ar5416_reset.c revision 251340
1/*
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $FreeBSD: head/sys/dev/ath/ath_hal/ar5416/ar5416_reset.c 251340 2013-06-03 19:14:29Z adrian $
18 */
19#include "opt_ah.h"
20
21#include "ah.h"
22#include "ah_internal.h"
23#include "ah_devid.h"
24
25#include "ah_eeprom_v14.h"
26
27#include "ar5416/ar5416.h"
28#include "ar5416/ar5416reg.h"
29#include "ar5416/ar5416phy.h"
30
31/* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */
32#define	EEP_MINOR(_ah) \
33	(AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
34#define IS_EEP_MINOR_V2(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
35#define IS_EEP_MINOR_V3(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3)
36
37/* Additional Time delay to wait after activiting the Base band */
38#define BASE_ACTIVATE_DELAY	100	/* 100 usec */
39#define PLL_SETTLE_DELAY	300	/* 300 usec */
40#define RTC_PLL_SETTLE_DELAY    1000    /* 1 ms     */
41
42static void ar5416InitDMA(struct ath_hal *ah);
43static void ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *);
44static void ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode);
45static void ar5416InitQoS(struct ath_hal *ah);
46static void ar5416InitUserSettings(struct ath_hal *ah);
47static void ar5416OverrideIni(struct ath_hal *ah, const struct ieee80211_channel *);
48
49#if 0
50static HAL_BOOL	ar5416ChannelChange(struct ath_hal *, const struct ieee80211_channel *);
51#endif
52static void ar5416SetDeltaSlope(struct ath_hal *, const struct ieee80211_channel *);
53
54static HAL_BOOL ar5416SetResetPowerOn(struct ath_hal *ah);
55static HAL_BOOL ar5416SetReset(struct ath_hal *ah, int type);
56static HAL_BOOL ar5416SetPowerPerRateTable(struct ath_hal *ah,
57	struct ar5416eeprom *pEepData,
58	const struct ieee80211_channel *chan, int16_t *ratesArray,
59	uint16_t cfgCtl, uint16_t AntennaReduction,
60	uint16_t twiceMaxRegulatoryPower,
61	uint16_t powerLimit);
62static void ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan);
63static void ar5416MarkPhyInactive(struct ath_hal *ah);
64static void ar5416SetIFSTiming(struct ath_hal *ah,
65   const struct ieee80211_channel *chan);
66
67/*
68 * Places the device in and out of reset and then places sane
69 * values in the registers based on EEPROM config, initialization
70 * vectors (as determined by the mode), and station configuration
71 *
72 * bChannelChange is used to preserve DMA/PCU registers across
73 * a HW Reset during channel change.
74 */
75HAL_BOOL
76ar5416Reset(struct ath_hal *ah, HAL_OPMODE opmode,
77	struct ieee80211_channel *chan,
78	HAL_BOOL bChannelChange, HAL_STATUS *status)
79{
80#define	N(a)	(sizeof (a) / sizeof (a[0]))
81#define	FAIL(_code)	do { ecode = _code; goto bad; } while (0)
82	struct ath_hal_5212 *ahp = AH5212(ah);
83	HAL_CHANNEL_INTERNAL *ichan;
84	uint32_t saveDefAntenna, saveLedState;
85	uint32_t macStaId1;
86	uint16_t rfXpdGain[2];
87	HAL_STATUS ecode;
88	uint32_t powerVal, rssiThrReg;
89	uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow;
90	int i;
91	uint64_t tsf = 0;
92
93	OS_MARK(ah, AH_MARK_RESET, bChannelChange);
94
95	/* Bring out of sleep mode */
96	if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
97		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n",
98		    __func__);
99		FAIL(HAL_EIO);
100	}
101
102	/*
103	 * Map public channel to private.
104	 */
105	ichan = ath_hal_checkchannel(ah, chan);
106	if (ichan == AH_NULL)
107		FAIL(HAL_EINVAL);
108	switch (opmode) {
109	case HAL_M_STA:
110	case HAL_M_IBSS:
111	case HAL_M_HOSTAP:
112	case HAL_M_MONITOR:
113		break;
114	default:
115		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
116		    __func__, opmode);
117		FAIL(HAL_EINVAL);
118		break;
119	}
120	HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
121
122	/* Blank the channel survey statistics */
123	OS_MEMZERO(&ahp->ah_chansurvey, sizeof(ahp->ah_chansurvey));
124
125	/* XXX Turn on fast channel change for 5416 */
126	/*
127	 * Preserve the bmiss rssi threshold and count threshold
128	 * across resets
129	 */
130	rssiThrReg = OS_REG_READ(ah, AR_RSSI_THR);
131	/* If reg is zero, first time thru set to default val */
132	if (rssiThrReg == 0)
133		rssiThrReg = INIT_RSSI_THR;
134
135	/*
136	 * Preserve the antenna on a channel change
137	 */
138	saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
139
140	/*
141	 * Don't do this for the AR9285 - it breaks RX for single
142	 * antenna designs when diversity is disabled.
143	 *
144	 * I'm not sure what this was working around; it may be
145	 * something to do with the AR5416.  Certainly this register
146	 * isn't supposed to be used by the MIMO chips for anything
147	 * except for defining the default antenna when an external
148	 * phase array / smart antenna is connected.
149	 *
150	 * See PR: kern/179269 .
151	 */
152	if ((! AR_SREV_KITE(ah)) && saveDefAntenna == 0)	/* XXX magic constants */
153		saveDefAntenna = 1;
154
155	/* Save hardware flag before chip reset clears the register */
156	macStaId1 = OS_REG_READ(ah, AR_STA_ID1) &
157		(AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT);
158
159	/* Save led state from pci config register */
160	saveLedState = OS_REG_READ(ah, AR_MAC_LED) &
161		(AR_MAC_LED_ASSOC | AR_MAC_LED_MODE |
162		 AR_MAC_LED_BLINK_THRESH_SEL | AR_MAC_LED_BLINK_SLOW);
163
164	/* For chips on which the RTC reset is done, save TSF before it gets cleared */
165	if (AR_SREV_HOWL(ah) ||
166	    (AR_SREV_MERLIN(ah) &&
167	     ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) ||
168	    (ah->ah_config.ah_force_full_reset))
169		tsf = ar5416GetTsf64(ah);
170
171	/* Mark PHY as inactive; marked active in ar5416InitBB() */
172	ar5416MarkPhyInactive(ah);
173
174	if (!ar5416ChipReset(ah, chan)) {
175		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
176		FAIL(HAL_EIO);
177	}
178
179	/* Restore TSF */
180	if (tsf)
181		ar5416SetTsf64(ah, tsf);
182
183	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
184	if (AR_SREV_MERLIN_10_OR_LATER(ah))
185		OS_REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
186
187	AH5416(ah)->ah_writeIni(ah, chan);
188
189	if(AR_SREV_KIWI_13_OR_LATER(ah) ) {
190		/* Enable ASYNC FIFO */
191		OS_REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
192		    AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
193		OS_REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
194		OS_REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
195		    AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
196		OS_REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
197		    AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
198	}
199
200	/* Override ini values (that can be overriden in this fashion) */
201	ar5416OverrideIni(ah, chan);
202
203	/* Setup 11n MAC/Phy mode registers */
204	ar5416Set11nRegs(ah, chan);
205
206	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
207
208	/*
209	 * Some AR91xx SoC devices frequently fail to accept TSF writes
210	 * right after the chip reset. When that happens, write a new
211	 * value after the initvals have been applied, with an offset
212	 * based on measured time difference
213	 */
214	if (AR_SREV_HOWL(ah) && (ar5416GetTsf64(ah) < tsf)) {
215		tsf += 1500;
216		ar5416SetTsf64(ah, tsf);
217	}
218
219	HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_DAG_CTRLCCK=0x%x\n",
220		__func__, OS_REG_READ(ah,AR_PHY_DAG_CTRLCCK));
221	HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_ADC_CTL=0x%x\n",
222		__func__, OS_REG_READ(ah,AR_PHY_ADC_CTL));
223
224	/*
225	 * This routine swaps the analog chains - it should be done
226	 * before any radio register twiddling is done.
227	 */
228	ar5416InitChainMasks(ah);
229
230	/* Setup the open-loop power calibration if required */
231	if (ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
232		AH5416(ah)->ah_olcInit(ah);
233		AH5416(ah)->ah_olcTempCompensation(ah);
234	}
235
236	/* Setup the transmit power values. */
237	if (!ah->ah_setTxPower(ah, chan, rfXpdGain)) {
238		HALDEBUG(ah, HAL_DEBUG_ANY,
239		    "%s: error init'ing transmit power\n", __func__);
240		FAIL(HAL_EIO);
241	}
242
243	/* Write the analog registers */
244	if (!ahp->ah_rfHal->setRfRegs(ah, chan,
245	    IEEE80211_IS_CHAN_2GHZ(chan) ? 2: 1, rfXpdGain)) {
246		HALDEBUG(ah, HAL_DEBUG_ANY,
247		    "%s: ar5212SetRfRegs failed\n", __func__);
248		FAIL(HAL_EIO);
249	}
250
251	/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
252	if (IEEE80211_IS_CHAN_OFDM(chan)|| IEEE80211_IS_CHAN_HT(chan))
253		ar5416SetDeltaSlope(ah, chan);
254
255	AH5416(ah)->ah_spurMitigate(ah, chan);
256
257	/* Setup board specific options for EEPROM version 3 */
258	if (!ah->ah_setBoardValues(ah, chan)) {
259		HALDEBUG(ah, HAL_DEBUG_ANY,
260		    "%s: error setting board options\n", __func__);
261		FAIL(HAL_EIO);
262	}
263
264	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
265
266	OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
267	OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
268		| macStaId1
269		| AR_STA_ID1_RTS_USE_DEF
270		| ahp->ah_staId1Defaults
271	);
272	ar5212SetOperatingMode(ah, opmode);
273
274	/* Set Venice BSSID mask according to current state */
275	OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
276	OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
277
278	/* Restore previous led state */
279	if (AR_SREV_HOWL(ah))
280		OS_REG_WRITE(ah, AR_MAC_LED,
281		    AR_MAC_LED_ASSOC_ACTIVE | AR_CFG_SCLK_32KHZ);
282	else
283		OS_REG_WRITE(ah, AR_MAC_LED, OS_REG_READ(ah, AR_MAC_LED) |
284		    saveLedState);
285
286        /* Start TSF2 for generic timer 8-15 */
287#ifdef	NOTYET
288	if (AR_SREV_KIWI(ah))
289		ar5416StartTsf2(ah);
290#endif
291
292	/* Restore previous antenna */
293	OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
294
295	/* then our BSSID and associate id */
296	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
297	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) |
298	    (ahp->ah_assocId & 0x3fff) << AR_BSS_ID1_AID_S);
299
300	/* Restore bmiss rssi & count thresholds */
301	OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
302
303	OS_REG_WRITE(ah, AR_ISR, ~0);		/* cleared on write */
304
305	/* Restore bmiss rssi & count thresholds */
306	OS_REG_WRITE(ah, AR_RSSI_THR, rssiThrReg);
307
308	if (!ar5212SetChannel(ah, chan))
309		FAIL(HAL_EIO);
310
311	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
312
313	/* Set 1:1 QCU to DCU mapping for all queues */
314	for (i = 0; i < AR_NUM_DCU; i++)
315		OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
316
317	ahp->ah_intrTxqs = 0;
318	for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++)
319		ah->ah_resetTxQueue(ah, i);
320
321	ar5416InitIMR(ah, opmode);
322	ar5416SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1);
323	ar5416InitQoS(ah);
324	/* This may override the AR_DIAG_SW register */
325	ar5416InitUserSettings(ah);
326
327	/* XXX this won't work for AR9287! */
328	if (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan)) {
329		ar5416SetIFSTiming(ah, chan);
330#if 0
331			/*
332			 * AR5413?
333			 * Force window_length for 1/2 and 1/4 rate channels,
334			 * the ini file sets this to zero otherwise.
335			 */
336			OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
337			    AR_PHY_FRAME_CTL_WINLEN, 3);
338		}
339#endif
340	}
341
342	if (AR_SREV_KIWI_13_OR_LATER(ah)) {
343		/*
344		 * Enable ASYNC FIFO
345		 *
346		 * If Async FIFO is enabled, the following counters change
347		 * as MAC now runs at 117 Mhz instead of 88/44MHz when
348		 * async FIFO is disabled.
349		 *
350		 * Overwrite the delay/timeouts initialized in ProcessIni()
351		 * above.
352		 */
353		OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
354		    AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
355		OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
356		    AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
357		OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
358		    AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
359
360		OS_REG_WRITE(ah, AR_TIME_OUT,
361		    AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
362		OS_REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
363
364		OS_REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
365		    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
366		OS_REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
367		    AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
368	}
369
370	if (AR_SREV_KIWI_13_OR_LATER(ah)) {
371		/* Enable AGGWEP to accelerate encryption engine */
372		OS_REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
373		    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
374	}
375
376
377	/*
378	 * disable seq number generation in hw
379	 */
380	 OS_REG_WRITE(ah, AR_STA_ID1,
381	     OS_REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
382
383	ar5416InitDMA(ah);
384
385	/*
386	 * program OBS bus to see MAC interrupts
387	 */
388	OS_REG_WRITE(ah, AR_OBS, 8);
389
390	/*
391	 * Disable the "general" TX/RX mitigation timers.
392	 */
393	OS_REG_WRITE(ah, AR_MIRT, 0);
394
395#ifdef	AH_AR5416_INTERRUPT_MITIGATION
396	/*
397	 * This initialises the RX interrupt mitigation timers.
398	 *
399	 * The mitigation timers begin at idle and are triggered
400	 * upon the RXOK of a single frame (or sub-frame, for A-MPDU.)
401	 * Then, the RX mitigation interrupt will fire:
402	 *
403	 * + 250uS after the last RX'ed frame, or
404	 * + 700uS after the first RX'ed frame
405	 *
406	 * Thus, the LAST field dictates the extra latency
407	 * induced by the RX mitigation method and the FIRST
408	 * field dictates how long to delay before firing an
409	 * RX mitigation interrupt.
410	 *
411	 * Please note this only seems to be for RXOK frames;
412	 * not CRC or PHY error frames.
413	 *
414	 */
415	OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 250);
416	OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 700);
417#endif
418	ar5416InitBB(ah, chan);
419
420	/* Setup compression registers */
421	ar5212SetCompRegs(ah);		/* XXX not needed? */
422
423	/*
424	 * 5416 baseband will check the per rate power table
425	 * and select the lower of the two
426	 */
427	ackTpcPow = 63;
428	ctsTpcPow = 63;
429	chirpTpcPow = 63;
430	powerVal = SM(ackTpcPow, AR_TPC_ACK) |
431		SM(ctsTpcPow, AR_TPC_CTS) |
432		SM(chirpTpcPow, AR_TPC_CHIRP);
433	OS_REG_WRITE(ah, AR_TPC, powerVal);
434
435	if (!ar5416InitCal(ah, chan))
436		FAIL(HAL_ESELFTEST);
437
438	ar5416RestoreChainMask(ah);
439
440	AH_PRIVATE(ah)->ah_opmode = opmode;	/* record operating mode */
441
442	if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan))
443		chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
444
445	if (AR_SREV_HOWL(ah)) {
446		/*
447		 * Enable the MBSSID block-ack fix for HOWL.
448		 * This feature is only supported on Howl 1.4, but it is safe to
449		 * set bit 22 of STA_ID1 on other Howl revisions (1.1, 1.2, 1.3),
450		 * since bit 22 is unused in those Howl revisions.
451		 */
452		unsigned int reg;
453		reg = (OS_REG_READ(ah, AR_STA_ID1) | (1<<22));
454		OS_REG_WRITE(ah,AR_STA_ID1, reg);
455		ath_hal_printf(ah, "MBSSID Set bit 22 of AR_STA_ID 0x%x\n", reg);
456	}
457
458	HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
459
460	OS_MARK(ah, AH_MARK_RESET_DONE, 0);
461
462	return AH_TRUE;
463bad:
464	OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
465	if (status != AH_NULL)
466		*status = ecode;
467	return AH_FALSE;
468#undef FAIL
469#undef N
470}
471
472#if 0
473/*
474 * This channel change evaluates whether the selected hardware can
475 * perform a synthesizer-only channel change (no reset).  If the
476 * TX is not stopped, or the RFBus cannot be granted in the given
477 * time, the function returns false as a reset is necessary
478 */
479HAL_BOOL
480ar5416ChannelChange(struct ath_hal *ah, const structu ieee80211_channel *chan)
481{
482	uint32_t       ulCount;
483	uint32_t   data, synthDelay, qnum;
484	uint16_t   rfXpdGain[4];
485	struct ath_hal_5212 *ahp = AH5212(ah);
486	HAL_CHANNEL_INTERNAL *ichan;
487
488	/*
489	 * Map public channel to private.
490	 */
491	ichan = ath_hal_checkchannel(ah, chan);
492
493	/* TX must be stopped or RF Bus grant will not work */
494	for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) {
495		if (ar5212NumTxPending(ah, qnum)) {
496			HALDEBUG(ah, HAL_DEBUG_ANY,
497			    "%s: frames pending on queue %d\n", __func__, qnum);
498			return AH_FALSE;
499		}
500	}
501
502	/*
503	 * Kill last Baseband Rx Frame - Request analog bus grant
504	 */
505	OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST);
506	if (!ath_hal_wait(ah, AR_PHY_RFBUS_GNT, AR_PHY_RFBUS_GRANT_EN, AR_PHY_RFBUS_GRANT_EN)) {
507		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: could not kill baseband rx\n",
508		    __func__);
509		return AH_FALSE;
510	}
511
512	ar5416Set11nRegs(ah, chan);	/* NB: setup 5416-specific regs */
513
514	/* Change the synth */
515	if (!ar5212SetChannel(ah, chan))
516		return AH_FALSE;
517
518	/* Setup the transmit power values. */
519	if (!ah->ah_setTxPower(ah, chan, rfXpdGain)) {
520		HALDEBUG(ah, HAL_DEBUG_ANY,
521		    "%s: error init'ing transmit power\n", __func__);
522		return AH_FALSE;
523	}
524
525	/*
526	 * Wait for the frequency synth to settle (synth goes on
527	 * via PHY_ACTIVE_EN).  Read the phy active delay register.
528	 * Value is in 100ns increments.
529	 */
530	data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
531	if (IS_CHAN_CCK(ichan)) {
532		synthDelay = (4 * data) / 22;
533	} else {
534		synthDelay = data / 10;
535	}
536
537	OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
538
539	/* Release the RFBus Grant */
540	OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
541
542	/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
543	if (IEEE80211_IS_CHAN_OFDM(ichan)|| IEEE80211_IS_CHAN_HT(chan)) {
544		HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3);
545		ar5212SetSpurMitigation(ah, chan);
546		ar5416SetDeltaSlope(ah, chan);
547	}
548
549	/* XXX spur mitigation for Melin */
550
551	if (!IEEE80211_IS_CHAN_DFS(chan))
552		chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
553
554	ichan->channel_time = 0;
555	ichan->tsf_last = ar5416GetTsf64(ah);
556	ar5212TxEnable(ah, AH_TRUE);
557	return AH_TRUE;
558}
559#endif
560
561static void
562ar5416InitDMA(struct ath_hal *ah)
563{
564	struct ath_hal_5212 *ahp = AH5212(ah);
565
566	/*
567	 * set AHB_MODE not to do cacheline prefetches
568	 */
569	OS_REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
570
571	/*
572	 * let mac dma reads be in 128 byte chunks
573	 */
574	OS_REG_WRITE(ah, AR_TXCFG,
575		(OS_REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK) | AR_TXCFG_DMASZ_128B);
576
577	/*
578	 * let mac dma writes be in 128 byte chunks
579	 */
580	/*
581	 * XXX If you change this, you must change the headroom
582	 * assigned in ah_maxTxTrigLev - see ar5416InitState().
583	 */
584	OS_REG_WRITE(ah, AR_RXCFG,
585		(OS_REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK) | AR_RXCFG_DMASZ_128B);
586
587	/* restore TX trigger level */
588	OS_REG_WRITE(ah, AR_TXCFG,
589		(OS_REG_READ(ah, AR_TXCFG) &~ AR_FTRIG) |
590		    SM(ahp->ah_txTrigLev, AR_FTRIG));
591
592	/*
593	 * Setup receive FIFO threshold to hold off TX activities
594	 */
595	OS_REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
596
597	/*
598	 * reduce the number of usable entries in PCU TXBUF to avoid
599	 * wrap around.
600	 */
601	if (AR_SREV_KITE(ah))
602		/*
603		 * For AR9285 the number of Fifos are reduced to half.
604		 * So set the usable tx buf size also to half to
605		 * avoid data/delimiter underruns
606		 */
607		OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
608	else
609		OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_PCU_TXBUF_CTRL_USABLE_SIZE);
610}
611
612static void
613ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *chan)
614{
615	uint32_t synthDelay;
616
617	/*
618	 * Wait for the frequency synth to settle (synth goes on
619	 * via AR_PHY_ACTIVE_EN).  Read the phy active delay register.
620	 * Value is in 100ns increments.
621	  */
622	synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
623	if (IEEE80211_IS_CHAN_CCK(chan)) {
624		synthDelay = (4 * synthDelay) / 22;
625	} else {
626		synthDelay /= 10;
627	}
628
629	/* Turn on PLL on 5416 */
630	HALDEBUG(ah, HAL_DEBUG_RESET, "%s %s channel\n",
631	    __func__, IEEE80211_IS_CHAN_5GHZ(chan) ? "5GHz" : "2GHz");
632
633	/* Activate the PHY (includes baseband activate and synthesizer on) */
634	OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
635
636	/*
637	 * If the AP starts the calibration before the base band timeout
638	 * completes  we could get rx_clear false triggering.  Add an
639	 * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
640	 * does not happen.
641	 */
642	if (IEEE80211_IS_CHAN_HALF(chan)) {
643		OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY);
644	} else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
645		OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY);
646	} else {
647		OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
648	}
649}
650
651static void
652ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode)
653{
654	struct ath_hal_5212 *ahp = AH5212(ah);
655
656	/*
657	 * Setup interrupt handling.  Note that ar5212ResetTxQueue
658	 * manipulates the secondary IMR's as queues are enabled
659	 * and disabled.  This is done with RMW ops to insure the
660	 * settings we make here are preserved.
661	 */
662        ahp->ah_maskReg = AR_IMR_TXERR | AR_IMR_TXURN
663			| AR_IMR_RXERR | AR_IMR_RXORN
664                        | AR_IMR_BCNMISC;
665
666#ifdef	AH_AR5416_INTERRUPT_MITIGATION
667	ahp->ah_maskReg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
668#else
669	ahp->ah_maskReg |= AR_IMR_RXOK;
670#endif
671	ahp->ah_maskReg |= AR_IMR_TXOK;
672
673	if (opmode == HAL_M_HOSTAP)
674		ahp->ah_maskReg |= AR_IMR_MIB;
675	OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
676
677#ifdef  ADRIAN_NOTYET
678	/* This is straight from ath9k */
679	if (! AR_SREV_HOWL(ah)) {
680		OS_REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
681		OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
682		OS_REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
683	}
684#endif
685
686	/* Enable bus errors that are OR'd to set the HIUERR bit */
687#if 0
688	OS_REG_WRITE(ah, AR_IMR_S2,
689	    	OS_REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT | AR_IMR_S2_CST);
690#endif
691}
692
693static void
694ar5416InitQoS(struct ath_hal *ah)
695{
696	/* QoS support */
697	OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa);	/* XXX magic */
698	OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210);	/* XXX magic */
699
700	/* Turn on NOACK Support for QoS packets */
701	OS_REG_WRITE(ah, AR_NOACK,
702		SM(2, AR_NOACK_2BIT_VALUE) |
703		SM(5, AR_NOACK_BIT_OFFSET) |
704		SM(0, AR_NOACK_BYTE_OFFSET));
705
706    	/*
707    	 * initialize TXOP for all TIDs
708    	 */
709	OS_REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
710	OS_REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
711	OS_REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
712	OS_REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
713	OS_REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
714}
715
716static void
717ar5416InitUserSettings(struct ath_hal *ah)
718{
719	struct ath_hal_5212 *ahp = AH5212(ah);
720
721	/* Restore user-specified settings */
722	if (ahp->ah_miscMode != 0)
723		OS_REG_WRITE(ah, AR_MISC_MODE, OS_REG_READ(ah, AR_MISC_MODE)
724		    | ahp->ah_miscMode);
725	if (ahp->ah_sifstime != (u_int) -1)
726		ar5212SetSifsTime(ah, ahp->ah_sifstime);
727	if (ahp->ah_slottime != (u_int) -1)
728		ar5212SetSlotTime(ah, ahp->ah_slottime);
729	if (ahp->ah_acktimeout != (u_int) -1)
730		ar5212SetAckTimeout(ah, ahp->ah_acktimeout);
731	if (ahp->ah_ctstimeout != (u_int) -1)
732		ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout);
733	if (AH_PRIVATE(ah)->ah_diagreg != 0)
734		OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
735	if (AH5416(ah)->ah_globaltxtimeout != (u_int) -1)
736        	ar5416SetGlobalTxTimeout(ah, AH5416(ah)->ah_globaltxtimeout);
737}
738
739static void
740ar5416SetRfMode(struct ath_hal *ah, const struct ieee80211_channel *chan)
741{
742	uint32_t rfMode;
743
744	if (chan == AH_NULL)
745		return;
746
747	/* treat channel B as channel G , no  B mode suport in owl */
748	rfMode = IEEE80211_IS_CHAN_CCK(chan) ?
749	    AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
750
751	if (AR_SREV_MERLIN_20(ah) && IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
752		/* phy mode bits for 5GHz channels require Fast Clock */
753		rfMode |= AR_PHY_MODE_DYNAMIC
754		       |  AR_PHY_MODE_DYN_CCK_DISABLE;
755	} else if (!AR_SREV_MERLIN_10_OR_LATER(ah)) {
756		rfMode |= IEEE80211_IS_CHAN_5GHZ(chan) ?
757			AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
758	}
759
760	OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
761}
762
763/*
764 * Places the hardware into reset and then pulls it out of reset
765 */
766HAL_BOOL
767ar5416ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan)
768{
769	OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->ic_freq : 0);
770	/*
771	 * Warm reset is optimistic for open-loop TX power control.
772	 */
773	if (AR_SREV_MERLIN(ah) &&
774	    ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
775		if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
776			return AH_FALSE;
777	} else if (ah->ah_config.ah_force_full_reset) {
778		if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
779			return AH_FALSE;
780	} else {
781		if (!ar5416SetResetReg(ah, HAL_RESET_WARM))
782			return AH_FALSE;
783	}
784
785	/* Bring out of sleep mode (AGAIN) */
786	if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
787	       return AH_FALSE;
788
789#ifdef notyet
790	ahp->ah_chipFullSleep = AH_FALSE;
791#endif
792
793	AH5416(ah)->ah_initPLL(ah, chan);
794
795	/*
796	 * Perform warm reset before the mode/PLL/turbo registers
797	 * are changed in order to deactivate the radio.  Mode changes
798	 * with an active radio can result in corrupted shifts to the
799	 * radio device.
800	 */
801	ar5416SetRfMode(ah, chan);
802
803	return AH_TRUE;
804}
805
806/*
807 * Delta slope coefficient computation.
808 * Required for OFDM operation.
809 */
810static void
811ar5416GetDeltaSlopeValues(struct ath_hal *ah, uint32_t coef_scaled,
812                          uint32_t *coef_mantissa, uint32_t *coef_exponent)
813{
814#define COEF_SCALE_S 24
815    uint32_t coef_exp, coef_man;
816    /*
817     * ALGO -> coef_exp = 14-floor(log2(coef));
818     * floor(log2(x)) is the highest set bit position
819     */
820    for (coef_exp = 31; coef_exp > 0; coef_exp--)
821            if ((coef_scaled >> coef_exp) & 0x1)
822                    break;
823    /* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */
824    HALASSERT(coef_exp);
825    coef_exp = 14 - (coef_exp - COEF_SCALE_S);
826
827    /*
828     * ALGO -> coef_man = floor(coef* 2^coef_exp+0.5);
829     * The coefficient is already shifted up for scaling
830     */
831    coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
832
833    *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
834    *coef_exponent = coef_exp - 16;
835
836#undef COEF_SCALE_S
837}
838
839void
840ar5416SetDeltaSlope(struct ath_hal *ah, const struct ieee80211_channel *chan)
841{
842#define INIT_CLOCKMHZSCALED	0x64000000
843	uint32_t coef_scaled, ds_coef_exp, ds_coef_man;
844	uint32_t clockMhzScaled;
845
846	CHAN_CENTERS centers;
847
848	/* half and quarter rate can divide the scaled clock by 2 or 4 respectively */
849	/* scale for selected channel bandwidth */
850	clockMhzScaled = INIT_CLOCKMHZSCALED;
851	if (IEEE80211_IS_CHAN_TURBO(chan))
852		clockMhzScaled <<= 1;
853	else if (IEEE80211_IS_CHAN_HALF(chan))
854		clockMhzScaled >>= 1;
855	else if (IEEE80211_IS_CHAN_QUARTER(chan))
856		clockMhzScaled >>= 2;
857
858	/*
859	 * ALGO -> coef = 1e8/fcarrier*fclock/40;
860	 * scaled coef to provide precision for this floating calculation
861	 */
862	ar5416GetChannelCenters(ah, chan, &centers);
863	coef_scaled = clockMhzScaled / centers.synth_center;
864
865 	ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
866
867	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
868		AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
869	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
870		AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
871
872        /*
873         * For Short GI,
874         * scaled coeff is 9/10 that of normal coeff
875         */
876        coef_scaled = (9 * coef_scaled)/10;
877
878        ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
879
880        /* for short gi */
881        OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
882                AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
883        OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
884                AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
885#undef INIT_CLOCKMHZSCALED
886}
887
888/*
889 * Set a limit on the overall output power.  Used for dynamic
890 * transmit power control and the like.
891 *
892 * NB: limit is in units of 0.5 dbM.
893 */
894HAL_BOOL
895ar5416SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
896{
897	uint16_t dummyXpdGains[2];
898
899	AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
900	return ah->ah_setTxPower(ah, AH_PRIVATE(ah)->ah_curchan,
901			dummyXpdGains);
902}
903
904HAL_BOOL
905ar5416GetChipPowerLimits(struct ath_hal *ah,
906	struct ieee80211_channel *chan)
907{
908	struct ath_hal_5212 *ahp = AH5212(ah);
909	int16_t minPower, maxPower;
910
911	/*
912	 * Get Pier table max and min powers.
913	 */
914	if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) {
915		/* NB: rf code returns 1/4 dBm units, convert */
916		chan->ic_maxpower = maxPower / 2;
917		chan->ic_minpower = minPower / 2;
918	} else {
919		HALDEBUG(ah, HAL_DEBUG_ANY,
920		    "%s: no min/max power for %u/0x%x\n",
921		    __func__, chan->ic_freq, chan->ic_flags);
922		chan->ic_maxpower = AR5416_MAX_RATE_POWER;
923		chan->ic_minpower = 0;
924	}
925	HALDEBUG(ah, HAL_DEBUG_RESET,
926	    "Chan %d: MaxPow = %d MinPow = %d\n",
927	    chan->ic_freq, chan->ic_maxpower, chan->ic_minpower);
928	return AH_TRUE;
929}
930
931/**************************************************************
932 * ar5416WriteTxPowerRateRegisters
933 *
934 * Write the TX power rate registers from the raw values given
935 * in ratesArray[].
936 *
937 * The CCK and HT40 rate registers are only written if needed.
938 * HT20 and 11g/11a OFDM rate registers are always written.
939 *
940 * The values written are raw values which should be written
941 * to the registers - so it's up to the caller to pre-adjust
942 * them (eg CCK power offset value, or Merlin TX power offset,
943 * etc.)
944 */
945void
946ar5416WriteTxPowerRateRegisters(struct ath_hal *ah,
947    const struct ieee80211_channel *chan, const int16_t ratesArray[])
948{
949#define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
950
951    /* Write the OFDM power per rate set */
952    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
953        POW_SM(ratesArray[rate18mb], 24)
954          | POW_SM(ratesArray[rate12mb], 16)
955          | POW_SM(ratesArray[rate9mb], 8)
956          | POW_SM(ratesArray[rate6mb], 0)
957    );
958    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
959        POW_SM(ratesArray[rate54mb], 24)
960          | POW_SM(ratesArray[rate48mb], 16)
961          | POW_SM(ratesArray[rate36mb], 8)
962          | POW_SM(ratesArray[rate24mb], 0)
963    );
964
965    if (IEEE80211_IS_CHAN_2GHZ(chan)) {
966        /* Write the CCK power per rate set */
967        OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
968            POW_SM(ratesArray[rate2s], 24)
969              | POW_SM(ratesArray[rate2l],  16)
970              | POW_SM(ratesArray[rateXr],  8) /* XR target power */
971              | POW_SM(ratesArray[rate1l],   0)
972        );
973        OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
974            POW_SM(ratesArray[rate11s], 24)
975              | POW_SM(ratesArray[rate11l], 16)
976              | POW_SM(ratesArray[rate5_5s], 8)
977              | POW_SM(ratesArray[rate5_5l], 0)
978        );
979    HALDEBUG(ah, HAL_DEBUG_RESET,
980	"%s AR_PHY_POWER_TX_RATE3=0x%x AR_PHY_POWER_TX_RATE4=0x%x\n",
981	    __func__, OS_REG_READ(ah,AR_PHY_POWER_TX_RATE3),
982	    OS_REG_READ(ah,AR_PHY_POWER_TX_RATE4));
983    }
984
985    /* Write the HT20 power per rate set */
986    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
987        POW_SM(ratesArray[rateHt20_3], 24)
988          | POW_SM(ratesArray[rateHt20_2], 16)
989          | POW_SM(ratesArray[rateHt20_1], 8)
990          | POW_SM(ratesArray[rateHt20_0], 0)
991    );
992    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
993        POW_SM(ratesArray[rateHt20_7], 24)
994          | POW_SM(ratesArray[rateHt20_6], 16)
995          | POW_SM(ratesArray[rateHt20_5], 8)
996          | POW_SM(ratesArray[rateHt20_4], 0)
997    );
998
999    if (IEEE80211_IS_CHAN_HT40(chan)) {
1000        /* Write the HT40 power per rate set */
1001        OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1002            POW_SM(ratesArray[rateHt40_3], 24)
1003              | POW_SM(ratesArray[rateHt40_2], 16)
1004              | POW_SM(ratesArray[rateHt40_1], 8)
1005              | POW_SM(ratesArray[rateHt40_0], 0)
1006        );
1007        OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1008            POW_SM(ratesArray[rateHt40_7], 24)
1009              | POW_SM(ratesArray[rateHt40_6], 16)
1010              | POW_SM(ratesArray[rateHt40_5], 8)
1011              | POW_SM(ratesArray[rateHt40_4], 0)
1012        );
1013        /* Write the Dup/Ext 40 power per rate set */
1014        OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1015            POW_SM(ratesArray[rateExtOfdm], 24)
1016              | POW_SM(ratesArray[rateExtCck], 16)
1017              | POW_SM(ratesArray[rateDupOfdm], 8)
1018              | POW_SM(ratesArray[rateDupCck], 0)
1019        );
1020    }
1021
1022    /*
1023     * Set max power to 30 dBm and, optionally,
1024     * enable TPC in tx descriptors.
1025     */
1026    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER |
1027      (AH5212(ah)->ah_tpcEnabled ? AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE : 0));
1028#undef POW_SM
1029}
1030
1031
1032/**************************************************************
1033 * ar5416SetTransmitPower
1034 *
1035 * Set the transmit power in the baseband for the given
1036 * operating channel and mode.
1037 */
1038HAL_BOOL
1039ar5416SetTransmitPower(struct ath_hal *ah,
1040	const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
1041{
1042#define N(a)            (sizeof (a) / sizeof (a[0]))
1043#define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
1044
1045    MODAL_EEP_HEADER	*pModal;
1046    struct ath_hal_5212 *ahp = AH5212(ah);
1047    int16_t		txPowerIndexOffset = 0;
1048    int			i;
1049
1050    uint16_t		cfgCtl;
1051    uint16_t		powerLimit;
1052    uint16_t		twiceAntennaReduction;
1053    uint16_t		twiceMaxRegulatoryPower;
1054    int16_t		maxPower;
1055    HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
1056    struct ar5416eeprom	*pEepData = &ee->ee_base;
1057
1058    HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
1059
1060    /*
1061     * Default to 2, is overridden based on the EEPROM version / value.
1062     */
1063    AH5416(ah)->ah_ht40PowerIncForPdadc = 2;
1064
1065    /* Setup info for the actual eeprom */
1066    OS_MEMZERO(AH5416(ah)->ah_ratesArray, sizeof(AH5416(ah)->ah_ratesArray));
1067    cfgCtl = ath_hal_getctl(ah, chan);
1068    powerLimit = chan->ic_maxregpower * 2;
1069    twiceAntennaReduction = chan->ic_maxantgain;
1070    twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
1071    pModal = &pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)];
1072    HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
1073	__func__,chan->ic_freq, cfgCtl );
1074
1075    if (IS_EEP_MINOR_V2(ah)) {
1076        AH5416(ah)->ah_ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1077    }
1078
1079    if (!ar5416SetPowerPerRateTable(ah, pEepData,  chan,
1080                                    &AH5416(ah)->ah_ratesArray[0],
1081				    cfgCtl,
1082                                    twiceAntennaReduction,
1083				    twiceMaxRegulatoryPower, powerLimit)) {
1084        HALDEBUG(ah, HAL_DEBUG_ANY,
1085	    "%s: unable to set tx power per rate table\n", __func__);
1086        return AH_FALSE;
1087    }
1088
1089    if (!AH5416(ah)->ah_setPowerCalTable(ah,  pEepData, chan, &txPowerIndexOffset)) {
1090        HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
1091	    __func__);
1092        return AH_FALSE;
1093    }
1094
1095    maxPower = AH_MAX(AH5416(ah)->ah_ratesArray[rate6mb],
1096      AH5416(ah)->ah_ratesArray[rateHt20_0]);
1097
1098    if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1099        maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rate1l]);
1100    }
1101
1102    if (IEEE80211_IS_CHAN_HT40(chan)) {
1103        maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rateHt40_0]);
1104    }
1105
1106    ahp->ah_tx6PowerInHalfDbm = maxPower;
1107    AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
1108    ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
1109
1110    /*
1111     * txPowerIndexOffset is set by the SetPowerTable() call -
1112     *  adjust the rate table (0 offset if rates EEPROM not loaded)
1113     */
1114    for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) {
1115        AH5416(ah)->ah_ratesArray[i] =
1116          (int16_t)(txPowerIndexOffset + AH5416(ah)->ah_ratesArray[i]);
1117        if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER)
1118            AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER;
1119    }
1120
1121#ifdef AH_EEPROM_DUMP
1122    /*
1123     * Dump the rate array whilst it represents the intended dBm*2
1124     * values versus what's being adjusted before being programmed
1125     * in. Keep this in mind if you code up this function and enable
1126     * this debugging; the values won't necessarily be what's being
1127     * programmed into the hardware.
1128     */
1129    ar5416PrintPowerPerRate(ah, AH5416(ah)->ah_ratesArray);
1130#endif
1131
1132    /*
1133     * Merlin and later have a power offset, so subtract
1134     * pwr_table_offset * 2 from each value. The default
1135     * power offset is -5 dBm - ie, a register value of 0
1136     * equates to a TX power of -5 dBm.
1137     */
1138    if (AR_SREV_MERLIN_20_OR_LATER(ah)) {
1139        int8_t pwr_table_offset;
1140
1141	(void) ath_hal_eepromGet(ah, AR_EEP_PWR_TABLE_OFFSET,
1142	    &pwr_table_offset);
1143	/* Underflow power gets clamped at raw value 0 */
1144	/* Overflow power gets camped at AR5416_MAX_RATE_POWER */
1145	for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) {
1146		/*
1147		 * + pwr_table_offset is in dBm
1148		 * + ratesArray is in 1/2 dBm
1149		 */
1150		AH5416(ah)->ah_ratesArray[i] -= (pwr_table_offset * 2);
1151		if (AH5416(ah)->ah_ratesArray[i] < 0)
1152			AH5416(ah)->ah_ratesArray[i] = 0;
1153		else if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER)
1154		    AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER;
1155	}
1156    }
1157
1158    /*
1159     * Adjust rates for OLC where needed
1160     *
1161     * The following CCK rates need adjusting when doing 2.4ghz
1162     * CCK transmission.
1163     *
1164     * + rate2s, rate2l, rate1l, rate11s, rate11l, rate5_5s, rate5_5l
1165     * + rateExtCck, rateDupCck
1166     *
1167     * They're adjusted here regardless. The hardware then gets
1168     * programmed as needed. 5GHz operation doesn't program in CCK
1169     * rates for legacy mode but they seem to be initialised for
1170     * HT40 regardless of channel type.
1171     */
1172    if (AR_SREV_MERLIN_20_OR_LATER(ah) &&
1173	    ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
1174        int adj[] = {
1175	              rate2s, rate2l, rate1l, rate11s, rate11l,
1176	              rate5_5s, rate5_5l, rateExtCck, rateDupCck
1177		    };
1178        int cck_ofdm_delta = 2;
1179	int i;
1180	for (i = 0; i < N(adj); i++) {
1181            AH5416(ah)->ah_ratesArray[adj[i]] -= cck_ofdm_delta;
1182	    if (AH5416(ah)->ah_ratesArray[adj[i]] < 0)
1183	        AH5416(ah)->ah_ratesArray[adj[i]] = 0;
1184        }
1185    }
1186
1187    /*
1188     * Adjust the HT40 power to meet the correct target TX power
1189     * for 40MHz mode, based on TX power curves that are established
1190     * for 20MHz mode.
1191     *
1192     * XXX handle overflow/too high power level?
1193     */
1194    if (IEEE80211_IS_CHAN_HT40(chan)) {
1195	AH5416(ah)->ah_ratesArray[rateHt40_0] +=
1196	  AH5416(ah)->ah_ht40PowerIncForPdadc;
1197	AH5416(ah)->ah_ratesArray[rateHt40_1] +=
1198	  AH5416(ah)->ah_ht40PowerIncForPdadc;
1199	AH5416(ah)->ah_ratesArray[rateHt40_2] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1200	AH5416(ah)->ah_ratesArray[rateHt40_3] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1201	AH5416(ah)->ah_ratesArray[rateHt40_4] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1202	AH5416(ah)->ah_ratesArray[rateHt40_5] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1203	AH5416(ah)->ah_ratesArray[rateHt40_6] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1204	AH5416(ah)->ah_ratesArray[rateHt40_7] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1205    }
1206
1207    /* Write the TX power rate registers */
1208    ar5416WriteTxPowerRateRegisters(ah, chan, AH5416(ah)->ah_ratesArray);
1209
1210    /* Write the Power subtraction for dynamic chain changing, for per-packet powertx */
1211    OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
1212        POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1213          | POW_SM(pModal->pwrDecreaseFor2Chain, 0)
1214    );
1215    return AH_TRUE;
1216#undef POW_SM
1217#undef N
1218}
1219
1220/*
1221 * Exported call to check for a recent gain reading and return
1222 * the current state of the thermal calibration gain engine.
1223 */
1224HAL_RFGAIN
1225ar5416GetRfgain(struct ath_hal *ah)
1226{
1227
1228	return (HAL_RFGAIN_INACTIVE);
1229}
1230
1231/*
1232 * Places all of hardware into reset
1233 */
1234HAL_BOOL
1235ar5416Disable(struct ath_hal *ah)
1236{
1237
1238	if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
1239		return AH_FALSE;
1240	if (! ar5416SetResetReg(ah, HAL_RESET_COLD))
1241		return AH_FALSE;
1242
1243	AH5416(ah)->ah_initPLL(ah, AH_NULL);
1244	return (AH_TRUE);
1245}
1246
1247/*
1248 * Places the PHY and Radio chips into reset.  A full reset
1249 * must be called to leave this state.  The PCI/MAC/PCU are
1250 * not placed into reset as we must receive interrupt to
1251 * re-enable the hardware.
1252 */
1253HAL_BOOL
1254ar5416PhyDisable(struct ath_hal *ah)
1255{
1256
1257	if (! ar5416SetResetReg(ah, HAL_RESET_WARM))
1258		return AH_FALSE;
1259
1260	AH5416(ah)->ah_initPLL(ah, AH_NULL);
1261	return (AH_TRUE);
1262}
1263
1264/*
1265 * Write the given reset bit mask into the reset register
1266 */
1267HAL_BOOL
1268ar5416SetResetReg(struct ath_hal *ah, uint32_t type)
1269{
1270	/*
1271	 * Set force wake
1272	 */
1273	OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1274	    AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1275
1276	switch (type) {
1277	case HAL_RESET_POWER_ON:
1278		return ar5416SetResetPowerOn(ah);
1279	case HAL_RESET_WARM:
1280	case HAL_RESET_COLD:
1281		return ar5416SetReset(ah, type);
1282	default:
1283		HALASSERT(AH_FALSE);
1284		return AH_FALSE;
1285	}
1286}
1287
1288static HAL_BOOL
1289ar5416SetResetPowerOn(struct ath_hal *ah)
1290{
1291    /* Power On Reset (Hard Reset) */
1292
1293    /*
1294     * Set force wake
1295     *
1296     * If the MAC was running, previously calling
1297     * reset will wake up the MAC but it may go back to sleep
1298     * before we can start polling.
1299     * Set force wake  stops that
1300     * This must be called before initiating a hard reset.
1301     */
1302    OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1303            AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1304
1305    /*
1306     * PowerOn reset can be used in open loop power control or failure recovery.
1307     * If we do RTC reset while DMA is still running, hardware may corrupt memory.
1308     * Therefore, we need to reset AHB first to stop DMA.
1309     */
1310    if (! AR_SREV_HOWL(ah))
1311    	OS_REG_WRITE(ah, AR_RC, AR_RC_AHB);
1312    /*
1313     * RTC reset and clear
1314     */
1315    OS_REG_WRITE(ah, AR_RTC_RESET, 0);
1316    OS_DELAY(20);
1317
1318    if (! AR_SREV_HOWL(ah))
1319    	OS_REG_WRITE(ah, AR_RC, 0);
1320
1321    OS_REG_WRITE(ah, AR_RTC_RESET, 1);
1322
1323    /*
1324     * Poll till RTC is ON
1325     */
1326    if (!ath_hal_wait(ah, AR_RTC_STATUS, AR_RTC_PM_STATUS_M, AR_RTC_STATUS_ON)) {
1327        HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC not waking up\n", __func__);
1328        return AH_FALSE;
1329    }
1330
1331    return ar5416SetReset(ah, HAL_RESET_COLD);
1332}
1333
1334static HAL_BOOL
1335ar5416SetReset(struct ath_hal *ah, int type)
1336{
1337    uint32_t tmpReg, mask;
1338    uint32_t rst_flags;
1339
1340#ifdef	AH_SUPPORT_AR9130	/* Because of the AR9130 specific registers */
1341    if (AR_SREV_HOWL(ah)) {
1342        HALDEBUG(ah, HAL_DEBUG_ANY, "[ath] HOWL: Fiddling with derived clk!\n");
1343        uint32_t val = OS_REG_READ(ah, AR_RTC_DERIVED_CLK);
1344        val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1345        val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1346        OS_REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1347        (void) OS_REG_READ(ah, AR_RTC_DERIVED_CLK);
1348    }
1349#endif	/* AH_SUPPORT_AR9130 */
1350
1351    /*
1352     * Force wake
1353     */
1354    OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1355	AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1356
1357#ifdef	AH_SUPPORT_AR9130
1358    if (AR_SREV_HOWL(ah)) {
1359        rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1360          AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1361    } else {
1362#endif	/* AH_SUPPORT_AR9130 */
1363        /*
1364         * Reset AHB
1365         *
1366         * (In case the last interrupt source was a bus timeout.)
1367         * XXX TODO: this is not the way to do it! It should be recorded
1368         * XXX by the interrupt handler and passed _into_ the
1369         * XXX reset path routine so this occurs.
1370         */
1371        tmpReg = OS_REG_READ(ah, AR_INTR_SYNC_CAUSE);
1372        if (tmpReg & (AR_INTR_SYNC_LOCAL_TIMEOUT|AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1373            OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1374            OS_REG_WRITE(ah, AR_RC, AR_RC_AHB|AR_RC_HOSTIF);
1375        } else {
1376	    OS_REG_WRITE(ah, AR_RC, AR_RC_AHB);
1377        }
1378        rst_flags = AR_RTC_RC_MAC_WARM;
1379        if (type == HAL_RESET_COLD)
1380            rst_flags |= AR_RTC_RC_MAC_COLD;
1381#ifdef	AH_SUPPORT_AR9130
1382    }
1383#endif	/* AH_SUPPORT_AR9130 */
1384
1385    OS_REG_WRITE(ah, AR_RTC_RC, rst_flags);
1386
1387    if (AR_SREV_HOWL(ah))
1388        OS_DELAY(10000);
1389    else
1390        OS_DELAY(100);
1391
1392    /*
1393     * Clear resets and force wakeup
1394     */
1395    OS_REG_WRITE(ah, AR_RTC_RC, 0);
1396    if (!ath_hal_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0)) {
1397        HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC stuck in MAC reset\n", __func__);
1398        return AH_FALSE;
1399    }
1400
1401    /* Clear AHB reset */
1402    if (! AR_SREV_HOWL(ah))
1403        OS_REG_WRITE(ah, AR_RC, 0);
1404
1405    if (AR_SREV_HOWL(ah))
1406        OS_DELAY(50);
1407
1408    if (AR_SREV_HOWL(ah)) {
1409                uint32_t mask;
1410                mask = OS_REG_READ(ah, AR_CFG);
1411                if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1412                        HALDEBUG(ah, HAL_DEBUG_RESET,
1413                                "CFG Byte Swap Set 0x%x\n", mask);
1414                } else {
1415                        mask =
1416                                INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1417                        OS_REG_WRITE(ah, AR_CFG, mask);
1418                        HALDEBUG(ah, HAL_DEBUG_RESET,
1419                                "Setting CFG 0x%x\n", OS_REG_READ(ah, AR_CFG));
1420                }
1421    } else {
1422	if (type == HAL_RESET_COLD) {
1423		if (isBigEndian()) {
1424			/*
1425			 * Set CFG, little-endian for descriptor accesses.
1426			 */
1427			mask = INIT_CONFIG_STATUS | AR_CFG_SWRD;
1428#ifndef AH_NEED_DESC_SWAP
1429			mask |= AR_CFG_SWTD;
1430#endif
1431			HALDEBUG(ah, HAL_DEBUG_RESET,
1432			    "%s Applying descriptor swap\n", __func__);
1433			OS_REG_WRITE(ah, AR_CFG, mask);
1434		} else
1435			OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
1436	}
1437    }
1438
1439    return AH_TRUE;
1440}
1441
1442void
1443ar5416InitChainMasks(struct ath_hal *ah)
1444{
1445	int rx_chainmask = AH5416(ah)->ah_rx_chainmask;
1446
1447	/* Flip this for this chainmask regardless of chip */
1448	if (rx_chainmask == 0x5)
1449		OS_REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
1450
1451	/*
1452	 * Workaround for OWL 1.0 calibration failure; enable multi-chain;
1453	 * then set true mask after calibration.
1454	 */
1455	if (IS_5416V1(ah) && (rx_chainmask == 0x5 || rx_chainmask == 0x3)) {
1456		OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1457		OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1458	} else {
1459		OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
1460		OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
1461	}
1462	OS_REG_WRITE(ah, AR_SELFGEN_MASK, AH5416(ah)->ah_tx_chainmask);
1463
1464	if (AH5416(ah)->ah_tx_chainmask == 0x5)
1465		OS_REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
1466
1467	if (AR_SREV_HOWL(ah)) {
1468		OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1469		OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1470	}
1471}
1472
1473/*
1474 * Work-around for Owl 1.0 calibration failure.
1475 *
1476 * ar5416InitChainMasks sets the RX chainmask to 0x7 if it's Owl 1.0
1477 * due to init calibration failures. ar5416RestoreChainMask restores
1478 * these registers to the correct setting.
1479 */
1480void
1481ar5416RestoreChainMask(struct ath_hal *ah)
1482{
1483	int rx_chainmask = AH5416(ah)->ah_rx_chainmask;
1484
1485	if (IS_5416V1(ah) && (rx_chainmask == 0x5 || rx_chainmask == 0x3)) {
1486		OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1487		OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1488	}
1489}
1490
1491void
1492ar5416InitPLL(struct ath_hal *ah, const struct ieee80211_channel *chan)
1493{
1494	uint32_t pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1495	if (chan != AH_NULL) {
1496		if (IEEE80211_IS_CHAN_HALF(chan))
1497			pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1498		else if (IEEE80211_IS_CHAN_QUARTER(chan))
1499			pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1500
1501		if (IEEE80211_IS_CHAN_5GHZ(chan))
1502			pll |= SM(0xa, AR_RTC_PLL_DIV);
1503		else
1504			pll |= SM(0xb, AR_RTC_PLL_DIV);
1505	} else
1506		pll |= SM(0xb, AR_RTC_PLL_DIV);
1507
1508	OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1509
1510	/* TODO:
1511	* For multi-band owl, switch between bands by reiniting the PLL.
1512	*/
1513
1514	OS_DELAY(RTC_PLL_SETTLE_DELAY);
1515
1516	OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_SLEEP_DERIVED_CLK);
1517}
1518
1519static void
1520ar5416SetDefGainValues(struct ath_hal *ah,
1521    const MODAL_EEP_HEADER *pModal,
1522    const struct ar5416eeprom *eep,
1523    uint8_t txRxAttenLocal, int regChainOffset, int i)
1524{
1525
1526	if (IS_EEP_MINOR_V3(ah)) {
1527		txRxAttenLocal = pModal->txRxAttenCh[i];
1528
1529		if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1530			OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1531			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
1532			      pModal->bswMargin[i]);
1533			OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1534			      AR_PHY_GAIN_2GHZ_XATTEN1_DB,
1535			      pModal->bswAtten[i]);
1536			OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1537			      AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
1538			      pModal->xatten2Margin[i]);
1539			OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1540			      AR_PHY_GAIN_2GHZ_XATTEN2_DB,
1541			      pModal->xatten2Db[i]);
1542		} else {
1543			OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1544			      AR_PHY_GAIN_2GHZ_BSW_MARGIN,
1545			      pModal->bswMargin[i]);
1546			OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1547			      AR_PHY_GAIN_2GHZ_BSW_ATTEN,
1548			      pModal->bswAtten[i]);
1549		}
1550	}
1551
1552	if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1553		OS_REG_RMW_FIELD(ah,
1554		      AR_PHY_RXGAIN + regChainOffset,
1555		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
1556		OS_REG_RMW_FIELD(ah,
1557		      AR_PHY_RXGAIN + regChainOffset,
1558		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
1559	} else {
1560		OS_REG_RMW_FIELD(ah,
1561			  AR_PHY_RXGAIN + regChainOffset,
1562			  AR_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
1563		OS_REG_RMW_FIELD(ah,
1564			  AR_PHY_GAIN_2GHZ + regChainOffset,
1565			  AR_PHY_GAIN_2GHZ_RXTX_MARGIN, pModal->rxTxMarginCh[i]);
1566	}
1567}
1568
1569/*
1570 * Get the register chain offset for the given chain.
1571 *
1572 * Take into account the register chain swapping with AR5416 v2.0.
1573 *
1574 * XXX make sure that the reg chain swapping is only done for
1575 * XXX AR5416 v2.0 or greater, and not later chips?
1576 */
1577int
1578ar5416GetRegChainOffset(struct ath_hal *ah, int i)
1579{
1580	int regChainOffset;
1581
1582	if (AR_SREV_5416_V20_OR_LATER(ah) &&
1583	    (AH5416(ah)->ah_rx_chainmask == 0x5 ||
1584	    AH5416(ah)->ah_tx_chainmask == 0x5) && (i != 0)) {
1585		/* Regs are swapped from chain 2 to 1 for 5416 2_0 with
1586		 * only chains 0 and 2 populated
1587		 */
1588		regChainOffset = (i == 1) ? 0x2000 : 0x1000;
1589	} else {
1590		regChainOffset = i * 0x1000;
1591	}
1592
1593	return regChainOffset;
1594}
1595
1596/*
1597 * Read EEPROM header info and program the device for correct operation
1598 * given the channel value.
1599 */
1600HAL_BOOL
1601ar5416SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
1602{
1603    const HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
1604    const struct ar5416eeprom *eep = &ee->ee_base;
1605    const MODAL_EEP_HEADER *pModal;
1606    int			i, regChainOffset;
1607    uint8_t		txRxAttenLocal;    /* workaround for eeprom versions <= 14.2 */
1608
1609    HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
1610    pModal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)];
1611
1612    /* NB: workaround for eeprom versions <= 14.2 */
1613    txRxAttenLocal = IEEE80211_IS_CHAN_2GHZ(chan) ? 23 : 44;
1614
1615    OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
1616    for (i = 0; i < AR5416_MAX_CHAINS; i++) {
1617	   if (AR_SREV_MERLIN(ah)) {
1618		if (i >= 2) break;
1619	   }
1620	regChainOffset = ar5416GetRegChainOffset(ah, i);
1621
1622        OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, pModal->antCtrlChain[i]);
1623
1624        OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4 + regChainOffset,
1625        	(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4 + regChainOffset) &
1626        	~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
1627        	SM(pModal->iqCalICh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
1628        	SM(pModal->iqCalQCh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
1629
1630        /*
1631         * Large signal upgrade,
1632	 * If 14.3 or later EEPROM, use
1633	 * txRxAttenLocal = pModal->txRxAttenCh[i]
1634	 * else txRxAttenLocal is fixed value above.
1635         */
1636
1637        if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah))
1638	    ar5416SetDefGainValues(ah, pModal, eep, txRxAttenLocal, regChainOffset, i);
1639
1640    }
1641
1642	if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1643                if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1644                        OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_OB, pModal->ob);
1645                        OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_DB, pModal->db);
1646                        OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_OB, pModal->ob_ch1);
1647                        OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_DB, pModal->db_ch1);
1648                } else {
1649                        OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_OB5, pModal->ob);
1650                        OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_DB5, pModal->db);
1651                        OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_OB5, pModal->ob_ch1);
1652                        OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_DB5, pModal->db_ch1);
1653                }
1654                OS_A_REG_RMW_FIELD(ah, AR_AN_TOP2, AR_AN_TOP2_XPABIAS_LVL, pModal->xpaBiasLvl);
1655                OS_A_REG_RMW_FIELD(ah, AR_AN_TOP2, AR_AN_TOP2_LOCALBIAS,
1656		    !!(pModal->flagBits & AR5416_EEP_FLAG_LOCALBIAS));
1657                OS_A_REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
1658		    !!(pModal->flagBits & AR5416_EEP_FLAG_FORCEXPAON));
1659        }
1660
1661    OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
1662    OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
1663
1664    if (! AR_SREV_MERLIN_10_OR_LATER(ah))
1665    	OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_PGA, pModal->pgaDesiredSize);
1666
1667    OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
1668        SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
1669        | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
1670        | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
1671        | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
1672
1673    OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1674	pModal->txEndToRxOn);
1675
1676    if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1677	OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
1678	    pModal->thresh62);
1679	OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
1680	    pModal->thresh62);
1681    } else {
1682	OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
1683	    pModal->thresh62);
1684	OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA, AR_PHY_EXT_CCA_THRESH62,
1685	    pModal->thresh62);
1686    }
1687
1688    /* Minor Version Specific application */
1689    if (IS_EEP_MINOR_V2(ah)) {
1690        OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_DATA_START,
1691	    pModal->txFrameToDataStart);
1692        OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_PA_ON,
1693	    pModal->txFrameToPaOn);
1694    }
1695
1696    if (IS_EEP_MINOR_V3(ah) && IEEE80211_IS_CHAN_HT40(chan))
1697		/* Overwrite switch settling with HT40 value */
1698		OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
1699		    pModal->swSettleHt40);
1700
1701    if (AR_SREV_MERLIN_20_OR_LATER(ah) && EEP_MINOR(ah) >= AR5416_EEP_MINOR_VER_19)
1702         OS_REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL, AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK, pModal->miscBits);
1703
1704        if (AR_SREV_MERLIN_20(ah) && EEP_MINOR(ah) >= AR5416_EEP_MINOR_VER_20) {
1705                if (IEEE80211_IS_CHAN_2GHZ(chan))
1706                        OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
1707			    eep->baseEepHeader.dacLpMode);
1708                else if (eep->baseEepHeader.dacHiPwrMode_5G)
1709                        OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
1710                else
1711                        OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
1712			    eep->baseEepHeader.dacLpMode);
1713
1714		OS_DELAY(100);
1715
1716                OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
1717		    pModal->miscBits >> 2);
1718                OS_REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9, AR_PHY_TX_DESIRED_SCALE_CCK,
1719		    eep->baseEepHeader.desiredScaleCCK);
1720        }
1721
1722    return (AH_TRUE);
1723}
1724
1725/*
1726 * Helper functions common for AP/CB/XB
1727 */
1728
1729/*
1730 * Set the target power array "ratesArray" from the
1731 * given set of target powers.
1732 *
1733 * This is used by the various chipset/EEPROM TX power
1734 * setup routines.
1735 */
1736void
1737ar5416SetRatesArrayFromTargetPower(struct ath_hal *ah,
1738    const struct ieee80211_channel *chan,
1739    int16_t *ratesArray,
1740    const CAL_TARGET_POWER_LEG *targetPowerCck,
1741    const CAL_TARGET_POWER_LEG *targetPowerCckExt,
1742    const CAL_TARGET_POWER_LEG *targetPowerOfdm,
1743    const CAL_TARGET_POWER_LEG *targetPowerOfdmExt,
1744    const CAL_TARGET_POWER_HT *targetPowerHt20,
1745    const CAL_TARGET_POWER_HT *targetPowerHt40)
1746{
1747#define	N(a)	(sizeof(a)/sizeof(a[0]))
1748	int i;
1749
1750	/* Blank the rates array, to be consistent */
1751	for (i = 0; i < Ar5416RateSize; i++)
1752		ratesArray[i] = 0;
1753
1754	/* Set rates Array from collected data */
1755	ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1756	ratesArray[rate18mb] = ratesArray[rate24mb] =
1757	    targetPowerOfdm->tPow2x[0];
1758	ratesArray[rate36mb] = targetPowerOfdm->tPow2x[1];
1759	ratesArray[rate48mb] = targetPowerOfdm->tPow2x[2];
1760	ratesArray[rate54mb] = targetPowerOfdm->tPow2x[3];
1761	ratesArray[rateXr] = targetPowerOfdm->tPow2x[0];
1762
1763	for (i = 0; i < N(targetPowerHt20->tPow2x); i++) {
1764		ratesArray[rateHt20_0 + i] = targetPowerHt20->tPow2x[i];
1765	}
1766
1767	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1768		ratesArray[rate1l]  = targetPowerCck->tPow2x[0];
1769		ratesArray[rate2s] = ratesArray[rate2l]  = targetPowerCck->tPow2x[1];
1770		ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck->tPow2x[2];
1771		ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck->tPow2x[3];
1772	}
1773	if (IEEE80211_IS_CHAN_HT40(chan)) {
1774		for (i = 0; i < N(targetPowerHt40->tPow2x); i++) {
1775			ratesArray[rateHt40_0 + i] = targetPowerHt40->tPow2x[i];
1776		}
1777		ratesArray[rateDupOfdm] = targetPowerHt40->tPow2x[0];
1778		ratesArray[rateDupCck]  = targetPowerHt40->tPow2x[0];
1779		ratesArray[rateExtOfdm] = targetPowerOfdmExt->tPow2x[0];
1780		if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1781			ratesArray[rateExtCck]  = targetPowerCckExt->tPow2x[0];
1782		}
1783	}
1784#undef	N
1785}
1786
1787/*
1788 * ar5416SetPowerPerRateTable
1789 *
1790 * Sets the transmit power in the baseband for the given
1791 * operating channel and mode.
1792 */
1793static HAL_BOOL
1794ar5416SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom *pEepData,
1795                           const struct ieee80211_channel *chan,
1796                           int16_t *ratesArray, uint16_t cfgCtl,
1797                           uint16_t AntennaReduction,
1798                           uint16_t twiceMaxRegulatoryPower,
1799                           uint16_t powerLimit)
1800{
1801#define	N(a)	(sizeof(a)/sizeof(a[0]))
1802/* Local defines to distinguish between extension and control CTL's */
1803#define EXT_ADDITIVE (0x8000)
1804#define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
1805#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
1806#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
1807
1808	uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
1809	int i;
1810	int16_t  twiceLargestAntenna;
1811	CAL_CTL_DATA *rep;
1812	CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}};
1813	CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}};
1814	CAL_TARGET_POWER_HT  targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}};
1815	int16_t scaledPower, minCtlPower;
1816
1817#define SUB_NUM_CTL_MODES_AT_5G_40 2   /* excluding HT40, EXT-OFDM */
1818#define SUB_NUM_CTL_MODES_AT_2G_40 3   /* excluding HT40, EXT-OFDM, EXT-CCK */
1819	static const uint16_t ctlModesFor11a[] = {
1820	   CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
1821	};
1822	static const uint16_t ctlModesFor11g[] = {
1823	   CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
1824	};
1825	const uint16_t *pCtlMode;
1826	uint16_t numCtlModes, ctlMode, freq;
1827	CHAN_CENTERS centers;
1828
1829	ar5416GetChannelCenters(ah,  chan, &centers);
1830
1831	/* Compute TxPower reduction due to Antenna Gain */
1832
1833	twiceLargestAntenna = AH_MAX(AH_MAX(
1834	    pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0],
1835	    pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]),
1836	    pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
1837#if 0
1838	/* Turn it back on if we need to calculate per chain antenna gain reduction */
1839	/* Use only if the expected gain > 6dbi */
1840	/* Chain 0 is always used */
1841	twiceLargestAntenna = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0];
1842
1843	/* Look at antenna gains of Chains 1 and 2 if the TX mask is set */
1844	if (ahp->ah_tx_chainmask & 0x2)
1845		twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
1846			pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
1847
1848	if (ahp->ah_tx_chainmask & 0x4)
1849		twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
1850			pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
1851#endif
1852	twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
1853
1854	/* XXX setup for 5212 use (really used?) */
1855	ath_hal_eepromSet(ah,
1856	    IEEE80211_IS_CHAN_2GHZ(chan) ? AR_EEP_ANTGAINMAX_2 : AR_EEP_ANTGAINMAX_5,
1857	    twiceLargestAntenna);
1858
1859	/*
1860	 * scaledPower is the minimum of the user input power level and
1861	 * the regulatory allowed power level
1862	 */
1863	scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
1864
1865	/* Reduce scaled Power by number of chains active to get to per chain tx power level */
1866	/* TODO: better value than these? */
1867	switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) {
1868	case 1:
1869		break;
1870	case 2:
1871		scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor2Chain;
1872		break;
1873	case 3:
1874		scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor3Chain;
1875		break;
1876	default:
1877		return AH_FALSE; /* Unsupported number of chains */
1878	}
1879
1880	scaledPower = AH_MAX(0, scaledPower);
1881
1882	/* Get target powers from EEPROM - our baseline for TX Power */
1883	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1884		/* Setup for CTL modes */
1885		numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
1886		pCtlMode = ctlModesFor11g;
1887
1888		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
1889				AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
1890		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
1891				AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
1892		ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT20,
1893				AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
1894
1895		if (IEEE80211_IS_CHAN_HT40(chan)) {
1896			numCtlModes = N(ctlModesFor11g);    /* All 2G CTL's */
1897
1898			ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT40,
1899				AR5416_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
1900			/* Get target powers for extension channels */
1901			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
1902				AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
1903			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
1904				AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
1905		}
1906	} else {
1907		/* Setup for CTL modes */
1908		numCtlModes = N(ctlModesFor11a) - SUB_NUM_CTL_MODES_AT_5G_40; /* CTL_11A, CTL_5GHT20 */
1909		pCtlMode = ctlModesFor11a;
1910
1911		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower5G,
1912				AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
1913		ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower5GHT20,
1914				AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
1915
1916		if (IEEE80211_IS_CHAN_HT40(chan)) {
1917			numCtlModes = N(ctlModesFor11a); /* All 5G CTL's */
1918
1919			ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower5GHT40,
1920				AR5416_NUM_5G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
1921			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower5G,
1922				AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
1923		}
1924	}
1925
1926	/*
1927	 * For MIMO, need to apply regulatory caps individually across dynamically
1928	 * running modes: CCK, OFDM, HT20, HT40
1929	 *
1930	 * The outer loop walks through each possible applicable runtime mode.
1931	 * The inner loop walks through each ctlIndex entry in EEPROM.
1932	 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
1933	 *
1934	 */
1935	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
1936		HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
1937		    (pCtlMode[ctlMode] == CTL_2GHT40);
1938		if (isHt40CtlMode) {
1939			freq = centers.ctl_center;
1940		} else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
1941			freq = centers.ext_center;
1942		} else {
1943			freq = centers.ctl_center;
1944		}
1945
1946		/* walk through each CTL index stored in EEPROM */
1947		for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
1948			uint16_t twiceMinEdgePower;
1949
1950			/* compare test group from regulatory channel list with test mode from pCtlMode list */
1951			if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
1952				(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1953				 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
1954				rep = &(pEepData->ctlData[i]);
1955				twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
1956							rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1],
1957							IEEE80211_IS_CHAN_2GHZ(chan));
1958				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1959					/* Find the minimum of all CTL edge powers that apply to this channel */
1960					twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
1961				} else {
1962					/* specific */
1963					twiceMaxEdgePower = twiceMinEdgePower;
1964					break;
1965				}
1966			}
1967		}
1968		minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
1969		/* Apply ctl mode to correct target power set */
1970		switch(pCtlMode[ctlMode]) {
1971		case CTL_11B:
1972			for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
1973				targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
1974			}
1975			break;
1976		case CTL_11A:
1977		case CTL_11G:
1978			for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
1979				targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
1980			}
1981			break;
1982		case CTL_5GHT20:
1983		case CTL_2GHT20:
1984			for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
1985				targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
1986			}
1987			break;
1988		case CTL_11B_EXT:
1989			targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
1990			break;
1991		case CTL_11A_EXT:
1992		case CTL_11G_EXT:
1993			targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
1994			break;
1995		case CTL_5GHT40:
1996		case CTL_2GHT40:
1997			for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
1998				targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
1999			}
2000			break;
2001		default:
2002			return AH_FALSE;
2003			break;
2004		}
2005	} /* end ctl mode checking */
2006
2007	/* Set rates Array from collected data */
2008	ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray,
2009	    &targetPowerCck,
2010	    &targetPowerCckExt,
2011	    &targetPowerOfdm,
2012	    &targetPowerOfdmExt,
2013	    &targetPowerHt20,
2014	    &targetPowerHt40);
2015	return AH_TRUE;
2016#undef EXT_ADDITIVE
2017#undef CTL_11A_EXT
2018#undef CTL_11G_EXT
2019#undef CTL_11B_EXT
2020#undef SUB_NUM_CTL_MODES_AT_5G_40
2021#undef SUB_NUM_CTL_MODES_AT_2G_40
2022#undef N
2023}
2024
2025/**************************************************************************
2026 * fbin2freq
2027 *
2028 * Get channel value from binary representation held in eeprom
2029 * RETURNS: the frequency in MHz
2030 */
2031static uint16_t
2032fbin2freq(uint8_t fbin, HAL_BOOL is2GHz)
2033{
2034    /*
2035     * Reserved value 0xFF provides an empty definition both as
2036     * an fbin and as a frequency - do not convert
2037     */
2038    if (fbin == AR5416_BCHAN_UNUSED) {
2039        return fbin;
2040    }
2041
2042    return (uint16_t)((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
2043}
2044
2045/*
2046 * ar5416GetMaxEdgePower
2047 *
2048 * Find the maximum conformance test limit for the given channel and CTL info
2049 */
2050uint16_t
2051ar5416GetMaxEdgePower(uint16_t freq, CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz)
2052{
2053    uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
2054    int      i;
2055
2056    /* Get the edge power */
2057    for (i = 0; (i < AR5416_NUM_BAND_EDGES) && (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED) ; i++) {
2058        /*
2059         * If there's an exact channel match or an inband flag set
2060         * on the lower channel use the given rdEdgePower
2061         */
2062        if (freq == fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
2063            twiceMaxEdgePower = MS(pRdEdgesPower[i].tPowerFlag, CAL_CTL_EDGES_POWER);
2064            break;
2065        } else if ((i > 0) && (freq < fbin2freq(pRdEdgesPower[i].bChannel, is2GHz))) {
2066            if (fbin2freq(pRdEdgesPower[i - 1].bChannel, is2GHz) < freq && (pRdEdgesPower[i - 1].tPowerFlag & CAL_CTL_EDGES_FLAG) != 0) {
2067                twiceMaxEdgePower = MS(pRdEdgesPower[i - 1].tPowerFlag, CAL_CTL_EDGES_POWER);
2068            }
2069            /* Leave loop - no more affecting edges possible in this monotonic increasing list */
2070            break;
2071        }
2072    }
2073    HALASSERT(twiceMaxEdgePower > 0);
2074    return twiceMaxEdgePower;
2075}
2076
2077/**************************************************************
2078 * ar5416GetTargetPowers
2079 *
2080 * Return the rates of target power for the given target power table
2081 * channel, and number of channels
2082 */
2083void
2084ar5416GetTargetPowers(struct ath_hal *ah,  const struct ieee80211_channel *chan,
2085                      CAL_TARGET_POWER_HT *powInfo, uint16_t numChannels,
2086                      CAL_TARGET_POWER_HT *pNewPower, uint16_t numRates,
2087                      HAL_BOOL isHt40Target)
2088{
2089    uint16_t clo, chi;
2090    int i;
2091    int matchIndex = -1, lowIndex = -1;
2092    uint16_t freq;
2093    CHAN_CENTERS centers;
2094
2095    ar5416GetChannelCenters(ah,  chan, &centers);
2096    freq = isHt40Target ? centers.synth_center : centers.ctl_center;
2097
2098    /* Copy the target powers into the temp channel list */
2099    if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
2100        matchIndex = 0;
2101    } else {
2102        for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
2103            if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
2104                matchIndex = i;
2105                break;
2106            } else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) &&
2107                       (freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))))
2108            {
2109                lowIndex = i - 1;
2110                break;
2111            }
2112        }
2113        if ((matchIndex == -1) && (lowIndex == -1)) {
2114            HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)));
2115            matchIndex = i - 1;
2116        }
2117    }
2118
2119    if (matchIndex != -1) {
2120        OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
2121    } else {
2122        HALASSERT(lowIndex != -1);
2123        /*
2124         * Get the lower and upper channels, target powers,
2125         * and interpolate between them.
2126         */
2127        clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
2128        chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
2129
2130        for (i = 0; i < numRates; i++) {
2131            pNewPower->tPow2x[i] = (uint8_t)ath_ee_interpolate(freq, clo, chi,
2132                                   powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
2133        }
2134    }
2135}
2136/**************************************************************
2137 * ar5416GetTargetPowersLeg
2138 *
2139 * Return the four rates of target power for the given target power table
2140 * channel, and number of channels
2141 */
2142void
2143ar5416GetTargetPowersLeg(struct ath_hal *ah,
2144                         const struct ieee80211_channel *chan,
2145                         CAL_TARGET_POWER_LEG *powInfo, uint16_t numChannels,
2146                         CAL_TARGET_POWER_LEG *pNewPower, uint16_t numRates,
2147			 HAL_BOOL isExtTarget)
2148{
2149    uint16_t clo, chi;
2150    int i;
2151    int matchIndex = -1, lowIndex = -1;
2152    uint16_t freq;
2153    CHAN_CENTERS centers;
2154
2155    ar5416GetChannelCenters(ah,  chan, &centers);
2156    freq = (isExtTarget) ? centers.ext_center :centers.ctl_center;
2157
2158    /* Copy the target powers into the temp channel list */
2159    if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
2160        matchIndex = 0;
2161    } else {
2162        for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
2163            if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
2164                matchIndex = i;
2165                break;
2166            } else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) &&
2167                       (freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))))
2168            {
2169                lowIndex = i - 1;
2170                break;
2171            }
2172        }
2173        if ((matchIndex == -1) && (lowIndex == -1)) {
2174            HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)));
2175            matchIndex = i - 1;
2176        }
2177    }
2178
2179    if (matchIndex != -1) {
2180        OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
2181    } else {
2182        HALASSERT(lowIndex != -1);
2183        /*
2184         * Get the lower and upper channels, target powers,
2185         * and interpolate between them.
2186         */
2187        clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
2188        chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
2189
2190        for (i = 0; i < numRates; i++) {
2191            pNewPower->tPow2x[i] = (uint8_t)ath_ee_interpolate(freq, clo, chi,
2192                                   powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
2193        }
2194    }
2195}
2196
2197/*
2198 * Set the gain boundaries for the given radio chain.
2199 *
2200 * The gain boundaries tell the hardware at what point in the
2201 * PDADC array to "switch over" from one PD gain setting
2202 * to another. There's also a gain overlap between two
2203 * PDADC array gain curves where there's valid PD values
2204 * for 2 gain settings.
2205 *
2206 * The hardware uses the gain overlap and gain boundaries
2207 * to determine which gain curve to use for the given
2208 * target TX power.
2209 */
2210void
2211ar5416SetGainBoundariesClosedLoop(struct ath_hal *ah, int i,
2212    uint16_t pdGainOverlap_t2, uint16_t gainBoundaries[])
2213{
2214	int regChainOffset;
2215
2216	regChainOffset = ar5416GetRegChainOffset(ah, i);
2217
2218	HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: chain %d: gainOverlap_t2: %d,"
2219	    " gainBoundaries: %d, %d, %d, %d\n", __func__, i, pdGainOverlap_t2,
2220	    gainBoundaries[0], gainBoundaries[1], gainBoundaries[2],
2221	    gainBoundaries[3]);
2222	OS_REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
2223	    SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
2224	    SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)  |
2225	    SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)  |
2226	    SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)  |
2227	    SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
2228}
2229
2230/*
2231 * Get the gain values and the number of gain levels given
2232 * in xpdMask.
2233 *
2234 * The EEPROM xpdMask determines which power detector gain
2235 * levels were used during calibration. Each of these mask
2236 * bits maps to a fixed gain level in hardware.
2237 */
2238uint16_t
2239ar5416GetXpdGainValues(struct ath_hal *ah, uint16_t xpdMask,
2240    uint16_t xpdGainValues[])
2241{
2242    int i;
2243    uint16_t numXpdGain = 0;
2244
2245    for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
2246        if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
2247            if (numXpdGain >= AR5416_NUM_PD_GAINS) {
2248                HALASSERT(0);
2249                break;
2250            }
2251            xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i);
2252            numXpdGain++;
2253        }
2254    }
2255    return numXpdGain;
2256}
2257
2258/*
2259 * Write the detector gain and biases.
2260 *
2261 * There are four power detector gain levels. The xpdMask in the EEPROM
2262 * determines which power detector gain levels have TX power calibration
2263 * data associated with them. This function writes the number of
2264 * PD gain levels and their values into the hardware.
2265 *
2266 * This is valid for all TX chains - the calibration data itself however
2267 * will likely differ per-chain.
2268 */
2269void
2270ar5416WriteDetectorGainBiases(struct ath_hal *ah, uint16_t numXpdGain,
2271    uint16_t xpdGainValues[])
2272{
2273    HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: numXpdGain: %d,"
2274      " xpdGainValues: %d, %d, %d\n", __func__, numXpdGain,
2275      xpdGainValues[0], xpdGainValues[1], xpdGainValues[2]);
2276
2277    OS_REG_WRITE(ah, AR_PHY_TPCRG1, (OS_REG_READ(ah, AR_PHY_TPCRG1) &
2278    	~(AR_PHY_TPCRG1_NUM_PD_GAIN | AR_PHY_TPCRG1_PD_GAIN_1 |
2279	AR_PHY_TPCRG1_PD_GAIN_2 | AR_PHY_TPCRG1_PD_GAIN_3)) |
2280	SM(numXpdGain - 1, AR_PHY_TPCRG1_NUM_PD_GAIN) |
2281	SM(xpdGainValues[0], AR_PHY_TPCRG1_PD_GAIN_1 ) |
2282	SM(xpdGainValues[1], AR_PHY_TPCRG1_PD_GAIN_2) |
2283	SM(xpdGainValues[2],  AR_PHY_TPCRG1_PD_GAIN_3));
2284}
2285
2286/*
2287 * Write the PDADC array to the given radio chain i.
2288 *
2289 * The 32 PDADC registers are written without any care about
2290 * their contents - so if various chips treat values as "special",
2291 * this routine will not care.
2292 */
2293void
2294ar5416WritePdadcValues(struct ath_hal *ah, int i, uint8_t pdadcValues[])
2295{
2296	int regOffset, regChainOffset;
2297	int j;
2298	int reg32;
2299
2300	regChainOffset = ar5416GetRegChainOffset(ah, i);
2301	regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
2302
2303	for (j = 0; j < 32; j++) {
2304		reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0)  |
2305		    ((pdadcValues[4*j + 1] & 0xFF) << 8)  |
2306		    ((pdadcValues[4*j + 2] & 0xFF) << 16) |
2307		    ((pdadcValues[4*j + 3] & 0xFF) << 24) ;
2308		OS_REG_WRITE(ah, regOffset, reg32);
2309		HALDEBUG(ah, HAL_DEBUG_EEPROM, "PDADC: Chain %d |"
2310		    " PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d"
2311		    " Value %3d | PDADC %3d Value %3d |\n",
2312		    i,
2313		    4*j, pdadcValues[4*j],
2314		    4*j+1, pdadcValues[4*j + 1],
2315		    4*j+2, pdadcValues[4*j + 2],
2316		    4*j+3, pdadcValues[4*j + 3]);
2317		regOffset += 4;
2318	}
2319}
2320
2321/**************************************************************
2322 * ar5416SetPowerCalTable
2323 *
2324 * Pull the PDADC piers from cal data and interpolate them across the given
2325 * points as well as from the nearest pier(s) to get a power detector
2326 * linear voltage to power level table.
2327 */
2328HAL_BOOL
2329ar5416SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom *pEepData,
2330	const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
2331{
2332    CAL_DATA_PER_FREQ *pRawDataset;
2333    uint8_t  *pCalBChans = AH_NULL;
2334    uint16_t pdGainOverlap_t2;
2335    static uint8_t  pdadcValues[AR5416_NUM_PDADC_VALUES];
2336    uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK];
2337    uint16_t numPiers, i;
2338    int16_t  tMinCalPower;
2339    uint16_t numXpdGain, xpdMask;
2340    uint16_t xpdGainValues[AR5416_NUM_PD_GAINS];
2341    uint32_t regChainOffset;
2342
2343    OS_MEMZERO(xpdGainValues, sizeof(xpdGainValues));
2344
2345    xpdMask = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].xpdGain;
2346
2347    if (IS_EEP_MINOR_V2(ah)) {
2348        pdGainOverlap_t2 = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pdGainOverlap;
2349    } else {
2350    	pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
2351    }
2352
2353    if (IEEE80211_IS_CHAN_2GHZ(chan)) {
2354        pCalBChans = pEepData->calFreqPier2G;
2355        numPiers = AR5416_NUM_2G_CAL_PIERS;
2356    } else {
2357        pCalBChans = pEepData->calFreqPier5G;
2358        numPiers = AR5416_NUM_5G_CAL_PIERS;
2359    }
2360
2361    /* Calculate the value of xpdgains from the xpdGain Mask */
2362    numXpdGain = ar5416GetXpdGainValues(ah, xpdMask, xpdGainValues);
2363
2364    /* Write the detector gain biases and their number */
2365    ar5416WriteDetectorGainBiases(ah, numXpdGain, xpdGainValues);
2366
2367    for (i = 0; i < AR5416_MAX_CHAINS; i++) {
2368	regChainOffset = ar5416GetRegChainOffset(ah, i);
2369
2370        if (pEepData->baseEepHeader.txMask & (1 << i)) {
2371            if (IEEE80211_IS_CHAN_2GHZ(chan)) {
2372                pRawDataset = pEepData->calPierData2G[i];
2373            } else {
2374                pRawDataset = pEepData->calPierData5G[i];
2375            }
2376
2377            /* Fetch the gain boundaries and the PDADC values */
2378	    ar5416GetGainBoundariesAndPdadcs(ah,  chan, pRawDataset,
2379                                             pCalBChans, numPiers,
2380                                             pdGainOverlap_t2,
2381                                             &tMinCalPower, gainBoundaries,
2382                                             pdadcValues, numXpdGain);
2383
2384            if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
2385		ar5416SetGainBoundariesClosedLoop(ah, i, pdGainOverlap_t2,
2386		  gainBoundaries);
2387            }
2388
2389            /* Write the power values into the baseband power table */
2390	    ar5416WritePdadcValues(ah, i, pdadcValues);
2391        }
2392    }
2393    *pTxPowerIndexOffset = 0;
2394
2395    return AH_TRUE;
2396}
2397
2398/**************************************************************
2399 * ar5416GetGainBoundariesAndPdadcs
2400 *
2401 * Uses the data points read from EEPROM to reconstruct the pdadc power table
2402 * Called by ar5416SetPowerCalTable only.
2403 */
2404void
2405ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah,
2406                                 const struct ieee80211_channel *chan,
2407				 CAL_DATA_PER_FREQ *pRawDataSet,
2408                                 uint8_t * bChans,  uint16_t availPiers,
2409                                 uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries,
2410                                 uint8_t * pPDADCValues, uint16_t numXpdGains)
2411{
2412
2413    int       i, j, k;
2414    int16_t   ss;         /* potentially -ve index for taking care of pdGainOverlap */
2415    uint16_t  idxL, idxR, numPiers; /* Pier indexes */
2416
2417    /* filled out Vpd table for all pdGains (chanL) */
2418    static uint8_t   vpdTableL[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
2419
2420    /* filled out Vpd table for all pdGains (chanR) */
2421    static uint8_t   vpdTableR[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
2422
2423    /* filled out Vpd table for all pdGains (interpolated) */
2424    static uint8_t   vpdTableI[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
2425
2426    uint8_t   *pVpdL, *pVpdR, *pPwrL, *pPwrR;
2427    uint8_t   minPwrT4[AR5416_NUM_PD_GAINS];
2428    uint8_t   maxPwrT4[AR5416_NUM_PD_GAINS];
2429    int16_t   vpdStep;
2430    int16_t   tmpVal;
2431    uint16_t  sizeCurrVpdTable, maxIndex, tgtIndex;
2432    HAL_BOOL    match;
2433    int16_t  minDelta = 0;
2434    CHAN_CENTERS centers;
2435
2436    ar5416GetChannelCenters(ah, chan, &centers);
2437
2438    /* Trim numPiers for the number of populated channel Piers */
2439    for (numPiers = 0; numPiers < availPiers; numPiers++) {
2440        if (bChans[numPiers] == AR5416_BCHAN_UNUSED) {
2441            break;
2442        }
2443    }
2444
2445    /* Find pier indexes around the current channel */
2446    match = ath_ee_getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center,
2447	IEEE80211_IS_CHAN_2GHZ(chan)), bChans, numPiers, &idxL, &idxR);
2448
2449    if (match) {
2450        /* Directly fill both vpd tables from the matching index */
2451        for (i = 0; i < numXpdGains; i++) {
2452            minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
2453            maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
2454            ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pRawDataSet[idxL].pwrPdg[i],
2455                               pRawDataSet[idxL].vpdPdg[i], AR5416_PD_GAIN_ICEPTS, vpdTableI[i]);
2456        }
2457    } else {
2458        for (i = 0; i < numXpdGains; i++) {
2459            pVpdL = pRawDataSet[idxL].vpdPdg[i];
2460            pPwrL = pRawDataSet[idxL].pwrPdg[i];
2461            pVpdR = pRawDataSet[idxR].vpdPdg[i];
2462            pPwrR = pRawDataSet[idxR].pwrPdg[i];
2463
2464            /* Start Vpd interpolation from the max of the minimum powers */
2465            minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]);
2466
2467            /* End Vpd interpolation from the min of the max powers */
2468            maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
2469            HALASSERT(maxPwrT4[i] > minPwrT4[i]);
2470
2471            /* Fill pier Vpds */
2472            ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL, AR5416_PD_GAIN_ICEPTS, vpdTableL[i]);
2473            ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR, AR5416_PD_GAIN_ICEPTS, vpdTableR[i]);
2474
2475            /* Interpolate the final vpd */
2476            for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
2477                vpdTableI[i][j] = (uint8_t)(ath_ee_interpolate((uint16_t)FREQ2FBIN(centers.synth_center,
2478		    IEEE80211_IS_CHAN_2GHZ(chan)),
2479                    bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j]));
2480            }
2481        }
2482    }
2483    *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
2484
2485    k = 0; /* index for the final table */
2486    for (i = 0; i < numXpdGains; i++) {
2487        if (i == (numXpdGains - 1)) {
2488            pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2);
2489        } else {
2490            pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
2491        }
2492
2493        pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
2494
2495	/* NB: only applies to owl 1.0 */
2496        if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah) ) {
2497	    /*
2498             * fix the gain delta, but get a delta that can be applied to min to
2499             * keep the upper power values accurate, don't think max needs to
2500             * be adjusted because should not be at that area of the table?
2501	     */
2502            minDelta = pPdGainBoundaries[0] - 23;
2503            pPdGainBoundaries[0] = 23;
2504        }
2505        else {
2506            minDelta = 0;
2507        }
2508
2509        /* Find starting index for this pdGain */
2510        if (i == 0) {
2511            if (AR_SREV_MERLIN_10_OR_LATER(ah))
2512                ss = (int16_t)(0 - (minPwrT4[i] / 2));
2513            else
2514                ss = 0; /* for the first pdGain, start from index 0 */
2515        } else {
2516	    /* need overlap entries extrapolated below. */
2517            ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta);
2518        }
2519        vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
2520        vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
2521        /*
2522         *-ve ss indicates need to extrapolate data below for this pdGain
2523         */
2524        while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2525            tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
2526            pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal);
2527            ss++;
2528        }
2529
2530        sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1);
2531        tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2));
2532        maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
2533
2534        while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2535            pPDADCValues[k++] = vpdTableI[i][ss++];
2536        }
2537
2538        vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]);
2539        vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
2540        /*
2541         * for last gain, pdGainBoundary == Pmax_t2, so will
2542         * have to extrapolate
2543         */
2544        if (tgtIndex >= maxIndex) {  /* need to extrapolate above */
2545            while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2546                tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
2547                          (ss - maxIndex +1) * vpdStep));
2548                pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal);
2549                ss++;
2550            }
2551        }               /* extrapolated above */
2552    }                   /* for all pdGainUsed */
2553
2554    /* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */
2555    while (i < AR5416_PD_GAINS_IN_MASK) {
2556        pPdGainBoundaries[i] = pPdGainBoundaries[i-1];
2557        i++;
2558    }
2559
2560    while (k < AR5416_NUM_PDADC_VALUES) {
2561        pPDADCValues[k] = pPDADCValues[k-1];
2562        k++;
2563    }
2564    return;
2565}
2566
2567/*
2568 * The linux ath9k driver and (from what I've been told) the reference
2569 * Atheros driver enables the 11n PHY by default whether or not it's
2570 * configured.
2571 */
2572static void
2573ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan)
2574{
2575	uint32_t phymode;
2576	uint32_t enableDacFifo = 0;
2577	HAL_HT_MACMODE macmode;		/* MAC - 20/40 mode */
2578
2579	if (AR_SREV_KITE_10_OR_LATER(ah))
2580		enableDacFifo = (OS_REG_READ(ah, AR_PHY_TURBO) & AR_PHY_FC_ENABLE_DAC_FIFO);
2581
2582	/* Enable 11n HT, 20 MHz */
2583	phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
2584		| AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
2585
2586	/* Configure baseband for dynamic 20/40 operation */
2587	if (IEEE80211_IS_CHAN_HT40(chan)) {
2588		phymode |= AR_PHY_FC_DYN2040_EN;
2589
2590		/* Configure control (primary) channel at +-10MHz */
2591		if (IEEE80211_IS_CHAN_HT40U(chan))
2592			phymode |= AR_PHY_FC_DYN2040_PRI_CH;
2593#if 0
2594		/* Configure 20/25 spacing */
2595		if (ht->ht_extprotspacing == HAL_HT_EXTPROTSPACING_25)
2596			phymode |= AR_PHY_FC_DYN2040_EXT_CH;
2597#endif
2598		macmode = HAL_HT_MACMODE_2040;
2599	} else
2600		macmode = HAL_HT_MACMODE_20;
2601	OS_REG_WRITE(ah, AR_PHY_TURBO, phymode);
2602
2603	/* Configure MAC for 20/40 operation */
2604	ar5416Set11nMac2040(ah, macmode);
2605
2606	/* global transmit timeout (25 TUs default)*/
2607	/* XXX - put this elsewhere??? */
2608	OS_REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S) ;
2609
2610	/* carrier sense timeout */
2611	OS_REG_SET_BIT(ah, AR_GTTM, AR_GTTM_CST_USEC);
2612	OS_REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
2613}
2614
2615void
2616ar5416GetChannelCenters(struct ath_hal *ah,
2617	const struct ieee80211_channel *chan, CHAN_CENTERS *centers)
2618{
2619	uint16_t freq = ath_hal_gethwchannel(ah, chan);
2620
2621	centers->ctl_center = freq;
2622	centers->synth_center = freq;
2623	/*
2624	 * In 20/40 phy mode, the center frequency is
2625	 * "between" the control and extension channels.
2626	 */
2627	if (IEEE80211_IS_CHAN_HT40U(chan)) {
2628		centers->synth_center += HT40_CHANNEL_CENTER_SHIFT;
2629		centers->ext_center =
2630		    centers->synth_center + HT40_CHANNEL_CENTER_SHIFT;
2631	} else if (IEEE80211_IS_CHAN_HT40D(chan)) {
2632		centers->synth_center -= HT40_CHANNEL_CENTER_SHIFT;
2633		centers->ext_center =
2634		    centers->synth_center - HT40_CHANNEL_CENTER_SHIFT;
2635	} else {
2636		centers->ext_center = freq;
2637	}
2638}
2639
2640/*
2641 * Override the INI vals being programmed.
2642 */
2643static void
2644ar5416OverrideIni(struct ath_hal *ah, const struct ieee80211_channel *chan)
2645{
2646	uint32_t val;
2647
2648	/*
2649	 * Set the RX_ABORT and RX_DIS and clear if off only after
2650	 * RXE is set for MAC. This prevents frames with corrupted
2651	 * descriptor status.
2652	 */
2653	OS_REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
2654
2655	if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
2656		val = OS_REG_READ(ah, AR_PCU_MISC_MODE2);
2657		val &= (~AR_PCU_MISC_MODE2_ADHOC_MCAST_KEYID_ENABLE);
2658		if (!AR_SREV_9271(ah))
2659			val &= ~AR_PCU_MISC_MODE2_HWWAR1;
2660
2661		if (AR_SREV_KIWI_10_OR_LATER(ah))
2662			val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
2663
2664		OS_REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
2665	}
2666
2667	/*
2668	 * Disable RIFS search on some chips to avoid baseband
2669	 * hang issues.
2670	 */
2671	if (AR_SREV_HOWL(ah) || AR_SREV_SOWL(ah))
2672		(void) ar5416SetRifsDelay(ah, chan, AH_FALSE);
2673
2674        if (!AR_SREV_5416_V20_OR_LATER(ah) || AR_SREV_MERLIN(ah))
2675		return;
2676
2677	/*
2678	 * Disable BB clock gating
2679	 * Necessary to avoid issues on AR5416 2.0
2680	 */
2681	OS_REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
2682}
2683
2684struct ini {
2685	uint32_t        *data;          /* NB: !const */
2686	int             rows, cols;
2687};
2688
2689/*
2690 * Override XPA bias level based on operating frequency.
2691 * This is a v14 EEPROM specific thing for the AR9160.
2692 */
2693void
2694ar5416EepromSetAddac(struct ath_hal *ah, const struct ieee80211_channel *chan)
2695{
2696#define	XPA_LVL_FREQ(cnt)	(pModal->xpaBiasLvlFreq[cnt])
2697	MODAL_EEP_HEADER	*pModal;
2698	HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
2699	struct ar5416eeprom	*eep = &ee->ee_base;
2700	uint8_t biaslevel;
2701
2702	if (! AR_SREV_SOWL(ah))
2703		return;
2704
2705        if (EEP_MINOR(ah) < AR5416_EEP_MINOR_VER_7)
2706                return;
2707
2708	pModal = &(eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)]);
2709
2710	if (pModal->xpaBiasLvl != 0xff)
2711		biaslevel = pModal->xpaBiasLvl;
2712	else {
2713		uint16_t resetFreqBin, freqBin, freqCount = 0;
2714		CHAN_CENTERS centers;
2715
2716		ar5416GetChannelCenters(ah, chan, &centers);
2717
2718		resetFreqBin = FREQ2FBIN(centers.synth_center, IEEE80211_IS_CHAN_2GHZ(chan));
2719		freqBin = XPA_LVL_FREQ(0) & 0xff;
2720		biaslevel = (uint8_t) (XPA_LVL_FREQ(0) >> 14);
2721
2722		freqCount++;
2723
2724		while (freqCount < 3) {
2725			if (XPA_LVL_FREQ(freqCount) == 0x0)
2726			break;
2727
2728			freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
2729			if (resetFreqBin >= freqBin)
2730				biaslevel = (uint8_t)(XPA_LVL_FREQ(freqCount) >> 14);
2731			else
2732				break;
2733			freqCount++;
2734		}
2735	}
2736
2737	HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: overriding XPA bias level = %d\n",
2738	    __func__, biaslevel);
2739
2740	/*
2741	 * This is a dirty workaround for the const initval data,
2742	 * which will upset multiple AR9160's on the same board.
2743	 *
2744	 * The HAL should likely just have a private copy of the addac
2745	 * data per instance.
2746	 */
2747	if (IEEE80211_IS_CHAN_2GHZ(chan))
2748                HAL_INI_VAL((struct ini *) &AH5416(ah)->ah_ini_addac, 7, 1) =
2749		    (HAL_INI_VAL(&AH5416(ah)->ah_ini_addac, 7, 1) & (~0x18)) | biaslevel << 3;
2750        else
2751                HAL_INI_VAL((struct ini *) &AH5416(ah)->ah_ini_addac, 6, 1) =
2752		    (HAL_INI_VAL(&AH5416(ah)->ah_ini_addac, 6, 1) & (~0xc0)) | biaslevel << 6;
2753#undef XPA_LVL_FREQ
2754}
2755
2756static void
2757ar5416MarkPhyInactive(struct ath_hal *ah)
2758{
2759	OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
2760}
2761
2762#define	AR5416_IFS_SLOT_FULL_RATE_40	0x168	/* 9 us half, 40 MHz core clock (9*40) */
2763#define	AR5416_IFS_SLOT_HALF_RATE_40	0x104	/* 13 us half, 20 MHz core clock (13*20) */
2764#define	AR5416_IFS_SLOT_QUARTER_RATE_40	0xD2	/* 21 us quarter, 10 MHz core clock (21*10) */
2765
2766#define	AR5416_IFS_EIFS_FULL_RATE_40	0xE60	/* (74 + (2 * 9)) * 40MHz core clock */
2767#define	AR5416_IFS_EIFS_HALF_RATE_40	0xDAC	/* (149 + (2 * 13)) * 20MHz core clock */
2768#define	AR5416_IFS_EIFS_QUARTER_RATE_40	0xD48	/* (298 + (2 * 21)) * 10MHz core clock */
2769
2770#define	AR5416_IFS_SLOT_FULL_RATE_44	0x18c	/* 9 us half, 44 MHz core clock (9*44) */
2771#define	AR5416_IFS_SLOT_HALF_RATE_44	0x11e	/* 13 us half, 22 MHz core clock (13*22) */
2772#define	AR5416_IFS_SLOT_QUARTER_RATE_44	0xe7	/* 21 us quarter, 11 MHz core clock (21*11) */
2773
2774#define	AR5416_IFS_EIFS_FULL_RATE_44	0xfd0	/* (74 + (2 * 9)) * 44MHz core clock */
2775#define	AR5416_IFS_EIFS_HALF_RATE_44	0xf0a	/* (149 + (2 * 13)) * 22MHz core clock */
2776#define	AR5416_IFS_EIFS_QUARTER_RATE_44	0xe9c	/* (298 + (2 * 21)) * 11MHz core clock */
2777
2778#define	AR5416_INIT_USEC_40		40
2779#define	AR5416_HALF_RATE_USEC_40	19 /* ((40 / 2) - 1 ) */
2780#define	AR5416_QUARTER_RATE_USEC_40	9  /* ((40 / 4) - 1 ) */
2781
2782#define	AR5416_INIT_USEC_44		44
2783#define	AR5416_HALF_RATE_USEC_44	21 /* ((44 / 2) - 1 ) */
2784#define	AR5416_QUARTER_RATE_USEC_44	10  /* ((44 / 4) - 1 ) */
2785
2786
2787/* XXX What should these be for 40/44MHz clocks (and half/quarter) ? */
2788#define	AR5416_RX_NON_FULL_RATE_LATENCY		63
2789#define	AR5416_TX_HALF_RATE_LATENCY		108
2790#define	AR5416_TX_QUARTER_RATE_LATENCY		216
2791
2792/*
2793 * Adjust various register settings based on half/quarter rate clock setting.
2794 * This includes:
2795 *
2796 * + USEC, TX/RX latency,
2797 * + IFS params: slot, eifs, misc etc.
2798 *
2799 * TODO:
2800 *
2801 * + Verify which other registers need to be tweaked;
2802 * + Verify the behaviour of this for 5GHz fast and non-fast clock mode;
2803 * + This just plain won't work for long distance links - the coverage class
2804 *   code isn't aware of the slot/ifs/ACK/RTS timeout values that need to
2805 *   change;
2806 * + Verify whether the 32KHz USEC value needs to be kept for the 802.11n
2807 *   series chips?
2808 * + Calculate/derive values for 2GHz, 5GHz, 5GHz fast clock
2809 */
2810static void
2811ar5416SetIFSTiming(struct ath_hal *ah, const struct ieee80211_channel *chan)
2812{
2813	uint32_t txLat, rxLat, usec, slot, refClock, eifs, init_usec;
2814	int clk_44 = 0;
2815
2816	HALASSERT(IEEE80211_IS_CHAN_HALF(chan) ||
2817	    IEEE80211_IS_CHAN_QUARTER(chan));
2818
2819	/* 2GHz and 5GHz fast clock - 44MHz; else 40MHz */
2820	if (IEEE80211_IS_CHAN_2GHZ(chan))
2821		clk_44 = 1;
2822	else if (IEEE80211_IS_CHAN_5GHZ(chan) &&
2823	    IS_5GHZ_FAST_CLOCK_EN(ah, chan))
2824		clk_44 = 1;
2825
2826	/* XXX does this need save/restoring for the 11n chips? */
2827	refClock = OS_REG_READ(ah, AR_USEC) & AR_USEC_USEC32;
2828
2829	/*
2830	 * XXX This really should calculate things, not use
2831	 * hard coded values! Ew.
2832	 */
2833	if (IEEE80211_IS_CHAN_HALF(chan)) {
2834		if (clk_44) {
2835			slot = AR5416_IFS_SLOT_HALF_RATE_44;
2836			rxLat = AR5416_RX_NON_FULL_RATE_LATENCY <<
2837			    AR5416_USEC_RX_LAT_S;
2838			txLat = AR5416_TX_HALF_RATE_LATENCY <<
2839			    AR5416_USEC_TX_LAT_S;
2840			usec = AR5416_HALF_RATE_USEC_44;
2841			eifs = AR5416_IFS_EIFS_HALF_RATE_44;
2842			init_usec = AR5416_INIT_USEC_44 >> 1;
2843		} else {
2844			slot = AR5416_IFS_SLOT_HALF_RATE_40;
2845			rxLat = AR5416_RX_NON_FULL_RATE_LATENCY <<
2846			    AR5416_USEC_RX_LAT_S;
2847			txLat = AR5416_TX_HALF_RATE_LATENCY <<
2848			    AR5416_USEC_TX_LAT_S;
2849			usec = AR5416_HALF_RATE_USEC_40;
2850			eifs = AR5416_IFS_EIFS_HALF_RATE_40;
2851			init_usec = AR5416_INIT_USEC_40 >> 1;
2852		}
2853	} else { /* quarter rate */
2854		if (clk_44) {
2855			slot = AR5416_IFS_SLOT_QUARTER_RATE_44;
2856			rxLat = AR5416_RX_NON_FULL_RATE_LATENCY <<
2857			    AR5416_USEC_RX_LAT_S;
2858			txLat = AR5416_TX_QUARTER_RATE_LATENCY <<
2859			    AR5416_USEC_TX_LAT_S;
2860			usec = AR5416_QUARTER_RATE_USEC_44;
2861			eifs = AR5416_IFS_EIFS_QUARTER_RATE_44;
2862			init_usec = AR5416_INIT_USEC_44 >> 2;
2863		} else {
2864			slot = AR5416_IFS_SLOT_QUARTER_RATE_40;
2865			rxLat = AR5416_RX_NON_FULL_RATE_LATENCY <<
2866			    AR5416_USEC_RX_LAT_S;
2867			txLat = AR5416_TX_QUARTER_RATE_LATENCY <<
2868			    AR5416_USEC_TX_LAT_S;
2869			usec = AR5416_QUARTER_RATE_USEC_40;
2870			eifs = AR5416_IFS_EIFS_QUARTER_RATE_40;
2871			init_usec = AR5416_INIT_USEC_40 >> 2;
2872		}
2873	}
2874
2875	/* XXX verify these! */
2876	OS_REG_WRITE(ah, AR_USEC, (usec | refClock | txLat | rxLat));
2877	OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot);
2878	OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs);
2879	OS_REG_RMW_FIELD(ah, AR_D_GBL_IFS_MISC,
2880	    AR_D_GBL_IFS_MISC_USEC_DURATION, init_usec);
2881}
2882
2883