rx_crc_errs =
1711	    CSR_READ_4(sc, NGE_MIB_RXERRFCS) & 0xFFFF;
1712	stats->rx_fifo_oflows =
1713	    CSR_READ_4(sc, NGE_MIB_RXERRMISSEDPKT) & 0xFFFF;
1714	stats->rx_align_errs =
1715	    CSR_READ_4(sc, NGE_MIB_RXERRALIGN) & 0xFFFF;
1716	stats->rx_sym_errs =
1717	    CSR_READ_4(sc, NGE_MIB_RXERRSYM) & 0xFFFF;
1718	stats->rx_pkts_jumbos =
1719	    CSR_READ_4(sc, NGE_MIB_RXERRGIANT) & 0xFFFF;
1720	stats->rx_len_errs =
1721	    CSR_READ_4(sc, NGE_MIB_RXERRRANGLEN) & 0xFFFF;
1722	stats->rx_unctl_frames =
1723	    CSR_READ_4(sc, NGE_MIB_RXBADOPCODE) & 0xFFFF;
1724	stats->rx_pause =
1725	    CSR_READ_4(sc, NGE_MIB_RXPAUSEPKTS) & 0xFFFF;
1726	stats->tx_pause =
1727	    CSR_READ_4(sc, NGE_MIB_TXPAUSEPKTS) & 0xFFFF;
1728	stats->tx_seq_errs =
1729	    CSR_READ_4(sc, NGE_MIB_TXERRSQE) & 0xFF;
1730
1731	/*
1732	 * Since we've accept errored frames exclude Rx length errors.
1733	 */
1734	ifp->if_ierrors += stats->rx_pkts_errs + stats->rx_crc_errs +
1735	    stats->rx_fifo_oflows + stats->rx_sym_errs;
1736
1737	nstats = &sc->nge_stats;
1738	nstats->rx_pkts_errs += stats->rx_pkts_errs;
1739	nstats->rx_crc_errs += stats->rx_crc_errs;
1740	nstats->rx_fifo_oflows += stats->rx_fifo_oflows;
1741	nstats->rx_align_errs += stats->rx_align_errs;
1742	nstats->rx_sym_errs += stats->rx_sym_errs;
1743	nstats->rx_pkts_jumbos += stats->rx_pkts_jumbos;
1744	nstats->rx_len_errs += stats->rx_len_errs;
1745	nstats->rx_unctl_frames += stats->rx_unctl_frames;
1746	nstats->rx_pause += stats->rx_pause;
1747	nstats->tx_pause += stats->tx_pause;
1748	nstats->tx_seq_errs += stats->tx_seq_errs;
1749}
1750
1751#ifdef DEVICE_POLLING
1752static poll_handler_t nge_poll;
1753
1754static int
1755nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1756{
1757	struct nge_softc *sc;
1758	int rx_npkts = 0;
1759
1760	sc = ifp->if_softc;
1761
1762	NGE_LOCK(sc);
1763	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1764		NGE_UNLOCK(sc);
1765		return (rx_npkts);
1766	}
1767
1768	/*
1769	 * On the nge, reading the status register also clears it.
1770	 * So before returning to intr mode we must make sure that all
1771	 * possible pending sources of interrupts have been served.
1772	 * In practice this means run to completion the *eof routines,
1773	 * and then call the interrupt routine.
1774	 */
1775	sc->rxcycles = count;
1776	rx_npkts = nge_rxeof(sc);
1777	nge_txeof(sc);
1778	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1779		nge_start_locked(ifp);
1780
1781	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1782		uint32_t	status;
1783
1784		/* Reading the ISR register clears all interrupts. */
1785		status = CSR_READ_4(sc, NGE_ISR);
1786
1787		if ((status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW)) != 0)
1788			rx_npkts += nge_rxeof(sc);
1789
1790		if ((status & NGE_ISR_RX_IDLE) != 0)
1791			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1792
1793		if ((status & NGE_ISR_SYSERR) != 0) {
1794			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1795			nge_init_locked(sc);
1796		}
1797	}
1798	NGE_UNLOCK(sc);
1799	return (rx_npkts);
1800}
1801#endif /* DEVICE_POLLING */
1802
1803static void
1804nge_intr(void *arg)
1805{
1806	struct nge_softc *sc;
1807	struct ifnet *ifp;
1808	uint32_t status;
1809
1810	sc = (struct nge_softc *)arg;
1811	ifp = sc->nge_ifp;
1812
1813	NGE_LOCK(sc);
1814
1815	if ((sc->nge_flags & NGE_FLAG_SUSPENDED) != 0)
1816		goto done_locked;
1817
1818	/* Reading the ISR register clears all interrupts. */
1819	status = CSR_READ_4(sc, NGE_ISR);
1820	if (status == 0xffffffff || (status & NGE_INTRS) == 0)
1821		goto done_locked;
1822#ifdef DEVICE_POLLING
1823	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1824		goto done_locked;
1825#endif
1826	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1827		goto done_locked;
1828
1829	/* Disable interrupts. */
1830	CSR_WRITE_4(sc, NGE_IER, 0);
1831
1832	/* Data LED on for TBI mode */
1833	if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
1834		CSR_WRITE_4(sc, NGE_GPIO,
1835		    CSR_READ_4(sc, NGE_GPIO) | NGE_GPIO_GP3_OUT);
1836
1837	for (; (status & NGE_INTRS) != 0;) {
1838		if ((status & (NGE_ISR_TX_DESC_OK | NGE_ISR_TX_ERR |
1839		    NGE_ISR_TX_OK | NGE_ISR_TX_IDLE)) != 0)
1840			nge_txeof(sc);
1841
1842		if ((status & (NGE_ISR_RX_DESC_OK | NGE_ISR_RX_ERR |
1843		    NGE_ISR_RX_OFLOW | NGE_ISR_RX_FIFO_OFLOW |
1844		    NGE_ISR_RX_IDLE | NGE_ISR_RX_OK)) != 0)
1845			nge_rxeof(sc);
1846
1847		if ((status & NGE_ISR_RX_IDLE) != 0)
1848			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1849
1850		if ((status & NGE_ISR_SYSERR) != 0) {
1851			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1852			nge_init_locked(sc);
1853		}
1854		/* Reading the ISR register clears all interrupts. */
1855		status = CSR_READ_4(sc, NGE_ISR);
1856	}
1857
1858	/* Re-enable interrupts. */
1859	CSR_WRITE_4(sc, NGE_IER, 1);
1860
1861	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1862		nge_start_locked(ifp);
1863
1864	/* Data LED off for TBI mode */
1865	if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
1866		CSR_WRITE_4(sc, NGE_GPIO,
1867		    CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT);
1868
1869done_locked:
1870	NGE_UNLOCK(sc);
1871}
1872
1873/*
1874 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1875 * pointers to the fragment pointers.
1876 */
1877static int
1878nge_encap(struct nge_softc *sc, struct mbuf **m_head)
1879{
1880	struct nge_txdesc *txd, *txd_last;
1881	struct nge_desc *desc;
1882	struct mbuf *m;
1883	bus_dmamap_t map;
1884	bus_dma_segment_t txsegs[NGE_MAXTXSEGS];
1885	int error, i, nsegs, prod, si;
1886
1887	NGE_LOCK_ASSERT(sc);
1888
1889	m = *m_head;
1890	prod = sc->nge_cdata.nge_tx_prod;
1891	txd = &sc->nge_cdata.nge_txdesc[prod];
1892	txd_last = txd;
1893	map = txd->tx_dmamap;
1894	error = bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_tx_tag, map,
1895	    *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1896	if (error == EFBIG) {
1897		m = m_collapse(*m_head, M_NOWAIT, NGE_MAXTXSEGS);
1898		if (m == NULL) {
1899			m_freem(*m_head);
1900			*m_head = NULL;
1901			return (ENOBUFS);
1902		}
1903		*m_head = m;
1904		error = bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_tx_tag,
1905		    map, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1906		if (error != 0) {
1907			m_freem(*m_head);
1908			*m_head = NULL;
1909			return (error);
1910		}
1911	} else if (error != 0)
1912		return (error);
1913	if (nsegs == 0) {
1914		m_freem(*m_head);
1915		*m_head = NULL;
1916		return (EIO);
1917	}
1918
1919	/* Check number of available descriptors. */
1920	if (sc->nge_cdata.nge_tx_cnt + nsegs >= (NGE_TX_RING_CNT - 1)) {
1921		bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, map);
1922		return (ENOBUFS);
1923	}
1924
1925	bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, map, BUS_DMASYNC_PREWRITE);
1926
1927	si = prod;
1928	for (i = 0; i < nsegs; i++) {
1929		desc = &sc->nge_rdata.nge_tx_ring[prod];
1930		desc->nge_ptr = htole32(NGE_ADDR_LO(txsegs[i].ds_addr));
1931		if (i == 0)
1932			desc->nge_cmdsts = htole32(txsegs[i].ds_len |
1933			    NGE_CMDSTS_MORE);
1934		else
1935			desc->nge_cmdsts = htole32(txsegs[i].ds_len |
1936			    NGE_CMDSTS_MORE | NGE_CMDSTS_OWN);
1937		desc->nge_extsts = 0;
1938		sc->nge_cdata.nge_tx_cnt++;
1939		NGE_INC(prod, NGE_TX_RING_CNT);
1940	}
1941	/* Update producer index. */
1942	sc->nge_cdata.nge_tx_prod = prod;
1943
1944	prod = (prod + NGE_TX_RING_CNT - 1) % NGE_TX_RING_CNT;
1945	desc = &sc->nge_rdata.nge_tx_ring[prod];
1946	/* Check if we have a VLAN tag to insert. */
1947	if ((m->m_flags & M_VLANTAG) != 0)
1948		desc->nge_extsts |= htole32(NGE_TXEXTSTS_VLANPKT |
1949		    bswap16(m->m_pkthdr.ether_vtag));
1950	/* Set EOP on the last desciptor. */
1951	desc->nge_cmdsts &= htole32(~NGE_CMDSTS_MORE);
1952
1953	/* Set checksum offload in the first descriptor. */
1954	desc = &sc->nge_rdata.nge_tx_ring[si];
1955	if ((m->m_pkthdr.csum_flags & NGE_CSUM_FEATURES) != 0) {
1956		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1957			desc->nge_extsts |= htole32(NGE_TXEXTSTS_IPCSUM);
1958		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1959			desc->nge_extsts |= htole32(NGE_TXEXTSTS_TCPCSUM);
1960		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1961			desc->nge_extsts |= htole32(NGE_TXEXTSTS_UDPCSUM);
1962	}
1963	/* Lastly, turn the first descriptor ownership to hardware. */
1964	desc->nge_cmdsts |= htole32(NGE_CMDSTS_OWN);
1965
1966	txd = &sc->nge_cdata.nge_txdesc[prod];
1967	map = txd_last->tx_dmamap;
1968	txd_last->tx_dmamap = txd->tx_dmamap;
1969	txd->tx_dmamap = map;
1970	txd->tx_m = m;
1971
1972	return (0);
1973}
1974
1975/*
1976 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1977 * to the mbuf data regions directly in the transmit lists. We also save a
1978 * copy of the pointers since the transmit list fragment pointers are
1979 * physical addresses.
1980 */
1981
1982static void
1983nge_start(struct ifnet *ifp)
1984{
1985	struct nge_softc *sc;
1986
1987	sc = ifp->if_softc;
1988	NGE_LOCK(sc);
1989	nge_start_locked(ifp);
1990	NGE_UNLOCK(sc);
1991}
1992
1993static void
1994nge_start_locked(struct ifnet *ifp)
1995{
1996	struct nge_softc *sc;
1997	struct mbuf *m_head;
1998	int enq;
1999
2000	sc = ifp->if_softc;
2001
2002	NGE_LOCK_ASSERT(sc);
2003
2004	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2005	    IFF_DRV_RUNNING || (sc->nge_flags & NGE_FLAG_LINK) == 0)
2006		return;
2007
2008	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2009	    sc->nge_cdata.nge_tx_cnt < NGE_TX_RING_CNT - 2; ) {
2010		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2011		if (m_head == NULL)
2012			break;
2013		/*
2014		 * Pack the data into the transmit ring. If we
2015		 * don't have room, set the OACTIVE flag and wait
2016		 * for the NIC to drain the ring.
2017		 */
2018		if (nge_encap(sc, &m_head)) {
2019			if (m_head == NULL)
2020				break;
2021			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2022			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2023			break;
2024		}
2025
2026		enq++;
2027		/*
2028		 * If there's a BPF listener, bounce a copy of this frame
2029		 * to him.
2030		 */
2031		ETHER_BPF_MTAP(ifp, m_head);
2032	}
2033
2034	if (enq > 0) {
2035		bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
2036		    sc->nge_cdata.nge_tx_ring_map,
2037		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2038		/* Transmit */
2039		NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
2040
2041		/* Set a timeout in case the chip goes out to lunch. */
2042		sc->nge_watchdog_timer = 5;
2043	}
2044}
2045
2046static void
2047nge_init(void *xsc)
2048{
2049	struct nge_softc *sc = xsc;
2050
2051	NGE_LOCK(sc);
2052	nge_init_locked(sc);
2053	NGE_UNLOCK(sc);
2054}
2055
2056static void
2057nge_init_locked(struct nge_softc *sc)
2058{
2059	struct ifnet *ifp = sc->nge_ifp;
2060	struct mii_data *mii;
2061	uint8_t *eaddr;
2062	uint32_t reg;
2063
2064	NGE_LOCK_ASSERT(sc);
2065
2066	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2067		return;
2068
2069	/*
2070	 * Cancel pending I/O and free all RX/TX buffers.
2071	 */
2072	nge_stop(sc);
2073
2074	/* Reset the adapter. */
2075	nge_reset(sc);
2076
2077	/* Disable Rx filter prior to programming Rx filter. */
2078	CSR_WRITE_4(sc, NGE_RXFILT_CTL, 0);
2079	CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
2080
2081	mii = device_get_softc(sc->nge_miibus);
2082
2083	/* Set MAC address. */
2084	eaddr = IF_LLADDR(sc->nge_ifp);
2085	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
2086	CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[1] << 8) | eaddr[0]);
2087	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
2088	CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[3] << 8) | eaddr[2]);
2089	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
2090	CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[5] << 8) | eaddr[4]);
2091
2092	/* Init circular RX list. */
2093	if (nge_list_rx_init(sc) == ENOBUFS) {
2094		device_printf(sc->nge_dev, "initialization failed: no "
2095			"memory for rx buffers\n");
2096		nge_stop(sc);
2097		return;
2098	}
2099
2100	/*
2101	 * Init tx descriptors.
2102	 */
2103	nge_list_tx_init(sc);
2104
2105	/*
2106	 * For the NatSemi chip, we have to explicitly enable the
2107	 * reception of ARP frames, as well as turn on the 'perfect
2108	 * match' filter where we store the station address, otherwise
2109	 * we won't receive unicasts meant for this host.
2110	 */
2111	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
2112	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
2113
2114	/*
2115	 * Set the capture broadcast bit to capture broadcast frames.
2116	 */
2117	if (ifp->if_flags & IFF_BROADCAST) {
2118		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
2119	} else {
2120		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
2121	}
2122
2123	/* Turn the receive filter on. */
2124	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
2125
2126	/* Set Rx filter. */
2127	nge_rxfilter(sc);
2128
2129	/* Disable PRIQ ctl. */
2130	CSR_WRITE_4(sc, NGE_PRIOQCTL, 0);
2131
2132	/*
2133	 * Set pause frames paramters.
2134	 *  Rx stat FIFO hi-threshold : 2 or more packets
2135	 *  Rx stat FIFO lo-threshold : less than 2 packets
2136	 *  Rx data FIFO hi-threshold : 2K or more bytes
2137	 *  Rx data FIFO lo-threshold : less than 2K bytes
2138	 *  pause time : (512ns * 0xffff) -> 33.55ms
2139	 */
2140	CSR_WRITE_4(sc, NGE_PAUSECSR,
2141	    NGE_PAUSECSR_PAUSE_ON_MCAST |
2142	    NGE_PAUSECSR_PAUSE_ON_DA |
2143	    ((1 << 24) & NGE_PAUSECSR_RX_STATFIFO_THR_HI) |
2144	    ((1 << 22) & NGE_PAUSECSR_RX_STATFIFO_THR_LO) |
2145	    ((1 << 20) & NGE_PAUSECSR_RX_DATAFIFO_THR_HI) |
2146	    ((1 << 18) & NGE_PAUSECSR_RX_DATAFIFO_THR_LO) |
2147	    NGE_PAUSECSR_CNT);
2148
2149	/*
2150	 * Load the address of the RX and TX lists.
2151	 */
2152	CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI,
2153	    NGE_ADDR_HI(sc->nge_rdata.nge_rx_ring_paddr));
2154	CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO,
2155	    NGE_ADDR_LO(sc->nge_rdata.nge_rx_ring_paddr));
2156	CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI,
2157	    NGE_ADDR_HI(sc->nge_rdata.nge_tx_ring_paddr));
2158	CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO,
2159	    NGE_ADDR_LO(sc->nge_rdata.nge_tx_ring_paddr));
2160
2161	/* Set RX configuration. */
2162	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
2163
2164	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, 0);
2165	/*
2166	 * Enable hardware checksum validation for all IPv4
2167	 * packets, do not reject packets with bad checksums.
2168	 */
2169	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2170		NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
2171
2172	/*
2173	 * Tell the chip to detect and strip VLAN tag info from
2174	 * received frames. The tag will be provided in the extsts
2175	 * field in the RX descriptors.
2176	 */
2177	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_DETECT_ENB);
2178	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2179		NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_STRIP_ENB);
2180
2181	/* Set TX configuration. */
2182	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
2183
2184	/*
2185	 * Enable TX IPv4 checksumming on a per-packet basis.
2186	 */
2187	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
2188
2189	/*
2190	 * Tell the chip to insert VLAN tags on a per-packet basis as
2191	 * dictated by the code in the frame encapsulation routine.
2192	 */
2193	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
2194
2195	/*
2196	 * Enable the delivery of PHY interrupts based on
2197	 * link/speed/duplex status changes. Also enable the
2198	 * extsts field in the DMA descriptors (needed for
2199	 * TCP/IP checksum offload on transmit).
2200	 */
2201	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD |
2202	    NGE_CFG_PHYINTR_LNK | NGE_CFG_PHYINTR_DUP | NGE_CFG_EXTSTS_ENB);
2203
2204	/*
2205	 * Configure interrupt holdoff (moderation). We can
2206	 * have the chip delay interrupt delivery for a certain
2207	 * period. Units are in 100us, and the max setting
2208	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
2209	 */
2210	CSR_WRITE_4(sc, NGE_IHR, sc->nge_int_holdoff);
2211
2212	/*
2213	 * Enable MAC statistics counters and clear.
2214	 */
2215	reg = CSR_READ_4(sc, NGE_MIBCTL);
2216	reg &= ~NGE_MIBCTL_FREEZE_CNT;
2217	reg |= NGE_MIBCTL_CLEAR_CNT;
2218	CSR_WRITE_4(sc, NGE_MIBCTL, reg);
2219
2220	/*
2221	 * Enable interrupts.
2222	 */
2223	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
2224#ifdef DEVICE_POLLING
2225	/*
2226	 * ... only enable interrupts if we are not polling, make sure
2227	 * they are off otherwise.
2228	 */
2229	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
2230		CSR_WRITE_4(sc, NGE_IER, 0);
2231	else
2232#endif
2233	CSR_WRITE_4(sc, NGE_IER, 1);
2234
2235	sc->nge_flags &= ~NGE_FLAG_LINK;
2236	mii_mediachg(mii);
2237
2238	sc->nge_watchdog_timer = 0;
2239	callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc);
2240
2241	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2242	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2243}
2244
2245/*
2246 * Set media options.
2247 */
2248static int
2249nge_mediachange(struct ifnet *ifp)
2250{
2251	struct nge_softc *sc;
2252	struct mii_data	*mii;
2253	struct mii_softc *miisc;
2254	int error;
2255
2256	sc = ifp->if_softc;
2257	NGE_LOCK(sc);
2258	mii = device_get_softc(sc->nge_miibus);
2259	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2260		PHY_RESET(miisc);
2261	error = mii_mediachg(mii);
2262	NGE_UNLOCK(sc);
2263
2264	return (error);
2265}
2266
2267/*
2268 * Report current media status.
2269 */
2270static void
2271nge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2272{
2273	struct nge_softc *sc;
2274	struct mii_data *mii;
2275
2276	sc = ifp->if_softc;
2277	NGE_LOCK(sc);
2278	mii = device_get_softc(sc->nge_miibus);
2279	mii_pollstat(mii);
2280	ifmr->ifm_active = mii->mii_media_active;
2281	ifmr->ifm_status = mii->mii_media_status;
2282	NGE_UNLOCK(sc);
2283}
2284
2285static int
2286nge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2287{
2288	struct nge_softc *sc = ifp->if_softc;
2289	struct ifreq *ifr = (struct ifreq *) data;
2290	struct mii_data *mii;
2291	int error = 0, mask;
2292
2293	switch (command) {
2294	case SIOCSIFMTU:
2295		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > NGE_JUMBO_MTU)
2296			error = EINVAL;
2297		else {
2298			NGE_LOCK(sc);
2299			ifp->if_mtu = ifr->ifr_mtu;
2300			/*
2301			 * Workaround: if the MTU is larger than
2302			 * 8152 (TX FIFO size minus 64 minus 18), turn off
2303			 * TX checksum offloading.
2304			 */
2305			if (ifr->ifr_mtu >= 8152) {
2306				ifp->if_capenable &= ~IFCAP_TXCSUM;
2307				ifp->if_hwassist &= ~NGE_CSUM_FEATURES;
2308			} else {
2309				ifp->if_capenable |= IFCAP_TXCSUM;
2310				ifp->if_hwassist |= NGE_CSUM_FEATURES;
2311			}
2312			NGE_UNLOCK(sc);
2313			VLAN_CAPABILITIES(ifp);
2314		}
2315		break;
2316	case SIOCSIFFLAGS:
2317		NGE_LOCK(sc);
2318		if ((ifp->if_flags & IFF_UP) != 0) {
2319			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2320				if ((ifp->if_flags ^ sc->nge_if_flags) &
2321				    (IFF_PROMISC | IFF_ALLMULTI))
2322					nge_rxfilter(sc);
2323			} else {
2324				if ((sc->nge_flags & NGE_FLAG_DETACH) == 0)
2325					nge_init_locked(sc);
2326			}
2327		} else {
2328			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2329				nge_stop(sc);
2330		}
2331		sc->nge_if_flags = ifp->if_flags;
2332		NGE_UNLOCK(sc);
2333		error = 0;
2334		break;
2335	case SIOCADDMULTI:
2336	case SIOCDELMULTI:
2337		NGE_LOCK(sc);
2338		nge_rxfilter(sc);
2339		NGE_UNLOCK(sc);
2340		error = 0;
2341		break;
2342	case SIOCGIFMEDIA:
2343	case SIOCSIFMEDIA:
2344		mii = device_get_softc(sc->nge_miibus);
2345		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2346		break;
2347	case SIOCSIFCAP:
2348		NGE_LOCK(sc);
2349		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2350#ifdef DEVICE_POLLING
2351		if ((mask & IFCAP_POLLING) != 0 &&
2352		    (IFCAP_POLLING & ifp->if_capabilities) != 0) {
2353			ifp->if_capenable ^= IFCAP_POLLING;
2354			if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
2355				error = ether_poll_register(nge_poll, ifp);
2356				if (error != 0) {
2357					NGE_UNLOCK(sc);
2358					break;
2359				}
2360				/* Disable interrupts. */
2361				CSR_WRITE_4(sc, NGE_IER, 0);
2362			} else {
2363				error = ether_poll_deregister(ifp);
2364				/* Enable interrupts. */
2365				CSR_WRITE_4(sc, NGE_IER, 1);
2366			}
2367		}
2368#endif /* DEVICE_POLLING */
2369		if ((mask & IFCAP_TXCSUM) != 0 &&
2370		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
2371			ifp->if_capenable ^= IFCAP_TXCSUM;
2372			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
2373				ifp->if_hwassist |= NGE_CSUM_FEATURES;
2374			else
2375				ifp->if_hwassist &= ~NGE_CSUM_FEATURES;
2376		}
2377		if ((mask & IFCAP_RXCSUM) != 0 &&
2378		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0)
2379			ifp->if_capenable ^= IFCAP_RXCSUM;
2380
2381		if ((mask & IFCAP_WOL) != 0 &&
2382		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
2383			if ((mask & IFCAP_WOL_UCAST) != 0)
2384				ifp->if_capenable ^= IFCAP_WOL_UCAST;
2385			if ((mask & IFCAP_WOL_MCAST) != 0)
2386				ifp->if_capenable ^= IFCAP_WOL_MCAST;
2387			if ((mask & IFCAP_WOL_MAGIC) != 0)
2388				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2389		}
2390
2391		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2392		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2393			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2394		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2395		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2396			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2397			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2398				if ((ifp->if_capenable &
2399				    IFCAP_VLAN_HWTAGGING) != 0)
2400					NGE_SETBIT(sc,
2401					    NGE_VLAN_IP_RXCTL,
2402					    NGE_VIPRXCTL_TAG_STRIP_ENB);
2403				else
2404					NGE_CLRBIT(sc,
2405					    NGE_VLAN_IP_RXCTL,
2406					    NGE_VIPRXCTL_TAG_STRIP_ENB);
2407			}
2408		}
2409		/*
2410		 * Both VLAN hardware tagging and checksum offload is
2411		 * required to do checksum offload on VLAN interface.
2412		 */
2413		if ((ifp->if_capenable & IFCAP_TXCSUM) == 0)
2414			ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
2415		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2416			ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
2417		NGE_UNLOCK(sc);
2418		VLAN_CAPABILITIES(ifp);
2419		break;
2420	default:
2421		error = ether_ioctl(ifp, command, data);
2422		break;
2423	}
2424
2425	return (error);
2426}
2427
2428static void
2429nge_watchdog(struct nge_softc *sc)
2430{
2431	struct ifnet *ifp;
2432
2433	NGE_LOCK_ASSERT(sc);
2434
2435	if (sc->nge_watchdog_timer == 0 || --sc->nge_watchdog_timer)
2436		return;
2437
2438	ifp = sc->nge_ifp;
2439	ifp->if_oerrors++;
2440	if_printf(ifp, "watchdog timeout\n");
2441
2442	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2443	nge_init_locked(sc);
2444
2445	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2446		nge_start_locked(ifp);
2447}
2448
2449static int
2450nge_stop_mac(struct nge_softc *sc)
2451{
2452	uint32_t reg;
2453	int i;
2454
2455	NGE_LOCK_ASSERT(sc);
2456
2457	reg = CSR_READ_4(sc, NGE_CSR);
2458	if ((reg & (NGE_CSR_TX_ENABLE | NGE_CSR_RX_ENABLE)) != 0) {
2459		reg &= ~(NGE_CSR_TX_ENABLE | NGE_CSR_RX_ENABLE);
2460		reg |= NGE_CSR_TX_DISABLE | NGE_CSR_RX_DISABLE;
2461		CSR_WRITE_4(sc, NGE_CSR, reg);
2462		for (i = 0; i < NGE_TIMEOUT; i++) {
2463			DELAY(1);
2464			if ((CSR_READ_4(sc, NGE_CSR) &
2465			    (NGE_CSR_RX_ENABLE | NGE_CSR_TX_ENABLE)) == 0)
2466				break;
2467		}
2468		if (i == NGE_TIMEOUT)
2469			return (ETIMEDOUT);
2470	}
2471
2472	return (0);
2473}
2474
2475/*
2476 * Stop the adapter and free any mbufs allocated to the
2477 * RX and TX lists.
2478 */
2479static void
2480nge_stop(struct nge_softc *sc)
2481{
2482	struct nge_txdesc *txd;
2483	struct nge_rxdesc *rxd;
2484	int i;
2485	struct ifnet *ifp;
2486
2487	NGE_LOCK_ASSERT(sc);
2488	ifp = sc->nge_ifp;
2489
2490	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2491	sc->nge_flags &= ~NGE_FLAG_LINK;
2492	callout_stop(&sc->nge_stat_ch);
2493	sc->nge_watchdog_timer = 0;
2494
2495	CSR_WRITE_4(sc, NGE_IER, 0);
2496	CSR_WRITE_4(sc, NGE_IMR, 0);
2497	if (nge_stop_mac(sc) == ETIMEDOUT)
2498		device_printf(sc->nge_dev,
2499		   "%s: unable to stop Tx/Rx MAC\n", __func__);
2500	CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI, 0);
2501	CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO, 0);
2502	CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, 0);
2503	CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, 0);
2504	nge_stats_update(sc);
2505	if (sc->nge_head != NULL) {
2506		m_freem(sc->nge_head);
2507		sc->nge_head = sc->nge_tail = NULL;
2508	}
2509
2510	/*
2511	 * Free RX and TX mbufs still in the queues.
2512	 */
2513	for (i = 0; i < NGE_RX_RING_CNT; i++) {
2514		rxd = &sc->nge_cdata.nge_rxdesc[i];
2515		if (rxd->rx_m != NULL) {
2516			bus_dmamap_sync(sc->nge_cdata.nge_rx_tag,
2517			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2518			bus_dmamap_unload(sc->nge_cdata.nge_rx_tag,
2519			    rxd->rx_dmamap);
2520			m_freem(rxd->rx_m);
2521			rxd->rx_m = NULL;
2522		}
2523	}
2524	for (i = 0; i < NGE_TX_RING_CNT; i++) {
2525		txd = &sc->nge_cdata.nge_txdesc[i];
2526		if (txd->tx_m != NULL) {
2527			bus_dmamap_sync(sc->nge_cdata.nge_tx_tag,
2528			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2529			bus_dmamap_unload(sc->nge_cdata.nge_tx_tag,
2530			    txd->tx_dmamap);
2531			m_freem(txd->tx_m);
2532			txd->tx_m = NULL;
2533		}
2534	}
2535}
2536
2537/*
2538 * Before setting WOL bits, caller should have stopped Receiver.
2539 */
2540static void
2541nge_wol(struct nge_softc *sc)
2542{
2543	struct ifnet *ifp;
2544	uint32_t reg;
2545	uint16_t pmstat;
2546	int pmc;
2547
2548	NGE_LOCK_ASSERT(sc);
2549
2550	if (pci_find_cap(sc->nge_dev, PCIY_PMG, &pmc) != 0)
2551		return;
2552
2553	ifp = sc->nge_ifp;
2554	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
2555		/* Disable WOL & disconnect CLKRUN to save power. */
2556		CSR_WRITE_4(sc, NGE_WOLCSR, 0);
2557		CSR_WRITE_4(sc, NGE_CLKRUN, 0);
2558	} else {
2559		if (nge_stop_mac(sc) == ETIMEDOUT)
2560			device_printf(sc->nge_dev,
2561			    "%s: unable to stop Tx/Rx MAC\n", __func__);
2562		/*
2563		 * Make sure wake frames will be buffered in the Rx FIFO.
2564		 * (i.e. Silent Rx mode.)
2565		 */
2566		CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, 0);
2567		CSR_BARRIER_4(sc, NGE_RX_LISTPTR_HI, BUS_SPACE_BARRIER_WRITE);
2568		CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, 0);
2569		CSR_BARRIER_4(sc, NGE_RX_LISTPTR_LO, BUS_SPACE_BARRIER_WRITE);
2570		/* Enable Rx again. */
2571		NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
2572		CSR_BARRIER_4(sc, NGE_CSR, BUS_SPACE_BARRIER_WRITE);
2573
2574		/* Configure WOL events. */
2575		reg = 0;
2576		if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2577			reg |= NGE_WOLCSR_WAKE_ON_UNICAST;
2578		if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2579			reg |= NGE_WOLCSR_WAKE_ON_MULTICAST;
2580		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2581			reg |= NGE_WOLCSR_WAKE_ON_MAGICPKT;
2582		CSR_WRITE_4(sc, NGE_WOLCSR, reg);
2583
2584		/* Activate CLKRUN. */
2585		reg = CSR_READ_4(sc, NGE_CLKRUN);
2586		reg |= NGE_CLKRUN_PMEENB | NGE_CLNRUN_CLKRUN_ENB;
2587		CSR_WRITE_4(sc, NGE_CLKRUN, reg);
2588	}
2589
2590	/* Request PME. */
2591	pmstat = pci_read_config(sc->nge_dev, pmc + PCIR_POWER_STATUS, 2);
2592	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2593	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2594		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2595	pci_write_config(sc->nge_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2596}
2597
2598/*
2599 * Stop all chip I/O so that the kernel's probe routines don't
2600 * get confused by errant DMAs when rebooting.
2601 */
2602static int
2603nge_shutdown(device_t dev)
2604{
2605
2606	return (nge_suspend(dev));
2607}
2608
2609static int
2610nge_suspend(device_t dev)
2611{
2612	struct nge_softc *sc;
2613
2614	sc = device_get_softc(dev);
2615
2616	NGE_LOCK(sc);
2617	nge_stop(sc);
2618	nge_wol(sc);
2619	sc->nge_flags |= NGE_FLAG_SUSPENDED;
2620	NGE_UNLOCK(sc);
2621
2622	return (0);
2623}
2624
2625static int
2626nge_resume(device_t dev)
2627{
2628	struct nge_softc *sc;
2629	struct ifnet *ifp;
2630	uint16_t pmstat;
2631	int pmc;
2632
2633	sc = device_get_softc(dev);
2634
2635	NGE_LOCK(sc);
2636	ifp = sc->nge_ifp;
2637	if (pci_find_cap(sc->nge_dev, PCIY_PMG, &pmc) == 0) {
2638		/* Disable PME and clear PME status. */
2639		pmstat = pci_read_config(sc->nge_dev,
2640		    pmc + PCIR_POWER_STATUS, 2);
2641		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2642			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2643			pci_write_config(sc->nge_dev,
2644			    pmc + PCIR_POWER_STATUS, pmstat, 2);
2645		}
2646	}
2647	if (ifp->if_flags & IFF_UP) {
2648		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2649		nge_init_locked(sc);
2650	}
2651
2652	sc->nge_flags &= ~NGE_FLAG_SUSPENDED;
2653	NGE_UNLOCK(sc);
2654
2655	return (0);
2656}
2657
2658#define	NGE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2659	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2660
2661static void
2662nge_sysctl_node(struct nge_softc *sc)
2663{
2664	struct sysctl_ctx_list *ctx;
2665	struct sysctl_oid_list *child, *parent;
2666	struct sysctl_oid *tree;
2667	struct nge_stats *stats;
2668	int error;
2669
2670	ctx = device_get_sysctl_ctx(sc->nge_dev);
2671	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->nge_dev));
2672	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_holdoff",
2673	    CTLTYPE_INT | CTLFLAG_RW, &sc->nge_int_holdoff, 0,
2674	    sysctl_hw_nge_int_holdoff, "I", "NGE interrupt moderation");
2675	/* Pull in device tunables. */
2676	sc->nge_int_holdoff = NGE_INT_HOLDOFF_DEFAULT;
2677	error = resource_int_value(device_get_name(sc->nge_dev),
2678	    device_get_unit(sc->nge_dev), "int_holdoff", &sc->nge_int_holdoff);
2679	if (error == 0) {
2680		if (sc->nge_int_holdoff < NGE_INT_HOLDOFF_MIN ||
2681		    sc->nge_int_holdoff > NGE_INT_HOLDOFF_MAX ) {
2682			device_printf(sc->nge_dev,
2683			    "int_holdoff value out of range; "
2684			    "using default: %d(%d us)\n",
2685			    NGE_INT_HOLDOFF_DEFAULT,
2686			    NGE_INT_HOLDOFF_DEFAULT * 100);
2687			sc->nge_int_holdoff = NGE_INT_HOLDOFF_DEFAULT;
2688		}
2689	}
2690
2691	stats = &sc->nge_stats;
2692	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2693	    NULL, "NGE statistics");
2694	parent = SYSCTL_CHILDREN(tree);
2695
2696	/* Rx statistics. */
2697	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
2698	    NULL, "Rx MAC statistics");
2699	child = SYSCTL_CHILDREN(tree);
2700	NGE_SYSCTL_STAT_ADD32(ctx, child, "pkts_errs",
2701	    &stats->rx_pkts_errs,
2702	    "Packet errors including both wire errors and FIFO overruns");
2703	NGE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
2704	    &stats->rx_crc_errs, "CRC errors");
2705	NGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2706	    &stats->rx_fifo_oflows, "FIFO overflows");
2707	NGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2708	    &stats->rx_align_errs, "Frame alignment errors");
2709	NGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2710	    &stats->rx_sym_errs, "One or more symbol errors");
2711	NGE_SYSCTL_STAT_ADD32(ctx, child, "pkts_jumbos",
2712	    &stats->rx_pkts_jumbos,
2713	    "Packets received with length greater than 1518 bytes");
2714	NGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2715	    &stats->rx_len_errs, "In Range Length errors");
2716	NGE_SYSCTL_STAT_ADD32(ctx, child, "unctl_frames",
2717	    &stats->rx_unctl_frames, "Control frames with unsupported opcode");
2718	NGE_SYSCTL_STAT_ADD32(ctx, child, "pause",
2719	    &stats->rx_pause, "Pause frames");
2720
2721	/* Tx statistics. */
2722	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
2723	    NULL, "Tx MAC statistics");
2724	child = SYSCTL_CHILDREN(tree);
2725	NGE_SYSCTL_STAT_ADD32(ctx, child, "pause",
2726	    &stats->tx_pause, "Pause frames");
2727	NGE_SYSCTL_STAT_ADD32(ctx, child, "seq_errs",
2728	    &stats->tx_seq_errs,
2729	    "Loss of collision heartbeat during transmission");
2730}
2731
2732#undef NGE_SYSCTL_STAT_ADD32
2733
2734static int
2735sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2736{
2737	int error, value;
2738
2739	if (arg1 == NULL)
2740		return (EINVAL);
2741	value = *(int *)arg1;
2742	error = sysctl_handle_int(oidp, &value, 0, req);
2743	if (error != 0 || req->newptr == NULL)
2744		return (error);
2745	if (value < low || value > high)
2746		return (EINVAL);
2747	*(int *)arg1 = value;
2748
2749	return (0);
2750}
2751
2752static int
2753sysctl_hw_nge_int_holdoff(SYSCTL_HANDLER_ARGS)
2754{
2755
2756	return (sysctl_int_range(oidp, arg1, arg2, req, NGE_INT_HOLDOFF_MIN,
2757	    NGE_INT_HOLDOFF_MAX));
2758}
2759