1/*-
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 *    redistribution must be conditioned upon including a substantially
14 *    similar Disclaimer requirement for further binary redistribution.
15 *
16 * NO WARRANTY
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27 * THE POSSIBILITY OF SUCH DAMAGES.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD$");
32
33/*
34 * Driver for the Atheros Wireless LAN controller.
35 *
36 * This software is derived from work of Atsushi Onoe; his contribution
37 * is greatly appreciated.
38 */
39
40#include "opt_inet.h"
41#include "opt_ath.h"
42/*
43 * This is needed for register operations which are performed
44 * by the driver - eg, calls to ath_hal_gettsf32().
45 *
46 * It's also required for any AH_DEBUG checks in here, eg the
47 * module dependencies.
48 */
49#include "opt_ah.h"
50#include "opt_wlan.h"
51
52#include <sys/param.h>
53#include <sys/systm.h>
54#include <sys/sysctl.h>
55#include <sys/mbuf.h>
56#include <sys/malloc.h>
57#include <sys/lock.h>
58#include <sys/mutex.h>
59#include <sys/kernel.h>
60#include <sys/socket.h>
61#include <sys/sockio.h>
62#include <sys/errno.h>
63#include <sys/callout.h>
64#include <sys/bus.h>
65#include <sys/endian.h>
66#include <sys/kthread.h>
67#include <sys/taskqueue.h>
68#include <sys/priv.h>
69#include <sys/module.h>
70#include <sys/ktr.h>
71#include <sys/smp.h>	/* for mp_ncpus */
72
73#include <machine/bus.h>
74
75#include <net/if.h>
76#include <net/if_dl.h>
77#include <net/if_media.h>
78#include <net/if_types.h>
79#include <net/if_arp.h>
80#include <net/ethernet.h>
81#include <net/if_llc.h>
82
83#include <net80211/ieee80211_var.h>
84#include <net80211/ieee80211_regdomain.h>
85#ifdef IEEE80211_SUPPORT_SUPERG
86#include <net80211/ieee80211_superg.h>
87#endif
88#ifdef IEEE80211_SUPPORT_TDMA
89#include <net80211/ieee80211_tdma.h>
90#endif
91
92#include <net/bpf.h>
93
94#ifdef INET
95#include <netinet/in.h>
96#include <netinet/if_ether.h>
97#endif
98
99#include <dev/ath/if_athvar.h>
100#include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
101#include <dev/ath/ath_hal/ah_diagcodes.h>
102
103#include <dev/ath/if_ath_debug.h>
104#include <dev/ath/if_ath_misc.h>
105#include <dev/ath/if_ath_tsf.h>
106#include <dev/ath/if_ath_tx.h>
107#include <dev/ath/if_ath_sysctl.h>
108#include <dev/ath/if_ath_led.h>
109#include <dev/ath/if_ath_keycache.h>
110#include <dev/ath/if_ath_rx.h>
111#include <dev/ath/if_ath_beacon.h>
112#include <dev/ath/if_athdfs.h>
113
114#ifdef ATH_TX99_DIAG
115#include <dev/ath/ath_tx99/ath_tx99.h>
116#endif
117
118#ifdef	ATH_DEBUG_ALQ
119#include <dev/ath/if_ath_alq.h>
120#endif
121
122#include <dev/ath/if_ath_lna_div.h>
123
124/*
125 * Calculate the receive filter according to the
126 * operating mode and state:
127 *
128 * o always accept unicast, broadcast, and multicast traffic
129 * o accept PHY error frames when hardware doesn't have MIB support
130 *   to count and we need them for ANI (sta mode only until recently)
131 *   and we are not scanning (ANI is disabled)
132 *   NB: older hal's add rx filter bits out of sight and we need to
133 *	 blindly preserve them
134 * o probe request frames are accepted only when operating in
135 *   hostap, adhoc, mesh, or monitor modes
136 * o enable promiscuous mode
137 *   - when in monitor mode
138 *   - if interface marked PROMISC (assumes bridge setting is filtered)
139 * o accept beacons:
140 *   - when operating in station mode for collecting rssi data when
141 *     the station is otherwise quiet, or
142 *   - when operating in adhoc mode so the 802.11 layer creates
143 *     node table entries for peers,
144 *   - when scanning
145 *   - when doing s/w beacon miss (e.g. for ap+sta)
146 *   - when operating in ap mode in 11g to detect overlapping bss that
147 *     require protection
148 *   - when operating in mesh mode to detect neighbors
149 * o accept control frames:
150 *   - when in monitor mode
151 * XXX HT protection for 11n
152 */
153u_int32_t
154ath_calcrxfilter(struct ath_softc *sc)
155{
156	struct ifnet *ifp = sc->sc_ifp;
157	struct ieee80211com *ic = ifp->if_l2com;
158	u_int32_t rfilt;
159
160	rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
161	if (!sc->sc_needmib && !sc->sc_scanning)
162		rfilt |= HAL_RX_FILTER_PHYERR;
163	if (ic->ic_opmode != IEEE80211_M_STA)
164		rfilt |= HAL_RX_FILTER_PROBEREQ;
165	/* XXX ic->ic_monvaps != 0? */
166	if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC))
167		rfilt |= HAL_RX_FILTER_PROM;
168	if (ic->ic_opmode == IEEE80211_M_STA ||
169	    ic->ic_opmode == IEEE80211_M_IBSS ||
170	    sc->sc_swbmiss || sc->sc_scanning)
171		rfilt |= HAL_RX_FILTER_BEACON;
172	/*
173	 * NB: We don't recalculate the rx filter when
174	 * ic_protmode changes; otherwise we could do
175	 * this only when ic_protmode != NONE.
176	 */
177	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
178	    IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
179		rfilt |= HAL_RX_FILTER_BEACON;
180
181	/*
182	 * Enable hardware PS-POLL RX only for hostap mode;
183	 * STA mode sends PS-POLL frames but never
184	 * receives them.
185	 */
186	if (ath_hal_getcapability(sc->sc_ah, HAL_CAP_PSPOLL,
187	    0, NULL) == HAL_OK &&
188	    ic->ic_opmode == IEEE80211_M_HOSTAP)
189		rfilt |= HAL_RX_FILTER_PSPOLL;
190
191	if (sc->sc_nmeshvaps) {
192		rfilt |= HAL_RX_FILTER_BEACON;
193		if (sc->sc_hasbmatch)
194			rfilt |= HAL_RX_FILTER_BSSID;
195		else
196			rfilt |= HAL_RX_FILTER_PROM;
197	}
198	if (ic->ic_opmode == IEEE80211_M_MONITOR)
199		rfilt |= HAL_RX_FILTER_CONTROL;
200
201	/*
202	 * Enable RX of compressed BAR frames only when doing
203	 * 802.11n. Required for A-MPDU.
204	 */
205	if (IEEE80211_IS_CHAN_HT(ic->ic_curchan))
206		rfilt |= HAL_RX_FILTER_COMPBAR;
207
208	/*
209	 * Enable radar PHY errors if requested by the
210	 * DFS module.
211	 */
212	if (sc->sc_dodfs)
213		rfilt |= HAL_RX_FILTER_PHYRADAR;
214
215	/*
216	 * Enable spectral PHY errors if requested by the
217	 * spectral module.
218	 */
219	if (sc->sc_dospectral)
220		rfilt |= HAL_RX_FILTER_PHYRADAR;
221
222	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n",
223	    __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags);
224	return rfilt;
225}
226
227static int
228ath_legacy_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
229{
230	struct ath_hal *ah = sc->sc_ah;
231	int error;
232	struct mbuf *m;
233	struct ath_desc *ds;
234
235	m = bf->bf_m;
236	if (m == NULL) {
237		/*
238		 * NB: by assigning a page to the rx dma buffer we
239		 * implicitly satisfy the Atheros requirement that
240		 * this buffer be cache-line-aligned and sized to be
241		 * multiple of the cache line size.  Not doing this
242		 * causes weird stuff to happen (for the 5210 at least).
243		 */
244		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
245		if (m == NULL) {
246			DPRINTF(sc, ATH_DEBUG_ANY,
247				"%s: no mbuf/cluster\n", __func__);
248			sc->sc_stats.ast_rx_nombuf++;
249			return ENOMEM;
250		}
251		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
252
253		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
254					     bf->bf_dmamap, m,
255					     bf->bf_segs, &bf->bf_nseg,
256					     BUS_DMA_NOWAIT);
257		if (error != 0) {
258			DPRINTF(sc, ATH_DEBUG_ANY,
259			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
260			    __func__, error);
261			sc->sc_stats.ast_rx_busdma++;
262			m_freem(m);
263			return error;
264		}
265		KASSERT(bf->bf_nseg == 1,
266			("multi-segment packet; nseg %u", bf->bf_nseg));
267		bf->bf_m = m;
268	}
269	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
270
271	/*
272	 * Setup descriptors.  For receive we always terminate
273	 * the descriptor list with a self-linked entry so we'll
274	 * not get overrun under high load (as can happen with a
275	 * 5212 when ANI processing enables PHY error frames).
276	 *
277	 * To insure the last descriptor is self-linked we create
278	 * each descriptor as self-linked and add it to the end.  As
279	 * each additional descriptor is added the previous self-linked
280	 * entry is ``fixed'' naturally.  This should be safe even
281	 * if DMA is happening.  When processing RX interrupts we
282	 * never remove/process the last, self-linked, entry on the
283	 * descriptor list.  This insures the hardware always has
284	 * someplace to write a new frame.
285	 */
286	/*
287	 * 11N: we can no longer afford to self link the last descriptor.
288	 * MAC acknowledges BA status as long as it copies frames to host
289	 * buffer (or rx fifo). This can incorrectly acknowledge packets
290	 * to a sender if last desc is self-linked.
291	 */
292	ds = bf->bf_desc;
293	if (sc->sc_rxslink)
294		ds->ds_link = bf->bf_daddr;	/* link to self */
295	else
296		ds->ds_link = 0;		/* terminate the list */
297	ds->ds_data = bf->bf_segs[0].ds_addr;
298	ath_hal_setuprxdesc(ah, ds
299		, m->m_len		/* buffer size */
300		, 0
301	);
302
303	if (sc->sc_rxlink != NULL)
304		*sc->sc_rxlink = bf->bf_daddr;
305	sc->sc_rxlink = &ds->ds_link;
306	return 0;
307}
308
309/*
310 * Intercept management frames to collect beacon rssi data
311 * and to do ibss merges.
312 */
313void
314ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
315	int subtype, int rssi, int nf)
316{
317	struct ieee80211vap *vap = ni->ni_vap;
318	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
319
320	/*
321	 * Call up first so subsequent work can use information
322	 * potentially stored in the node (e.g. for ibss merge).
323	 */
324	ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, nf);
325	switch (subtype) {
326	case IEEE80211_FC0_SUBTYPE_BEACON:
327		/* update rssi statistics for use by the hal */
328		/* XXX unlocked check against vap->iv_bss? */
329		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
330		if (sc->sc_syncbeacon &&
331		    ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) {
332			/*
333			 * Resync beacon timers using the tsf of the beacon
334			 * frame we just received.
335			 */
336			ath_beacon_config(sc, vap);
337		}
338		/* fall thru... */
339	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
340		if (vap->iv_opmode == IEEE80211_M_IBSS &&
341		    vap->iv_state == IEEE80211_S_RUN) {
342			uint32_t rstamp = sc->sc_lastrs->rs_tstamp;
343			uint64_t tsf = ath_extend_tsf(sc, rstamp,
344				ath_hal_gettsf64(sc->sc_ah));
345			/*
346			 * Handle ibss merge as needed; check the tsf on the
347			 * frame before attempting the merge.  The 802.11 spec
348			 * says the station should change it's bssid to match
349			 * the oldest station with the same ssid, where oldest
350			 * is determined by the tsf.  Note that hardware
351			 * reconfiguration happens through callback to
352			 * ath_newstate as the state machine will go from
353			 * RUN -> RUN when this happens.
354			 */
355			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
356				DPRINTF(sc, ATH_DEBUG_STATE,
357				    "ibss merge, rstamp %u tsf %ju "
358				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
359				    (uintmax_t)ni->ni_tstamp.tsf);
360				(void) ieee80211_ibss_merge(ni);
361			}
362		}
363		break;
364	}
365}
366
367#ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
368static void
369ath_rx_tap_vendor(struct ifnet *ifp, struct mbuf *m,
370    const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
371{
372	struct ath_softc *sc = ifp->if_softc;
373
374	/* Fill in the extension bitmap */
375	sc->sc_rx_th.wr_ext_bitmap = htole32(1 << ATH_RADIOTAP_VENDOR_HEADER);
376
377	/* Fill in the vendor header */
378	sc->sc_rx_th.wr_vh.vh_oui[0] = 0x7f;
379	sc->sc_rx_th.wr_vh.vh_oui[1] = 0x03;
380	sc->sc_rx_th.wr_vh.vh_oui[2] = 0x00;
381
382	/* XXX what should this be? */
383	sc->sc_rx_th.wr_vh.vh_sub_ns = 0;
384	sc->sc_rx_th.wr_vh.vh_skip_len =
385	    htole16(sizeof(struct ath_radiotap_vendor_hdr));
386
387	/* General version info */
388	sc->sc_rx_th.wr_v.vh_version = 1;
389
390	sc->sc_rx_th.wr_v.vh_rx_chainmask = sc->sc_rxchainmask;
391
392	/* rssi */
393	sc->sc_rx_th.wr_v.rssi_ctl[0] = rs->rs_rssi_ctl[0];
394	sc->sc_rx_th.wr_v.rssi_ctl[1] = rs->rs_rssi_ctl[1];
395	sc->sc_rx_th.wr_v.rssi_ctl[2] = rs->rs_rssi_ctl[2];
396	sc->sc_rx_th.wr_v.rssi_ext[0] = rs->rs_rssi_ext[0];
397	sc->sc_rx_th.wr_v.rssi_ext[1] = rs->rs_rssi_ext[1];
398	sc->sc_rx_th.wr_v.rssi_ext[2] = rs->rs_rssi_ext[2];
399
400	/* evm */
401	sc->sc_rx_th.wr_v.evm[0] = rs->rs_evm0;
402	sc->sc_rx_th.wr_v.evm[1] = rs->rs_evm1;
403	sc->sc_rx_th.wr_v.evm[2] = rs->rs_evm2;
404	/* These are only populated from the AR9300 or later */
405	sc->sc_rx_th.wr_v.evm[3] = rs->rs_evm3;
406	sc->sc_rx_th.wr_v.evm[4] = rs->rs_evm4;
407
408	/* direction */
409	sc->sc_rx_th.wr_v.vh_flags = ATH_VENDOR_PKT_RX;
410
411	/* RX rate */
412	sc->sc_rx_th.wr_v.vh_rx_hwrate = rs->rs_rate;
413
414	/* RX flags */
415	sc->sc_rx_th.wr_v.vh_rs_flags = rs->rs_flags;
416
417	if (rs->rs_isaggr)
418		sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_ISAGGR;
419	if (rs->rs_moreaggr)
420		sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_MOREAGGR;
421
422	/* phyerr info */
423	if (rs->rs_status & HAL_RXERR_PHY) {
424		sc->sc_rx_th.wr_v.vh_phyerr_code = rs->rs_phyerr;
425		sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_RXPHYERR;
426	} else {
427		sc->sc_rx_th.wr_v.vh_phyerr_code = 0xff;
428	}
429	sc->sc_rx_th.wr_v.vh_rs_status = rs->rs_status;
430	sc->sc_rx_th.wr_v.vh_rssi = rs->rs_rssi;
431}
432#endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
433
434static void
435ath_rx_tap(struct ifnet *ifp, struct mbuf *m,
436	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
437{
438#define	CHAN_HT20	htole32(IEEE80211_CHAN_HT20)
439#define	CHAN_HT40U	htole32(IEEE80211_CHAN_HT40U)
440#define	CHAN_HT40D	htole32(IEEE80211_CHAN_HT40D)
441#define	CHAN_HT		(CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
442	struct ath_softc *sc = ifp->if_softc;
443	const HAL_RATE_TABLE *rt;
444	uint8_t rix;
445
446	rt = sc->sc_currates;
447	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
448	rix = rt->rateCodeToIndex[rs->rs_rate];
449	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
450	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
451#ifdef AH_SUPPORT_AR5416
452	sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
453	if (rs->rs_status & HAL_RXERR_PHY) {
454		/*
455		 * PHY error - make sure the channel flags
456		 * reflect the actual channel configuration,
457		 * not the received frame.
458		 */
459		if (IEEE80211_IS_CHAN_HT40U(sc->sc_curchan))
460			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
461		else if (IEEE80211_IS_CHAN_HT40D(sc->sc_curchan))
462			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
463		else if (IEEE80211_IS_CHAN_HT20(sc->sc_curchan))
464			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
465	} else if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) {	/* HT rate */
466		struct ieee80211com *ic = ifp->if_l2com;
467
468		if ((rs->rs_flags & HAL_RX_2040) == 0)
469			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
470		else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan))
471			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
472		else
473			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
474		if ((rs->rs_flags & HAL_RX_GI) == 0)
475			sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
476	}
477
478#endif
479	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(sc, rs->rs_tstamp, tsf));
480	if (rs->rs_status & HAL_RXERR_CRC)
481		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
482	/* XXX propagate other error flags from descriptor */
483	sc->sc_rx_th.wr_antnoise = nf;
484	sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi;
485	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
486#undef CHAN_HT
487#undef CHAN_HT20
488#undef CHAN_HT40U
489#undef CHAN_HT40D
490}
491
492static void
493ath_handle_micerror(struct ieee80211com *ic,
494	struct ieee80211_frame *wh, int keyix)
495{
496	struct ieee80211_node *ni;
497
498	/* XXX recheck MIC to deal w/ chips that lie */
499	/* XXX discard MIC errors on !data frames */
500	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
501	if (ni != NULL) {
502		ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
503		ieee80211_free_node(ni);
504	}
505}
506
507/*
508 * Process a single packet.
509 *
510 * The mbuf must already be synced, unmapped and removed from bf->bf_m
511 * by this stage.
512 *
513 * The mbuf must be consumed by this routine - either passed up the
514 * net80211 stack, put on the holding queue, or freed.
515 */
516int
517ath_rx_pkt(struct ath_softc *sc, struct ath_rx_status *rs, HAL_STATUS status,
518    uint64_t tsf, int nf, HAL_RX_QUEUE qtype, struct ath_buf *bf,
519    struct mbuf *m)
520{
521	uint64_t rstamp;
522	int len, type;
523	struct ifnet *ifp = sc->sc_ifp;
524	struct ieee80211com *ic = ifp->if_l2com;
525	struct ieee80211_node *ni;
526	int is_good = 0;
527	struct ath_rx_edma *re = &sc->sc_rxedma[qtype];
528
529	/*
530	 * Calculate the correct 64 bit TSF given
531	 * the TSF64 register value and rs_tstamp.
532	 */
533	rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf);
534
535	/* These aren't specifically errors */
536#ifdef	AH_SUPPORT_AR5416
537	if (rs->rs_flags & HAL_RX_GI)
538		sc->sc_stats.ast_rx_halfgi++;
539	if (rs->rs_flags & HAL_RX_2040)
540		sc->sc_stats.ast_rx_2040++;
541	if (rs->rs_flags & HAL_RX_DELIM_CRC_PRE)
542		sc->sc_stats.ast_rx_pre_crc_err++;
543	if (rs->rs_flags & HAL_RX_DELIM_CRC_POST)
544		sc->sc_stats.ast_rx_post_crc_err++;
545	if (rs->rs_flags & HAL_RX_DECRYPT_BUSY)
546		sc->sc_stats.ast_rx_decrypt_busy_err++;
547	if (rs->rs_flags & HAL_RX_HI_RX_CHAIN)
548		sc->sc_stats.ast_rx_hi_rx_chain++;
549	if (rs->rs_flags & HAL_RX_STBC)
550		sc->sc_stats.ast_rx_stbc++;
551#endif /* AH_SUPPORT_AR5416 */
552
553	if (rs->rs_status != 0) {
554		if (rs->rs_status & HAL_RXERR_CRC)
555			sc->sc_stats.ast_rx_crcerr++;
556		if (rs->rs_status & HAL_RXERR_FIFO)
557			sc->sc_stats.ast_rx_fifoerr++;
558		if (rs->rs_status & HAL_RXERR_PHY) {
559			sc->sc_stats.ast_rx_phyerr++;
560			/* Process DFS radar events */
561			if ((rs->rs_phyerr == HAL_PHYERR_RADAR) ||
562			    (rs->rs_phyerr == HAL_PHYERR_FALSE_RADAR_EXT)) {
563				/* Now pass it to the radar processing code */
564				ath_dfs_process_phy_err(sc, m, rstamp, rs);
565			}
566
567			/* Be suitably paranoid about receiving phy errors out of the stats array bounds */
568			if (rs->rs_phyerr < 64)
569				sc->sc_stats.ast_rx_phy[rs->rs_phyerr]++;
570			goto rx_error;	/* NB: don't count in ierrors */
571		}
572		if (rs->rs_status & HAL_RXERR_DECRYPT) {
573			/*
574			 * Decrypt error.  If the error occurred
575			 * because there was no hardware key, then
576			 * let the frame through so the upper layers
577			 * can process it.  This is necessary for 5210
578			 * parts which have no way to setup a ``clear''
579			 * key cache entry.
580			 *
581			 * XXX do key cache faulting
582			 */
583			if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
584				goto rx_accept;
585			sc->sc_stats.ast_rx_badcrypt++;
586		}
587		/*
588		 * Similar as above - if the failure was a keymiss
589		 * just punt it up to the upper layers for now.
590		 */
591		if (rs->rs_status & HAL_RXERR_KEYMISS) {
592			sc->sc_stats.ast_rx_keymiss++;
593			goto rx_accept;
594		}
595		if (rs->rs_status & HAL_RXERR_MIC) {
596			sc->sc_stats.ast_rx_badmic++;
597			/*
598			 * Do minimal work required to hand off
599			 * the 802.11 header for notification.
600			 */
601			/* XXX frag's and qos frames */
602			len = rs->rs_datalen;
603			if (len >= sizeof (struct ieee80211_frame)) {
604				ath_handle_micerror(ic,
605				    mtod(m, struct ieee80211_frame *),
606				    sc->sc_splitmic ?
607					rs->rs_keyix-32 : rs->rs_keyix);
608			}
609		}
610		ifp->if_ierrors++;
611rx_error:
612		/*
613		 * Cleanup any pending partial frame.
614		 */
615		if (re->m_rxpending != NULL) {
616			m_freem(re->m_rxpending);
617			re->m_rxpending = NULL;
618		}
619		/*
620		 * When a tap is present pass error frames
621		 * that have been requested.  By default we
622		 * pass decrypt+mic errors but others may be
623		 * interesting (e.g. crc).
624		 */
625		if (ieee80211_radiotap_active(ic) &&
626		    (rs->rs_status & sc->sc_monpass)) {
627			/* NB: bpf needs the mbuf length setup */
628			len = rs->rs_datalen;
629			m->m_pkthdr.len = m->m_len = len;
630			ath_rx_tap(ifp, m, rs, rstamp, nf);
631#ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
632			ath_rx_tap_vendor(ifp, m, rs, rstamp, nf);
633#endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
634			ieee80211_radiotap_rx_all(ic, m);
635		}
636		/* XXX pass MIC errors up for s/w reclaculation */
637		m_freem(m); m = NULL;
638		goto rx_next;
639	}
640rx_accept:
641	len = rs->rs_datalen;
642	m->m_len = len;
643
644	if (rs->rs_more) {
645		/*
646		 * Frame spans multiple descriptors; save
647		 * it for the next completed descriptor, it
648		 * will be used to construct a jumbogram.
649		 */
650		if (re->m_rxpending != NULL) {
651			/* NB: max frame size is currently 2 clusters */
652			sc->sc_stats.ast_rx_toobig++;
653			m_freem(re->m_rxpending);
654		}
655		m->m_pkthdr.rcvif = ifp;
656		m->m_pkthdr.len = len;
657		re->m_rxpending = m;
658		m = NULL;
659		goto rx_next;
660	} else if (re->m_rxpending != NULL) {
661		/*
662		 * This is the second part of a jumbogram,
663		 * chain it to the first mbuf, adjust the
664		 * frame length, and clear the rxpending state.
665		 */
666		re->m_rxpending->m_next = m;
667		re->m_rxpending->m_pkthdr.len += len;
668		m = re->m_rxpending;
669		re->m_rxpending = NULL;
670	} else {
671		/*
672		 * Normal single-descriptor receive; setup
673		 * the rcvif and packet length.
674		 */
675		m->m_pkthdr.rcvif = ifp;
676		m->m_pkthdr.len = len;
677	}
678
679	/*
680	 * Validate rs->rs_antenna.
681	 *
682	 * Some users w/ AR9285 NICs have reported crashes
683	 * here because rs_antenna field is bogusly large.
684	 * Let's enforce the maximum antenna limit of 8
685	 * (and it shouldn't be hard coded, but that's a
686	 * separate problem) and if there's an issue, print
687	 * out an error and adjust rs_antenna to something
688	 * sensible.
689	 *
690	 * This code should be removed once the actual
691	 * root cause of the issue has been identified.
692	 * For example, it may be that the rs_antenna
693	 * field is only valid for the lsat frame of
694	 * an aggregate and it just happens that it is
695	 * "mostly" right. (This is a general statement -
696	 * the majority of the statistics are only valid
697	 * for the last frame in an aggregate.
698	 */
699	if (rs->rs_antenna > 7) {
700		device_printf(sc->sc_dev, "%s: rs_antenna > 7 (%d)\n",
701		    __func__, rs->rs_antenna);
702#ifdef	ATH_DEBUG
703		ath_printrxbuf(sc, bf, 0, status == HAL_OK);
704#endif /* ATH_DEBUG */
705		rs->rs_antenna = 0;	/* XXX better than nothing */
706	}
707
708	/*
709	 * If this is an AR9285/AR9485, then the receive and LNA
710	 * configuration is stored in RSSI[2] / EXTRSSI[2].
711	 * We can extract this out to build a much better
712	 * receive antenna profile.
713	 *
714	 * Yes, this just blurts over the above RX antenna field
715	 * for now.  It's fine, the AR9285 doesn't really use
716	 * that.
717	 *
718	 * Later on we should store away the fine grained LNA
719	 * information and keep separate counters just for
720	 * that.  It'll help when debugging the AR9285/AR9485
721	 * combined diversity code.
722	 */
723	if (sc->sc_rx_lnamixer) {
724		rs->rs_antenna = 0;
725
726		/* Bits 0:1 - the LNA configuration used */
727		rs->rs_antenna |=
728		    ((rs->rs_rssi_ctl[2] & HAL_RX_LNA_CFG_USED)
729		      >> HAL_RX_LNA_CFG_USED_S);
730
731		/* Bit 2 - the external RX antenna switch */
732		if (rs->rs_rssi_ctl[2] & HAL_RX_LNA_EXTCFG)
733			rs->rs_antenna |= 0x4;
734	}
735
736	ifp->if_ipackets++;
737	sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
738
739	/*
740	 * Populate the rx status block.  When there are bpf
741	 * listeners we do the additional work to provide
742	 * complete status.  Otherwise we fill in only the
743	 * material required by ieee80211_input.  Note that
744	 * noise setting is filled in above.
745	 */
746	if (ieee80211_radiotap_active(ic)) {
747		ath_rx_tap(ifp, m, rs, rstamp, nf);
748#ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
749		ath_rx_tap_vendor(ifp, m, rs, rstamp, nf);
750#endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
751	}
752
753	/*
754	 * From this point on we assume the frame is at least
755	 * as large as ieee80211_frame_min; verify that.
756	 */
757	if (len < IEEE80211_MIN_LEN) {
758		if (!ieee80211_radiotap_active(ic)) {
759			DPRINTF(sc, ATH_DEBUG_RECV,
760			    "%s: short packet %d\n", __func__, len);
761			sc->sc_stats.ast_rx_tooshort++;
762		} else {
763			/* NB: in particular this captures ack's */
764			ieee80211_radiotap_rx_all(ic, m);
765		}
766		m_freem(m); m = NULL;
767		goto rx_next;
768	}
769
770	if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
771		const HAL_RATE_TABLE *rt = sc->sc_currates;
772		uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
773
774		ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
775		    sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
776	}
777
778	m_adj(m, -IEEE80211_CRC_LEN);
779
780	/*
781	 * Locate the node for sender, track state, and then
782	 * pass the (referenced) node up to the 802.11 layer
783	 * for its use.
784	 */
785	ni = ieee80211_find_rxnode_withkey(ic,
786		mtod(m, const struct ieee80211_frame_min *),
787		rs->rs_keyix == HAL_RXKEYIX_INVALID ?
788			IEEE80211_KEYIX_NONE : rs->rs_keyix);
789	sc->sc_lastrs = rs;
790
791#ifdef	AH_SUPPORT_AR5416
792	if (rs->rs_isaggr)
793		sc->sc_stats.ast_rx_agg++;
794#endif /* AH_SUPPORT_AR5416 */
795
796	if (ni != NULL) {
797		/*
798		 * Only punt packets for ampdu reorder processing for
799		 * 11n nodes; net80211 enforces that M_AMPDU is only
800		 * set for 11n nodes.
801		 */
802		if (ni->ni_flags & IEEE80211_NODE_HT)
803			m->m_flags |= M_AMPDU;
804
805		/*
806		 * Sending station is known, dispatch directly.
807		 */
808		type = ieee80211_input(ni, m, rs->rs_rssi, nf);
809		ieee80211_free_node(ni);
810		m = NULL;
811		/*
812		 * Arrange to update the last rx timestamp only for
813		 * frames from our ap when operating in station mode.
814		 * This assumes the rx key is always setup when
815		 * associated.
816		 */
817		if (ic->ic_opmode == IEEE80211_M_STA &&
818		    rs->rs_keyix != HAL_RXKEYIX_INVALID)
819			is_good = 1;
820	} else {
821		type = ieee80211_input_all(ic, m, rs->rs_rssi, nf);
822		m = NULL;
823	}
824
825	/*
826	 * At this point we have passed the frame up the stack; thus
827	 * the mbuf is no longer ours.
828	 */
829
830	/*
831	 * Track rx rssi and do any rx antenna management.
832	 */
833	ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
834	if (sc->sc_diversity) {
835		/*
836		 * When using fast diversity, change the default rx
837		 * antenna if diversity chooses the other antenna 3
838		 * times in a row.
839		 */
840		if (sc->sc_defant != rs->rs_antenna) {
841			if (++sc->sc_rxotherant >= 3)
842				ath_setdefantenna(sc, rs->rs_antenna);
843		} else
844			sc->sc_rxotherant = 0;
845	}
846
847	/* Handle slow diversity if enabled */
848	if (sc->sc_dolnadiv) {
849		ath_lna_rx_comb_scan(sc, rs, ticks, hz);
850	}
851
852	if (sc->sc_softled) {
853		/*
854		 * Blink for any data frame.  Otherwise do a
855		 * heartbeat-style blink when idle.  The latter
856		 * is mainly for station mode where we depend on
857		 * periodic beacon frames to trigger the poll event.
858		 */
859		if (type == IEEE80211_FC0_TYPE_DATA) {
860			const HAL_RATE_TABLE *rt = sc->sc_currates;
861			ath_led_event(sc,
862			    rt->rateCodeToIndex[rs->rs_rate]);
863		} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
864			ath_led_event(sc, 0);
865		}
866rx_next:
867	/*
868	 * Debugging - complain if we didn't NULL the mbuf pointer
869	 * here.
870	 */
871	if (m != NULL) {
872		device_printf(sc->sc_dev,
873		    "%s: mbuf %p should've been freed!\n",
874		    __func__,
875		    m);
876	}
877	return (is_good);
878}
879
880#define	ATH_RX_MAX		128
881
882static void
883ath_rx_proc(struct ath_softc *sc, int resched)
884{
885#define	PA2DESC(_sc, _pa) \
886	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
887		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
888	struct ath_buf *bf;
889	struct ifnet *ifp = sc->sc_ifp;
890	struct ath_hal *ah = sc->sc_ah;
891#ifdef IEEE80211_SUPPORT_SUPERG
892	struct ieee80211com *ic = ifp->if_l2com;
893#endif
894	struct ath_desc *ds;
895	struct ath_rx_status *rs;
896	struct mbuf *m;
897	int ngood;
898	HAL_STATUS status;
899	int16_t nf;
900	u_int64_t tsf;
901	int npkts = 0;
902	int kickpcu = 0;
903
904	/* XXX we must not hold the ATH_LOCK here */
905	ATH_UNLOCK_ASSERT(sc);
906	ATH_PCU_UNLOCK_ASSERT(sc);
907
908	ATH_PCU_LOCK(sc);
909	sc->sc_rxproc_cnt++;
910	kickpcu = sc->sc_kickpcu;
911	ATH_PCU_UNLOCK(sc);
912
913	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: called\n", __func__);
914	ngood = 0;
915	nf = ath_hal_getchannoise(ah, sc->sc_curchan);
916	sc->sc_stats.ast_rx_noise = nf;
917	tsf = ath_hal_gettsf64(ah);
918	do {
919		/*
920		 * Don't process too many packets at a time; give the
921		 * TX thread time to also run - otherwise the TX
922		 * latency can jump by quite a bit, causing throughput
923		 * degredation.
924		 */
925		if (!kickpcu && npkts >= ATH_RX_MAX)
926			break;
927
928		bf = TAILQ_FIRST(&sc->sc_rxbuf);
929		if (sc->sc_rxslink && bf == NULL) {	/* NB: shouldn't happen */
930			if_printf(ifp, "%s: no buffer!\n", __func__);
931			break;
932		} else if (bf == NULL) {
933			/*
934			 * End of List:
935			 * this can happen for non-self-linked RX chains
936			 */
937			sc->sc_stats.ast_rx_hitqueueend++;
938			break;
939		}
940		m = bf->bf_m;
941		if (m == NULL) {		/* NB: shouldn't happen */
942			/*
943			 * If mbuf allocation failed previously there
944			 * will be no mbuf; try again to re-populate it.
945			 */
946			/* XXX make debug msg */
947			if_printf(ifp, "%s: no mbuf!\n", __func__);
948			TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
949			goto rx_proc_next;
950		}
951		ds = bf->bf_desc;
952		if (ds->ds_link == bf->bf_daddr) {
953			/* NB: never process the self-linked entry at the end */
954			sc->sc_stats.ast_rx_hitqueueend++;
955			break;
956		}
957		/* XXX sync descriptor memory */
958		/*
959		 * Must provide the virtual address of the current
960		 * descriptor, the physical address, and the virtual
961		 * address of the next descriptor in the h/w chain.
962		 * This allows the HAL to look ahead to see if the
963		 * hardware is done with a descriptor by checking the
964		 * done bit in the following descriptor and the address
965		 * of the current descriptor the DMA engine is working
966		 * on.  All this is necessary because of our use of
967		 * a self-linked list to avoid rx overruns.
968		 */
969		rs = &bf->bf_status.ds_rxstat;
970		status = ath_hal_rxprocdesc(ah, ds,
971				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
972#ifdef ATH_DEBUG
973		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
974			ath_printrxbuf(sc, bf, 0, status == HAL_OK);
975#endif
976
977#ifdef	ATH_DEBUG_ALQ
978		if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_RXSTATUS))
979		    if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_RXSTATUS,
980		    sc->sc_rx_statuslen, (char *) ds);
981#endif	/* ATH_DEBUG_ALQ */
982
983		if (status == HAL_EINPROGRESS)
984			break;
985
986		TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
987		npkts++;
988
989		/*
990		 * Process a single frame.
991		 */
992		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTREAD);
993		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
994		bf->bf_m = NULL;
995		if (ath_rx_pkt(sc, rs, status, tsf, nf, HAL_RX_QUEUE_HP, bf, m))
996			ngood++;
997rx_proc_next:
998		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
999	} while (ath_rxbuf_init(sc, bf) == 0);
1000
1001	/* rx signal state monitoring */
1002	ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
1003	if (ngood)
1004		sc->sc_lastrx = tsf;
1005
1006	ATH_KTR(sc, ATH_KTR_RXPROC, 2, "ath_rx_proc: npkts=%d, ngood=%d", npkts, ngood);
1007	/* Queue DFS tasklet if needed */
1008	if (resched && ath_dfs_tasklet_needed(sc, sc->sc_curchan))
1009		taskqueue_enqueue(sc->sc_tq, &sc->sc_dfstask);
1010
1011	/*
1012	 * Now that all the RX frames were handled that
1013	 * need to be handled, kick the PCU if there's
1014	 * been an RXEOL condition.
1015	 */
1016	if (resched && kickpcu) {
1017		ATH_PCU_LOCK(sc);
1018		ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_rx_proc: kickpcu");
1019		device_printf(sc->sc_dev, "%s: kickpcu; handled %d packets\n",
1020		    __func__, npkts);
1021
1022		/*
1023		 * Go through the process of fully tearing down
1024		 * the RX buffers and reinitialising them.
1025		 *
1026		 * There's a hardware bug that causes the RX FIFO
1027		 * to get confused under certain conditions and
1028		 * constantly write over the same frame, leading
1029		 * the RX driver code here to get heavily confused.
1030		 */
1031#if 1
1032		ath_startrecv(sc);
1033#else
1034		/*
1035		 * Disabled for now - it'd be nice to be able to do
1036		 * this in order to limit the amount of CPU time spent
1037		 * reinitialising the RX side (and thus minimise RX
1038		 * drops) however there's a hardware issue that
1039		 * causes things to get too far out of whack.
1040		 */
1041		/*
1042		 * XXX can we hold the PCU lock here?
1043		 * Are there any net80211 buffer calls involved?
1044		 */
1045		bf = TAILQ_FIRST(&sc->sc_rxbuf);
1046		ath_hal_putrxbuf(ah, bf->bf_daddr, HAL_RX_QUEUE_HP);
1047		ath_hal_rxena(ah);		/* enable recv descriptors */
1048		ath_mode_init(sc);		/* set filters, etc. */
1049		ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
1050#endif
1051
1052		ath_hal_intrset(ah, sc->sc_imask);
1053		sc->sc_kickpcu = 0;
1054		ATH_PCU_UNLOCK(sc);
1055	}
1056
1057	/* XXX check this inside of IF_LOCK? */
1058	if (resched && (ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) {
1059#ifdef IEEE80211_SUPPORT_SUPERG
1060		ieee80211_ff_age_all(ic, 100);
1061#endif
1062		if (!IFQ_IS_EMPTY(&ifp->if_snd))
1063			ath_tx_kick(sc);
1064	}
1065#undef PA2DESC
1066
1067	/*
1068	 * If we hit the maximum number of frames in this round,
1069	 * reschedule for another immediate pass.  This gives
1070	 * the TX and TX completion routines time to run, which
1071	 * will reduce latency.
1072	 */
1073	if (npkts >= ATH_RX_MAX)
1074		sc->sc_rx.recv_sched(sc, resched);
1075
1076	ATH_PCU_LOCK(sc);
1077	sc->sc_rxproc_cnt--;
1078	ATH_PCU_UNLOCK(sc);
1079}
1080
1081#undef	ATH_RX_MAX
1082
1083/*
1084 * Only run the RX proc if it's not already running.
1085 * Since this may get run as part of the reset/flush path,
1086 * the task can't clash with an existing, running tasklet.
1087 */
1088static void
1089ath_legacy_rx_tasklet(void *arg, int npending)
1090{
1091	struct ath_softc *sc = arg;
1092
1093	ATH_KTR(sc, ATH_KTR_RXPROC, 1, "ath_rx_proc: pending=%d", npending);
1094	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
1095	ATH_PCU_LOCK(sc);
1096	if (sc->sc_inreset_cnt > 0) {
1097		device_printf(sc->sc_dev,
1098		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
1099		ATH_PCU_UNLOCK(sc);
1100		return;
1101	}
1102	ATH_PCU_UNLOCK(sc);
1103
1104	ath_rx_proc(sc, 1);
1105}
1106
1107static void
1108ath_legacy_flushrecv(struct ath_softc *sc)
1109{
1110
1111	ath_rx_proc(sc, 0);
1112}
1113
1114/*
1115 * Disable the receive h/w in preparation for a reset.
1116 */
1117static void
1118ath_legacy_stoprecv(struct ath_softc *sc, int dodelay)
1119{
1120#define	PA2DESC(_sc, _pa) \
1121	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
1122		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
1123	struct ath_hal *ah = sc->sc_ah;
1124
1125	ath_hal_stoppcurecv(ah);	/* disable PCU */
1126	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
1127	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
1128	/*
1129	 * TODO: see if this particular DELAY() is required; it may be
1130	 * masking some missing FIFO flush or DMA sync.
1131	 */
1132#if 0
1133	if (dodelay)
1134#endif
1135		DELAY(3000);		/* 3ms is long enough for 1 frame */
1136#ifdef ATH_DEBUG
1137	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
1138		struct ath_buf *bf;
1139		u_int ix;
1140
1141		device_printf(sc->sc_dev,
1142		    "%s: rx queue %p, link %p\n",
1143		    __func__,
1144		    (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah, HAL_RX_QUEUE_HP),
1145		    sc->sc_rxlink);
1146		ix = 0;
1147		TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
1148			struct ath_desc *ds = bf->bf_desc;
1149			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
1150			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
1151				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
1152			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
1153				ath_printrxbuf(sc, bf, ix, status == HAL_OK);
1154			ix++;
1155		}
1156	}
1157#endif
1158	/*
1159	 * Free both high/low RX pending, just in case.
1160	 */
1161	if (sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending != NULL) {
1162		m_freem(sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending);
1163		sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending = NULL;
1164	}
1165	if (sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending != NULL) {
1166		m_freem(sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending);
1167		sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending = NULL;
1168	}
1169	sc->sc_rxlink = NULL;		/* just in case */
1170#undef PA2DESC
1171}
1172
1173/*
1174 * Enable the receive h/w following a reset.
1175 */
1176static int
1177ath_legacy_startrecv(struct ath_softc *sc)
1178{
1179	struct ath_hal *ah = sc->sc_ah;
1180	struct ath_buf *bf;
1181
1182	sc->sc_rxlink = NULL;
1183	sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending = NULL;
1184	sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending = NULL;
1185	TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
1186		int error = ath_rxbuf_init(sc, bf);
1187		if (error != 0) {
1188			DPRINTF(sc, ATH_DEBUG_RECV,
1189				"%s: ath_rxbuf_init failed %d\n",
1190				__func__, error);
1191			return error;
1192		}
1193	}
1194
1195	bf = TAILQ_FIRST(&sc->sc_rxbuf);
1196	ath_hal_putrxbuf(ah, bf->bf_daddr, HAL_RX_QUEUE_HP);
1197	ath_hal_rxena(ah);		/* enable recv descriptors */
1198	ath_mode_init(sc);		/* set filters, etc. */
1199	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
1200	return 0;
1201}
1202
1203static int
1204ath_legacy_dma_rxsetup(struct ath_softc *sc)
1205{
1206	int error;
1207
1208	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
1209	    "rx", sizeof(struct ath_desc), ath_rxbuf, 1);
1210	if (error != 0)
1211		return (error);
1212
1213	return (0);
1214}
1215
1216static int
1217ath_legacy_dma_rxteardown(struct ath_softc *sc)
1218{
1219
1220	if (sc->sc_rxdma.dd_desc_len != 0)
1221		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
1222	return (0);
1223}
1224
1225static void
1226ath_legacy_recv_sched(struct ath_softc *sc, int dosched)
1227{
1228
1229	taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1230}
1231
1232static void
1233ath_legacy_recv_sched_queue(struct ath_softc *sc, HAL_RX_QUEUE q,
1234    int dosched)
1235{
1236
1237	taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1238}
1239
1240void
1241ath_recv_setup_legacy(struct ath_softc *sc)
1242{
1243
1244	/* Sensible legacy defaults */
1245	/*
1246	 * XXX this should be changed to properly support the
1247	 * exact RX descriptor size for each HAL.
1248	 */
1249	sc->sc_rx_statuslen = sizeof(struct ath_desc);
1250
1251	sc->sc_rx.recv_start = ath_legacy_startrecv;
1252	sc->sc_rx.recv_stop = ath_legacy_stoprecv;
1253	sc->sc_rx.recv_flush = ath_legacy_flushrecv;
1254	sc->sc_rx.recv_tasklet = ath_legacy_rx_tasklet;
1255	sc->sc_rx.recv_rxbuf_init = ath_legacy_rxbuf_init;
1256
1257	sc->sc_rx.recv_setup = ath_legacy_dma_rxsetup;
1258	sc->sc_rx.recv_teardown = ath_legacy_dma_rxteardown;
1259	sc->sc_rx.recv_sched = ath_legacy_recv_sched;
1260	sc->sc_rx.recv_sched_queue = ath_legacy_recv_sched_queue;
1261}
1262