1/*-
2 * Copyright (c) 2012 Adrian Chadd <adrian@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 *    redistribution must be conditioned upon including a substantially
14 *    similar Disclaimer requirement for further binary redistribution.
15 *
16 * NO WARRANTY
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27 * THE POSSIBILITY OF SUCH DAMAGES.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD$");
32
33/*
34 * Driver for the Atheros Wireless LAN controller.
35 *
36 * This software is derived from work of Atsushi Onoe; his contribution
37 * is greatly appreciated.
38 */
39
40#include "opt_inet.h"
41#include "opt_ath.h"
42/*
43 * This is needed for register operations which are performed
44 * by the driver - eg, calls to ath_hal_gettsf32().
45 *
46 * It's also required for any AH_DEBUG checks in here, eg the
47 * module dependencies.
48 */
49#include "opt_ah.h"
50#include "opt_wlan.h"
51
52#include <sys/param.h>
53#include <sys/systm.h>
54#include <sys/sysctl.h>
55#include <sys/mbuf.h>
56#include <sys/malloc.h>
57#include <sys/lock.h>
58#include <sys/mutex.h>
59#include <sys/kernel.h>
60#include <sys/socket.h>
61#include <sys/sockio.h>
62#include <sys/errno.h>
63#include <sys/callout.h>
64#include <sys/bus.h>
65#include <sys/endian.h>
66#include <sys/kthread.h>
67#include <sys/taskqueue.h>
68#include <sys/priv.h>
69#include <sys/module.h>
70#include <sys/ktr.h>
71#include <sys/smp.h>	/* for mp_ncpus */
72
73#include <machine/bus.h>
74
75#include <net/if.h>
76#include <net/if_dl.h>
77#include <net/if_media.h>
78#include <net/if_types.h>
79#include <net/if_arp.h>
80#include <net/ethernet.h>
81#include <net/if_llc.h>
82
83#include <net80211/ieee80211_var.h>
84#include <net80211/ieee80211_regdomain.h>
85#ifdef IEEE80211_SUPPORT_SUPERG
86#include <net80211/ieee80211_superg.h>
87#endif
88#ifdef IEEE80211_SUPPORT_TDMA
89#include <net80211/ieee80211_tdma.h>
90#endif
91
92#include <net/bpf.h>
93
94#ifdef INET
95#include <netinet/in.h>
96#include <netinet/if_ether.h>
97#endif
98
99#include <dev/ath/if_athvar.h>
100#include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
101#include <dev/ath/ath_hal/ah_diagcodes.h>
102
103#include <dev/ath/if_ath_debug.h>
104#include <dev/ath/if_ath_misc.h>
105#include <dev/ath/if_ath_tsf.h>
106#include <dev/ath/if_ath_tx.h>
107#include <dev/ath/if_ath_sysctl.h>
108#include <dev/ath/if_ath_led.h>
109#include <dev/ath/if_ath_keycache.h>
110#include <dev/ath/if_ath_rx.h>
111#include <dev/ath/if_ath_beacon.h>
112#include <dev/ath/if_athdfs.h>
113
114#ifdef ATH_TX99_DIAG
115#include <dev/ath/ath_tx99/ath_tx99.h>
116#endif
117
118#include <dev/ath/if_ath_rx_edma.h>
119
120#ifdef	ATH_DEBUG_ALQ
121#include <dev/ath/if_ath_alq.h>
122#endif
123
124/*
125 * some general macros
126  */
127#define	INCR(_l, _sz)		(_l) ++; (_l) &= ((_sz) - 1)
128#define	DECR(_l, _sz)		(_l) --; (_l) &= ((_sz) - 1)
129
130MALLOC_DECLARE(M_ATHDEV);
131
132/*
133 * XXX TODO:
134 *
135 * + Make sure the FIFO is correctly flushed and reinitialised
136 *   through a reset;
137 * + Verify multi-descriptor frames work!
138 * + There's a "memory use after free" which needs to be tracked down
139 *   and fixed ASAP.  I've seen this in the legacy path too, so it
140 *   may be a generic RX path issue.
141 */
142
143/*
144 * XXX shuffle the function orders so these pre-declarations aren't
145 * required!
146 */
147static	int ath_edma_rxfifo_alloc(struct ath_softc *sc, HAL_RX_QUEUE qtype,
148	    int nbufs);
149static	int ath_edma_rxfifo_flush(struct ath_softc *sc, HAL_RX_QUEUE qtype);
150static	void ath_edma_rxbuf_free(struct ath_softc *sc, struct ath_buf *bf);
151static	void ath_edma_recv_proc_queue(struct ath_softc *sc,
152	    HAL_RX_QUEUE qtype, int dosched);
153static	int ath_edma_recv_proc_deferred_queue(struct ath_softc *sc,
154	    HAL_RX_QUEUE qtype, int dosched);
155
156static void
157ath_edma_stoprecv(struct ath_softc *sc, int dodelay)
158{
159	struct ath_hal *ah = sc->sc_ah;
160
161	ATH_RX_LOCK(sc);
162	ath_hal_stoppcurecv(ah);
163	ath_hal_setrxfilter(ah, 0);
164	ath_hal_stopdmarecv(ah);
165
166	DELAY(3000);
167
168	/* Flush RX pending for each queue */
169	/* XXX should generic-ify this */
170	if (sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending) {
171		m_freem(sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending);
172		sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending = NULL;
173	}
174
175	if (sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending) {
176		m_freem(sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending);
177		sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending = NULL;
178	}
179	ATH_RX_UNLOCK(sc);
180}
181
182/*
183 * Re-initialise the FIFO given the current buffer contents.
184 * Specifically, walk from head -> tail, pushing the FIFO contents
185 * back into the FIFO.
186 */
187static void
188ath_edma_reinit_fifo(struct ath_softc *sc, HAL_RX_QUEUE qtype)
189{
190	struct ath_rx_edma *re = &sc->sc_rxedma[qtype];
191	struct ath_buf *bf;
192	int i, j;
193
194	ATH_RX_LOCK_ASSERT(sc);
195
196	i = re->m_fifo_head;
197	for (j = 0; j < re->m_fifo_depth; j++) {
198		bf = re->m_fifo[i];
199		DPRINTF(sc, ATH_DEBUG_EDMA_RX,
200		    "%s: Q%d: pos=%i, addr=0x%jx\n",
201		    __func__,
202		    qtype,
203		    i,
204		    (uintmax_t)bf->bf_daddr);
205		ath_hal_putrxbuf(sc->sc_ah, bf->bf_daddr, qtype);
206		INCR(i, re->m_fifolen);
207	}
208
209	/* Ensure this worked out right */
210	if (i != re->m_fifo_tail) {
211		device_printf(sc->sc_dev, "%s: i (%d) != tail! (%d)\n",
212		    __func__,
213		    i,
214		    re->m_fifo_tail);
215	}
216}
217
218/*
219 * Start receive.
220 *
221 * XXX TODO: this needs to reallocate the FIFO entries when a reset
222 * occurs, in case the FIFO is filled up and no new descriptors get
223 * thrown into the FIFO.
224 */
225static int
226ath_edma_startrecv(struct ath_softc *sc)
227{
228	struct ath_hal *ah = sc->sc_ah;
229
230	ATH_RX_LOCK(sc);
231
232	/* Enable RX FIFO */
233	ath_hal_rxena(ah);
234
235	/*
236	 * Entries should only be written out if the
237	 * FIFO is empty.
238	 *
239	 * XXX This isn't correct. I should be looking
240	 * at the value of AR_RXDP_SIZE (0x0070) to determine
241	 * how many entries are in here.
242	 *
243	 * A warm reset will clear the registers but not the FIFO.
244	 *
245	 * And I believe this is actually the address of the last
246	 * handled buffer rather than the current FIFO pointer.
247	 * So if no frames have been (yet) seen, we'll reinit the
248	 * FIFO.
249	 *
250	 * I'll chase that up at some point.
251	 */
252	if (ath_hal_getrxbuf(sc->sc_ah, HAL_RX_QUEUE_HP) == 0) {
253		DPRINTF(sc, ATH_DEBUG_EDMA_RX,
254		    "%s: Re-initing HP FIFO\n", __func__);
255		ath_edma_reinit_fifo(sc, HAL_RX_QUEUE_HP);
256	}
257	if (ath_hal_getrxbuf(sc->sc_ah, HAL_RX_QUEUE_LP) == 0) {
258		DPRINTF(sc, ATH_DEBUG_EDMA_RX,
259		    "%s: Re-initing LP FIFO\n", __func__);
260		ath_edma_reinit_fifo(sc, HAL_RX_QUEUE_LP);
261	}
262
263	/* Add up to m_fifolen entries in each queue */
264	/*
265	 * These must occur after the above write so the FIFO buffers
266	 * are pushed/tracked in the same order as the hardware will
267	 * process them.
268	 */
269	ath_edma_rxfifo_alloc(sc, HAL_RX_QUEUE_HP,
270	    sc->sc_rxedma[HAL_RX_QUEUE_HP].m_fifolen);
271
272	ath_edma_rxfifo_alloc(sc, HAL_RX_QUEUE_LP,
273	    sc->sc_rxedma[HAL_RX_QUEUE_LP].m_fifolen);
274
275	ath_mode_init(sc);
276	ath_hal_startpcurecv(ah);
277
278	ATH_RX_UNLOCK(sc);
279
280	return (0);
281}
282
283static void
284ath_edma_recv_sched_queue(struct ath_softc *sc, HAL_RX_QUEUE qtype,
285    int dosched)
286{
287
288	ath_edma_recv_proc_queue(sc, qtype, dosched);
289	taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
290}
291
292static void
293ath_edma_recv_sched(struct ath_softc *sc, int dosched)
294{
295
296	ath_edma_recv_proc_queue(sc, HAL_RX_QUEUE_HP, dosched);
297	ath_edma_recv_proc_queue(sc, HAL_RX_QUEUE_LP, dosched);
298	taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
299}
300
301static void
302ath_edma_recv_flush(struct ath_softc *sc)
303{
304
305	DPRINTF(sc, ATH_DEBUG_RECV, "%s: called\n", __func__);
306
307	ATH_PCU_LOCK(sc);
308	sc->sc_rxproc_cnt++;
309	ATH_PCU_UNLOCK(sc);
310
311	/*
312	 * Flush any active frames from FIFO -> deferred list
313	 */
314	ath_edma_recv_proc_queue(sc, HAL_RX_QUEUE_HP, 0);
315	ath_edma_recv_proc_queue(sc, HAL_RX_QUEUE_LP, 0);
316
317	/*
318	 * Process what's in the deferred queue
319	 */
320	ath_edma_recv_proc_deferred_queue(sc, HAL_RX_QUEUE_HP, 0);
321	ath_edma_recv_proc_deferred_queue(sc, HAL_RX_QUEUE_LP, 0);
322
323	ATH_PCU_LOCK(sc);
324	sc->sc_rxproc_cnt--;
325	ATH_PCU_UNLOCK(sc);
326}
327
328/*
329 * Process frames from the current queue into the deferred queue.
330 */
331static void
332ath_edma_recv_proc_queue(struct ath_softc *sc, HAL_RX_QUEUE qtype,
333    int dosched)
334{
335	struct ath_rx_edma *re = &sc->sc_rxedma[qtype];
336	struct ath_rx_status *rs;
337	struct ath_desc *ds;
338	struct ath_buf *bf;
339	struct mbuf *m;
340	struct ath_hal *ah = sc->sc_ah;
341	uint64_t tsf;
342	uint16_t nf;
343	int npkts = 0;
344
345	tsf = ath_hal_gettsf64(ah);
346	nf = ath_hal_getchannoise(ah, sc->sc_curchan);
347	sc->sc_stats.ast_rx_noise = nf;
348
349	ATH_RX_LOCK(sc);
350
351	do {
352		bf = re->m_fifo[re->m_fifo_head];
353		/* This shouldn't occur! */
354		if (bf == NULL) {
355			device_printf(sc->sc_dev, "%s: Q%d: NULL bf?\n",
356			    __func__,
357			    qtype);
358			break;
359		}
360		m = bf->bf_m;
361		ds = bf->bf_desc;
362
363		/*
364		 * Sync descriptor memory - this also syncs the buffer for us.
365		 * EDMA descriptors are in cached memory.
366		 */
367		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
368		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
369		rs = &bf->bf_status.ds_rxstat;
370		bf->bf_rxstatus = ath_hal_rxprocdesc(ah, ds, bf->bf_daddr,
371		    NULL, rs);
372#ifdef	ATH_DEBUG
373		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
374			ath_printrxbuf(sc, bf, 0, bf->bf_rxstatus == HAL_OK);
375#endif /* ATH_DEBUG */
376#ifdef	ATH_DEBUG_ALQ
377		if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_RXSTATUS))
378			if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_RXSTATUS,
379			    sc->sc_rx_statuslen, (char *) ds);
380#endif /* ATH_DEBUG */
381		if (bf->bf_rxstatus == HAL_EINPROGRESS)
382			break;
383
384		/*
385		 * Completed descriptor.
386		 */
387		DPRINTF(sc, ATH_DEBUG_EDMA_RX,
388		    "%s: Q%d: completed!\n", __func__, qtype);
389		npkts++;
390
391		/*
392		 * We've been synced already, so unmap.
393		 */
394		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
395
396		/*
397		 * Remove the FIFO entry and place it on the completion
398		 * queue.
399		 */
400		re->m_fifo[re->m_fifo_head] = NULL;
401		TAILQ_INSERT_TAIL(&sc->sc_rx_rxlist[qtype], bf, bf_list);
402
403		/* Bump the descriptor FIFO stats */
404		INCR(re->m_fifo_head, re->m_fifolen);
405		re->m_fifo_depth--;
406		/* XXX check it doesn't fall below 0 */
407	} while (re->m_fifo_depth > 0);
408
409	/* Append some more fresh frames to the FIFO */
410	if (dosched)
411		ath_edma_rxfifo_alloc(sc, qtype, re->m_fifolen);
412
413	ATH_RX_UNLOCK(sc);
414
415	/* rx signal state monitoring */
416	ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
417
418	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1,
419	    "ath edma rx proc: npkts=%d\n",
420	    npkts);
421
422	/* Handle resched and kickpcu appropriately */
423	ATH_PCU_LOCK(sc);
424	if (dosched && sc->sc_kickpcu) {
425		ATH_KTR(sc, ATH_KTR_ERROR, 0,
426		    "ath_edma_recv_proc_queue(): kickpcu");
427		if (npkts > 0)
428			device_printf(sc->sc_dev,
429			    "%s: handled npkts %d\n",
430			    __func__, npkts);
431
432		/*
433		 * XXX TODO: what should occur here? Just re-poke and
434		 * re-enable the RX FIFO?
435		 */
436		sc->sc_kickpcu = 0;
437	}
438	ATH_PCU_UNLOCK(sc);
439
440	return;
441}
442
443/*
444 * Flush the deferred queue.
445 *
446 * This destructively flushes the deferred queue - it doesn't
447 * call the wireless stack on each mbuf.
448 */
449static void
450ath_edma_flush_deferred_queue(struct ath_softc *sc)
451{
452	struct ath_buf *bf, *next;
453
454	ATH_RX_LOCK_ASSERT(sc);
455
456	/* Free in one set, inside the lock */
457	TAILQ_FOREACH_SAFE(bf,
458	    &sc->sc_rx_rxlist[HAL_RX_QUEUE_LP], bf_list, next) {
459		/* Free the buffer/mbuf */
460		ath_edma_rxbuf_free(sc, bf);
461	}
462	TAILQ_FOREACH_SAFE(bf,
463	    &sc->sc_rx_rxlist[HAL_RX_QUEUE_HP], bf_list, next) {
464		/* Free the buffer/mbuf */
465		ath_edma_rxbuf_free(sc, bf);
466	}
467}
468
469static int
470ath_edma_recv_proc_deferred_queue(struct ath_softc *sc, HAL_RX_QUEUE qtype,
471    int dosched)
472{
473	int ngood = 0;
474	uint64_t tsf;
475	struct ath_buf *bf, *next;
476	struct ath_rx_status *rs;
477	int16_t nf;
478	ath_bufhead rxlist;
479	struct mbuf *m;
480
481	TAILQ_INIT(&rxlist);
482
483	nf = ath_hal_getchannoise(sc->sc_ah, sc->sc_curchan);
484	/*
485	 * XXX TODO: the NF/TSF should be stamped on the bufs themselves,
486	 * otherwise we may end up adding in the wrong values if this
487	 * is delayed too far..
488	 */
489	tsf = ath_hal_gettsf64(sc->sc_ah);
490
491	/* Copy the list over */
492	ATH_RX_LOCK(sc);
493	TAILQ_CONCAT(&rxlist, &sc->sc_rx_rxlist[qtype], bf_list);
494	ATH_RX_UNLOCK(sc);
495
496	/* Handle the completed descriptors */
497	TAILQ_FOREACH_SAFE(bf, &rxlist, bf_list, next) {
498		/*
499		 * Skip the RX descriptor status - start at the data offset
500		 */
501		m_adj(bf->bf_m, sc->sc_rx_statuslen);
502
503		/* Handle the frame */
504
505		rs = &bf->bf_status.ds_rxstat;
506		m = bf->bf_m;
507		bf->bf_m = NULL;
508		if (ath_rx_pkt(sc, rs, bf->bf_rxstatus, tsf, nf, qtype, bf, m))
509			ngood++;
510	}
511
512	if (ngood) {
513		sc->sc_lastrx = tsf;
514	}
515
516	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1,
517	    "ath edma rx deferred proc: ngood=%d\n",
518	    ngood);
519
520	/* Free in one set, inside the lock */
521	ATH_RX_LOCK(sc);
522	TAILQ_FOREACH_SAFE(bf, &rxlist, bf_list, next) {
523		/* Free the buffer/mbuf */
524		ath_edma_rxbuf_free(sc, bf);
525	}
526	ATH_RX_UNLOCK(sc);
527
528	return (ngood);
529}
530
531static void
532ath_edma_recv_tasklet(void *arg, int npending)
533{
534	struct ath_softc *sc = (struct ath_softc *) arg;
535	struct ifnet *ifp = sc->sc_ifp;
536#ifdef	IEEE80211_SUPPORT_SUPERG
537	struct ieee80211com *ic = ifp->if_l2com;
538#endif
539
540	DPRINTF(sc, ATH_DEBUG_EDMA_RX, "%s: called; npending=%d\n",
541	    __func__,
542	    npending);
543
544	ATH_PCU_LOCK(sc);
545	if (sc->sc_inreset_cnt > 0) {
546		device_printf(sc->sc_dev, "%s: sc_inreset_cnt > 0; skipping\n",
547		    __func__);
548		ATH_PCU_UNLOCK(sc);
549		return;
550	}
551	sc->sc_rxproc_cnt++;
552	ATH_PCU_UNLOCK(sc);
553
554	ath_edma_recv_proc_queue(sc, HAL_RX_QUEUE_HP, 1);
555	ath_edma_recv_proc_queue(sc, HAL_RX_QUEUE_LP, 1);
556
557	ath_edma_recv_proc_deferred_queue(sc, HAL_RX_QUEUE_HP, 1);
558	ath_edma_recv_proc_deferred_queue(sc, HAL_RX_QUEUE_LP, 1);
559
560	/* XXX inside IF_LOCK ? */
561	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) {
562#ifdef	IEEE80211_SUPPORT_SUPERG
563		ieee80211_ff_age_all(ic, 100);
564#endif
565		if (! IFQ_IS_EMPTY(&ifp->if_snd))
566			ath_tx_kick(sc);
567	}
568	if (ath_dfs_tasklet_needed(sc, sc->sc_curchan))
569		taskqueue_enqueue(sc->sc_tq, &sc->sc_dfstask);
570
571	ATH_PCU_LOCK(sc);
572	sc->sc_rxproc_cnt--;
573	ATH_PCU_UNLOCK(sc);
574}
575
576/*
577 * Allocate an RX mbuf for the given ath_buf and initialise
578 * it for EDMA.
579 *
580 * + Allocate a 4KB mbuf;
581 * + Setup the DMA map for the given buffer;
582 * + Return that.
583 */
584static int
585ath_edma_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
586{
587
588	struct mbuf *m;
589	int error;
590	int len;
591
592	ATH_RX_LOCK_ASSERT(sc);
593
594	m = m_getm(NULL, sc->sc_edma_bufsize, M_NOWAIT, MT_DATA);
595	if (! m)
596		return (ENOBUFS);		/* XXX ?*/
597
598	/* XXX warn/enforce alignment */
599
600	len = m->m_ext.ext_size;
601#if 0
602	device_printf(sc->sc_dev, "%s: called: m=%p, size=%d, mtod=%p\n",
603	    __func__,
604	    m,
605	    len,
606	    mtod(m, char *));
607#endif
608
609	m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
610
611	/*
612	 * Populate ath_buf fields.
613	 */
614	bf->bf_desc = mtod(m, struct ath_desc *);
615	bf->bf_lastds = bf->bf_desc;	/* XXX only really for TX? */
616	bf->bf_m = m;
617
618	/*
619	 * Zero the descriptor and ensure it makes it out to the
620	 * bounce buffer if one is required.
621	 *
622	 * XXX PREWRITE will copy the whole buffer; we only needed it
623	 * to sync the first 32 DWORDS.  Oh well.
624	 */
625	memset(bf->bf_desc, '\0', sc->sc_rx_statuslen);
626
627	/*
628	 * Create DMA mapping.
629	 */
630	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
631	    bf->bf_dmamap, m, bf->bf_segs, &bf->bf_nseg, BUS_DMA_NOWAIT);
632
633	if (error != 0) {
634		device_printf(sc->sc_dev, "%s: failed; error=%d\n",
635		    __func__,
636		    error);
637		m_freem(m);
638		return (error);
639	}
640
641	/*
642	 * Set daddr to the physical mapping page.
643	 */
644	bf->bf_daddr = bf->bf_segs[0].ds_addr;
645
646	/*
647	 * Prepare for the upcoming read.
648	 *
649	 * We need to both sync some data into the buffer (the zero'ed
650	 * descriptor payload) and also prepare for the read that's going
651	 * to occur.
652	 */
653	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
654	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
655
656	/* Finish! */
657	return (0);
658}
659
660/*
661 * Allocate a RX buffer.
662 */
663static struct ath_buf *
664ath_edma_rxbuf_alloc(struct ath_softc *sc)
665{
666	struct ath_buf *bf;
667	int error;
668
669	ATH_RX_LOCK_ASSERT(sc);
670
671	/* Allocate buffer */
672	bf = TAILQ_FIRST(&sc->sc_rxbuf);
673	/* XXX shouldn't happen upon startup? */
674	if (bf == NULL) {
675		device_printf(sc->sc_dev, "%s: nothing on rxbuf?!\n",
676		    __func__);
677		return (NULL);
678	}
679
680	/* Remove it from the free list */
681	TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
682
683	/* Assign RX mbuf to it */
684	error = ath_edma_rxbuf_init(sc, bf);
685	if (error != 0) {
686		device_printf(sc->sc_dev,
687		    "%s: bf=%p, rxbuf alloc failed! error=%d\n",
688		    __func__,
689		    bf,
690		    error);
691		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
692		return (NULL);
693	}
694
695	return (bf);
696}
697
698static void
699ath_edma_rxbuf_free(struct ath_softc *sc, struct ath_buf *bf)
700{
701
702	ATH_RX_LOCK_ASSERT(sc);
703
704	/*
705	 * Only unload the frame if we haven't consumed
706	 * the mbuf via ath_rx_pkt().
707	 */
708	if (bf->bf_m) {
709		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
710		m_freem(bf->bf_m);
711		bf->bf_m = NULL;
712	}
713
714	/* XXX lock? */
715	TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
716}
717
718/*
719 * Allocate up to 'n' entries and push them onto the hardware FIFO.
720 *
721 * Return how many entries were successfully pushed onto the
722 * FIFO.
723 */
724static int
725ath_edma_rxfifo_alloc(struct ath_softc *sc, HAL_RX_QUEUE qtype, int nbufs)
726{
727	struct ath_rx_edma *re = &sc->sc_rxedma[qtype];
728	struct ath_buf *bf;
729	int i;
730
731	ATH_RX_LOCK_ASSERT(sc);
732
733	/*
734	 * Allocate buffers until the FIFO is full or nbufs is reached.
735	 */
736	for (i = 0; i < nbufs && re->m_fifo_depth < re->m_fifolen; i++) {
737		/* Ensure the FIFO is already blank, complain loudly! */
738		if (re->m_fifo[re->m_fifo_tail] != NULL) {
739			device_printf(sc->sc_dev,
740			    "%s: Q%d: fifo[%d] != NULL (%p)\n",
741			    __func__,
742			    qtype,
743			    re->m_fifo_tail,
744			    re->m_fifo[re->m_fifo_tail]);
745
746			/* Free the slot */
747			ath_edma_rxbuf_free(sc, re->m_fifo[re->m_fifo_tail]);
748			re->m_fifo_depth--;
749			/* XXX check it's not < 0 */
750			re->m_fifo[re->m_fifo_tail] = NULL;
751		}
752
753		bf = ath_edma_rxbuf_alloc(sc);
754		/* XXX should ensure the FIFO is not NULL? */
755		if (bf == NULL) {
756			device_printf(sc->sc_dev,
757			    "%s: Q%d: alloc failed: i=%d, nbufs=%d?\n",
758			    __func__,
759			    qtype,
760			    i,
761			    nbufs);
762			break;
763		}
764
765		re->m_fifo[re->m_fifo_tail] = bf;
766
767		/* Write to the RX FIFO */
768		DPRINTF(sc, ATH_DEBUG_EDMA_RX,
769		    "%s: Q%d: putrxbuf=%p (0x%jx)\n",
770		    __func__,
771		    qtype,
772		    bf->bf_desc,
773		    (uintmax_t) bf->bf_daddr);
774		ath_hal_putrxbuf(sc->sc_ah, bf->bf_daddr, qtype);
775
776		re->m_fifo_depth++;
777		INCR(re->m_fifo_tail, re->m_fifolen);
778	}
779
780	/*
781	 * Return how many were allocated.
782	 */
783	DPRINTF(sc, ATH_DEBUG_EDMA_RX, "%s: Q%d: nbufs=%d, nalloced=%d\n",
784	    __func__,
785	    qtype,
786	    nbufs,
787	    i);
788	return (i);
789}
790
791static int
792ath_edma_rxfifo_flush(struct ath_softc *sc, HAL_RX_QUEUE qtype)
793{
794	struct ath_rx_edma *re = &sc->sc_rxedma[qtype];
795	int i;
796
797	ATH_RX_LOCK_ASSERT(sc);
798
799	for (i = 0; i < re->m_fifolen; i++) {
800		if (re->m_fifo[i] != NULL) {
801#ifdef	ATH_DEBUG
802			struct ath_buf *bf = re->m_fifo[i];
803
804			if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
805				ath_printrxbuf(sc, bf, 0, HAL_OK);
806#endif
807			ath_edma_rxbuf_free(sc, re->m_fifo[i]);
808			re->m_fifo[i] = NULL;
809			re->m_fifo_depth--;
810		}
811	}
812
813	if (re->m_rxpending != NULL) {
814		m_freem(re->m_rxpending);
815		re->m_rxpending = NULL;
816	}
817	re->m_fifo_head = re->m_fifo_tail = re->m_fifo_depth = 0;
818
819	return (0);
820}
821
822/*
823 * Setup the initial RX FIFO structure.
824 */
825static int
826ath_edma_setup_rxfifo(struct ath_softc *sc, HAL_RX_QUEUE qtype)
827{
828	struct ath_rx_edma *re = &sc->sc_rxedma[qtype];
829
830	ATH_RX_LOCK_ASSERT(sc);
831
832	if (! ath_hal_getrxfifodepth(sc->sc_ah, qtype, &re->m_fifolen)) {
833		device_printf(sc->sc_dev, "%s: qtype=%d, failed\n",
834		    __func__,
835		    qtype);
836		return (-EINVAL);
837	}
838	device_printf(sc->sc_dev, "%s: type=%d, FIFO depth = %d entries\n",
839	    __func__,
840	    qtype,
841	    re->m_fifolen);
842
843	/* Allocate ath_buf FIFO array, pre-zero'ed */
844	re->m_fifo = malloc(sizeof(struct ath_buf *) * re->m_fifolen,
845	    M_ATHDEV,
846	    M_NOWAIT | M_ZERO);
847	if (re->m_fifo == NULL) {
848		device_printf(sc->sc_dev, "%s: malloc failed\n",
849		    __func__);
850		return (-ENOMEM);
851	}
852
853	/*
854	 * Set initial "empty" state.
855	 */
856	re->m_rxpending = NULL;
857	re->m_fifo_head = re->m_fifo_tail = re->m_fifo_depth = 0;
858
859	return (0);
860}
861
862static int
863ath_edma_rxfifo_free(struct ath_softc *sc, HAL_RX_QUEUE qtype)
864{
865	struct ath_rx_edma *re = &sc->sc_rxedma[qtype];
866
867	device_printf(sc->sc_dev, "%s: called; qtype=%d\n",
868	    __func__,
869	    qtype);
870
871	free(re->m_fifo, M_ATHDEV);
872
873	return (0);
874}
875
876static int
877ath_edma_dma_rxsetup(struct ath_softc *sc)
878{
879	int error;
880
881	/*
882	 * Create RX DMA tag and buffers.
883	 */
884	error = ath_descdma_setup_rx_edma(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
885	    "rx", ath_rxbuf, sc->sc_rx_statuslen);
886	if (error != 0)
887		return error;
888
889	ATH_RX_LOCK(sc);
890	(void) ath_edma_setup_rxfifo(sc, HAL_RX_QUEUE_HP);
891	(void) ath_edma_setup_rxfifo(sc, HAL_RX_QUEUE_LP);
892	ATH_RX_UNLOCK(sc);
893
894	return (0);
895}
896
897static int
898ath_edma_dma_rxteardown(struct ath_softc *sc)
899{
900
901	ATH_RX_LOCK(sc);
902	ath_edma_flush_deferred_queue(sc);
903	ath_edma_rxfifo_flush(sc, HAL_RX_QUEUE_HP);
904	ath_edma_rxfifo_free(sc, HAL_RX_QUEUE_HP);
905
906	ath_edma_rxfifo_flush(sc, HAL_RX_QUEUE_LP);
907	ath_edma_rxfifo_free(sc, HAL_RX_QUEUE_LP);
908	ATH_RX_UNLOCK(sc);
909
910	/* Free RX ath_buf */
911	/* Free RX DMA tag */
912	if (sc->sc_rxdma.dd_desc_len != 0)
913		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
914
915	return (0);
916}
917
918void
919ath_recv_setup_edma(struct ath_softc *sc)
920{
921
922	/* Set buffer size to 4k */
923	sc->sc_edma_bufsize = 4096;
924
925	/* Fetch EDMA field and buffer sizes */
926	(void) ath_hal_getrxstatuslen(sc->sc_ah, &sc->sc_rx_statuslen);
927
928	/* Configure the hardware with the RX buffer size */
929	(void) ath_hal_setrxbufsize(sc->sc_ah, sc->sc_edma_bufsize -
930	    sc->sc_rx_statuslen);
931
932	device_printf(sc->sc_dev, "RX status length: %d\n",
933	    sc->sc_rx_statuslen);
934	device_printf(sc->sc_dev, "RX buffer size: %d\n",
935	    sc->sc_edma_bufsize);
936
937	sc->sc_rx.recv_stop = ath_edma_stoprecv;
938	sc->sc_rx.recv_start = ath_edma_startrecv;
939	sc->sc_rx.recv_flush = ath_edma_recv_flush;
940	sc->sc_rx.recv_tasklet = ath_edma_recv_tasklet;
941	sc->sc_rx.recv_rxbuf_init = ath_edma_rxbuf_init;
942
943	sc->sc_rx.recv_setup = ath_edma_dma_rxsetup;
944	sc->sc_rx.recv_teardown = ath_edma_dma_rxteardown;
945
946	sc->sc_rx.recv_sched = ath_edma_recv_sched;
947	sc->sc_rx.recv_sched_queue = ath_edma_recv_sched_queue;
948}
949