1/*-
2 * This file is provided under a dual BSD/GPLv2 license.  When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
23 *
24 * BSD LICENSE
25 *
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
28 *
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
32 *
33 *   * Redistributions of source code must retain the above copyright
34 *     notice, this list of conditions and the following disclaimer.
35 *   * Redistributions in binary form must reproduce the above copyright
36 *     notice, this list of conditions and the following disclaimer in
37 *     the documentation and/or other materials provided with the
38 *     distribution.
39 *
40 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
41 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
42 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
43 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
44 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
45 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
46 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
47 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
48 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
49 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
50 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
51 */
52
53#include <sys/cdefs.h>
54__FBSDID("$FreeBSD$");
55
56/**
57 * @file
58 *
59 * @brief This file contains the implementation of the SCIC_SDS_PHY public and
60 *        protected methods.
61 */
62
63#include <dev/isci/scil/scic_user_callback.h>
64#include <dev/isci/scil/scic_phy.h>
65#include <dev/isci/scil/scic_sds_phy.h>
66#include <dev/isci/scil/scic_sds_port.h>
67#include <dev/isci/scil/scic_sds_controller_registers.h>
68#include <dev/isci/scil/scic_sds_phy_registers.h>
69#include <dev/isci/scil/scic_sds_logger.h>
70#include <dev/isci/scil/scic_sds_remote_node_context.h>
71#include <dev/isci/scil/sci_util.h>
72#include <dev/isci/scil/scic_sds_controller.h>
73#include <dev/isci/scil/scu_event_codes.h>
74#include <dev/isci/scil/sci_base_state.h>
75#include <dev/isci/scil/intel_ata.h>
76#include <dev/isci/scil/intel_sata.h>
77#include <dev/isci/scil/sci_base_state_machine.h>
78#include <dev/isci/scil/scic_sds_port_registers.h>
79
80#define SCIC_SDS_PHY_MIN_TIMER_COUNT  (SCI_MAX_PHYS)
81#define SCIC_SDS_PHY_MAX_TIMER_COUNT  (SCI_MAX_PHYS)
82
83// Maximum arbitration wait time in micro-seconds
84#define SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME  (700)
85
86#define AFE_REGISTER_WRITE_DELAY 10
87
88//*****************************************************************************
89//* SCIC SDS PHY Internal Methods
90//*****************************************************************************
91
92/**
93 * @brief This method will initialize the phy transport layer registers
94 *
95 * @param[in] this_phy
96 * @param[in] transport_layer_registers
97 *
98 * @return SCI_STATUS
99 */
100static
101SCI_STATUS scic_sds_phy_transport_layer_initialization(
102   SCIC_SDS_PHY_T                  *this_phy,
103   SCU_TRANSPORT_LAYER_REGISTERS_T *transport_layer_registers
104)
105{
106   U32 tl_control;
107
108   SCIC_LOG_TRACE((
109      sci_base_object_get_logger(this_phy),
110      SCIC_LOG_OBJECT_PHY,
111      "scic_sds_phy_link_layer_initialization(this_phy:0x%x, link_layer_registers:0x%x)\n",
112      this_phy, transport_layer_registers
113   ));
114
115   this_phy->transport_layer_registers = transport_layer_registers;
116
117   SCU_STPTLDARNI_WRITE(this_phy, SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX);
118
119   // Hardware team recommends that we enable the STP prefetch for all transports
120   tl_control = SCU_TLCR_READ(this_phy);
121   tl_control |= SCU_TLCR_GEN_BIT(STP_WRITE_DATA_PREFETCH);
122   SCU_TLCR_WRITE(this_phy, tl_control);
123
124   return SCI_SUCCESS;
125}
126
127/**
128 * @brief This method will initialize the phy link layer registers
129 *
130 * @param[in] this_phy
131 * @param[in] link_layer_registers
132 *
133 * @return SCI_STATUS
134 */
135static
136SCI_STATUS scic_sds_phy_link_layer_initialization(
137   SCIC_SDS_PHY_T             *this_phy,
138   SCU_LINK_LAYER_REGISTERS_T *link_layer_registers
139)
140{
141   U32                phy_configuration;
142   SAS_CAPABILITIES_T phy_capabilities;
143   U32                parity_check = 0;
144   U32                parity_count = 0;
145   U32                link_layer_control;
146   U32                phy_timer_timeout_values;
147   U32                clksm_value = 0;
148
149   SCIC_LOG_TRACE((
150      sci_base_object_get_logger(this_phy),
151      SCIC_LOG_OBJECT_PHY,
152      "scic_sds_phy_link_layer_initialization(this_phy:0x%x, link_layer_registers:0x%x)\n",
153      this_phy, link_layer_registers
154   ));
155
156   this_phy->link_layer_registers = link_layer_registers;
157
158   // Set our IDENTIFY frame data
159   #define SCI_END_DEVICE 0x01
160
161   SCU_SAS_TIID_WRITE(
162      this_phy,
163      (   SCU_SAS_TIID_GEN_BIT(SMP_INITIATOR)
164        | SCU_SAS_TIID_GEN_BIT(SSP_INITIATOR)
165        | SCU_SAS_TIID_GEN_BIT(STP_INITIATOR)
166        | SCU_SAS_TIID_GEN_BIT(DA_SATA_HOST)
167        | SCU_SAS_TIID_GEN_VAL(DEVICE_TYPE, SCI_END_DEVICE) )
168      );
169
170   // Write the device SAS Address
171   SCU_SAS_TIDNH_WRITE(this_phy, 0xFEDCBA98);
172   SCU_SAS_TIDNL_WRITE(this_phy, this_phy->phy_index);
173
174   // Write the source SAS Address
175   SCU_SAS_TISSAH_WRITE(
176      this_phy,
177      this_phy->owning_port->owning_controller->oem_parameters.sds1.phys[
178          this_phy->phy_index].sas_address.sci_format.high
179   );
180   SCU_SAS_TISSAL_WRITE(
181      this_phy,
182      this_phy->owning_port->owning_controller->oem_parameters.sds1.phys[
183          this_phy->phy_index].sas_address.sci_format.low
184   );
185
186   // Clear and Set the PHY Identifier
187   SCU_SAS_TIPID_WRITE(this_phy, 0x00000000);
188   SCU_SAS_TIPID_WRITE(this_phy, SCU_SAS_TIPID_GEN_VALUE(ID, this_phy->phy_index));
189
190   // Change the initial state of the phy configuration register
191   phy_configuration = SCU_SAS_PCFG_READ(this_phy);
192
193   // Hold OOB state machine in reset
194   phy_configuration |=  SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
195   SCU_SAS_PCFG_WRITE(this_phy, phy_configuration);
196
197   // Configure the SNW capabilities
198   phy_capabilities.u.all = 0;
199   phy_capabilities.u.bits.start                      = 1;
200   phy_capabilities.u.bits.gen3_without_ssc_supported = 1;
201   phy_capabilities.u.bits.gen2_without_ssc_supported = 1;
202   phy_capabilities.u.bits.gen1_without_ssc_supported = 1;
203
204   /*
205    * Set up SSC settings according to version of OEM Parameters.
206    */
207   {
208       U8 header_version, enable_sata, enable_sas,
209          sata_spread, sas_type, sas_spread;
210       OEM_SSC_PARAMETERS_T ssc;
211
212       header_version = this_phy->owning_port->owning_controller->
213                        oem_parameters_version;
214
215       ssc.bf.ssc_sata_tx_spread_level =
216          this_phy->owning_port->owning_controller->oem_parameters.sds1.controller.ssc_sata_tx_spread_level;
217       ssc.bf.ssc_sas_tx_spread_level =
218          this_phy->owning_port->owning_controller->oem_parameters.sds1.controller.ssc_sas_tx_spread_level;
219       ssc.bf.ssc_sas_tx_type =
220          this_phy->owning_port->owning_controller->oem_parameters.sds1.controller.ssc_sas_tx_type;
221       enable_sata = enable_sas = sata_spread = sas_type = sas_spread = 0;
222
223       if (header_version == SCI_OEM_PARAM_VER_1_0)
224       {
225           /*
226            * Version 1.0 is merely turning SSC on to default values.;
227            */
228           if (ssc.do_enable_ssc != 0)
229           {
230               enable_sas = enable_sata = TRUE;
231               sas_type = 0x0;      // Downspreading
232               sata_spread = 0x2;   // +0 to -1419 PPM
233               sas_spread = 0x2;    // +0 to -1419 PPM
234           }
235       }
236       else // header_version >= SCI_OEM_PARAM_VER_1_1
237       {
238          /*
239           * Version 1.1 can turn on SAS and SATA independently and
240           * specify spread levels. Also can specify spread type for SAS.
241           */
242          if ((sata_spread = ssc.bf.ssc_sata_tx_spread_level) != 0)
243             enable_sata = TRUE;  // Downspreading only
244          if ((sas_spread = ssc.bf.ssc_sas_tx_spread_level) != 0)
245          {
246             enable_sas = TRUE;
247             sas_type = ssc.bf.ssc_sas_tx_type;
248          }
249       }
250
251       if (enable_sas == TRUE)
252       {
253           U32 reg_val = scu_afe_register_read(
254                             this_phy->owning_port->owning_controller,
255                             scu_afe_xcvr[this_phy->phy_index].
256                             afe_xcvr_control0);
257           reg_val |= (0x00100000 | (((U32)sas_type) << 19));
258           scu_afe_register_write(
259               this_phy->owning_port->owning_controller,
260               scu_afe_xcvr[this_phy->phy_index].afe_xcvr_control0,
261               reg_val);
262
263           reg_val = scu_afe_register_read(
264                             this_phy->owning_port->owning_controller,
265                             scu_afe_xcvr[this_phy->phy_index].
266                             afe_tx_ssc_control);
267           reg_val |= (((U32)(sas_spread)) << 8);
268           scu_afe_register_write(
269               this_phy->owning_port->owning_controller,
270               scu_afe_xcvr[this_phy->phy_index].afe_tx_ssc_control,
271               reg_val);
272      phy_capabilities.u.bits.gen3_with_ssc_supported = 1;
273      phy_capabilities.u.bits.gen2_with_ssc_supported = 1;
274      phy_capabilities.u.bits.gen1_with_ssc_supported = 1;
275   }
276
277       if (enable_sata == TRUE)
278       {
279           U32 reg_val = scu_afe_register_read(
280                         this_phy->owning_port->owning_controller,
281                         scu_afe_xcvr[this_phy->phy_index].
282                         afe_tx_ssc_control);
283           reg_val |= (U32)sata_spread;
284           scu_afe_register_write(
285               this_phy->owning_port->owning_controller,
286               scu_afe_xcvr[this_phy->phy_index].afe_tx_ssc_control,
287               reg_val);
288
289           reg_val = scu_link_layer_register_read(
290                         this_phy,
291                         stp_control);
292           reg_val |= (U32)(1 << 12);
293           scu_link_layer_register_write(
294               this_phy,
295               stp_control,
296               reg_val);
297       }
298   }
299
300   // The SAS specification indicates that the phy_capabilities that
301   // are transmitted shall have an even parity.  Calculate the parity.
302   parity_check = phy_capabilities.u.all;
303   while (parity_check != 0)
304   {
305      if (parity_check & 0x1)
306         parity_count++;
307      parity_check >>= 1;
308   }
309
310   // If parity indicates there are an odd number of bits set, then
311   // set the parity bit to 1 in the phy capabilities.
312   if ((parity_count % 2) != 0)
313      phy_capabilities.u.bits.parity = 1;
314
315   SCU_SAS_PHYCAP_WRITE(this_phy, phy_capabilities.u.all);
316
317   // Set the enable spinup period but disable the ability to send notify enable spinup
318   SCU_SAS_ENSPINUP_WRITE(
319     this_phy,
320     SCU_ENSPINUP_GEN_VAL(
321        COUNT,
322        this_phy->owning_port->owning_controller->user_parameters.sds1.
323           phys[this_phy->phy_index].notify_enable_spin_up_insertion_frequency
324     )
325   );
326
327   // Write the ALIGN Insertion Ferequency for connected phy and inpendent of connected state
328   clksm_value = SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL (
329                     CONNECTED,
330                     this_phy->owning_port->owning_controller->user_parameters.sds1.
331                        phys[this_phy->phy_index].in_connection_align_insertion_frequency
332                 );
333
334   clksm_value |= SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL (
335                     GENERAL,
336                     this_phy->owning_port->owning_controller->user_parameters.sds1.
337                        phys[this_phy->phy_index].align_insertion_frequency
338                  );
339
340   SCU_SAS_CLKSM_WRITE ( this_phy, clksm_value);
341
342
343#if defined(PBG_HBA_A0_BUILD) || defined(PBG_HBA_A2_BUILD) || defined(PBG_HBA_BETA_BUILD)
344   /// @todo Provide a way to write this register correctly
345   scu_link_layer_register_write(this_phy, afe_lookup_table_control, 0x02108421);
346#elif defined(PBG_BUILD)
347   if (
348         (this_phy->owning_port->owning_controller->pci_revision == SCIC_SDS_PCI_REVISION_C0)
349      || (this_phy->owning_port->owning_controller->pci_revision == SCIC_SDS_PCI_REVISION_C1)
350      )
351   {
352      scu_link_layer_register_write(this_phy, afe_lookup_table_control, 0x04210400);
353      scu_link_layer_register_write(this_phy, sas_primitive_timeout, 0x20A7C05);
354   }
355   else
356   {
357      scu_link_layer_register_write(this_phy, afe_lookup_table_control, 0x02108421);
358   }
359#else
360   /// @todo Provide a way to write this register correctly
361   scu_link_layer_register_write(this_phy, afe_lookup_table_control, 0x0e739ce7);
362#endif
363
364   link_layer_control = SCU_SAS_LLCTL_GEN_VAL(
365                           NO_OUTBOUND_TASK_TIMEOUT,
366                           (U8) this_phy->owning_port->owning_controller->
367                           user_parameters.sds1.no_outbound_task_timeout
368                        );
369
370#if PHY_MAX_LINK_SPEED_GENERATION == SCIC_SDS_PARM_GEN1_SPEED
371#define COMPILED_MAX_LINK_RATE SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN1
372#elif PHY_MAX_LINK_SPEED_GENERATION == SCIC_SDS_PARM_GEN2_SPEED
373#define COMPILED_MAX_LINK_RATE SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN2
374#else
375#define COMPILED_MAX_LINK_RATE SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN3
376#endif // PHY_MAX_LINK_SPEED_GENERATION
377
378   if (this_phy->owning_port->owning_controller->user_parameters.sds1.
379       phys[this_phy->phy_index].max_speed_generation == SCIC_SDS_PARM_GEN3_SPEED)
380   {
381      link_layer_control |= SCU_SAS_LLCTL_GEN_VAL(
382                               MAX_LINK_RATE, COMPILED_MAX_LINK_RATE
383                            );
384   }
385   else if (this_phy->owning_port->owning_controller->user_parameters.sds1.
386       phys[this_phy->phy_index].max_speed_generation == SCIC_SDS_PARM_GEN2_SPEED)
387   {
388      link_layer_control |= SCU_SAS_LLCTL_GEN_VAL(
389                               MAX_LINK_RATE,
390                               MIN(
391                                  SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN2,
392                                  COMPILED_MAX_LINK_RATE)
393                            );
394   }
395   else
396   {
397      link_layer_control |= SCU_SAS_LLCTL_GEN_VAL(
398                               MAX_LINK_RATE,
399                               MIN(
400                                  SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN1,
401                                  COMPILED_MAX_LINK_RATE)
402                            );
403   }
404
405   scu_link_layer_register_write(
406      this_phy, link_layer_control, link_layer_control
407   );
408
409   phy_timer_timeout_values = scu_link_layer_register_read(
410                                 this_phy,
411                                 phy_timer_timeout_values
412                              );
413
414   // Clear the default 0x36 (54us) RATE_CHANGE timeout value.
415   phy_timer_timeout_values &= ~SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0xFF);
416
417   // Set RATE_CHANGE timeout value to 0x3B (59us).  This ensures SCU can
418   //  lock with 3Gb drive when SCU max rate is set to 1.5Gb.
419   phy_timer_timeout_values |= SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0x3B);
420
421   scu_link_layer_register_write(
422      this_phy, phy_timer_timeout_values, phy_timer_timeout_values
423   );
424
425   // Program the max ARB time for the PHY to 700us so we inter-operate with
426   // the PMC expander which shuts down PHYs if the expander PHY generates too
427   // many breaks.  This time value will guarantee that the initiator PHY will
428   // generate the break.
429#if defined(PBG_HBA_A0_BUILD) || defined(PBG_HBA_A2_BUILD)
430   scu_link_layer_register_write(
431      this_phy,
432      maximum_arbitration_wait_timer_timeout,
433      SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME
434   );
435#endif // defined(PBG_HBA_A0_BUILD) || defined(PBG_HBA_A2_BUILD)
436
437   // Disable the link layer hang detection timer
438   scu_link_layer_register_write(
439      this_phy, link_layer_hang_detection_timeout, 0x00000000
440   );
441
442   // We can exit the initial state to the stopped state
443   sci_base_state_machine_change_state(
444      scic_sds_phy_get_base_state_machine(this_phy),
445      SCI_BASE_PHY_STATE_STOPPED
446   );
447
448   return SCI_SUCCESS;
449}
450
451/**
452 * This function will handle the sata SIGNATURE FIS timeout condition.  It
453 * will restart the starting substate machine since we dont know what has
454 * actually happening.
455 *
456 * @param[in] cookie This object is cast to the SCIC_SDS_PHY_T object.
457 *
458 * @return none
459 */
460void scic_sds_phy_sata_timeout( SCI_OBJECT_HANDLE_T cookie)
461{
462   SCIC_SDS_PHY_T * this_phy = (SCIC_SDS_PHY_T *)cookie;
463
464   SCIC_LOG_INFO((
465      sci_base_object_get_logger(this_phy),
466      SCIC_LOG_OBJECT_PHY,
467      "SCIC SDS Phy 0x%x did not receive signature fis before timeout.\n",
468      this_phy
469   ));
470
471   sci_base_state_machine_stop(
472      scic_sds_phy_get_starting_substate_machine(this_phy));
473
474   sci_base_state_machine_change_state(
475      scic_sds_phy_get_base_state_machine(this_phy),
476      SCI_BASE_PHY_STATE_STARTING
477   );
478}
479
480//*****************************************************************************
481//* SCIC SDS PHY External Methods
482//*****************************************************************************
483
484/**
485 * @brief This method returns the object size for a phy object.
486 *
487 * @return U32
488 */
489U32 scic_sds_phy_get_object_size(void)
490{
491   return sizeof(SCIC_SDS_PHY_T);
492}
493
494/**
495 * @brief This method returns the minimum number of timers required for a
496 *        phy object.
497 *
498 * @return U32
499 */
500U32 scic_sds_phy_get_min_timer_count(void)
501{
502   return SCIC_SDS_PHY_MIN_TIMER_COUNT;
503}
504
505/**
506 * @brief This method returns the maximum number of timers required for a
507 *        phy object.
508 *
509 * @return U32
510 */
511U32 scic_sds_phy_get_max_timer_count(void)
512{
513   return SCIC_SDS_PHY_MAX_TIMER_COUNT;
514}
515
516#ifdef SCI_LOGGING
517static
518void scic_sds_phy_initialize_state_logging(
519   SCIC_SDS_PHY_T *this_phy
520)
521{
522   sci_base_state_machine_logger_initialize(
523      &this_phy->parent.state_machine_logger,
524      &this_phy->parent.state_machine,
525      &this_phy->parent.parent,
526      scic_cb_logger_log_states,
527      "SCIC_SDS_PHY_T", "base state machine",
528      SCIC_LOG_OBJECT_PHY
529   );
530
531   sci_base_state_machine_logger_initialize(
532      &this_phy->starting_substate_machine_logger,
533      &this_phy->starting_substate_machine,
534      &this_phy->parent.parent,
535      scic_cb_logger_log_states,
536      "SCIC_SDS_PHY_T", "starting substate machine",
537      SCIC_LOG_OBJECT_PHY
538   );
539}
540#endif // SCI_LOGGING
541
542#ifdef SCIC_DEBUG_ENABLED
543/**
544 * Debug code to record the state transitions in the phy
545 *
546 * @param our_observer
547 * @param the_state_machine
548 */
549void scic_sds_phy_observe_state_change(
550   SCI_BASE_OBSERVER_T * our_observer,
551   SCI_BASE_SUBJECT_T  * the_subject
552)
553{
554   SCIC_SDS_PHY_T           *this_phy;
555   SCI_BASE_STATE_MACHINE_T *the_state_machine;
556
557   U8  transition_requestor;
558   U32 base_state_id;
559   U32 starting_substate_id;
560
561   the_state_machine = (SCI_BASE_STATE_MACHINE_T *)the_subject;
562   this_phy = (SCIC_SDS_PHY_T *)the_state_machine->state_machine_owner;
563
564   if (the_state_machine == &this_phy->parent.state_machine)
565   {
566      transition_requestor = 0x01;
567   }
568   else if (the_state_machine == &this_phy->starting_substate_machine)
569   {
570      transition_requestor = 0x02;
571   }
572   else
573   {
574      transition_requestor = 0xFF;
575   }
576
577   base_state_id =
578      sci_base_state_machine_get_state(&this_phy->parent.state_machine);
579   starting_substate_id =
580      sci_base_state_machine_get_state(&this_phy->starting_substate_machine);
581
582   this_phy->state_record.state_transition_table[
583      this_phy->state_record.index++] = ( (transition_requestor << 24)
584                                        | ((U8)base_state_id << 8)
585                                        | ((U8)starting_substate_id));
586
587   this_phy->state_record.index =
588      this_phy->state_record.index & (MAX_STATE_TRANSITION_RECORD - 1);
589
590}
591#endif // SCIC_DEBUG_ENABLED
592
593#ifdef SCIC_DEBUG_ENABLED
594/**
595 * This method initializes the state record debug information for the phy
596 * object.
597 *
598 * @pre The state machines for the phy object must be constructed before this
599 *      function is called.
600 *
601 * @param this_phy The phy which is being initialized.
602 */
603void scic_sds_phy_initialize_state_recording(
604   SCIC_SDS_PHY_T *this_phy
605)
606{
607   this_phy->state_record.index = 0;
608
609   sci_base_observer_initialize(
610      &this_phy->state_record.base_state_observer,
611      scic_sds_phy_observe_state_change,
612      &this_phy->parent.state_machine.parent
613   );
614
615   sci_base_observer_initialize(
616      &this_phy->state_record.starting_state_observer,
617      scic_sds_phy_observe_state_change,
618      &this_phy->starting_substate_machine.parent
619   );
620}
621#endif // SCIC_DEBUG_ENABLED
622
623/**
624 * @brief This method will construct the SCIC_SDS_PHY object
625 *
626 * @param[in] this_phy
627 * @param[in] owning_port
628 * @param[in] phy_index
629 *
630 * @return none
631 */
632void scic_sds_phy_construct(
633   SCIC_SDS_PHY_T  *this_phy,
634   SCIC_SDS_PORT_T *owning_port,
635   U8              phy_index
636)
637{
638   // Call the base constructor first
639   // Copy the logger from the port (this could be the dummy port)
640   sci_base_phy_construct(
641      &this_phy->parent,
642      sci_base_object_get_logger(owning_port),
643      scic_sds_phy_state_table
644      );
645
646   // Copy the rest of the input data to our locals
647   this_phy->owning_port = owning_port;
648   this_phy->phy_index = phy_index;
649   this_phy->bcn_received_while_port_unassigned = FALSE;
650   this_phy->protocol = SCIC_SDS_PHY_PROTOCOL_UNKNOWN;
651   this_phy->link_layer_registers = NULL;
652   this_phy->max_negotiated_speed = SCI_SAS_NO_LINK_RATE;
653   this_phy->sata_timeout_timer = NULL;
654
655   // Clear out the identification buffer data
656   memset(&this_phy->phy_type, 0, sizeof(this_phy->phy_type));
657
658   // Clear out the error counter data
659   memset(this_phy->error_counter, 0, sizeof(this_phy->error_counter));
660
661   // Initialize the substate machines
662   sci_base_state_machine_construct(
663      &this_phy->starting_substate_machine,
664      &this_phy->parent.parent,
665      scic_sds_phy_starting_substates,
666      SCIC_SDS_PHY_STARTING_SUBSTATE_INITIAL
667      );
668
669   #ifdef SCI_LOGGING
670   scic_sds_phy_initialize_state_logging(this_phy);
671   #endif // SCI_LOGGING
672
673   #ifdef SCIC_DEBUG_ENABLED
674   scic_sds_phy_initialize_state_recording(this_phy);
675   #endif // SCIC_DEBUG_ENABLED
676}
677
678/**
679 * @brief This method returns the port currently containing this phy.
680 *        If the phy is currently contained by the dummy port, then
681 *        the phy is considered to not be part of a port.
682 *
683 * @param[in] this_phy This parameter specifies the phy for which to
684 *            retrieve the containing port.
685 *
686 * @return This method returns a handle to a port that contains
687 *         the supplied phy.
688 * @retval SCI_INVALID_HANDLE This value is returned if the phy is not
689 *         part of a real port (i.e. it's contained in the dummy port).
690 * @retval !SCI_INVALID_HANDLE All other values indicate a handle/pointer
691 *         to the port containing the phy.
692 */
693SCI_PORT_HANDLE_T scic_sds_phy_get_port(
694   SCIC_SDS_PHY_T *this_phy
695)
696{
697   SCIC_LOG_TRACE((
698      sci_base_object_get_logger(this_phy),
699      SCIC_LOG_OBJECT_PHY,
700      "scic_phy_get_port(0x%x) enter\n",
701      this_phy
702   ));
703
704   if (scic_sds_port_get_index(this_phy->owning_port) == SCIC_SDS_DUMMY_PORT)
705      return SCI_INVALID_HANDLE;
706
707   return this_phy->owning_port;
708}
709
710/**
711 * @brief This method will assign a port to the phy object.
712 *
713 * @param[in, out] this_phy This parameter specifies the phy for which
714 *    to assign a port object.
715 * @param[in] the_port This parameter is the port to assing to the phy.
716 */
717void scic_sds_phy_set_port(
718   SCIC_SDS_PHY_T * this_phy,
719   SCIC_SDS_PORT_T * the_port
720)
721{
722   this_phy->owning_port = the_port;
723
724   if (this_phy->bcn_received_while_port_unassigned)
725   {
726      this_phy->bcn_received_while_port_unassigned = FALSE;
727      scic_sds_port_broadcast_change_received(this_phy->owning_port, this_phy);
728   }
729}
730
731/**
732 * @brief This method will initialize the constructed phy
733 *
734 * @param[in] this_phy
735 * @param[in] link_layer_registers
736 *
737 * @return SCI_STATUS
738 */
739SCI_STATUS scic_sds_phy_initialize(
740   SCIC_SDS_PHY_T             *this_phy,
741   void                       *transport_layer_registers,
742   SCU_LINK_LAYER_REGISTERS_T *link_layer_registers
743)
744{
745   SCIC_LOG_TRACE((
746      sci_base_object_get_logger(this_phy),
747      SCIC_LOG_OBJECT_PHY,
748      "scic_sds_phy_initialize(this_phy:0x%x, link_layer_registers:0x%x)\n",
749      this_phy, link_layer_registers
750   ));
751
752   // Perfrom the initialization of the TL hardware
753   scic_sds_phy_transport_layer_initialization(this_phy, transport_layer_registers);
754
755   // Perofrm the initialization of the PE hardware
756   scic_sds_phy_link_layer_initialization(this_phy, link_layer_registers);
757
758   // There is nothing that needs to be done in this state just
759   // transition to the stopped state.
760   sci_base_state_machine_change_state(
761      scic_sds_phy_get_base_state_machine(this_phy),
762      SCI_BASE_PHY_STATE_STOPPED
763   );
764
765   return SCI_SUCCESS;
766}
767
768/**
769 * This method assigns the direct attached device ID for this phy.
770 *
771 * @param[in] this_phy The phy for which the direct attached device id is to
772 *       be assigned.
773 * @param[in] device_id The direct attached device ID to assign to the phy.
774 *       This will either be the RNi for the device or an invalid RNi if there
775 *       is no current device assigned to the phy.
776 */
777void scic_sds_phy_setup_transport(
778   SCIC_SDS_PHY_T * this_phy,
779   U32              device_id
780)
781{
782   U32 tl_control;
783
784   SCU_STPTLDARNI_WRITE(this_phy, device_id);
785
786   // The read should guarntee that the first write gets posted
787   // before the next write
788   tl_control = SCU_TLCR_READ(this_phy);
789   tl_control |= SCU_TLCR_GEN_BIT(CLEAR_TCI_NCQ_MAPPING_TABLE);
790   SCU_TLCR_WRITE(this_phy, tl_control);
791}
792
793/**
794 * This function will perform the register reads/writes to suspend the SCU
795 * hardware protocol engine.
796 *
797 * @param[in,out] this_phy The phy object to be suspended.
798 *
799 * @return none
800 */
801void scic_sds_phy_suspend(
802   SCIC_SDS_PHY_T * this_phy
803)
804{
805   U32 scu_sas_pcfg_value;
806
807   scu_sas_pcfg_value = SCU_SAS_PCFG_READ(this_phy);
808   scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE);
809   SCU_SAS_PCFG_WRITE(this_phy, scu_sas_pcfg_value);
810
811   scic_sds_phy_setup_transport(
812      this_phy, SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX
813   );
814}
815
816/**
817 * This function will perform the register reads/writes required to resume the
818 * SCU hardware protocol engine.
819 *
820 * @param[in,out] this_phy The phy object to resume.
821 *
822 * @return none
823 */
824void scic_sds_phy_resume(
825   SCIC_SDS_PHY_T * this_phy
826)
827{
828   U32 scu_sas_pcfg_value;
829
830   scu_sas_pcfg_value = SCU_SAS_PCFG_READ(this_phy);
831
832   scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE);
833
834   SCU_SAS_PCFG_WRITE(this_phy, scu_sas_pcfg_value);
835}
836
837/**
838 * @brief This method returns the local sas address assigned to this phy.
839 *
840 * @param[in] this_phy This parameter specifies the phy for which
841 *            to retrieve the local SAS address.
842 * @param[out] sas_address This parameter specifies the location into
843 *             which to copy the local SAS address.
844 *
845 * @return none
846 */
847void scic_sds_phy_get_sas_address(
848   SCIC_SDS_PHY_T *this_phy,
849   SCI_SAS_ADDRESS_T *sas_address
850)
851{
852   SCIC_LOG_TRACE((
853      sci_base_object_get_logger(this_phy),
854      SCIC_LOG_OBJECT_PHY,
855      "scic_sds_phy_get_sas_address(this_phy:0x%x, sas_address:0x%x)\n",
856      this_phy, sas_address
857   ));
858
859   sas_address->high = SCU_SAS_TISSAH_READ(this_phy);
860   sas_address->low  = SCU_SAS_TISSAL_READ(this_phy);
861}
862
863/**
864 * @brief This method returns the remote end-point (i.e. attached)
865 *        sas address assigned to this phy.
866 *
867 * @param[in] this_phy This parameter specifies the phy for which
868 *            to retrieve the remote end-point SAS address.
869 * @param[out] sas_address This parameter specifies the location into
870 *             which to copy the remote end-point SAS address.
871 *
872 * @return none
873 */
874void scic_sds_phy_get_attached_sas_address(
875   SCIC_SDS_PHY_T    *this_phy,
876   SCI_SAS_ADDRESS_T *sas_address
877)
878{
879   SCIC_LOG_TRACE((
880      sci_base_object_get_logger(this_phy),
881      SCIC_LOG_OBJECT_PHY,
882      "scic_sds_phy_get_attached_sas_address(0x%x, 0x%x) enter\n",
883      this_phy, sas_address
884   ));
885
886   sas_address->high
887      = this_phy->phy_type.sas.identify_address_frame_buffer.sas_address.high;
888   sas_address->low
889      = this_phy->phy_type.sas.identify_address_frame_buffer.sas_address.low;
890}
891
892/**
893 * @brief This method returns the supported protocols assigned to
894 *        this phy
895 *
896 * @param[in] this_phy
897 * @param[out] protocols
898 */
899void scic_sds_phy_get_protocols(
900   SCIC_SDS_PHY_T *this_phy,
901   SCI_SAS_IDENTIFY_ADDRESS_FRAME_PROTOCOLS_T * protocols
902)
903{
904   U32 tiid_value = SCU_SAS_TIID_READ(this_phy);
905
906   //Check each bit of this register. please refer to
907   //SAS Transmit Identification Register (SAS_TIID).
908   if (tiid_value & 0x2)
909      protocols->u.bits.smp_target = 1;
910
911   if (tiid_value & 0x4)
912      protocols->u.bits.stp_target = 1;
913
914   if (tiid_value & 0x8)
915      protocols->u.bits.ssp_target = 1;
916
917   if (tiid_value & 0x200)
918      protocols->u.bits.smp_initiator = 1;
919
920   if ((tiid_value & 0x400))
921      protocols->u.bits.stp_initiator = 1;
922
923   if (tiid_value & 0x800)
924      protocols->u.bits.ssp_initiator = 1;
925
926   SCIC_LOG_TRACE((
927      sci_base_object_get_logger(this_phy),
928      SCIC_LOG_OBJECT_PHY,
929      "scic_sds_phy_get_protocols(this_phy:0x%x, protocols:0x%x)\n",
930      this_phy, protocols->u.all
931   ));
932}
933
934/**
935 * This method returns the supported protocols for the attached phy.  If this
936 * is a SAS phy the protocols are returned from the identify address frame.
937 * If this is a SATA phy then protocols are made up and the target phy is an
938 * STP target phy.
939 *
940 * @note The caller will get the entire set of bits for the protocol value.
941 *
942 * @param[in] this_phy The parameter is the phy object for which the attached
943 *       phy protcols are to be returned.
944 * @param[out] protocols The parameter is the returned protocols for the
945 *       attached phy.
946 */
947void scic_sds_phy_get_attached_phy_protocols(
948   SCIC_SDS_PHY_T *this_phy,
949   SCI_SAS_IDENTIFY_ADDRESS_FRAME_PROTOCOLS_T * protocols
950)
951{
952   SCIC_LOG_TRACE((
953      sci_base_object_get_logger(this_phy),
954      SCIC_LOG_OBJECT_PHY,
955      "scic_sds_phy_get_attached_phy_protocols(this_phy:0x%x, protocols:0x%x[0x%x])\n",
956      this_phy, protocols, protocols->u.all
957   ));
958
959   protocols->u.all = 0;
960
961   if (this_phy->protocol == SCIC_SDS_PHY_PROTOCOL_SAS)
962   {
963      protocols->u.all =
964         this_phy->phy_type.sas.identify_address_frame_buffer.protocols.u.all;
965   }
966   else if (this_phy->protocol == SCIC_SDS_PHY_PROTOCOL_SATA)
967   {
968      protocols->u.bits.stp_target = 1;
969   }
970}
971
972
973/**
974 * @brief This method release resources in for a scic phy.
975 *
976 * @param[in] controller This parameter specifies the core controller, one of
977 *            its phy's resources are to be released.
978 * @param[in] this_phy This parameter specifies the phy whose resource is to
979 *            be released.
980 */
981void scic_sds_phy_release_resource(
982   SCIC_SDS_CONTROLLER_T * controller,
983   SCIC_SDS_PHY_T        * this_phy
984)
985{
986   SCIC_LOG_TRACE((
987      sci_base_object_get_logger(this_phy),
988      SCIC_LOG_OBJECT_PHY,
989      "scic_sds_phy_release_resource(0x%x, 0x%x)\n",
990      controller, this_phy
991   ));
992
993   //Currently, the only resource to be released is a timer.
994   if (this_phy->sata_timeout_timer != NULL)
995   {
996      scic_cb_timer_destroy(controller, this_phy->sata_timeout_timer);
997      this_phy->sata_timeout_timer = NULL;
998   }
999}
1000
1001
1002//*****************************************************************************
1003//* SCIC SDS PHY Handler Redirects
1004//*****************************************************************************
1005
1006/**
1007 * @brief This method will attempt to reset the phy.  This
1008 *        request is only valid when the phy is in an ready
1009 *        state
1010 *
1011 * @param[in] this_phy
1012 *
1013 * @return SCI_STATUS
1014 */
1015SCI_STATUS scic_sds_phy_reset(
1016   SCIC_SDS_PHY_T * this_phy
1017)
1018{
1019   SCIC_LOG_TRACE((
1020      sci_base_object_get_logger(this_phy),
1021      SCIC_LOG_OBJECT_PHY,
1022      "scic_sds_phy_reset(this_phy:0x%08x)\n",
1023      this_phy
1024   ));
1025
1026   return this_phy->state_handlers->parent.reset_handler(
1027                                             &this_phy->parent
1028                                           );
1029}
1030
1031/**
1032 * @brief This method will process the event code recieved.
1033 *
1034 * @param[in] this_phy
1035 * @param[in] event_code
1036 *
1037 * @return SCI_STATUS
1038 */
1039SCI_STATUS scic_sds_phy_event_handler(
1040   SCIC_SDS_PHY_T *this_phy,
1041   U32 event_code
1042)
1043{
1044   SCIC_LOG_TRACE((
1045      sci_base_object_get_logger(this_phy),
1046      SCIC_LOG_OBJECT_PHY,
1047      "scic_sds_phy_event_handler(this_phy:0x%08x, event_code:%x)\n",
1048      this_phy, event_code
1049   ));
1050
1051   return this_phy->state_handlers->event_handler(this_phy, event_code);
1052}
1053
1054/**
1055 * @brief This method will process the frame index recieved.
1056 *
1057 * @param[in] this_phy
1058 * @param[in] frame_index
1059 *
1060 * @return SCI_STATUS
1061 */
1062SCI_STATUS scic_sds_phy_frame_handler(
1063   SCIC_SDS_PHY_T *this_phy,
1064   U32 frame_index
1065)
1066{
1067   SCIC_LOG_TRACE((
1068      sci_base_object_get_logger(this_phy),
1069      SCIC_LOG_OBJECT_PHY,
1070      "scic_sds_phy_frame_handler(this_phy:0x%08x, frame_index:%d)\n",
1071      this_phy, frame_index
1072   ));
1073
1074   return this_phy->state_handlers->frame_handler(this_phy, frame_index);
1075}
1076
1077/**
1078 * @brief This method will give the phy permission to consume power
1079 *
1080 * @param[in] this_phy
1081 *
1082 * @return SCI_STATUS
1083 */
1084SCI_STATUS scic_sds_phy_consume_power_handler(
1085   SCIC_SDS_PHY_T *this_phy
1086)
1087{
1088   SCIC_LOG_TRACE((
1089      sci_base_object_get_logger(this_phy),
1090      SCIC_LOG_OBJECT_PHY,
1091      "scic_sds_phy_consume_power_handler(this_phy:0x%08x)\n",
1092      this_phy
1093   ));
1094
1095   return this_phy->state_handlers->consume_power_handler(this_phy);
1096}
1097
1098//*****************************************************************************
1099//* SCIC PHY Public Methods
1100//*****************************************************************************
1101
1102SCI_STATUS scic_phy_get_properties(
1103   SCI_PHY_HANDLE_T        phy,
1104   SCIC_PHY_PROPERTIES_T * properties
1105)
1106{
1107   SCIC_SDS_PHY_T *this_phy;
1108   U8 max_speed_generation;
1109
1110   this_phy = (SCIC_SDS_PHY_T *)phy;
1111
1112   SCIC_LOG_TRACE((
1113      sci_base_object_get_logger(this_phy),
1114      SCIC_LOG_OBJECT_PHY,
1115      "scic_phy_get_properties(0x%x, 0x%x) enter\n",
1116      this_phy, properties
1117   ));
1118
1119   if (phy == SCI_INVALID_HANDLE)
1120   {
1121      return SCI_FAILURE_INVALID_PHY;
1122   }
1123
1124   memset(properties, 0, sizeof(SCIC_PHY_PROPERTIES_T));
1125
1126   //get max link rate of this phy set by user.
1127   max_speed_generation =
1128      this_phy->owning_port->owning_controller->user_parameters.sds1.
1129         phys[this_phy->phy_index].max_speed_generation;
1130
1131   properties->negotiated_link_rate     = this_phy->max_negotiated_speed;
1132
1133   if (max_speed_generation == SCIC_SDS_PARM_GEN3_SPEED)
1134      properties->max_link_rate            = SCI_SAS_600_GB;
1135   else if (max_speed_generation == SCIC_SDS_PARM_GEN2_SPEED)
1136      properties->max_link_rate            = SCI_SAS_300_GB;
1137   else
1138      properties->max_link_rate            = SCI_SAS_150_GB;
1139
1140   properties->index                    = this_phy->phy_index;
1141   properties->owning_port              = scic_sds_phy_get_port(this_phy);
1142
1143   scic_sds_phy_get_protocols(this_phy, &properties->transmit_iaf.protocols);
1144
1145   properties->transmit_iaf.sas_address.high =
1146      this_phy->owning_port->owning_controller->oem_parameters.sds1.
1147         phys[this_phy->phy_index].sas_address.sci_format.high;
1148
1149   properties->transmit_iaf.sas_address.low =
1150      this_phy->owning_port->owning_controller->oem_parameters.sds1.
1151         phys[this_phy->phy_index].sas_address.sci_format.low;
1152
1153   return SCI_SUCCESS;
1154}
1155
1156// ---------------------------------------------------------------------------
1157
1158SCI_STATUS scic_sas_phy_get_properties(
1159   SCI_PHY_HANDLE_T            phy,
1160   SCIC_SAS_PHY_PROPERTIES_T * properties
1161)
1162{
1163   SCIC_SDS_PHY_T *this_phy;
1164   this_phy = (SCIC_SDS_PHY_T *)phy;
1165
1166   SCIC_LOG_TRACE((
1167      sci_base_object_get_logger(this_phy),
1168      SCIC_LOG_OBJECT_PHY,
1169      "scic_sas_phy_get_properties(0x%x, 0x%x) enter\n",
1170      this_phy, properties
1171   ));
1172
1173   if (this_phy->protocol == SCIC_SDS_PHY_PROTOCOL_SAS)
1174   {
1175      memcpy(
1176         &properties->received_iaf,
1177         &this_phy->phy_type.sas.identify_address_frame_buffer,
1178         sizeof(SCI_SAS_IDENTIFY_ADDRESS_FRAME_T)
1179      );
1180
1181      properties->received_capabilities.u.all
1182         = SCU_SAS_RECPHYCAP_READ(this_phy);
1183
1184      return SCI_SUCCESS;
1185   }
1186
1187   return SCI_FAILURE;
1188}
1189
1190// ---------------------------------------------------------------------------
1191
1192SCI_STATUS scic_sata_phy_get_properties(
1193   SCI_PHY_HANDLE_T             phy,
1194   SCIC_SATA_PHY_PROPERTIES_T * properties
1195)
1196{
1197   SCIC_SDS_PHY_T *this_phy;
1198   this_phy = (SCIC_SDS_PHY_T *)phy;
1199
1200   SCIC_LOG_TRACE((
1201      sci_base_object_get_logger(this_phy),
1202      SCIC_LOG_OBJECT_PHY,
1203      "scic_sata_phy_get_properties(0x%x, 0x%x) enter\n",
1204      this_phy, properties
1205   ));
1206
1207   if (this_phy->protocol == SCIC_SDS_PHY_PROTOCOL_SATA)
1208   {
1209      memcpy(
1210         &properties->signature_fis,
1211         &this_phy->phy_type.sata.signature_fis_buffer,
1212         sizeof(SATA_FIS_REG_D2H_T)
1213      );
1214
1215      /// @todo add support for port selectors.
1216      properties->is_port_selector_present = FALSE;
1217
1218      return SCI_SUCCESS;
1219   }
1220
1221   return SCI_FAILURE;
1222}
1223
1224// ---------------------------------------------------------------------------
1225
1226#if !defined(DISABLE_PORT_SELECTORS)
1227
1228SCI_STATUS scic_sata_phy_send_port_selection_signal(
1229   SCI_PHY_HANDLE_T  phy
1230)
1231{
1232   SCIC_SDS_PHY_T *this_phy;
1233   this_phy = (SCIC_SDS_PHY_T *)phy;
1234
1235   SCIC_LOG_TRACE((
1236      sci_base_object_get_logger(this_phy),
1237      SCIC_LOG_OBJECT_PHY,
1238      "scic_sata_phy_send_port_selection_signals(0x%x) enter\n",
1239      this_phy
1240   ));
1241
1242   /// @todo To be implemented
1243   ASSERT(FALSE);
1244   return SCI_FAILURE;
1245}
1246
1247#endif // !defined(DISABLE_PORT_SELECTORS)
1248
1249// ---------------------------------------------------------------------------
1250
1251#if !defined(DISABLE_PHY_COUNTERS)
1252
1253SCI_STATUS scic_phy_enable_counter(
1254   SCI_PHY_HANDLE_T       phy,
1255   SCIC_PHY_COUNTER_ID_T  counter_id
1256)
1257{
1258   SCIC_SDS_PHY_T *this_phy;
1259   SCI_STATUS status = SCI_SUCCESS;
1260   this_phy = (SCIC_SDS_PHY_T *)phy;
1261
1262   SCIC_LOG_TRACE((
1263      sci_base_object_get_logger(this_phy),
1264      SCIC_LOG_OBJECT_PHY,
1265      "scic_phy_enable_counter(0x%x, 0x%x) enter\n",
1266      this_phy, counter_id
1267   ));
1268
1269   switch(counter_id)
1270   {
1271      case SCIC_PHY_COUNTER_RECEIVED_DONE_ACK_NAK_TIMEOUT:
1272         {
1273            U32 control = SCU_SAS_ECENCR_READ(this_phy);
1274            control |= (1 << SCU_ERR_CNT_RX_DONE_ACK_NAK_TIMEOUT_INDEX);
1275            SCU_SAS_ECENCR_WRITE(this_phy, control);
1276         }
1277         break;
1278      case SCIC_PHY_COUNTER_TRANSMITTED_DONE_ACK_NAK_TIMEOUT:
1279         {
1280            U32 control = SCU_SAS_ECENCR_READ(this_phy);
1281            control |= (1 << SCU_ERR_CNT_TX_DONE_ACK_NAK_TIMEOUT_INDEX);
1282            SCU_SAS_ECENCR_WRITE(this_phy, control);
1283         }
1284         break;
1285      case SCIC_PHY_COUNTER_INACTIVITY_TIMER_EXPIRED:
1286         {
1287            U32 control = SCU_SAS_ECENCR_READ(this_phy);
1288            control |= (1 << SCU_ERR_CNT_INACTIVITY_TIMER_EXPIRED_INDEX);
1289            SCU_SAS_ECENCR_WRITE(this_phy, control);
1290         }
1291         break;
1292      case SCIC_PHY_COUNTER_RECEIVED_DONE_CREDIT_TIMEOUT:
1293         {
1294            U32 control = SCU_SAS_ECENCR_READ(this_phy);
1295            control |= (1 << SCU_ERR_CNT_RX_DONE_CREDIT_TIMEOUT_INDEX);
1296            SCU_SAS_ECENCR_WRITE(this_phy, control);
1297         }
1298         break;
1299      case SCIC_PHY_COUNTER_TRANSMITTED_DONE_CREDIT_TIMEOUT:
1300         {
1301            U32 control = SCU_SAS_ECENCR_READ(this_phy);
1302            control |= (1 << SCU_ERR_CNT_TX_DONE_CREDIT_TIMEOUT_INDEX);
1303            SCU_SAS_ECENCR_WRITE(this_phy, control);
1304         }
1305         break;
1306      case SCIC_PHY_COUNTER_RECEIVED_CREDIT_BLOCKED:
1307         {
1308            U32 control = SCU_SAS_ECENCR_READ(this_phy);
1309            control |= (1 << SCU_ERR_CNT_RX_CREDIT_BLOCKED_RECEIVED_INDEX);
1310            SCU_SAS_ECENCR_WRITE(this_phy, control);
1311         }
1312         break;
1313
1314         // These error counters are enabled by default, and cannot be
1315         //  disabled.  Return SCI_SUCCESS to denote that they are
1316         //  enabled, hiding the fact that enabling the counter is
1317         //  a no-op.
1318      case SCIC_PHY_COUNTER_RECEIVED_FRAME:
1319      case SCIC_PHY_COUNTER_TRANSMITTED_FRAME:
1320      case SCIC_PHY_COUNTER_RECEIVED_FRAME_DWORD:
1321      case SCIC_PHY_COUNTER_TRANSMITTED_FRAME_DWORD:
1322      case SCIC_PHY_COUNTER_LOSS_OF_SYNC_ERROR:
1323      case SCIC_PHY_COUNTER_RECEIVED_DISPARITY_ERROR:
1324      case SCIC_PHY_COUNTER_RECEIVED_FRAME_CRC_ERROR:
1325      case SCIC_PHY_COUNTER_RECEIVED_SHORT_FRAME:
1326      case SCIC_PHY_COUNTER_RECEIVED_FRAME_WITHOUT_CREDIT:
1327      case SCIC_PHY_COUNTER_RECEIVED_FRAME_AFTER_DONE:
1328      case SCIC_PHY_COUNTER_SN_DWORD_SYNC_ERROR:
1329         break;
1330
1331      default:
1332         status = SCI_FAILURE;
1333         break;
1334   }
1335   return status;
1336}
1337
1338// ---------------------------------------------------------------------------
1339
1340SCI_STATUS scic_phy_disable_counter(
1341   SCI_PHY_HANDLE_T       phy,
1342   SCIC_PHY_COUNTER_ID_T  counter_id
1343)
1344{
1345   SCIC_SDS_PHY_T *this_phy;
1346   SCI_STATUS status = SCI_SUCCESS;
1347
1348   this_phy = (SCIC_SDS_PHY_T *)phy;
1349
1350   SCIC_LOG_TRACE((
1351      sci_base_object_get_logger(this_phy),
1352      SCIC_LOG_OBJECT_PHY,
1353      "scic_phy_disable_counter(0x%x, 0x%x) enter\n",
1354      this_phy, counter_id
1355   ));
1356
1357   switch(counter_id)
1358   {
1359      case SCIC_PHY_COUNTER_RECEIVED_DONE_ACK_NAK_TIMEOUT:
1360         {
1361            U32 control = SCU_SAS_ECENCR_READ(this_phy);
1362            control &= ~(1 << SCU_ERR_CNT_RX_DONE_ACK_NAK_TIMEOUT_INDEX);
1363            SCU_SAS_ECENCR_WRITE(this_phy, control);
1364         }
1365         break;
1366      case SCIC_PHY_COUNTER_TRANSMITTED_DONE_ACK_NAK_TIMEOUT:
1367         {
1368            U32 control = SCU_SAS_ECENCR_READ(this_phy);
1369            control &= ~(1 << SCU_ERR_CNT_TX_DONE_ACK_NAK_TIMEOUT_INDEX);
1370            SCU_SAS_ECENCR_WRITE(this_phy, control);
1371         }
1372         break;
1373      case SCIC_PHY_COUNTER_INACTIVITY_TIMER_EXPIRED:
1374         {
1375            U32 control = SCU_SAS_ECENCR_READ(this_phy);
1376            control &= ~(1 << SCU_ERR_CNT_INACTIVITY_TIMER_EXPIRED_INDEX);
1377            SCU_SAS_ECENCR_WRITE(this_phy, control);
1378         }
1379         break;
1380      case SCIC_PHY_COUNTER_RECEIVED_DONE_CREDIT_TIMEOUT:
1381         {
1382            U32 control = SCU_SAS_ECENCR_READ(this_phy);
1383            control &= ~(1 << SCU_ERR_CNT_RX_DONE_CREDIT_TIMEOUT_INDEX);
1384            SCU_SAS_ECENCR_WRITE(this_phy, control);
1385         }
1386         break;
1387      case SCIC_PHY_COUNTER_TRANSMITTED_DONE_CREDIT_TIMEOUT:
1388         {
1389            U32 control = SCU_SAS_ECENCR_READ(this_phy);
1390            control &= ~(1 << SCU_ERR_CNT_TX_DONE_CREDIT_TIMEOUT_INDEX);
1391            SCU_SAS_ECENCR_WRITE(this_phy, control);
1392         }
1393         break;
1394      case SCIC_PHY_COUNTER_RECEIVED_CREDIT_BLOCKED:
1395         {
1396            U32 control = SCU_SAS_ECENCR_READ(this_phy);
1397            control &= ~(1 << SCU_ERR_CNT_RX_CREDIT_BLOCKED_RECEIVED_INDEX);
1398            SCU_SAS_ECENCR_WRITE(this_phy, control);
1399         }
1400         break;
1401
1402         // These error counters cannot be disabled, so return SCI_FAILURE.
1403      case SCIC_PHY_COUNTER_RECEIVED_FRAME:
1404      case SCIC_PHY_COUNTER_TRANSMITTED_FRAME:
1405      case SCIC_PHY_COUNTER_RECEIVED_FRAME_DWORD:
1406      case SCIC_PHY_COUNTER_TRANSMITTED_FRAME_DWORD:
1407      case SCIC_PHY_COUNTER_LOSS_OF_SYNC_ERROR:
1408      case SCIC_PHY_COUNTER_RECEIVED_DISPARITY_ERROR:
1409      case SCIC_PHY_COUNTER_RECEIVED_FRAME_CRC_ERROR:
1410      case SCIC_PHY_COUNTER_RECEIVED_SHORT_FRAME:
1411      case SCIC_PHY_COUNTER_RECEIVED_FRAME_WITHOUT_CREDIT:
1412      case SCIC_PHY_COUNTER_RECEIVED_FRAME_AFTER_DONE:
1413      case SCIC_PHY_COUNTER_SN_DWORD_SYNC_ERROR:
1414      default:
1415         status = SCI_FAILURE;
1416         break;
1417   }
1418   return status;
1419}
1420
1421// ---------------------------------------------------------------------------
1422
1423SCI_STATUS scic_phy_get_counter(
1424   SCI_PHY_HANDLE_T        phy,
1425   SCIC_PHY_COUNTER_ID_T   counter_id,
1426   U32                   * data
1427)
1428{
1429   SCIC_SDS_PHY_T *this_phy;
1430   SCI_STATUS status = SCI_SUCCESS;
1431   this_phy = (SCIC_SDS_PHY_T *)phy;
1432
1433   SCIC_LOG_TRACE((
1434      sci_base_object_get_logger(this_phy),
1435      SCIC_LOG_OBJECT_PHY,
1436      "scic_phy_get_counter(0x%x, 0x%x) enter\n",
1437      this_phy, counter_id
1438   ));
1439
1440   switch(counter_id)
1441   {
1442      case SCIC_PHY_COUNTER_RECEIVED_FRAME:
1443         *data = scu_link_layer_register_read(this_phy, received_frame_count);
1444         break;
1445      case SCIC_PHY_COUNTER_TRANSMITTED_FRAME:
1446         *data = scu_link_layer_register_read(this_phy, transmit_frame_count);
1447         break;
1448      case SCIC_PHY_COUNTER_RECEIVED_FRAME_DWORD:
1449         *data = scu_link_layer_register_read(this_phy, received_dword_count);
1450         break;
1451      case SCIC_PHY_COUNTER_TRANSMITTED_FRAME_DWORD:
1452         *data = scu_link_layer_register_read(this_phy, transmit_dword_count);
1453         break;
1454      case SCIC_PHY_COUNTER_LOSS_OF_SYNC_ERROR:
1455         *data = scu_link_layer_register_read(this_phy, loss_of_sync_error_count);
1456         break;
1457      case SCIC_PHY_COUNTER_RECEIVED_DISPARITY_ERROR:
1458         *data = scu_link_layer_register_read(this_phy, running_disparity_error_count);
1459         break;
1460      case SCIC_PHY_COUNTER_RECEIVED_FRAME_CRC_ERROR:
1461         *data = scu_link_layer_register_read(this_phy, received_frame_crc_error_count);
1462         break;
1463      case SCIC_PHY_COUNTER_RECEIVED_DONE_ACK_NAK_TIMEOUT:
1464         *data = this_phy->error_counter[SCU_ERR_CNT_RX_DONE_ACK_NAK_TIMEOUT_INDEX];
1465         break;
1466      case SCIC_PHY_COUNTER_TRANSMITTED_DONE_ACK_NAK_TIMEOUT:
1467         *data = this_phy->error_counter[SCU_ERR_CNT_TX_DONE_ACK_NAK_TIMEOUT_INDEX];
1468         break;
1469      case SCIC_PHY_COUNTER_INACTIVITY_TIMER_EXPIRED:
1470         *data = this_phy->error_counter[SCU_ERR_CNT_INACTIVITY_TIMER_EXPIRED_INDEX];
1471         break;
1472      case SCIC_PHY_COUNTER_RECEIVED_DONE_CREDIT_TIMEOUT:
1473         *data = this_phy->error_counter[SCU_ERR_CNT_RX_DONE_CREDIT_TIMEOUT_INDEX];
1474         break;
1475      case SCIC_PHY_COUNTER_TRANSMITTED_DONE_CREDIT_TIMEOUT:
1476         *data = this_phy->error_counter[SCU_ERR_CNT_TX_DONE_CREDIT_TIMEOUT_INDEX];
1477         break;
1478      case SCIC_PHY_COUNTER_RECEIVED_CREDIT_BLOCKED:
1479         *data = this_phy->error_counter[SCU_ERR_CNT_RX_CREDIT_BLOCKED_RECEIVED_INDEX];
1480         break;
1481      case SCIC_PHY_COUNTER_RECEIVED_SHORT_FRAME:
1482         *data = scu_link_layer_register_read(this_phy, received_short_frame_count);
1483         break;
1484      case SCIC_PHY_COUNTER_RECEIVED_FRAME_WITHOUT_CREDIT:
1485         *data = scu_link_layer_register_read(this_phy, received_frame_without_credit_count);
1486         break;
1487      case SCIC_PHY_COUNTER_RECEIVED_FRAME_AFTER_DONE:
1488         *data = scu_link_layer_register_read(this_phy, received_frame_after_done_count);
1489         break;
1490      case SCIC_PHY_COUNTER_SN_DWORD_SYNC_ERROR:
1491         *data = scu_link_layer_register_read(this_phy, phy_reset_problem_count);
1492         break;
1493      default:
1494         status = SCI_FAILURE;
1495         break;
1496   }
1497
1498   return status;
1499}
1500
1501// ---------------------------------------------------------------------------
1502
1503SCI_STATUS scic_phy_clear_counter(
1504   SCI_PHY_HANDLE_T       phy,
1505   SCIC_PHY_COUNTER_ID_T  counter_id
1506)
1507{
1508   SCIC_SDS_PHY_T *this_phy;
1509   SCI_STATUS status = SCI_SUCCESS;
1510   this_phy = (SCIC_SDS_PHY_T *)phy;
1511
1512   SCIC_LOG_TRACE((
1513      sci_base_object_get_logger(this_phy),
1514      SCIC_LOG_OBJECT_PHY,
1515      "scic_phy_clear_counter(0x%x, 0x%x) enter\n",
1516      this_phy, counter_id
1517   ));
1518
1519   switch(counter_id)
1520   {
1521      case SCIC_PHY_COUNTER_RECEIVED_FRAME:
1522         scu_link_layer_register_write(this_phy, received_frame_count, 0);
1523         break;
1524      case SCIC_PHY_COUNTER_TRANSMITTED_FRAME:
1525         scu_link_layer_register_write(this_phy, transmit_frame_count, 0);
1526         break;
1527      case SCIC_PHY_COUNTER_RECEIVED_FRAME_DWORD:
1528         scu_link_layer_register_write(this_phy, received_dword_count, 0);
1529         break;
1530      case SCIC_PHY_COUNTER_TRANSMITTED_FRAME_DWORD:
1531         scu_link_layer_register_write(this_phy, transmit_dword_count, 0);
1532         break;
1533      case SCIC_PHY_COUNTER_LOSS_OF_SYNC_ERROR:
1534         scu_link_layer_register_write(this_phy, loss_of_sync_error_count, 0);
1535         break;
1536      case SCIC_PHY_COUNTER_RECEIVED_DISPARITY_ERROR:
1537         scu_link_layer_register_write(this_phy, running_disparity_error_count, 0);
1538         break;
1539      case SCIC_PHY_COUNTER_RECEIVED_FRAME_CRC_ERROR:
1540         scu_link_layer_register_write(this_phy, received_frame_crc_error_count, 0);
1541         break;
1542      case SCIC_PHY_COUNTER_RECEIVED_DONE_ACK_NAK_TIMEOUT:
1543         this_phy->error_counter[SCU_ERR_CNT_RX_DONE_ACK_NAK_TIMEOUT_INDEX] = 0;
1544         break;
1545      case SCIC_PHY_COUNTER_TRANSMITTED_DONE_ACK_NAK_TIMEOUT:
1546         this_phy->error_counter[SCU_ERR_CNT_TX_DONE_ACK_NAK_TIMEOUT_INDEX] = 0;
1547         break;
1548      case SCIC_PHY_COUNTER_INACTIVITY_TIMER_EXPIRED:
1549         this_phy->error_counter[SCU_ERR_CNT_INACTIVITY_TIMER_EXPIRED_INDEX] = 0;
1550         break;
1551      case SCIC_PHY_COUNTER_RECEIVED_DONE_CREDIT_TIMEOUT:
1552         this_phy->error_counter[SCU_ERR_CNT_RX_DONE_CREDIT_TIMEOUT_INDEX] = 0;
1553         break;
1554      case SCIC_PHY_COUNTER_TRANSMITTED_DONE_CREDIT_TIMEOUT:
1555         this_phy->error_counter[SCU_ERR_CNT_TX_DONE_CREDIT_TIMEOUT_INDEX] = 0;
1556         break;
1557      case SCIC_PHY_COUNTER_RECEIVED_CREDIT_BLOCKED:
1558         this_phy->error_counter[SCU_ERR_CNT_RX_CREDIT_BLOCKED_RECEIVED_INDEX] = 0;
1559         break;
1560      case SCIC_PHY_COUNTER_RECEIVED_SHORT_FRAME:
1561         scu_link_layer_register_write(this_phy, received_short_frame_count, 0);
1562         break;
1563      case SCIC_PHY_COUNTER_RECEIVED_FRAME_WITHOUT_CREDIT:
1564         scu_link_layer_register_write(this_phy, received_frame_without_credit_count, 0);
1565         break;
1566      case SCIC_PHY_COUNTER_RECEIVED_FRAME_AFTER_DONE:
1567         scu_link_layer_register_write(this_phy, received_frame_after_done_count, 0);
1568         break;
1569      case SCIC_PHY_COUNTER_SN_DWORD_SYNC_ERROR:
1570         scu_link_layer_register_write(this_phy, phy_reset_problem_count, 0);
1571         break;
1572      default:
1573         status = SCI_FAILURE;
1574   }
1575
1576   return status;
1577}
1578
1579#endif // !defined(DISABLE_PHY_COUNTERS)
1580
1581SCI_STATUS scic_phy_stop(
1582   SCI_PHY_HANDLE_T       phy
1583)
1584{
1585   SCIC_SDS_PHY_T *this_phy;
1586   this_phy = (SCIC_SDS_PHY_T *)phy;
1587
1588   SCIC_LOG_TRACE((
1589      sci_base_object_get_logger(this_phy),
1590      SCIC_LOG_OBJECT_PHY,
1591      "scic_phy_stop(this_phy:0x%x)\n",
1592      this_phy
1593   ));
1594
1595   return this_phy->state_handlers->parent.stop_handler(&this_phy->parent);
1596}
1597
1598SCI_STATUS scic_phy_start(
1599   SCI_PHY_HANDLE_T       phy
1600)
1601{
1602   SCIC_SDS_PHY_T *this_phy;
1603   this_phy = (SCIC_SDS_PHY_T *)phy;
1604
1605   SCIC_LOG_TRACE((
1606      sci_base_object_get_logger(this_phy),
1607      SCIC_LOG_OBJECT_PHY,
1608      "scic_phy_start(this_phy:0x%x)\n",
1609      this_phy
1610   ));
1611
1612   return this_phy->state_handlers->parent.start_handler(&this_phy->parent);
1613}
1614
1615//******************************************************************************
1616//* PHY STATE MACHINE
1617//******************************************************************************
1618
1619//***************************************************************************
1620//*  DEFAULT HANDLERS
1621//***************************************************************************
1622
1623/**
1624 * This is the default method for phy a start request.  It will report a
1625 * warning and exit.
1626 *
1627 * @param[in] phy This is the SCI_BASE_PHY object which is cast into a
1628 *       SCIC_SDS_PHY object.
1629 *
1630 * @return SCI_STATUS
1631 * @retval SCI_FAILURE_INVALID_STATE
1632 */
1633SCI_STATUS scic_sds_phy_default_start_handler(
1634   SCI_BASE_PHY_T *phy
1635)
1636{
1637   SCIC_SDS_PHY_T *this_phy;
1638   this_phy = (SCIC_SDS_PHY_T *)phy;
1639
1640   SCIC_LOG_WARNING((
1641      sci_base_object_get_logger(this_phy),
1642      SCIC_LOG_OBJECT_PHY,
1643      "SCIC Phy 0x%08x requested to start from invalid state %d\n",
1644      this_phy,
1645      sci_base_state_machine_get_state(&this_phy->parent.state_machine)
1646   ));
1647
1648   return SCI_FAILURE_INVALID_STATE;
1649
1650}
1651
1652/**
1653 * This is the default method for phy a stop request.  It will report a
1654 * warning and exit.
1655 *
1656 * @param[in] phy This is the SCI_BASE_PHY object which is cast into a
1657 *       SCIC_SDS_PHY object.
1658 *
1659 * @return SCI_STATUS
1660 * @retval SCI_FAILURE_INVALID_STATE
1661 */
1662SCI_STATUS scic_sds_phy_default_stop_handler(
1663   SCI_BASE_PHY_T *phy
1664)
1665{
1666   SCIC_SDS_PHY_T *this_phy;
1667   this_phy = (SCIC_SDS_PHY_T *)phy;
1668
1669   SCIC_LOG_WARNING((
1670      sci_base_object_get_logger(this_phy),
1671      SCIC_LOG_OBJECT_PHY,
1672      "SCIC Phy 0x%08x requested to stop from invalid state %d\n",
1673      this_phy,
1674      sci_base_state_machine_get_state(&this_phy->parent.state_machine)
1675   ));
1676
1677   return SCI_FAILURE_INVALID_STATE;
1678}
1679
1680/**
1681 * This is the default method for phy a reset request.  It will report a
1682 * warning and exit.
1683 *
1684 * @param[in] phy This is the SCI_BASE_PHY object which is cast into a
1685 *       SCIC_SDS_PHY object.
1686 *
1687 * @return SCI_STATUS
1688 * @retval SCI_FAILURE_INVALID_STATE
1689 */
1690SCI_STATUS scic_sds_phy_default_reset_handler(
1691   SCI_BASE_PHY_T * phy
1692)
1693{
1694   SCIC_SDS_PHY_T *this_phy;
1695   this_phy = (SCIC_SDS_PHY_T *)phy;
1696
1697   SCIC_LOG_WARNING((
1698      sci_base_object_get_logger(this_phy),
1699      SCIC_LOG_OBJECT_PHY,
1700      "SCIC Phy 0x%08x requested to reset from invalid state %d\n",
1701      this_phy,
1702      sci_base_state_machine_get_state(&this_phy->parent.state_machine)
1703   ));
1704
1705   return SCI_FAILURE_INVALID_STATE;
1706}
1707
1708/**
1709 * This is the default method for phy a destruct request.  It will report a
1710 * warning and exit.
1711 *
1712 * @param[in] phy This is the SCI_BASE_PHY object which is cast into a
1713 *       SCIC_SDS_PHY object.
1714 *
1715 * @return SCI_STATUS
1716 * @retval SCI_FAILURE_INVALID_STATE
1717 */
1718SCI_STATUS scic_sds_phy_default_destroy_handler(
1719   SCI_BASE_PHY_T *phy
1720)
1721{
1722   SCIC_SDS_PHY_T *this_phy;
1723   this_phy = (SCIC_SDS_PHY_T *)phy;
1724
1725   /// @todo Implement something for the default
1726   SCIC_LOG_WARNING((
1727      sci_base_object_get_logger(this_phy),
1728      SCIC_LOG_OBJECT_PHY,
1729      "SCIC Phy 0x%08x requested to destroy from invalid state %d\n",
1730      this_phy,
1731      sci_base_state_machine_get_state(&this_phy->parent.state_machine)
1732   ));
1733
1734   return SCI_FAILURE_INVALID_STATE;
1735}
1736
1737/**
1738 * This is the default method for a phy frame handling request.  It will
1739 * report a warning, release the frame and exit.
1740 *
1741 * @param[in] phy This is the SCI_BASE_PHY object which is cast into a
1742 *       SCIC_SDS_PHY object.
1743 * @param[in] frame_index This is the frame index that was received from the
1744 *       SCU hardware.
1745 *
1746 * @return SCI_STATUS
1747 * @retval SCI_FAILURE_INVALID_STATE
1748 */
1749SCI_STATUS scic_sds_phy_default_frame_handler(
1750   SCIC_SDS_PHY_T *this_phy,
1751   U32            frame_index
1752)
1753{
1754   SCIC_LOG_WARNING((
1755      sci_base_object_get_logger(this_phy),
1756      SCIC_LOG_OBJECT_PHY,
1757      "SCIC Phy 0x%08x recieved unexpected frame data %d while in state %d\n",
1758      this_phy, frame_index,
1759      sci_base_state_machine_get_state(&this_phy->parent.state_machine)
1760   ));
1761
1762   scic_sds_controller_release_frame(
1763      scic_sds_phy_get_controller(this_phy), frame_index);
1764
1765   return SCI_FAILURE_INVALID_STATE;
1766}
1767
1768/**
1769 * This is the default method for a phy event handler.  It will report a
1770 * warning and exit.
1771 *
1772 * @param[in] phy This is the SCI_BASE_PHY object which is cast into a
1773 *       SCIC_SDS_PHY object.
1774 * @param[in] event_code This is the event code that was received from the SCU
1775 *       hardware.
1776 *
1777 * @return SCI_STATUS
1778 * @retval SCI_FAILURE_INVALID_STATE
1779 */
1780SCI_STATUS scic_sds_phy_default_event_handler(
1781   SCIC_SDS_PHY_T *this_phy,
1782   U32            event_code
1783)
1784{
1785   SCIC_LOG_WARNING((
1786      sci_base_object_get_logger(this_phy),
1787      SCIC_LOG_OBJECT_PHY,
1788      "SCIC Phy 0x%08x received unexpected event status %x while in state %d\n",
1789      this_phy, event_code,
1790      sci_base_state_machine_get_state(&this_phy->parent.state_machine)
1791   ));
1792
1793   return SCI_FAILURE_INVALID_STATE;
1794}
1795
1796/**
1797 * This is the default method for a phy consume power handler.  It will report
1798 * a warning and exit.
1799 *
1800 * @param[in] phy This is the SCI_BASE_PHY object which is cast into a
1801 *       SCIC_SDS_PHY object.
1802 *
1803 * @return SCI_STATUS
1804 * @retval SCI_FAILURE_INVALID_STATE
1805 */
1806SCI_STATUS scic_sds_phy_default_consume_power_handler(
1807   SCIC_SDS_PHY_T *this_phy
1808)
1809{
1810   SCIC_LOG_WARNING((
1811      sci_base_object_get_logger(this_phy),
1812      SCIC_LOG_OBJECT_PHY,
1813      "SCIC Phy 0x%08x given unexpected permission to consume power while in state %d\n",
1814      this_phy,
1815      sci_base_state_machine_get_state(&this_phy->parent.state_machine)
1816   ));
1817
1818   return SCI_FAILURE_INVALID_STATE;
1819}
1820
1821//******************************************************************************
1822//* PHY STOPPED STATE HANDLERS
1823//******************************************************************************
1824
1825/**
1826 * This method takes the SCIC_SDS_PHY from a stopped state and attempts to
1827 * start it.
1828 *    - The phy state machine is transitioned to the
1829 *      SCI_BASE_PHY_STATE_STARTING.
1830 *
1831 * @param[in] phy This is the SCI_BASE_PHY object which is cast into a
1832 *       SCIC_SDS_PHY object.
1833 *
1834 * @return SCI_STATUS
1835 * @retval SCI_SUCCESS
1836 */
1837static
1838SCI_STATUS scic_sds_phy_stopped_state_start_handler(
1839   SCI_BASE_PHY_T *phy
1840)
1841{
1842   SCIC_SDS_PHY_T *this_phy;
1843   this_phy = (SCIC_SDS_PHY_T *)phy;
1844
1845
1846
1847   // Create the SIGNATURE FIS Timeout timer for this phy
1848   this_phy->sata_timeout_timer = scic_cb_timer_create(
1849      scic_sds_phy_get_controller(this_phy),
1850      scic_sds_phy_sata_timeout,
1851      this_phy
1852   );
1853
1854   if (this_phy->sata_timeout_timer != NULL)
1855   {
1856      sci_base_state_machine_change_state(
1857         scic_sds_phy_get_base_state_machine(this_phy),
1858         SCI_BASE_PHY_STATE_STARTING
1859      );
1860   }
1861
1862   return SCI_SUCCESS;
1863}
1864
1865/**
1866 * This method takes the SCIC_SDS_PHY from a stopped state and destroys it.
1867 *    - This function takes no action.
1868 *
1869 * @todo Shouldnt this function transition the SCI_BASE_PHY::state_machine to
1870 *        the SCI_BASE_PHY_STATE_FINAL?
1871 *
1872 * @param[in] phy This is the SCI_BASE_PHY object which is cast into a
1873 *       SCIC_SDS_PHY object.
1874 *
1875 * @return SCI_STATUS
1876 * @retval SCI_SUCCESS
1877 */
1878static
1879SCI_STATUS scic_sds_phy_stopped_state_destroy_handler(
1880   SCI_BASE_PHY_T *phy
1881)
1882{
1883   SCIC_SDS_PHY_T *this_phy;
1884   this_phy = (SCIC_SDS_PHY_T *)phy;
1885
1886   /// @todo what do we actually need to do here?
1887   return SCI_SUCCESS;
1888}
1889
1890//******************************************************************************
1891//* PHY STARTING STATE HANDLERS
1892//******************************************************************************
1893
1894// All of these state handlers are mapped to the starting sub-state machine
1895
1896//******************************************************************************
1897//* PHY READY STATE HANDLERS
1898//******************************************************************************
1899
1900/**
1901 * This method takes the SCIC_SDS_PHY from a ready state and attempts to stop
1902 * it.
1903 *    - The phy state machine is transitioned to the SCI_BASE_PHY_STATE_STOPPED.
1904 *
1905 * @param[in] phy This is the SCI_BASE_PHY object which is cast into a
1906 *       SCIC_SDS_PHY object.
1907 *
1908 * @return SCI_STATUS
1909 * @retval SCI_SUCCESS
1910 */
1911static
1912SCI_STATUS scic_sds_phy_ready_state_stop_handler(
1913   SCI_BASE_PHY_T *phy
1914)
1915{
1916   SCIC_SDS_PHY_T *this_phy;
1917   this_phy = (SCIC_SDS_PHY_T *)phy;
1918
1919   sci_base_state_machine_change_state(
1920      scic_sds_phy_get_base_state_machine(this_phy),
1921      SCI_BASE_PHY_STATE_STOPPED
1922   );
1923
1924   scic_sds_controller_link_down(
1925      scic_sds_phy_get_controller(this_phy),
1926      scic_sds_phy_get_port(this_phy),
1927      this_phy
1928   );
1929
1930   return SCI_SUCCESS;
1931}
1932
1933/**
1934 * This method takes the SCIC_SDS_PHY from a ready state and attempts to reset
1935 * it.
1936 *    - The phy state machine is transitioned to the SCI_BASE_PHY_STATE_STARTING.
1937 *
1938 * @param[in] phy This is the SCI_BASE_PHY object which is cast into a
1939 *       SCIC_SDS_PHY object.
1940 *
1941 * @return SCI_STATUS
1942 * @retval SCI_SUCCESS
1943 */
1944static
1945SCI_STATUS scic_sds_phy_ready_state_reset_handler(
1946   SCI_BASE_PHY_T * phy
1947)
1948{
1949   SCIC_SDS_PHY_T * this_phy;
1950   this_phy = (SCIC_SDS_PHY_T *)phy;
1951
1952   sci_base_state_machine_change_state(
1953      scic_sds_phy_get_base_state_machine(this_phy),
1954      SCI_BASE_PHY_STATE_RESETTING
1955   );
1956
1957   return SCI_SUCCESS;
1958}
1959
1960/**
1961 * This method request the SCIC_SDS_PHY handle the received event.  The only
1962 * event that we are interested in while in the ready state is the link
1963 * failure event.
1964 *    - decoded event is a link failure
1965 *       - transition the SCIC_SDS_PHY back to the SCI_BASE_PHY_STATE_STARTING
1966 *         state.
1967 *    - any other event recived will report a warning message
1968 *
1969 * @param[in] phy This is the SCIC_SDS_PHY object which has received the
1970 *       event.
1971 *
1972 * @return SCI_STATUS
1973 * @retval SCI_SUCCESS if the event received is a link failure
1974 * @retval SCI_FAILURE_INVALID_STATE for any other event received.
1975 */
1976static
1977SCI_STATUS scic_sds_phy_ready_state_event_handler(
1978   SCIC_SDS_PHY_T *this_phy,
1979   U32            event_code
1980)
1981{
1982   SCI_STATUS result = SCI_FAILURE;
1983
1984   switch (scu_get_event_code(event_code))
1985   {
1986   case SCU_EVENT_LINK_FAILURE:
1987      // Link failure change state back to the starting state
1988      sci_base_state_machine_change_state(
1989         scic_sds_phy_get_base_state_machine(this_phy),
1990         SCI_BASE_PHY_STATE_STARTING
1991         );
1992
1993      result = SCI_SUCCESS;
1994      break;
1995
1996   case SCU_EVENT_BROADCAST_CHANGE:
1997      // Broadcast change received. Notify the port.
1998      if (scic_sds_phy_get_port(this_phy) != SCI_INVALID_HANDLE)
1999         scic_sds_port_broadcast_change_received(this_phy->owning_port, this_phy);
2000      else
2001         this_phy->bcn_received_while_port_unassigned = TRUE;
2002      break;
2003
2004   case SCU_EVENT_ERR_CNT(RX_CREDIT_BLOCKED_RECEIVED):
2005   case SCU_EVENT_ERR_CNT(TX_DONE_CREDIT_TIMEOUT):
2006   case SCU_EVENT_ERR_CNT(RX_DONE_CREDIT_TIMEOUT):
2007   case SCU_EVENT_ERR_CNT(INACTIVITY_TIMER_EXPIRED):
2008   case SCU_EVENT_ERR_CNT(TX_DONE_ACK_NAK_TIMEOUT):
2009   case SCU_EVENT_ERR_CNT(RX_DONE_ACK_NAK_TIMEOUT):
2010      {
2011         U32 error_counter_index =
2012                scu_get_event_specifier(event_code) >> SCU_EVENT_SPECIFIC_CODE_SHIFT;
2013
2014         this_phy->error_counter[error_counter_index]++;
2015         result = SCI_SUCCESS;
2016      }
2017      break;
2018
2019   default:
2020      SCIC_LOG_WARNING((
2021         sci_base_object_get_logger(this_phy),
2022         SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_RECEIVED_EVENTS,
2023         "SCIC PHY 0x%x ready state machine recieved unexpected event_code %x\n",
2024         this_phy, event_code
2025      ));
2026      result = SCI_FAILURE_INVALID_STATE;
2027      break;
2028   }
2029
2030   return result;
2031}
2032
2033// ---------------------------------------------------------------------------
2034
2035/**
2036 * This is the resetting state event handler.
2037 *
2038 * @param[in] this_phy This is the SCIC_SDS_PHY object which is receiving the
2039 *       event.
2040 * @param[in] event_code This is the event code to be processed.
2041 *
2042 * @return SCI_STATUS
2043 * @retval SCI_FAILURE_INVALID_STATE
2044 */
2045static
2046SCI_STATUS scic_sds_phy_resetting_state_event_handler(
2047   SCIC_SDS_PHY_T *this_phy,
2048   U32            event_code
2049)
2050{
2051   SCI_STATUS result = SCI_FAILURE;
2052
2053   switch (scu_get_event_code(event_code))
2054   {
2055   case SCU_EVENT_HARD_RESET_TRANSMITTED:
2056      // Link failure change state back to the starting state
2057      sci_base_state_machine_change_state(
2058         scic_sds_phy_get_base_state_machine(this_phy),
2059         SCI_BASE_PHY_STATE_STARTING
2060         );
2061
2062      result = SCI_SUCCESS;
2063      break;
2064
2065   default:
2066      SCIC_LOG_WARNING((
2067         sci_base_object_get_logger(this_phy),
2068         SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_RECEIVED_EVENTS,
2069         "SCIC PHY 0x%x resetting state machine recieved unexpected event_code %x\n",
2070         this_phy, event_code
2071      ));
2072
2073      result = SCI_FAILURE_INVALID_STATE;
2074      break;
2075   }
2076
2077   return result;
2078}
2079
2080// ---------------------------------------------------------------------------
2081
2082SCIC_SDS_PHY_STATE_HANDLER_T
2083   scic_sds_phy_state_handler_table[SCI_BASE_PHY_MAX_STATES] =
2084{
2085   // SCI_BASE_PHY_STATE_INITIAL
2086   {
2087      {
2088         scic_sds_phy_default_start_handler,
2089         scic_sds_phy_default_stop_handler,
2090         scic_sds_phy_default_reset_handler,
2091         scic_sds_phy_default_destroy_handler
2092      },
2093      scic_sds_phy_default_frame_handler,
2094      scic_sds_phy_default_event_handler,
2095      scic_sds_phy_default_consume_power_handler
2096   },
2097   // SCI_BASE_PHY_STATE_STOPPED
2098   {
2099      {
2100         scic_sds_phy_stopped_state_start_handler,
2101         scic_sds_phy_default_stop_handler,
2102         scic_sds_phy_default_reset_handler,
2103         scic_sds_phy_stopped_state_destroy_handler
2104      },
2105      scic_sds_phy_default_frame_handler,
2106      scic_sds_phy_default_event_handler,
2107      scic_sds_phy_default_consume_power_handler
2108   },
2109   // SCI_BASE_PHY_STATE_STARTING
2110   {
2111      {
2112         scic_sds_phy_default_start_handler,
2113         scic_sds_phy_default_stop_handler,
2114         scic_sds_phy_default_reset_handler,
2115         scic_sds_phy_default_destroy_handler
2116      },
2117      scic_sds_phy_default_frame_handler,
2118      scic_sds_phy_default_event_handler,
2119      scic_sds_phy_default_consume_power_handler
2120   },
2121   // SCI_BASE_PHY_STATE_READY
2122   {
2123      {
2124         scic_sds_phy_default_start_handler,
2125         scic_sds_phy_ready_state_stop_handler,
2126         scic_sds_phy_ready_state_reset_handler,
2127         scic_sds_phy_default_destroy_handler
2128      },
2129      scic_sds_phy_default_frame_handler,
2130      scic_sds_phy_ready_state_event_handler,
2131      scic_sds_phy_default_consume_power_handler
2132   },
2133   // SCI_BASE_PHY_STATE_RESETTING
2134   {
2135      {
2136         scic_sds_phy_default_start_handler,
2137         scic_sds_phy_default_stop_handler,
2138         scic_sds_phy_default_reset_handler,
2139         scic_sds_phy_default_destroy_handler
2140      },
2141      scic_sds_phy_default_frame_handler,
2142      scic_sds_phy_resetting_state_event_handler,
2143      scic_sds_phy_default_consume_power_handler
2144   },
2145   // SCI_BASE_PHY_STATE_FINAL
2146   {
2147      {
2148         scic_sds_phy_default_start_handler,
2149         scic_sds_phy_default_stop_handler,
2150         scic_sds_phy_default_reset_handler,
2151         scic_sds_phy_default_destroy_handler
2152      },
2153      scic_sds_phy_default_frame_handler,
2154      scic_sds_phy_default_event_handler,
2155      scic_sds_phy_default_consume_power_handler
2156   }
2157};
2158
2159//****************************************************************************
2160//*  PHY STATE PRIVATE METHODS
2161//****************************************************************************
2162
2163/**
2164 * This method will stop the SCIC_SDS_PHY object. This does not reset the
2165 * protocol engine it just suspends it and places it in a state where it will
2166 * not cause the end device to power up.
2167 *
2168 * @param[in] this_phy This is the SCIC_SDS_PHY object to stop.
2169 *
2170 * @return none
2171 */
2172static
2173void scu_link_layer_stop_protocol_engine(
2174   SCIC_SDS_PHY_T *this_phy
2175)
2176{
2177   U32 scu_sas_pcfg_value;
2178   U32 enable_spinup_value;
2179
2180   // Suspend the protocol engine and place it in a sata spinup hold state
2181   scu_sas_pcfg_value  = SCU_SAS_PCFG_READ(this_phy);
2182   scu_sas_pcfg_value |= (
2183                           SCU_SAS_PCFG_GEN_BIT(OOB_RESET)
2184                         | SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE)
2185                         | SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD)
2186                         );
2187   SCU_SAS_PCFG_WRITE(this_phy, scu_sas_pcfg_value);
2188
2189   // Disable the notify enable spinup primitives
2190   enable_spinup_value = SCU_SAS_ENSPINUP_READ(this_phy);
2191   enable_spinup_value &= ~SCU_ENSPINUP_GEN_BIT(ENABLE);
2192   SCU_SAS_ENSPINUP_WRITE(this_phy, enable_spinup_value);
2193}
2194
2195/**
2196 * This method will start the OOB/SN state machine for this SCIC_SDS_PHY
2197 * object.
2198 *
2199 * @param[in] this_phy This is the SCIC_SDS_PHY object on which to start the
2200 *       OOB/SN state machine.
2201 */
2202static
2203void scu_link_layer_start_oob(
2204   SCIC_SDS_PHY_T *this_phy
2205)
2206{
2207   U32 scu_sas_pcfg_value;
2208
2209   /* Reset OOB sequence - start */
2210   scu_sas_pcfg_value = SCU_SAS_PCFG_READ(this_phy);
2211   scu_sas_pcfg_value &=
2212      ~(SCU_SAS_PCFG_GEN_BIT(OOB_RESET) | SCU_SAS_PCFG_GEN_BIT(HARD_RESET));
2213   SCU_SAS_PCFG_WRITE(this_phy, scu_sas_pcfg_value);
2214   SCU_SAS_PCFG_READ(this_phy);
2215   /* Reset OOB sequence - end */
2216
2217   /* Start OOB sequence - start */
2218   scu_sas_pcfg_value = SCU_SAS_PCFG_READ(this_phy);
2219   scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
2220   SCU_SAS_PCFG_WRITE(this_phy, scu_sas_pcfg_value);
2221   SCU_SAS_PCFG_READ(this_phy);
2222   /* Start OOB sequence - end */
2223}
2224
2225/**
2226 * This method will transmit a hard reset request on the specified phy. The
2227 * SCU hardware requires that we reset the OOB state machine and set the hard
2228 * reset bit in the phy configuration register.
2229 * We then must start OOB over with the hard reset bit set.
2230 *
2231 * @param[in] this_phy
2232 */
2233static
2234void scu_link_layer_tx_hard_reset(
2235   SCIC_SDS_PHY_T *this_phy
2236)
2237{
2238   U32 phy_configuration_value;
2239
2240   // SAS Phys must wait for the HARD_RESET_TX event notification to transition
2241   // to the starting state.
2242   phy_configuration_value = SCU_SAS_PCFG_READ(this_phy);
2243   phy_configuration_value |=
2244      (SCU_SAS_PCFG_GEN_BIT(HARD_RESET) | SCU_SAS_PCFG_GEN_BIT(OOB_RESET));
2245   SCU_SAS_PCFG_WRITE(this_phy, phy_configuration_value);
2246
2247   // Now take the OOB state machine out of reset
2248   phy_configuration_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
2249   phy_configuration_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
2250   SCU_SAS_PCFG_WRITE(this_phy, phy_configuration_value);
2251}
2252
2253//****************************************************************************
2254//*  PHY BASE STATE METHODS
2255//****************************************************************************
2256
2257/**
2258 * This method will perform the actions required by the SCIC_SDS_PHY on
2259 * entering the SCI_BASE_PHY_STATE_INITIAL.
2260 *    - This function sets the state handlers for the phy object base state
2261 * machine initial state.
2262 *
2263 * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
2264 *       SCIC_SDS_PHY object.
2265 *
2266 * @return none
2267 */
2268static
2269void scic_sds_phy_initial_state_enter(
2270   SCI_BASE_OBJECT_T *object
2271)
2272{
2273   SCIC_SDS_PHY_T *this_phy;
2274   this_phy = (SCIC_SDS_PHY_T *)object;
2275
2276   scic_sds_phy_set_base_state_handlers(this_phy, SCI_BASE_PHY_STATE_INITIAL);
2277}
2278
2279/**
2280 * This method will perform the actions required by the SCIC_SDS_PHY on
2281 * entering the SCI_BASE_PHY_STATE_INITIAL.
2282 *    - This function sets the state handlers for the phy object base state
2283 * machine initial state.
2284 *    - The SCU hardware is requested to stop the protocol engine.
2285 *
2286 * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
2287 *       SCIC_SDS_PHY object.
2288 *
2289 * @return none
2290 */
2291static
2292void scic_sds_phy_stopped_state_enter(
2293   SCI_BASE_OBJECT_T *object
2294)
2295{
2296   SCIC_SDS_PHY_T *this_phy;
2297   this_phy = (SCIC_SDS_PHY_T *)object;
2298
2299   /// @todo We need to get to the controller to place this PE in a reset state
2300   scic_sds_phy_set_base_state_handlers(this_phy, SCI_BASE_PHY_STATE_STOPPED);
2301
2302   if (this_phy->sata_timeout_timer != NULL)
2303   {
2304      scic_cb_timer_destroy(
2305         scic_sds_phy_get_controller(this_phy),
2306         this_phy->sata_timeout_timer
2307      );
2308
2309      this_phy->sata_timeout_timer = NULL;
2310   }
2311
2312   scu_link_layer_stop_protocol_engine(this_phy);
2313}
2314
2315/**
2316 * This method will perform the actions required by the SCIC_SDS_PHY on
2317 * entering the SCI_BASE_PHY_STATE_STARTING.
2318 *    - This function sets the state handlers for the phy object base state
2319 * machine starting state.
2320 *    - The SCU hardware is requested to start OOB/SN on this protocol engine.
2321 *    - The phy starting substate machine is started.
2322 *    - If the previous state was the ready state then the
2323 *      SCIC_SDS_CONTROLLER is informed that the phy has gone link down.
2324 *
2325 * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
2326 *       SCIC_SDS_PHY object.
2327 *
2328 * @return none
2329 */
2330static
2331void scic_sds_phy_starting_state_enter(
2332   SCI_BASE_OBJECT_T *object
2333)
2334{
2335   SCIC_SDS_PHY_T *this_phy;
2336   this_phy = (SCIC_SDS_PHY_T *)object;
2337
2338   scic_sds_phy_set_base_state_handlers(this_phy, SCI_BASE_PHY_STATE_STARTING);
2339
2340   scu_link_layer_stop_protocol_engine(this_phy);
2341   scu_link_layer_start_oob(this_phy);
2342
2343   // We don't know what kind of phy we are going to be just yet
2344   this_phy->protocol = SCIC_SDS_PHY_PROTOCOL_UNKNOWN;
2345   this_phy->bcn_received_while_port_unassigned = FALSE;
2346
2347   // Change over to the starting substate machine to continue
2348   sci_base_state_machine_start(&this_phy->starting_substate_machine);
2349
2350   if (this_phy->parent.state_machine.previous_state_id
2351       == SCI_BASE_PHY_STATE_READY)
2352   {
2353      scic_sds_controller_link_down(
2354         scic_sds_phy_get_controller(this_phy),
2355         scic_sds_phy_get_port(this_phy),
2356         this_phy
2357      );
2358   }
2359}
2360
2361/**
2362 * This method will perform the actions required by the SCIC_SDS_PHY on
2363 * entering the SCI_BASE_PHY_STATE_READY.
2364 *    - This function sets the state handlers for the phy object base state
2365 * machine ready state.
2366 *    - The SCU hardware protocol engine is resumed.
2367 *    - The SCIC_SDS_CONTROLLER is informed that the phy object has gone link
2368 *      up.
2369 *
2370 * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
2371 *       SCIC_SDS_PHY object.
2372 *
2373 * @return none
2374 */
2375static
2376void scic_sds_phy_ready_state_enter(
2377   SCI_BASE_OBJECT_T *object
2378)
2379{
2380   SCIC_SDS_PHY_T *this_phy;
2381   this_phy = (SCIC_SDS_PHY_T *)object;
2382
2383   scic_sds_phy_set_base_state_handlers(this_phy, SCI_BASE_PHY_STATE_READY);
2384
2385   scic_sds_controller_link_up(
2386      scic_sds_phy_get_controller(this_phy),
2387      scic_sds_phy_get_port(this_phy),
2388      this_phy
2389   );
2390}
2391
2392/**
2393 * This method will perform the actions required by the SCIC_SDS_PHY on
2394 * exiting the SCI_BASE_PHY_STATE_INITIAL. This function suspends the SCU
2395 * hardware protocol engine represented by this SCIC_SDS_PHY object.
2396 *
2397 * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
2398 *       SCIC_SDS_PHY object.
2399 *
2400 * @return none
2401 */
2402static
2403void scic_sds_phy_ready_state_exit(
2404   SCI_BASE_OBJECT_T *object
2405)
2406{
2407   SCIC_SDS_PHY_T *this_phy;
2408   this_phy = (SCIC_SDS_PHY_T *)object;
2409
2410   scic_sds_phy_suspend(this_phy);
2411}
2412
2413/**
2414 * This method will perform the actions required by the SCIC_SDS_PHY on
2415 * entering the SCI_BASE_PHY_STATE_RESETTING.
2416 *    - This function sets the state handlers for the phy object base state
2417 * machine resetting state.
2418 *
2419 * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
2420 *       SCIC_SDS_PHY object.
2421 *
2422 * @return none
2423 */
2424static
2425void scic_sds_phy_resetting_state_enter(
2426   SCI_BASE_OBJECT_T *object
2427)
2428{
2429   SCIC_SDS_PHY_T * this_phy;
2430   this_phy = (SCIC_SDS_PHY_T *)object;
2431
2432   scic_sds_phy_set_base_state_handlers(this_phy, SCI_BASE_PHY_STATE_RESETTING);
2433
2434   // The phy is being reset, therefore deactivate it from the port.
2435   // In the resetting state we don't notify the user regarding
2436   // link up and link down notifications.
2437   scic_sds_port_deactivate_phy(this_phy->owning_port, this_phy, FALSE);
2438
2439   if (this_phy->protocol == SCIC_SDS_PHY_PROTOCOL_SAS)
2440   {
2441      scu_link_layer_tx_hard_reset(this_phy);
2442   }
2443   else
2444   {
2445      // The SCU does not need to have a descrete reset state so just go back to
2446      // the starting state.
2447      sci_base_state_machine_change_state(
2448         &this_phy->parent.state_machine,
2449         SCI_BASE_PHY_STATE_STARTING
2450      );
2451   }
2452}
2453
2454/**
2455 * This method will perform the actions required by the SCIC_SDS_PHY on
2456 * entering the SCI_BASE_PHY_STATE_FINAL.
2457 *    - This function sets the state handlers for the phy object base state
2458 * machine final state.
2459 *
2460 * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
2461 *       SCIC_SDS_PHY object.
2462 *
2463 * @return none
2464 */
2465static
2466void scic_sds_phy_final_state_enter(
2467   SCI_BASE_OBJECT_T *object
2468)
2469{
2470   SCIC_SDS_PHY_T *this_phy;
2471   this_phy = (SCIC_SDS_PHY_T *)object;
2472
2473   scic_sds_phy_set_base_state_handlers(this_phy, SCI_BASE_PHY_STATE_FINAL);
2474
2475   // Nothing to do here
2476}
2477
2478// ---------------------------------------------------------------------------
2479
2480SCI_BASE_STATE_T scic_sds_phy_state_table[SCI_BASE_PHY_MAX_STATES] =
2481{
2482   {
2483      SCI_BASE_PHY_STATE_INITIAL,
2484      scic_sds_phy_initial_state_enter,
2485      NULL,
2486   },
2487   {
2488      SCI_BASE_PHY_STATE_STOPPED,
2489      scic_sds_phy_stopped_state_enter,
2490      NULL,
2491   },
2492   {
2493      SCI_BASE_PHY_STATE_STARTING,
2494      scic_sds_phy_starting_state_enter,
2495      NULL,
2496   },
2497   {
2498      SCI_BASE_PHY_STATE_READY,
2499      scic_sds_phy_ready_state_enter,
2500      scic_sds_phy_ready_state_exit,
2501   },
2502   {
2503      SCI_BASE_PHY_STATE_RESETTING,
2504      scic_sds_phy_resetting_state_enter,
2505      NULL,
2506   },
2507   {
2508      SCI_BASE_PHY_STATE_FINAL,
2509      scic_sds_phy_final_state_enter,
2510      NULL,
2511   }
2512};
2513
2514//******************************************************************************
2515//* PHY STARTING SUB-STATE MACHINE
2516//******************************************************************************
2517
2518//*****************************************************************************
2519//* SCIC SDS PHY HELPER FUNCTIONS
2520//*****************************************************************************
2521
2522
2523/**
2524 * This method continues the link training for the phy as if it were a SAS PHY
2525 * instead of a SATA PHY. This is done because the completion queue had a SAS
2526 * PHY DETECTED event when the state machine was expecting a SATA PHY event.
2527 *
2528 * @param[in] this_phy The phy object that received SAS PHY DETECTED.
2529 *
2530 * @return none
2531 */
2532static
2533void scic_sds_phy_start_sas_link_training(
2534   SCIC_SDS_PHY_T * this_phy
2535)
2536{
2537   U32 phy_control;
2538
2539   phy_control = SCU_SAS_PCFG_READ(this_phy);
2540   phy_control |= SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD);
2541   SCU_SAS_PCFG_WRITE(this_phy, phy_control);
2542
2543   sci_base_state_machine_change_state(
2544      &this_phy->starting_substate_machine,
2545      SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_SPEED_EN
2546   );
2547
2548   this_phy->protocol = SCIC_SDS_PHY_PROTOCOL_SAS;
2549}
2550
2551/**
2552 * This method continues the link training for the phy as if it were a SATA
2553 * PHY instead of a SAS PHY.  This is done because the completion queue had a
2554 * SATA SPINUP HOLD event when the state machine was expecting a SAS PHY
2555 * event.
2556 *
2557 * @param[in] this_phy The phy object that received a SATA SPINUP HOLD event
2558 *
2559 * @return none
2560 */
2561static
2562void scic_sds_phy_start_sata_link_training(
2563   SCIC_SDS_PHY_T * this_phy
2564)
2565{
2566   sci_base_state_machine_change_state(
2567      &this_phy->starting_substate_machine,
2568      SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_POWER
2569   );
2570
2571   this_phy->protocol = SCIC_SDS_PHY_PROTOCOL_SATA;
2572}
2573
2574/**
2575 * @brief This method performs processing common to all protocols upon
2576 *        completion of link training.
2577 *
2578 * @param[in,out] this_phy This parameter specifies the phy object for which
2579 *                link training has completed.
2580 * @param[in]     max_link_rate This parameter specifies the maximum link
2581 *                rate to be associated with this phy.
2582 * @param[in]     next_state This parameter specifies the next state for the
2583 *                phy's starting sub-state machine.
2584 *
2585 * @return none
2586 */
2587static
2588void scic_sds_phy_complete_link_training(
2589   SCIC_SDS_PHY_T *   this_phy,
2590   SCI_SAS_LINK_RATE  max_link_rate,
2591   U32                next_state
2592)
2593{
2594   this_phy->max_negotiated_speed = max_link_rate;
2595
2596   sci_base_state_machine_change_state(
2597      scic_sds_phy_get_starting_substate_machine(this_phy), next_state
2598   );
2599}
2600
2601/**
2602 * This method restarts the SCIC_SDS_PHY objects base state machine in the
2603 * starting state from any starting substate.
2604 *
2605 * @param[in] this_phy The SCIC_SDS_PHY object to restart.
2606 *
2607 * @return none
2608 */
2609void scic_sds_phy_restart_starting_state(
2610   SCIC_SDS_PHY_T *this_phy
2611)
2612{
2613   // Stop the current substate machine
2614   sci_base_state_machine_stop(
2615      scic_sds_phy_get_starting_substate_machine(this_phy)
2616   );
2617
2618   // Re-enter the base state machine starting state
2619   sci_base_state_machine_change_state(
2620      scic_sds_phy_get_base_state_machine(this_phy),
2621      SCI_BASE_PHY_STATE_STARTING
2622      );
2623}
2624
2625
2626//*****************************************************************************
2627//* SCIC SDS PHY general handlers
2628//*****************************************************************************
2629
2630static
2631SCI_STATUS scic_sds_phy_starting_substate_general_stop_handler(
2632   SCI_BASE_PHY_T *phy
2633)
2634{
2635   SCIC_SDS_PHY_T *this_phy;
2636   this_phy = (SCIC_SDS_PHY_T *)phy;
2637
2638   sci_base_state_machine_stop(
2639      &this_phy->starting_substate_machine
2640   );
2641
2642   sci_base_state_machine_change_state(
2643      &phy->state_machine,
2644      SCI_BASE_PHY_STATE_STOPPED
2645   );
2646
2647   return SCI_SUCCESS;
2648}
2649
2650//*****************************************************************************
2651//* SCIC SDS PHY EVENT_HANDLERS
2652//*****************************************************************************
2653
2654/**
2655 * This method is called when an event notification is received for the phy
2656 * object when in the state SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SPEED_EN.
2657 *    - decode the event
2658 *       - sas phy detected causes a state transition to the wait for speed
2659 *         event notification.
2660 *       - any other events log a warning message and set a failure status
2661 *
2662 * @param[in] phy This SCIC_SDS_PHY object which has received an event.
2663 * @param[in] event_code This is the event code which the phy object is to
2664 *       decode.
2665 *
2666 * @return SCI_STATUS
2667 * @retval SCI_SUCCESS on any valid event notification
2668 * @retval SCI_FAILURE on any unexpected event notifation
2669 */
2670static
2671SCI_STATUS scic_sds_phy_starting_substate_await_ossp_event_handler(
2672   SCIC_SDS_PHY_T *this_phy,
2673   U32 event_code
2674)
2675{
2676   U32 result = SCI_SUCCESS;
2677
2678   switch (scu_get_event_code(event_code))
2679   {
2680   case SCU_EVENT_SAS_PHY_DETECTED:
2681      scic_sds_phy_start_sas_link_training(this_phy);
2682      this_phy->is_in_link_training = TRUE;
2683   break;
2684
2685   case SCU_EVENT_SATA_SPINUP_HOLD:
2686      scic_sds_phy_start_sata_link_training(this_phy);
2687      this_phy->is_in_link_training = TRUE;
2688   break;
2689
2690   default:
2691      SCIC_LOG_WARNING((
2692         sci_base_object_get_logger(this_phy),
2693         SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_RECEIVED_EVENTS,
2694         "PHY starting substate machine recieved unexpected event_code %x\n",
2695         event_code
2696      ));
2697
2698      result = SCI_FAILURE;
2699   break;
2700   }
2701
2702   return result;
2703}
2704
2705/**
2706 * This method is called when an event notification is received for the phy
2707 * object when in the state SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SPEED_EN.
2708 *    - decode the event
2709 *       - sas phy detected returns us back to this state.
2710 *       - speed event detected causes a state transition to the wait for iaf.
2711 *       - identify timeout is an un-expected event and the state machine is
2712 *         restarted.
2713 *       - link failure events restart the starting state machine
2714 *       - any other events log a warning message and set a failure status
2715 *
2716 * @param[in] phy This SCIC_SDS_PHY object which has received an event.
2717 * @param[in] event_code This is the event code which the phy object is to
2718 *       decode.
2719 *
2720 * @return SCI_STATUS
2721 * @retval SCI_SUCCESS on any valid event notification
2722 * @retval SCI_FAILURE on any unexpected event notifation
2723 */
2724static
2725SCI_STATUS scic_sds_phy_starting_substate_await_sas_phy_speed_event_handler(
2726   SCIC_SDS_PHY_T *this_phy,
2727   U32 event_code
2728)
2729{
2730   U32 result = SCI_SUCCESS;
2731
2732   switch (scu_get_event_code(event_code))
2733   {
2734   case SCU_EVENT_SAS_PHY_DETECTED:
2735      // Why is this being reported again by the controller?
2736      // We would re-enter this state so just stay here
2737   break;
2738
2739   case SCU_EVENT_SAS_15:
2740   case SCU_EVENT_SAS_15_SSC:
2741      scic_sds_phy_complete_link_training(
2742         this_phy, SCI_SAS_150_GB, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF
2743      );
2744   break;
2745
2746   case SCU_EVENT_SAS_30:
2747   case SCU_EVENT_SAS_30_SSC:
2748      scic_sds_phy_complete_link_training(
2749         this_phy, SCI_SAS_300_GB, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF
2750      );
2751   break;
2752
2753   case SCU_EVENT_SAS_60:
2754   case SCU_EVENT_SAS_60_SSC:
2755      scic_sds_phy_complete_link_training(
2756         this_phy, SCI_SAS_600_GB, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF
2757      );
2758   break;
2759
2760   case SCU_EVENT_SATA_SPINUP_HOLD:
2761      // We were doing SAS PHY link training and received a SATA PHY event
2762      // continue OOB/SN as if this were a SATA PHY
2763      scic_sds_phy_start_sata_link_training(this_phy);
2764   break;
2765
2766   case SCU_EVENT_LINK_FAILURE:
2767      // Link failure change state back to the starting state
2768      scic_sds_phy_restart_starting_state(this_phy);
2769   break;
2770
2771   default:
2772      SCIC_LOG_WARNING((
2773         sci_base_object_get_logger(this_phy),
2774         SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_RECEIVED_EVENTS,
2775         "PHY starting substate machine recieved unexpected event_code %x\n",
2776         event_code
2777      ));
2778
2779      result = SCI_FAILURE;
2780   break;
2781   }
2782
2783   return result;
2784}
2785
2786/**
2787 * This method is called when an event notification is received for the phy
2788 * object when in the state SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF.
2789 *    - decode the event
2790 *       - sas phy detected event backs up the state machine to the await
2791 *         speed notification.
2792 *       - identify timeout is an un-expected event and the state machine is
2793 *         restarted.
2794 *       - link failure events restart the starting state machine
2795 *       - any other events log a warning message and set a failure status
2796 *
2797 * @param[in] phy This SCIC_SDS_PHY object which has received an event.
2798 * @param[in] event_code This is the event code which the phy object is to
2799 *       decode.
2800 *
2801 * @return SCI_STATUS
2802 * @retval SCI_SUCCESS on any valid event notification
2803 * @retval SCI_FAILURE on any unexpected event notifation
2804 */
2805static
2806SCI_STATUS scic_sds_phy_starting_substate_await_iaf_uf_event_handler(
2807   SCIC_SDS_PHY_T *this_phy,
2808   U32 event_code
2809)
2810{
2811   U32 result = SCI_SUCCESS;
2812
2813   switch (scu_get_event_code(event_code))
2814   {
2815   case SCU_EVENT_SAS_PHY_DETECTED:
2816      // Backup the state machine
2817      scic_sds_phy_start_sas_link_training(this_phy);
2818      break;
2819
2820   case SCU_EVENT_SATA_SPINUP_HOLD:
2821      // We were doing SAS PHY link training and received a SATA PHY event
2822      // continue OOB/SN as if this were a SATA PHY
2823      scic_sds_phy_start_sata_link_training(this_phy);
2824   break;
2825
2826   case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
2827   case SCU_EVENT_LINK_FAILURE:
2828   case SCU_EVENT_HARD_RESET_RECEIVED:
2829      // Start the oob/sn state machine over again
2830      scic_sds_phy_restart_starting_state(this_phy);
2831      break;
2832
2833   default:
2834      SCIC_LOG_WARNING((
2835         sci_base_object_get_logger(this_phy),
2836         SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_RECEIVED_EVENTS,
2837         "PHY starting substate machine recieved unexpected event_code %x\n",
2838         event_code
2839      ));
2840
2841      result = SCI_FAILURE;
2842      break;
2843   }
2844
2845   return result;
2846}
2847
2848/**
2849 * This method is called when an event notification is received for the phy
2850 * object when in the state SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_POWER.
2851 *    - decode the event
2852 *       - link failure events restart the starting state machine
2853 *       - any other events log a warning message and set a failure status
2854 *
2855 * @param[in] phy This SCIC_SDS_PHY object which has received an event.
2856 * @param[in] event_code This is the event code which the phy object is to
2857 *       decode.
2858 *
2859 * @return SCI_STATUS
2860 * @retval SCI_SUCCESS on a link failure event
2861 * @retval SCI_FAILURE on any unexpected event notifation
2862 */
2863static
2864SCI_STATUS scic_sds_phy_starting_substate_await_sas_power_event_handler(
2865   SCIC_SDS_PHY_T *this_phy,
2866   U32 event_code
2867)
2868{
2869   U32 result = SCI_SUCCESS;
2870
2871   switch (scu_get_event_code(event_code))
2872   {
2873   case SCU_EVENT_LINK_FAILURE:
2874      // Link failure change state back to the starting state
2875      scic_sds_phy_restart_starting_state(this_phy);
2876      break;
2877
2878   default:
2879      SCIC_LOG_WARNING((
2880         sci_base_object_get_logger(this_phy),
2881         SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_RECEIVED_EVENTS,
2882         "PHY starting substate machine recieved unexpected event_code %x\n",
2883         event_code
2884      ));
2885
2886      result = SCI_FAILURE;
2887      break;
2888   }
2889
2890   return result;
2891}
2892
2893/**
2894 * This method is called when an event notification is received for the phy
2895 * object when in the state SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_POWER.
2896 *    - decode the event
2897 *       - link failure events restart the starting state machine
2898 *       - sata spinup hold events are ignored since they are expected
2899 *       - any other events log a warning message and set a failure status
2900 *
2901 * @param[in] phy This SCIC_SDS_PHY object which has received an event.
2902 * @param[in] event_code This is the event code which the phy object is to
2903 *       decode.
2904 *
2905 * @return SCI_STATUS
2906 * @retval SCI_SUCCESS on a link failure event
2907 * @retval SCI_FAILURE on any unexpected event notifation
2908 */
2909static
2910SCI_STATUS scic_sds_phy_starting_substate_await_sata_power_event_handler(
2911   SCIC_SDS_PHY_T *this_phy,
2912   U32 event_code
2913)
2914{
2915   U32 result = SCI_SUCCESS;
2916
2917   switch (scu_get_event_code(event_code))
2918   {
2919   case SCU_EVENT_LINK_FAILURE:
2920      // Link failure change state back to the starting state
2921      scic_sds_phy_restart_starting_state(this_phy);
2922      break;
2923
2924   case SCU_EVENT_SATA_SPINUP_HOLD:
2925      // These events are received every 10ms and are expected while in this state
2926      break;
2927
2928   case SCU_EVENT_SAS_PHY_DETECTED:
2929      // There has been a change in the phy type before OOB/SN for the
2930      // SATA finished start down the SAS link traning path.
2931      scic_sds_phy_start_sas_link_training(this_phy);
2932   break;
2933
2934   default:
2935      SCIC_LOG_WARNING((
2936         sci_base_object_get_logger(this_phy),
2937         SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_RECEIVED_EVENTS,
2938         "PHY starting substate machine recieved unexpected event_code %x\n",
2939         event_code
2940      ));
2941
2942      result = SCI_FAILURE;
2943      break;
2944   }
2945
2946   return result;
2947}
2948
2949/**
2950 * This method is called when an event notification is received for the phy
2951 * object when in the state SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_PHY_EN.
2952 *    - decode the event
2953 *       - link failure events restart the starting state machine
2954 *       - sata spinup hold events are ignored since they are expected
2955 *       - sata phy detected event change to the wait speed event
2956 *       - any other events log a warning message and set a failure status
2957 *
2958 * @param[in] phy This SCIC_SDS_PHY object which has received an event.
2959 * @param[in] event_code This is the event code which the phy object is to
2960 *       decode.
2961 *
2962 * @return SCI_STATUS
2963 * @retval SCI_SUCCESS on a link failure event
2964 * @retval SCI_FAILURE on any unexpected event notifation
2965 */
2966static
2967SCI_STATUS scic_sds_phy_starting_substate_await_sata_phy_event_handler(
2968   SCIC_SDS_PHY_T *this_phy,
2969   U32 event_code
2970)
2971{
2972   U32 result = SCI_SUCCESS;
2973
2974   switch (scu_get_event_code(event_code))
2975   {
2976   case SCU_EVENT_LINK_FAILURE:
2977      // Link failure change state back to the starting state
2978      scic_sds_phy_restart_starting_state(this_phy);
2979      break;
2980
2981   case SCU_EVENT_SATA_SPINUP_HOLD:
2982      // These events might be received since we dont know how many may be in
2983      // the completion queue while waiting for power
2984      break;
2985
2986   case SCU_EVENT_SATA_PHY_DETECTED:
2987      this_phy->protocol = SCIC_SDS_PHY_PROTOCOL_SATA;
2988
2989      // We have received the SATA PHY notification change state
2990      sci_base_state_machine_change_state(
2991         scic_sds_phy_get_starting_substate_machine(this_phy),
2992         SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN
2993         );
2994      break;
2995
2996   case SCU_EVENT_SAS_PHY_DETECTED:
2997      // There has been a change in the phy type before OOB/SN for the
2998      // SATA finished start down the SAS link traning path.
2999      scic_sds_phy_start_sas_link_training(this_phy);
3000   break;
3001
3002   default:
3003      SCIC_LOG_WARNING((
3004         sci_base_object_get_logger(this_phy),
3005         SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_RECEIVED_EVENTS,
3006         "PHY starting substate machine recieved unexpected event_code %x\n",
3007         event_code
3008      ));
3009
3010      result = SCI_FAILURE;
3011      break;
3012   }
3013
3014   return result;
3015}
3016
3017/**
3018 * This method is called when an event notification is received for the phy
3019 * object when in the state
3020 * SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN.
3021 *    - decode the event
3022 *       - sata phy detected returns us back to this state.
3023 *       - speed event detected causes a state transition to the wait for
3024 *         signature.
3025 *       - link failure events restart the starting state machine
3026 *       - any other events log a warning message and set a failure status
3027 *
3028 * @param[in] phy This SCIC_SDS_PHY object which has received an event.
3029 * @param[in] event_code This is the event code which the phy object is to
3030 *       decode.
3031 *
3032 * @return SCI_STATUS
3033 * @retval SCI_SUCCESS on any valid event notification
3034 * @retval SCI_FAILURE on any unexpected event notifation
3035 */
3036static
3037SCI_STATUS scic_sds_phy_starting_substate_await_sata_speed_event_handler(
3038   SCIC_SDS_PHY_T *this_phy,
3039   U32 event_code
3040)
3041{
3042   U32 result = SCI_SUCCESS;
3043
3044   switch (scu_get_event_code(event_code))
3045   {
3046   case SCU_EVENT_SATA_PHY_DETECTED:
3047      // The hardware reports multiple SATA PHY detected events
3048      // ignore the extras
3049   break;
3050
3051   case SCU_EVENT_SATA_15:
3052   case SCU_EVENT_SATA_15_SSC:
3053      scic_sds_phy_complete_link_training(
3054         this_phy,
3055         SCI_SAS_150_GB,
3056         SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF
3057      );
3058   break;
3059
3060   case SCU_EVENT_SATA_30:
3061   case SCU_EVENT_SATA_30_SSC:
3062      scic_sds_phy_complete_link_training(
3063         this_phy,
3064         SCI_SAS_300_GB,
3065         SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF
3066      );
3067   break;
3068
3069   case SCU_EVENT_SATA_60:
3070   case SCU_EVENT_SATA_60_SSC:
3071      scic_sds_phy_complete_link_training(
3072         this_phy,
3073         SCI_SAS_600_GB,
3074         SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF
3075      );
3076   break;
3077
3078   case SCU_EVENT_LINK_FAILURE:
3079      // Link failure change state back to the starting state
3080      scic_sds_phy_restart_starting_state(this_phy);
3081   break;
3082
3083   case SCU_EVENT_SAS_PHY_DETECTED:
3084      // There has been a change in the phy type before OOB/SN for the
3085      // SATA finished start down the SAS link traning path.
3086      scic_sds_phy_start_sas_link_training(this_phy);
3087   break;
3088
3089   default:
3090      SCIC_LOG_WARNING((
3091         sci_base_object_get_logger(this_phy),
3092         SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_RECEIVED_EVENTS,
3093         "PHY starting substate machine recieved unexpected event_code %x\n",
3094         event_code
3095      ));
3096
3097      result = SCI_FAILURE;
3098   break;
3099   }
3100
3101   return result;
3102}
3103
3104/**
3105 * This method is called when an event notification is received for the phy
3106 * object when in the state SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF.
3107 *    - decode the event
3108 *       - sas phy detected event backs up the state machine to the await
3109 *         speed notification.
3110 *       - identify timeout is an un-expected event and the state machine is
3111 *         restarted.
3112 *       - link failure events restart the starting state machine
3113 *       - any other events log a warning message and set a failure status
3114 *
3115 * @param[in] phy This SCIC_SDS_PHY object which has received an event.
3116 * @param[in] event_code This is the event code which the phy object is to
3117 *       decode.
3118 *
3119 * @return SCI_STATUS
3120 * @retval SCI_SUCCESS on any valid event notification
3121 * @retval SCI_FAILURE on any unexpected event notifation
3122 */
3123static
3124SCI_STATUS scic_sds_phy_starting_substate_await_sig_fis_event_handler(
3125   SCIC_SDS_PHY_T *this_phy,
3126   U32 event_code
3127)
3128{
3129   U32 result = SCI_SUCCESS;
3130
3131   switch (scu_get_event_code(event_code))
3132   {
3133   case SCU_EVENT_SATA_PHY_DETECTED:
3134      // Backup the state machine
3135      sci_base_state_machine_change_state(
3136         scic_sds_phy_get_starting_substate_machine(this_phy),
3137         SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN
3138         );
3139      break;
3140
3141   case SCU_EVENT_LINK_FAILURE:
3142      // Link failure change state back to the starting state
3143      scic_sds_phy_restart_starting_state(this_phy);
3144      break;
3145
3146   default:
3147      SCIC_LOG_WARNING((
3148         sci_base_object_get_logger(this_phy),
3149         SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_RECEIVED_EVENTS,
3150         "PHY starting substate machine recieved unexpected event_code %x\n",
3151         event_code
3152      ));
3153
3154      result = SCI_FAILURE;
3155      break;
3156   }
3157
3158   return result;
3159}
3160
3161
3162//*****************************************************************************
3163//*  SCIC SDS PHY FRAME_HANDLERS
3164//*****************************************************************************
3165
3166/**
3167 * This method decodes the unsolicited frame when the SCIC_SDS_PHY is in the
3168 * SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF.
3169 *    - Get the UF Header
3170 *    - If the UF is an IAF
3171 *       - Copy IAF data to local phy object IAF data buffer.
3172 *       - Change starting substate to wait power.
3173 *    - else
3174 *       - log warning message of unexpected unsolicted frame
3175 *    - release frame buffer
3176 *
3177 * @param[in] phy This is SCIC_SDS_PHY object which is being requested to
3178 *       decode the frame data.
3179 * @param[in] frame_index This is the index of the unsolicited frame which was
3180 *       received for this phy.
3181 *
3182 * @return SCI_STATUS
3183 * @retval SCI_SUCCESS
3184 */
3185static
3186SCI_STATUS scic_sds_phy_starting_substate_await_iaf_uf_frame_handler(
3187   SCIC_SDS_PHY_T *this_phy,
3188   U32            frame_index
3189)
3190{
3191   SCI_STATUS                        result;
3192   U32                              *frame_words;
3193   SCI_SAS_IDENTIFY_ADDRESS_FRAME_T *identify_frame;
3194
3195   result = scic_sds_unsolicited_frame_control_get_header(
3196               &(scic_sds_phy_get_controller(this_phy)->uf_control),
3197               frame_index,
3198               (void **)&frame_words);
3199
3200   if (result != SCI_SUCCESS)
3201   {
3202      return result;
3203   }
3204
3205   frame_words[0] = SCIC_SWAP_DWORD(frame_words[0]);
3206   identify_frame = (SCI_SAS_IDENTIFY_ADDRESS_FRAME_T *)frame_words;
3207
3208   if (identify_frame->address_frame_type == 0)
3209   {
3210      // Byte swap the rest of the frame so we can make
3211      // a copy of the buffer
3212      frame_words[1] = SCIC_SWAP_DWORD(frame_words[1]);
3213      frame_words[2] = SCIC_SWAP_DWORD(frame_words[2]);
3214      frame_words[3] = SCIC_SWAP_DWORD(frame_words[3]);
3215      frame_words[4] = SCIC_SWAP_DWORD(frame_words[4]);
3216      frame_words[5] = SCIC_SWAP_DWORD(frame_words[5]);
3217
3218      memcpy(
3219         &this_phy->phy_type.sas.identify_address_frame_buffer,
3220         identify_frame,
3221         sizeof(SCI_SAS_IDENTIFY_ADDRESS_FRAME_T)
3222      );
3223
3224      if (identify_frame->protocols.u.bits.smp_target)
3225      {
3226         // We got the IAF for an expander PHY go to the final state since
3227         // there are no power requirements for expander phys.
3228         sci_base_state_machine_change_state(
3229            scic_sds_phy_get_starting_substate_machine(this_phy),
3230            SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL
3231         );
3232      }
3233      else
3234      {
3235         // We got the IAF we can now go to the await spinup semaphore state
3236         sci_base_state_machine_change_state(
3237            scic_sds_phy_get_starting_substate_machine(this_phy),
3238            SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_POWER
3239         );
3240      }
3241
3242      result = SCI_SUCCESS;
3243   }
3244   else
3245   {
3246      SCIC_LOG_WARNING((
3247         sci_base_object_get_logger(this_phy),
3248         SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_UNSOLICITED_FRAMES,
3249         "PHY starting substate machine recieved unexpected frame id %x\n",
3250         frame_index
3251      ));
3252   }
3253
3254   // Regardless of the result release this frame since we are done with it
3255   scic_sds_controller_release_frame(
3256      scic_sds_phy_get_controller(this_phy), frame_index
3257      );
3258
3259   return result;
3260}
3261
3262/**
3263 * This method decodes the unsolicited frame when the SCIC_SDS_PHY is in the
3264 * SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF.
3265 *    - Get the UF Header
3266 *    - If the UF is an SIGNATURE FIS
3267 *       - Copy IAF data to local phy object SIGNATURE FIS data buffer.
3268 *    - else
3269 *       - log warning message of unexpected unsolicted frame
3270 *    - release frame buffer
3271 *
3272 * @param[in] phy This is SCIC_SDS_PHY object which is being requested to
3273 *       decode the frame data.
3274 * @param[in] frame_index This is the index of the unsolicited frame which was
3275 *       received for this phy.
3276 *
3277 * @return SCI_STATUS
3278 * @retval SCI_SUCCESS
3279 *
3280 * @todo Must decode the SIGNATURE FIS data
3281 */
3282static
3283SCI_STATUS scic_sds_phy_starting_substate_await_sig_fis_frame_handler(
3284   SCIC_SDS_PHY_T *this_phy,
3285   U32            frame_index
3286)
3287{
3288   SCI_STATUS          result;
3289   U32               * frame_words;
3290   SATA_FIS_HEADER_T * fis_frame_header;
3291   U32               * fis_frame_data;
3292
3293   result = scic_sds_unsolicited_frame_control_get_header(
3294               &(scic_sds_phy_get_controller(this_phy)->uf_control),
3295               frame_index,
3296               (void **)&frame_words);
3297
3298   if (result != SCI_SUCCESS)
3299   {
3300      return result;
3301   }
3302
3303   fis_frame_header = (SATA_FIS_HEADER_T *)frame_words;
3304
3305   if (
3306         (fis_frame_header->fis_type == SATA_FIS_TYPE_REGD2H)
3307      && !(fis_frame_header->status & ATA_STATUS_REG_BSY_BIT)
3308      )
3309   {
3310      scic_sds_unsolicited_frame_control_get_buffer(
3311         &(scic_sds_phy_get_controller(this_phy)->uf_control),
3312         frame_index,
3313         (void **)&fis_frame_data
3314      );
3315
3316      scic_sds_controller_copy_sata_response(
3317         &this_phy->phy_type.sata.signature_fis_buffer,
3318         frame_words,
3319         fis_frame_data
3320      );
3321
3322      // We got the IAF we can now go to the await spinup semaphore state
3323      sci_base_state_machine_change_state(
3324         scic_sds_phy_get_starting_substate_machine(this_phy),
3325         SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL
3326         );
3327
3328      result = SCI_SUCCESS;
3329   }
3330   else
3331   {
3332      SCIC_LOG_WARNING((
3333         sci_base_object_get_logger(this_phy),
3334         SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_UNSOLICITED_FRAMES,
3335         "PHY starting substate machine recieved unexpected frame id %x\n",
3336         frame_index
3337      ));
3338   }
3339
3340   // Regardless of the result release this frame since we are done with it
3341   scic_sds_controller_release_frame(
3342      scic_sds_phy_get_controller(this_phy), frame_index
3343      );
3344
3345   return result;
3346}
3347
3348//*****************************************************************************
3349//* SCIC SDS PHY POWER_HANDLERS
3350//*****************************************************************************
3351
3352/**
3353 * This method is called by the SCIC_SDS_CONTROLLER when the phy object is
3354 * granted power.
3355 *    - The notify enable spinups are turned on for this phy object
3356 *    - The phy state machine is transitioned to the
3357 *    SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL.
3358 *
3359 * @param[in] phy This is the SCI_BASE_PHY object which is cast into a
3360 *       SCIC_SDS_PHY object.
3361 *
3362 * @return SCI_STATUS
3363 * @retval SCI_SUCCESS
3364 */
3365static
3366SCI_STATUS scic_sds_phy_starting_substate_await_sas_power_consume_power_handler(
3367   SCIC_SDS_PHY_T *this_phy
3368)
3369{
3370   U32 enable_spinup;
3371
3372   enable_spinup = SCU_SAS_ENSPINUP_READ(this_phy);
3373   enable_spinup |= SCU_ENSPINUP_GEN_BIT(ENABLE);
3374   SCU_SAS_ENSPINUP_WRITE(this_phy, enable_spinup);
3375
3376   // Change state to the final state this substate machine has run to completion
3377   sci_base_state_machine_change_state(
3378      scic_sds_phy_get_starting_substate_machine(this_phy),
3379      SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL
3380      );
3381
3382   return SCI_SUCCESS;
3383}
3384
3385/**
3386 * This method is called by the SCIC_SDS_CONTROLLER when the phy object is
3387 * granted power.
3388 *    - The phy state machine is transitioned to the
3389 *    SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_PHY_EN.
3390 *
3391 * @param[in] phy This is the SCI_BASE_PHY object which is cast into a
3392 *       SCIC_SDS_PHY object.
3393 *
3394 * @return SCI_STATUS
3395 * @retval SCI_SUCCESS
3396 */
3397static
3398SCI_STATUS scic_sds_phy_starting_substate_await_sata_power_consume_power_handler(
3399   SCIC_SDS_PHY_T *this_phy
3400)
3401{
3402   U32 scu_sas_pcfg_value;
3403
3404   // Release the spinup hold state and reset the OOB state machine
3405   scu_sas_pcfg_value = SCU_SAS_PCFG_READ(this_phy);
3406   scu_sas_pcfg_value &=
3407      ~(SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD) | SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE));
3408   scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
3409   SCU_SAS_PCFG_WRITE(this_phy, scu_sas_pcfg_value);
3410
3411   // Now restart the OOB operation
3412   scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
3413   scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
3414   SCU_SAS_PCFG_WRITE(this_phy, scu_sas_pcfg_value);
3415
3416   // Change state to the final state this substate machine has run to completion
3417   sci_base_state_machine_change_state(
3418      scic_sds_phy_get_starting_substate_machine(this_phy),
3419      SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_PHY_EN
3420   );
3421
3422   return SCI_SUCCESS;
3423}
3424
3425// ---------------------------------------------------------------------------
3426
3427SCIC_SDS_PHY_STATE_HANDLER_T
3428   scic_sds_phy_starting_substate_handler_table[SCIC_SDS_PHY_STARTING_MAX_SUBSTATES] =
3429{
3430   // SCIC_SDS_PHY_STARTING_SUBSTATE_INITIAL
3431   {
3432      {
3433         scic_sds_phy_default_start_handler,
3434         scic_sds_phy_starting_substate_general_stop_handler,
3435         scic_sds_phy_default_reset_handler,
3436         scic_sds_phy_default_destroy_handler
3437      },
3438      scic_sds_phy_default_frame_handler,
3439      scic_sds_phy_default_event_handler,
3440      scic_sds_phy_default_consume_power_handler
3441   },
3442   // SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_OSSP_EN
3443   {
3444      {
3445         scic_sds_phy_default_start_handler,
3446         scic_sds_phy_starting_substate_general_stop_handler,
3447         scic_sds_phy_default_reset_handler,
3448         scic_sds_phy_default_destroy_handler
3449      },
3450      scic_sds_phy_default_frame_handler,
3451      scic_sds_phy_starting_substate_await_ossp_event_handler,
3452      scic_sds_phy_default_consume_power_handler
3453   },
3454   // SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_SPEED_EN
3455   {
3456      {
3457         scic_sds_phy_default_start_handler,
3458         scic_sds_phy_starting_substate_general_stop_handler,
3459         scic_sds_phy_default_reset_handler,
3460         scic_sds_phy_default_destroy_handler
3461      },
3462      scic_sds_phy_default_frame_handler,
3463      scic_sds_phy_starting_substate_await_sas_phy_speed_event_handler,
3464      scic_sds_phy_default_consume_power_handler
3465   },
3466   // SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF
3467   {
3468      {
3469         scic_sds_phy_default_start_handler,
3470         scic_sds_phy_default_stop_handler,
3471         scic_sds_phy_default_reset_handler,
3472         scic_sds_phy_default_destroy_handler
3473      },
3474      scic_sds_phy_starting_substate_await_iaf_uf_frame_handler,
3475      scic_sds_phy_starting_substate_await_iaf_uf_event_handler,
3476      scic_sds_phy_default_consume_power_handler
3477   },
3478   // SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_POWER
3479   {
3480      {
3481         scic_sds_phy_default_start_handler,
3482         scic_sds_phy_starting_substate_general_stop_handler,
3483         scic_sds_phy_default_reset_handler,
3484         scic_sds_phy_default_destroy_handler
3485      },
3486      scic_sds_phy_default_frame_handler,
3487      scic_sds_phy_starting_substate_await_sas_power_event_handler,
3488      scic_sds_phy_starting_substate_await_sas_power_consume_power_handler
3489   },
3490   // SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_POWER,
3491   {
3492      {
3493         scic_sds_phy_default_start_handler,
3494         scic_sds_phy_starting_substate_general_stop_handler,
3495         scic_sds_phy_default_reset_handler,
3496         scic_sds_phy_default_destroy_handler
3497      },
3498      scic_sds_phy_default_frame_handler,
3499      scic_sds_phy_starting_substate_await_sata_power_event_handler,
3500      scic_sds_phy_starting_substate_await_sata_power_consume_power_handler
3501   },
3502   // SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_PHY_EN,
3503   {
3504      {
3505         scic_sds_phy_default_start_handler,
3506         scic_sds_phy_starting_substate_general_stop_handler,
3507         scic_sds_phy_default_reset_handler,
3508         scic_sds_phy_default_destroy_handler
3509      },
3510      scic_sds_phy_default_frame_handler,
3511      scic_sds_phy_starting_substate_await_sata_phy_event_handler,
3512      scic_sds_phy_default_consume_power_handler
3513   },
3514   // SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN,
3515   {
3516      {
3517         scic_sds_phy_default_start_handler,
3518         scic_sds_phy_starting_substate_general_stop_handler,
3519         scic_sds_phy_default_reset_handler,
3520         scic_sds_phy_default_destroy_handler
3521      },
3522      scic_sds_phy_default_frame_handler,
3523      scic_sds_phy_starting_substate_await_sata_speed_event_handler,
3524      scic_sds_phy_default_consume_power_handler
3525   },
3526   // SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF,
3527   {
3528      {
3529         scic_sds_phy_default_start_handler,
3530         scic_sds_phy_starting_substate_general_stop_handler,
3531         scic_sds_phy_default_reset_handler,
3532         scic_sds_phy_default_destroy_handler
3533      },
3534      scic_sds_phy_starting_substate_await_sig_fis_frame_handler,
3535      scic_sds_phy_starting_substate_await_sig_fis_event_handler,
3536      scic_sds_phy_default_consume_power_handler
3537   },
3538   // SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL
3539   {
3540      {
3541         scic_sds_phy_default_start_handler,
3542         scic_sds_phy_starting_substate_general_stop_handler,
3543         scic_sds_phy_default_reset_handler,
3544         scic_sds_phy_default_destroy_handler
3545      },
3546      scic_sds_phy_default_frame_handler,
3547      scic_sds_phy_default_event_handler,
3548      scic_sds_phy_default_consume_power_handler
3549   }
3550};
3551
3552/**
3553 * This macro sets the starting substate handlers by state_id
3554 */
3555#define scic_sds_phy_set_starting_substate_handlers(phy, state_id) \
3556   scic_sds_phy_set_state_handlers( \
3557      (phy), \
3558      &scic_sds_phy_starting_substate_handler_table[(state_id)] \
3559   )
3560
3561//****************************************************************************
3562//*  PHY STARTING SUBSTATE METHODS
3563//****************************************************************************
3564
3565/**
3566 * This method will perform the actions required by the SCIC_SDS_PHY on
3567 * entering the SCIC_SDS_PHY_STARTING_SUBSTATE_INITIAL.
3568 *    - The initial state handlers are put in place for the SCIC_SDS_PHY
3569 *      object.
3570 *    - The state is changed to the wait phy type event notification.
3571 *
3572 * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
3573 *       SCIC_SDS_PHY object.
3574 *
3575 * @return none
3576 */
3577static
3578void scic_sds_phy_starting_initial_substate_enter(
3579   SCI_BASE_OBJECT_T *object
3580)
3581{
3582   SCIC_SDS_PHY_T *this_phy;
3583   this_phy = (SCIC_SDS_PHY_T *)object;
3584
3585   scic_sds_phy_set_starting_substate_handlers(
3586      this_phy, SCIC_SDS_PHY_STARTING_SUBSTATE_INITIAL);
3587
3588   // This is just an temporary state go off to the starting state
3589   sci_base_state_machine_change_state(
3590      scic_sds_phy_get_starting_substate_machine(this_phy),
3591      SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_OSSP_EN
3592   );
3593}
3594
3595/**
3596 * This method will perform the actions required by the SCIC_SDS_PHY on
3597 * entering the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_PHY_TYPE_EN.
3598 *    - Set the SCIC_SDS_PHY object state handlers for this state.
3599 *
3600 * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
3601 *       SCIC_SDS_PHY object.
3602 *
3603 * @return none
3604 */
3605static
3606void scic_sds_phy_starting_await_ossp_en_substate_enter(
3607   SCI_BASE_OBJECT_T *object
3608)
3609{
3610   SCIC_SDS_PHY_T *this_phy;
3611   this_phy = (SCIC_SDS_PHY_T *)object;
3612
3613   scic_sds_phy_set_starting_substate_handlers(
3614      this_phy, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_OSSP_EN
3615      );
3616}
3617
3618/**
3619 * This method will perform the actions required by the SCIC_SDS_PHY on
3620 * entering the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SPEED_EN.
3621 *    - Set the SCIC_SDS_PHY object state handlers for this state.
3622 *
3623 * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
3624 *       SCIC_SDS_PHY object.
3625 *
3626 * @return none
3627 */
3628static
3629void scic_sds_phy_starting_await_sas_speed_en_substate_enter(
3630   SCI_BASE_OBJECT_T *object
3631)
3632{
3633   SCIC_SDS_PHY_T *this_phy;
3634   this_phy = (SCIC_SDS_PHY_T *)object;
3635
3636   scic_sds_phy_set_starting_substate_handlers(
3637      this_phy, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_SPEED_EN
3638      );
3639}
3640
3641/**
3642 * This method will perform the actions required by the SCIC_SDS_PHY on
3643 * entering the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF.
3644 *    - Set the SCIC_SDS_PHY object state handlers for this state.
3645 *
3646 * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
3647 *       SCIC_SDS_PHY object.
3648 *
3649 * @return none
3650 */
3651static
3652void scic_sds_phy_starting_await_iaf_uf_substate_enter(
3653   SCI_BASE_OBJECT_T *object
3654)
3655{
3656   SCIC_SDS_PHY_T *this_phy;
3657   this_phy = (SCIC_SDS_PHY_T *)object;
3658
3659   scic_sds_phy_set_starting_substate_handlers(
3660      this_phy, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF
3661      );
3662}
3663
3664/**
3665 * This method will perform the actions required by the SCIC_SDS_PHY on
3666 * entering the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_POWER.
3667 *    - Set the SCIC_SDS_PHY object state handlers for this state.
3668 *    - Add this phy object to the power control queue
3669 *
3670 * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
3671 *       SCIC_SDS_PHY object.
3672 *
3673 * @return none
3674 */
3675static
3676void scic_sds_phy_starting_await_sas_power_substate_enter(
3677   SCI_BASE_OBJECT_T *object
3678)
3679{
3680   SCIC_SDS_PHY_T *this_phy;
3681   this_phy = (SCIC_SDS_PHY_T *)object;
3682
3683   scic_sds_phy_set_starting_substate_handlers(
3684      this_phy, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_POWER
3685      );
3686
3687   scic_sds_controller_power_control_queue_insert(
3688      scic_sds_phy_get_controller(this_phy),
3689      this_phy
3690      );
3691}
3692
3693/**
3694 * This method will perform the actions required by the SCIC_SDS_PHY on
3695 * exiting the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_POWER.
3696 *    - Remove the SCIC_SDS_PHY object from the power control queue.
3697 *
3698 * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
3699 *       SCIC_SDS_PHY object.
3700 *
3701 * @return none
3702 */
3703static
3704void scic_sds_phy_starting_await_sas_power_substate_exit(
3705   SCI_BASE_OBJECT_T *object
3706)
3707{
3708   SCIC_SDS_PHY_T *this_phy;
3709   this_phy = (SCIC_SDS_PHY_T *)object;
3710
3711   scic_sds_controller_power_control_queue_remove(
3712      scic_sds_phy_get_controller(this_phy), this_phy
3713   );
3714}
3715
3716/**
3717 * This method will perform the actions required by the SCIC_SDS_PHY on
3718 * entering the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_POWER.
3719 *    - Set the SCIC_SDS_PHY object state handlers for this state.
3720 *    - Add this phy object to the power control queue
3721 *
3722 * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
3723 *       SCIC_SDS_PHY object.
3724 *
3725 * @return none
3726 */
3727static
3728void scic_sds_phy_starting_await_sata_power_substate_enter(
3729   SCI_BASE_OBJECT_T *object
3730)
3731{
3732   SCIC_SDS_PHY_T *this_phy;
3733   this_phy = (SCIC_SDS_PHY_T *)object;
3734
3735   scic_sds_phy_set_starting_substate_handlers(
3736      this_phy, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_POWER
3737      );
3738
3739   scic_sds_controller_power_control_queue_insert(
3740      scic_sds_phy_get_controller(this_phy),
3741      this_phy
3742      );
3743}
3744
3745/**
3746 * This method will perform the actions required by the SCIC_SDS_PHY on
3747 * exiting the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_POWER.
3748 *    - Remove the SCIC_SDS_PHY object from the power control queue.
3749 *
3750 * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
3751 *       SCIC_SDS_PHY object.
3752 *
3753 * @return none
3754 */
3755static
3756void scic_sds_phy_starting_await_sata_power_substate_exit(
3757   SCI_BASE_OBJECT_T *object
3758)
3759{
3760   SCIC_SDS_PHY_T *this_phy;
3761   this_phy = (SCIC_SDS_PHY_T *)object;
3762
3763   scic_sds_controller_power_control_queue_remove(
3764      scic_sds_phy_get_controller(this_phy),
3765      this_phy
3766      );
3767}
3768
3769/**
3770 * This method will perform the actions required by the SCIC_SDS_PHY on
3771 * entering the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_PHY_EN.
3772 *    - Set the SCIC_SDS_PHY object state handlers for this state.
3773 *
3774 * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
3775 *       SCIC_SDS_PHY object.
3776 *
3777 * @return none
3778 */
3779static
3780void scic_sds_phy_starting_await_sata_phy_substate_enter(
3781   SCI_BASE_OBJECT_T *object
3782)
3783{
3784   SCIC_SDS_PHY_T *this_phy;
3785   this_phy = (SCIC_SDS_PHY_T *)object;
3786
3787   scic_sds_phy_set_starting_substate_handlers(
3788      this_phy, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_PHY_EN
3789      );
3790
3791   scic_cb_timer_start(
3792      scic_sds_phy_get_controller(this_phy),
3793      this_phy->sata_timeout_timer,
3794      SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT
3795   );
3796}
3797
3798/**
3799 * This method will perform the actions required by the SCIC_SDS_PHY on
3800 * exiting the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN.
3801 *    - stop the timer that was started on entry to await sata phy
3802 *      event notification
3803 *
3804 * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
3805 *       SCIC_SDS_PHY object.
3806 *
3807 * @return none
3808 */
3809static
3810void scic_sds_phy_starting_await_sata_phy_substate_exit(
3811   SCI_BASE_OBJECT_T *object
3812)
3813{
3814   SCIC_SDS_PHY_T *this_phy;
3815   this_phy = (SCIC_SDS_PHY_T *)object;
3816
3817   scic_cb_timer_stop(
3818      scic_sds_phy_get_controller(this_phy),
3819      this_phy->sata_timeout_timer
3820   );
3821}
3822
3823/**
3824 * This method will perform the actions required by the SCIC_SDS_PHY on
3825 * entering the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN.
3826 *    - Set the SCIC_SDS_PHY object state handlers for this state.
3827 *
3828 * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
3829 *       SCIC_SDS_PHY object.
3830 *
3831 * @return none
3832 */
3833static
3834void scic_sds_phy_starting_await_sata_speed_substate_enter(
3835   SCI_BASE_OBJECT_T *object
3836)
3837{
3838   SCIC_SDS_PHY_T *this_phy;
3839   this_phy = (SCIC_SDS_PHY_T *)object;
3840
3841   scic_sds_phy_set_starting_substate_handlers(
3842      this_phy, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN
3843      );
3844
3845   scic_cb_timer_start(
3846      scic_sds_phy_get_controller(this_phy),
3847      this_phy->sata_timeout_timer,
3848      SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT
3849   );
3850}
3851
3852/**
3853 * This method will perform the actions required by the SCIC_SDS_PHY on
3854 * exiting the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN.
3855 *    - stop the timer that was started on entry to await sata phy
3856 *      event notification
3857 *
3858 * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
3859 *       SCIC_SDS_PHY object.
3860 *
3861 * @return none
3862 */
3863static
3864void scic_sds_phy_starting_await_sata_speed_substate_exit(
3865   SCI_BASE_OBJECT_T *object
3866)
3867{
3868   SCIC_SDS_PHY_T *this_phy;
3869   this_phy = (SCIC_SDS_PHY_T *)object;
3870
3871   scic_cb_timer_stop(
3872      scic_sds_phy_get_controller(this_phy),
3873      this_phy->sata_timeout_timer
3874   );
3875}
3876
3877/**
3878 * This method will perform the actions required by the SCIC_SDS_PHY on
3879 * entering the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF.
3880 *    - Set the SCIC_SDS_PHY object state handlers for this state.
3881 *    - Start the SIGNATURE FIS timeout timer
3882 *
3883 * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
3884 *       SCIC_SDS_PHY object.
3885 *
3886 * @return none
3887 */
3888static
3889void scic_sds_phy_starting_await_sig_fis_uf_substate_enter(
3890   SCI_BASE_OBJECT_T *object
3891)
3892{
3893   BOOL             continue_to_ready_state;
3894   SCIC_SDS_PHY_T * this_phy;
3895
3896   this_phy = (SCIC_SDS_PHY_T *)object;
3897
3898   scic_sds_phy_set_starting_substate_handlers(
3899      this_phy, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF
3900   );
3901
3902   continue_to_ready_state = scic_sds_port_link_detected(
3903                                 this_phy->owning_port,
3904                                 this_phy
3905                             );
3906
3907   if (continue_to_ready_state)
3908   {
3909      // Clear the PE suspend condition so we can actually receive SIG FIS
3910      // The hardware will not respond to the XRDY until the PE suspend
3911      // condition is cleared.
3912      scic_sds_phy_resume(this_phy);
3913
3914      scic_cb_timer_start(
3915         scic_sds_phy_get_controller(this_phy),
3916         this_phy->sata_timeout_timer,
3917         SCIC_SDS_SIGNATURE_FIS_TIMEOUT
3918      );
3919   }
3920   else
3921   {
3922      this_phy->is_in_link_training = FALSE;
3923   }
3924}
3925
3926/**
3927 * This method will perform the actions required by the SCIC_SDS_PHY on
3928 * exiting the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF.
3929 *    - Stop the SIGNATURE FIS timeout timer.
3930 *
3931 * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
3932 *       SCIC_SDS_PHY object.
3933 *
3934 * @return none
3935 */
3936static
3937void scic_sds_phy_starting_await_sig_fis_uf_substate_exit(
3938   SCI_BASE_OBJECT_T *object
3939)
3940{
3941   SCIC_SDS_PHY_T *this_phy;
3942   this_phy = (SCIC_SDS_PHY_T *)object;
3943
3944   scic_cb_timer_stop(
3945      scic_sds_phy_get_controller(this_phy),
3946      this_phy->sata_timeout_timer
3947   );
3948}
3949
3950/**
3951 * This method will perform the actions required by the SCIC_SDS_PHY on
3952 * entering the SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL.
3953 *    - Set the SCIC_SDS_PHY object state handlers for this state.
3954 *    - Change base state machine to the ready state.
3955 *
3956 * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
3957 *       SCIC_SDS_PHY object.
3958 *
3959 * @return none
3960 */
3961static
3962void scic_sds_phy_starting_final_substate_enter(
3963   SCI_BASE_OBJECT_T *object
3964)
3965{
3966   SCIC_SDS_PHY_T *this_phy;
3967   this_phy = (SCIC_SDS_PHY_T *)object;
3968
3969   scic_sds_phy_set_starting_substate_handlers(
3970      this_phy, SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL
3971      );
3972
3973   // State machine has run to completion so exit out and change
3974   // the base state machine to the ready state
3975   sci_base_state_machine_change_state(
3976      scic_sds_phy_get_base_state_machine(this_phy),
3977      SCI_BASE_PHY_STATE_READY);
3978}
3979
3980// ---------------------------------------------------------------------------
3981
3982SCI_BASE_STATE_T
3983   scic_sds_phy_starting_substates[SCIC_SDS_PHY_STARTING_MAX_SUBSTATES] =
3984{
3985   {
3986      SCIC_SDS_PHY_STARTING_SUBSTATE_INITIAL,
3987      scic_sds_phy_starting_initial_substate_enter,
3988      NULL,
3989   },
3990   {
3991      SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_OSSP_EN,
3992      scic_sds_phy_starting_await_ossp_en_substate_enter,
3993      NULL,
3994   },
3995   {
3996      SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_SPEED_EN,
3997      scic_sds_phy_starting_await_sas_speed_en_substate_enter,
3998      NULL,
3999   },
4000   {
4001      SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF,
4002      scic_sds_phy_starting_await_iaf_uf_substate_enter,
4003      NULL,
4004   },
4005   {
4006      SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_POWER,
4007      scic_sds_phy_starting_await_sas_power_substate_enter,
4008      scic_sds_phy_starting_await_sas_power_substate_exit,
4009   },
4010   {
4011      SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_POWER,
4012      scic_sds_phy_starting_await_sata_power_substate_enter,
4013      scic_sds_phy_starting_await_sata_power_substate_exit
4014   },
4015   {
4016      SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_PHY_EN,
4017      scic_sds_phy_starting_await_sata_phy_substate_enter,
4018      scic_sds_phy_starting_await_sata_phy_substate_exit
4019   },
4020   {
4021      SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN,
4022      scic_sds_phy_starting_await_sata_speed_substate_enter,
4023      scic_sds_phy_starting_await_sata_speed_substate_exit
4024   },
4025   {
4026      SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF,
4027      scic_sds_phy_starting_await_sig_fis_uf_substate_enter,
4028      scic_sds_phy_starting_await_sig_fis_uf_substate_exit
4029   },
4030   {
4031      SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL,
4032      scic_sds_phy_starting_final_substate_enter,
4033      NULL,
4034   }
4035};
4036
4037