1/*
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $FreeBSD$
18 */
19#include "opt_ah.h"
20
21#include "ah.h"
22#include "ah_internal.h"
23#include "ah_devid.h"
24
25#include "ah_eeprom_v14.h"
26
27#include "ar5416/ar5416.h"
28#include "ar5416/ar5416reg.h"
29#include "ar5416/ar5416phy.h"
30
31/* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */
32#define	EEP_MINOR(_ah) \
33	(AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
34#define IS_EEP_MINOR_V2(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
35#define IS_EEP_MINOR_V3(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3)
36
37/* Additional Time delay to wait after activiting the Base band */
38#define BASE_ACTIVATE_DELAY	100	/* 100 usec */
39#define PLL_SETTLE_DELAY	300	/* 300 usec */
40#define RTC_PLL_SETTLE_DELAY    1000    /* 1 ms     */
41
42static void ar5416InitDMA(struct ath_hal *ah);
43static void ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *);
44static void ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode);
45static void ar5416InitQoS(struct ath_hal *ah);
46static void ar5416InitUserSettings(struct ath_hal *ah);
47static void ar5416OverrideIni(struct ath_hal *ah, const struct ieee80211_channel *);
48
49#if 0
50static HAL_BOOL	ar5416ChannelChange(struct ath_hal *, const struct ieee80211_channel *);
51#endif
52static void ar5416SetDeltaSlope(struct ath_hal *, const struct ieee80211_channel *);
53
54static HAL_BOOL ar5416SetResetPowerOn(struct ath_hal *ah);
55static HAL_BOOL ar5416SetReset(struct ath_hal *ah, int type);
56static HAL_BOOL ar5416SetPowerPerRateTable(struct ath_hal *ah,
57	struct ar5416eeprom *pEepData,
58	const struct ieee80211_channel *chan, int16_t *ratesArray,
59	uint16_t cfgCtl, uint16_t AntennaReduction,
60	uint16_t twiceMaxRegulatoryPower,
61	uint16_t powerLimit);
62static void ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan);
63static void ar5416MarkPhyInactive(struct ath_hal *ah);
64static void ar5416SetIFSTiming(struct ath_hal *ah,
65   const struct ieee80211_channel *chan);
66
67/*
68 * Places the device in and out of reset and then places sane
69 * values in the registers based on EEPROM config, initialization
70 * vectors (as determined by the mode), and station configuration
71 *
72 * bChannelChange is used to preserve DMA/PCU registers across
73 * a HW Reset during channel change.
74 */
75HAL_BOOL
76ar5416Reset(struct ath_hal *ah, HAL_OPMODE opmode,
77	struct ieee80211_channel *chan,
78	HAL_BOOL bChannelChange, HAL_STATUS *status)
79{
80#define	N(a)	(sizeof (a) / sizeof (a[0]))
81#define	FAIL(_code)	do { ecode = _code; goto bad; } while (0)
82	struct ath_hal_5212 *ahp = AH5212(ah);
83	HAL_CHANNEL_INTERNAL *ichan;
84	uint32_t saveDefAntenna, saveLedState;
85	uint32_t macStaId1;
86	uint16_t rfXpdGain[2];
87	HAL_STATUS ecode;
88	uint32_t powerVal, rssiThrReg;
89	uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow;
90	int i;
91	uint64_t tsf = 0;
92
93	OS_MARK(ah, AH_MARK_RESET, bChannelChange);
94
95	/* Bring out of sleep mode */
96	if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
97		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n",
98		    __func__);
99		FAIL(HAL_EIO);
100	}
101
102	/*
103	 * Map public channel to private.
104	 */
105	ichan = ath_hal_checkchannel(ah, chan);
106	if (ichan == AH_NULL)
107		FAIL(HAL_EINVAL);
108	switch (opmode) {
109	case HAL_M_STA:
110	case HAL_M_IBSS:
111	case HAL_M_HOSTAP:
112	case HAL_M_MONITOR:
113		break;
114	default:
115		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
116		    __func__, opmode);
117		FAIL(HAL_EINVAL);
118		break;
119	}
120	HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
121
122	/* Blank the channel survey statistics */
123	OS_MEMZERO(&ahp->ah_chansurvey, sizeof(ahp->ah_chansurvey));
124
125	/* XXX Turn on fast channel change for 5416 */
126	/*
127	 * Preserve the bmiss rssi threshold and count threshold
128	 * across resets
129	 */
130	rssiThrReg = OS_REG_READ(ah, AR_RSSI_THR);
131	/* If reg is zero, first time thru set to default val */
132	if (rssiThrReg == 0)
133		rssiThrReg = INIT_RSSI_THR;
134
135	/*
136	 * Preserve the antenna on a channel change
137	 */
138	saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
139
140	/*
141	 * Don't do this for the AR9285 - it breaks RX for single
142	 * antenna designs when diversity is disabled.
143	 *
144	 * I'm not sure what this was working around; it may be
145	 * something to do with the AR5416.  Certainly this register
146	 * isn't supposed to be used by the MIMO chips for anything
147	 * except for defining the default antenna when an external
148	 * phase array / smart antenna is connected.
149	 *
150	 * See PR: kern/179269 .
151	 */
152	if ((! AR_SREV_KITE(ah)) && saveDefAntenna == 0)	/* XXX magic constants */
153		saveDefAntenna = 1;
154
155	/* Save hardware flag before chip reset clears the register */
156	macStaId1 = OS_REG_READ(ah, AR_STA_ID1) &
157		(AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT);
158
159	/* Save led state from pci config register */
160	saveLedState = OS_REG_READ(ah, AR_MAC_LED) &
161		(AR_MAC_LED_ASSOC | AR_MAC_LED_MODE |
162		 AR_MAC_LED_BLINK_THRESH_SEL | AR_MAC_LED_BLINK_SLOW);
163
164	/* For chips on which the RTC reset is done, save TSF before it gets cleared */
165	if (AR_SREV_HOWL(ah) ||
166	    (AR_SREV_MERLIN(ah) &&
167	     ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) ||
168	    (ah->ah_config.ah_force_full_reset))
169		tsf = ar5416GetTsf64(ah);
170
171	/* Mark PHY as inactive; marked active in ar5416InitBB() */
172	ar5416MarkPhyInactive(ah);
173
174	if (!ar5416ChipReset(ah, chan)) {
175		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
176		FAIL(HAL_EIO);
177	}
178
179	/* Restore TSF */
180	if (tsf)
181		ar5416SetTsf64(ah, tsf);
182
183	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
184	if (AR_SREV_MERLIN_10_OR_LATER(ah))
185		OS_REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
186
187	AH5416(ah)->ah_writeIni(ah, chan);
188
189	if(AR_SREV_KIWI_13_OR_LATER(ah) ) {
190		/* Enable ASYNC FIFO */
191		OS_REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
192		    AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
193		OS_REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
194		OS_REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
195		    AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
196		OS_REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
197		    AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
198	}
199
200	/* Override ini values (that can be overriden in this fashion) */
201	ar5416OverrideIni(ah, chan);
202
203	/* Setup 11n MAC/Phy mode registers */
204	ar5416Set11nRegs(ah, chan);
205
206	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
207
208	/*
209	 * Some AR91xx SoC devices frequently fail to accept TSF writes
210	 * right after the chip reset. When that happens, write a new
211	 * value after the initvals have been applied, with an offset
212	 * based on measured time difference
213	 */
214	if (AR_SREV_HOWL(ah) && (ar5416GetTsf64(ah) < tsf)) {
215		tsf += 1500;
216		ar5416SetTsf64(ah, tsf);
217	}
218
219	HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_DAG_CTRLCCK=0x%x\n",
220		__func__, OS_REG_READ(ah,AR_PHY_DAG_CTRLCCK));
221	HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_ADC_CTL=0x%x\n",
222		__func__, OS_REG_READ(ah,AR_PHY_ADC_CTL));
223
224	/*
225	 * This routine swaps the analog chains - it should be done
226	 * before any radio register twiddling is done.
227	 */
228	ar5416InitChainMasks(ah);
229
230	/* Setup the open-loop power calibration if required */
231	if (ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
232		AH5416(ah)->ah_olcInit(ah);
233		AH5416(ah)->ah_olcTempCompensation(ah);
234	}
235
236	/* Setup the transmit power values. */
237	if (!ah->ah_setTxPower(ah, chan, rfXpdGain)) {
238		HALDEBUG(ah, HAL_DEBUG_ANY,
239		    "%s: error init'ing transmit power\n", __func__);
240		FAIL(HAL_EIO);
241	}
242
243	/* Write the analog registers */
244	if (!ahp->ah_rfHal->setRfRegs(ah, chan,
245	    IEEE80211_IS_CHAN_2GHZ(chan) ? 2: 1, rfXpdGain)) {
246		HALDEBUG(ah, HAL_DEBUG_ANY,
247		    "%s: ar5212SetRfRegs failed\n", __func__);
248		FAIL(HAL_EIO);
249	}
250
251	/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
252	if (IEEE80211_IS_CHAN_OFDM(chan)|| IEEE80211_IS_CHAN_HT(chan))
253		ar5416SetDeltaSlope(ah, chan);
254
255	AH5416(ah)->ah_spurMitigate(ah, chan);
256
257	/* Setup board specific options for EEPROM version 3 */
258	if (!ah->ah_setBoardValues(ah, chan)) {
259		HALDEBUG(ah, HAL_DEBUG_ANY,
260		    "%s: error setting board options\n", __func__);
261		FAIL(HAL_EIO);
262	}
263
264	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
265
266	OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
267	OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
268		| macStaId1
269		| AR_STA_ID1_RTS_USE_DEF
270		| ahp->ah_staId1Defaults
271	);
272	ar5212SetOperatingMode(ah, opmode);
273
274	/* Set Venice BSSID mask according to current state */
275	OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
276	OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
277
278	/* Restore previous led state */
279	if (AR_SREV_HOWL(ah))
280		OS_REG_WRITE(ah, AR_MAC_LED,
281		    AR_MAC_LED_ASSOC_ACTIVE | AR_CFG_SCLK_32KHZ);
282	else
283		OS_REG_WRITE(ah, AR_MAC_LED, OS_REG_READ(ah, AR_MAC_LED) |
284		    saveLedState);
285
286        /* Start TSF2 for generic timer 8-15 */
287#ifdef	NOTYET
288	if (AR_SREV_KIWI(ah))
289		ar5416StartTsf2(ah);
290#endif
291
292	/*
293	 * Enable Bluetooth Coexistence if it's enabled.
294	 */
295	if (AH5416(ah)->ah_btCoexConfigType != HAL_BT_COEX_CFG_NONE)
296		ar5416InitBTCoex(ah);
297
298	/* Restore previous antenna */
299	OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
300
301	/* then our BSSID and associate id */
302	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
303	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) |
304	    (ahp->ah_assocId & 0x3fff) << AR_BSS_ID1_AID_S);
305
306	/* Restore bmiss rssi & count thresholds */
307	OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
308
309	OS_REG_WRITE(ah, AR_ISR, ~0);		/* cleared on write */
310
311	/* Restore bmiss rssi & count thresholds */
312	OS_REG_WRITE(ah, AR_RSSI_THR, rssiThrReg);
313
314	if (!ar5212SetChannel(ah, chan))
315		FAIL(HAL_EIO);
316
317	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
318
319	/* Set 1:1 QCU to DCU mapping for all queues */
320	for (i = 0; i < AR_NUM_DCU; i++)
321		OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
322
323	ahp->ah_intrTxqs = 0;
324	for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++)
325		ah->ah_resetTxQueue(ah, i);
326
327	ar5416InitIMR(ah, opmode);
328	ar5416SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1);
329	ar5416InitQoS(ah);
330	/* This may override the AR_DIAG_SW register */
331	ar5416InitUserSettings(ah);
332
333	/* XXX this won't work for AR9287! */
334	if (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan)) {
335		ar5416SetIFSTiming(ah, chan);
336#if 0
337			/*
338			 * AR5413?
339			 * Force window_length for 1/2 and 1/4 rate channels,
340			 * the ini file sets this to zero otherwise.
341			 */
342			OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
343			    AR_PHY_FRAME_CTL_WINLEN, 3);
344		}
345#endif
346	}
347
348	if (AR_SREV_KIWI_13_OR_LATER(ah)) {
349		/*
350		 * Enable ASYNC FIFO
351		 *
352		 * If Async FIFO is enabled, the following counters change
353		 * as MAC now runs at 117 Mhz instead of 88/44MHz when
354		 * async FIFO is disabled.
355		 *
356		 * Overwrite the delay/timeouts initialized in ProcessIni()
357		 * above.
358		 */
359		OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
360		    AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
361		OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
362		    AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
363		OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
364		    AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
365
366		OS_REG_WRITE(ah, AR_TIME_OUT,
367		    AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
368		OS_REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
369
370		OS_REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
371		    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
372		OS_REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
373		    AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
374	}
375
376	if (AR_SREV_KIWI_13_OR_LATER(ah)) {
377		/* Enable AGGWEP to accelerate encryption engine */
378		OS_REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
379		    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
380	}
381
382
383	/*
384	 * disable seq number generation in hw
385	 */
386	 OS_REG_WRITE(ah, AR_STA_ID1,
387	     OS_REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
388
389	ar5416InitDMA(ah);
390
391	/*
392	 * program OBS bus to see MAC interrupts
393	 */
394	OS_REG_WRITE(ah, AR_OBS, 8);
395
396	/*
397	 * Disable the "general" TX/RX mitigation timers.
398	 */
399	OS_REG_WRITE(ah, AR_MIRT, 0);
400
401#ifdef	AH_AR5416_INTERRUPT_MITIGATION
402	/*
403	 * This initialises the RX interrupt mitigation timers.
404	 *
405	 * The mitigation timers begin at idle and are triggered
406	 * upon the RXOK of a single frame (or sub-frame, for A-MPDU.)
407	 * Then, the RX mitigation interrupt will fire:
408	 *
409	 * + 250uS after the last RX'ed frame, or
410	 * + 700uS after the first RX'ed frame
411	 *
412	 * Thus, the LAST field dictates the extra latency
413	 * induced by the RX mitigation method and the FIRST
414	 * field dictates how long to delay before firing an
415	 * RX mitigation interrupt.
416	 *
417	 * Please note this only seems to be for RXOK frames;
418	 * not CRC or PHY error frames.
419	 *
420	 */
421	OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 250);
422	OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 700);
423#endif
424	ar5416InitBB(ah, chan);
425
426	/* Setup compression registers */
427	ar5212SetCompRegs(ah);		/* XXX not needed? */
428
429	/*
430	 * 5416 baseband will check the per rate power table
431	 * and select the lower of the two
432	 */
433	ackTpcPow = 63;
434	ctsTpcPow = 63;
435	chirpTpcPow = 63;
436	powerVal = SM(ackTpcPow, AR_TPC_ACK) |
437		SM(ctsTpcPow, AR_TPC_CTS) |
438		SM(chirpTpcPow, AR_TPC_CHIRP);
439	OS_REG_WRITE(ah, AR_TPC, powerVal);
440
441	if (!ar5416InitCal(ah, chan))
442		FAIL(HAL_ESELFTEST);
443
444	ar5416RestoreChainMask(ah);
445
446	AH_PRIVATE(ah)->ah_opmode = opmode;	/* record operating mode */
447
448	if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan))
449		chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
450
451	if (AR_SREV_HOWL(ah)) {
452		/*
453		 * Enable the MBSSID block-ack fix for HOWL.
454		 * This feature is only supported on Howl 1.4, but it is safe to
455		 * set bit 22 of STA_ID1 on other Howl revisions (1.1, 1.2, 1.3),
456		 * since bit 22 is unused in those Howl revisions.
457		 */
458		unsigned int reg;
459		reg = (OS_REG_READ(ah, AR_STA_ID1) | (1<<22));
460		OS_REG_WRITE(ah,AR_STA_ID1, reg);
461		ath_hal_printf(ah, "MBSSID Set bit 22 of AR_STA_ID 0x%x\n", reg);
462	}
463
464	HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
465
466	OS_MARK(ah, AH_MARK_RESET_DONE, 0);
467
468	return AH_TRUE;
469bad:
470	OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
471	if (status != AH_NULL)
472		*status = ecode;
473	return AH_FALSE;
474#undef FAIL
475#undef N
476}
477
478#if 0
479/*
480 * This channel change evaluates whether the selected hardware can
481 * perform a synthesizer-only channel change (no reset).  If the
482 * TX is not stopped, or the RFBus cannot be granted in the given
483 * time, the function returns false as a reset is necessary
484 */
485HAL_BOOL
486ar5416ChannelChange(struct ath_hal *ah, const structu ieee80211_channel *chan)
487{
488	uint32_t       ulCount;
489	uint32_t   data, synthDelay, qnum;
490	uint16_t   rfXpdGain[4];
491	struct ath_hal_5212 *ahp = AH5212(ah);
492	HAL_CHANNEL_INTERNAL *ichan;
493
494	/*
495	 * Map public channel to private.
496	 */
497	ichan = ath_hal_checkchannel(ah, chan);
498
499	/* TX must be stopped or RF Bus grant will not work */
500	for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) {
501		if (ar5212NumTxPending(ah, qnum)) {
502			HALDEBUG(ah, HAL_DEBUG_ANY,
503			    "%s: frames pending on queue %d\n", __func__, qnum);
504			return AH_FALSE;
505		}
506	}
507
508	/*
509	 * Kill last Baseband Rx Frame - Request analog bus grant
510	 */
511	OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST);
512	if (!ath_hal_wait(ah, AR_PHY_RFBUS_GNT, AR_PHY_RFBUS_GRANT_EN, AR_PHY_RFBUS_GRANT_EN)) {
513		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: could not kill baseband rx\n",
514		    __func__);
515		return AH_FALSE;
516	}
517
518	ar5416Set11nRegs(ah, chan);	/* NB: setup 5416-specific regs */
519
520	/* Change the synth */
521	if (!ar5212SetChannel(ah, chan))
522		return AH_FALSE;
523
524	/* Setup the transmit power values. */
525	if (!ah->ah_setTxPower(ah, chan, rfXpdGain)) {
526		HALDEBUG(ah, HAL_DEBUG_ANY,
527		    "%s: error init'ing transmit power\n", __func__);
528		return AH_FALSE;
529	}
530
531	/*
532	 * Wait for the frequency synth to settle (synth goes on
533	 * via PHY_ACTIVE_EN).  Read the phy active delay register.
534	 * Value is in 100ns increments.
535	 */
536	data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
537	if (IS_CHAN_CCK(ichan)) {
538		synthDelay = (4 * data) / 22;
539	} else {
540		synthDelay = data / 10;
541	}
542
543	OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
544
545	/* Release the RFBus Grant */
546	OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
547
548	/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
549	if (IEEE80211_IS_CHAN_OFDM(ichan)|| IEEE80211_IS_CHAN_HT(chan)) {
550		HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3);
551		ar5212SetSpurMitigation(ah, chan);
552		ar5416SetDeltaSlope(ah, chan);
553	}
554
555	/* XXX spur mitigation for Melin */
556
557	if (!IEEE80211_IS_CHAN_DFS(chan))
558		chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
559
560	ichan->channel_time = 0;
561	ichan->tsf_last = ar5416GetTsf64(ah);
562	ar5212TxEnable(ah, AH_TRUE);
563	return AH_TRUE;
564}
565#endif
566
567static void
568ar5416InitDMA(struct ath_hal *ah)
569{
570	struct ath_hal_5212 *ahp = AH5212(ah);
571
572	/*
573	 * set AHB_MODE not to do cacheline prefetches
574	 */
575	OS_REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
576
577	/*
578	 * let mac dma reads be in 128 byte chunks
579	 */
580	OS_REG_WRITE(ah, AR_TXCFG,
581		(OS_REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK) | AR_TXCFG_DMASZ_128B);
582
583	/*
584	 * let mac dma writes be in 128 byte chunks
585	 */
586	/*
587	 * XXX If you change this, you must change the headroom
588	 * assigned in ah_maxTxTrigLev - see ar5416InitState().
589	 */
590	OS_REG_WRITE(ah, AR_RXCFG,
591		(OS_REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK) | AR_RXCFG_DMASZ_128B);
592
593	/* restore TX trigger level */
594	OS_REG_WRITE(ah, AR_TXCFG,
595		(OS_REG_READ(ah, AR_TXCFG) &~ AR_FTRIG) |
596		    SM(ahp->ah_txTrigLev, AR_FTRIG));
597
598	/*
599	 * Setup receive FIFO threshold to hold off TX activities
600	 */
601	OS_REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
602
603	/*
604	 * reduce the number of usable entries in PCU TXBUF to avoid
605	 * wrap around.
606	 */
607	if (AR_SREV_KITE(ah))
608		/*
609		 * For AR9285 the number of Fifos are reduced to half.
610		 * So set the usable tx buf size also to half to
611		 * avoid data/delimiter underruns
612		 */
613		OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
614	else
615		OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_PCU_TXBUF_CTRL_USABLE_SIZE);
616}
617
618static void
619ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *chan)
620{
621	uint32_t synthDelay;
622
623	/*
624	 * Wait for the frequency synth to settle (synth goes on
625	 * via AR_PHY_ACTIVE_EN).  Read the phy active delay register.
626	 * Value is in 100ns increments.
627	  */
628	synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
629	if (IEEE80211_IS_CHAN_CCK(chan)) {
630		synthDelay = (4 * synthDelay) / 22;
631	} else {
632		synthDelay /= 10;
633	}
634
635	/* Turn on PLL on 5416 */
636	HALDEBUG(ah, HAL_DEBUG_RESET, "%s %s channel\n",
637	    __func__, IEEE80211_IS_CHAN_5GHZ(chan) ? "5GHz" : "2GHz");
638
639	/* Activate the PHY (includes baseband activate and synthesizer on) */
640	OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
641
642	/*
643	 * If the AP starts the calibration before the base band timeout
644	 * completes  we could get rx_clear false triggering.  Add an
645	 * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
646	 * does not happen.
647	 */
648	if (IEEE80211_IS_CHAN_HALF(chan)) {
649		OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY);
650	} else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
651		OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY);
652	} else {
653		OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
654	}
655}
656
657static void
658ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode)
659{
660	struct ath_hal_5212 *ahp = AH5212(ah);
661
662	/*
663	 * Setup interrupt handling.  Note that ar5212ResetTxQueue
664	 * manipulates the secondary IMR's as queues are enabled
665	 * and disabled.  This is done with RMW ops to insure the
666	 * settings we make here are preserved.
667	 */
668        ahp->ah_maskReg = AR_IMR_TXERR | AR_IMR_TXURN
669			| AR_IMR_RXERR | AR_IMR_RXORN
670                        | AR_IMR_BCNMISC;
671
672#ifdef	AH_AR5416_INTERRUPT_MITIGATION
673	ahp->ah_maskReg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
674#else
675	ahp->ah_maskReg |= AR_IMR_RXOK;
676#endif
677	ahp->ah_maskReg |= AR_IMR_TXOK;
678
679	if (opmode == HAL_M_HOSTAP)
680		ahp->ah_maskReg |= AR_IMR_MIB;
681	OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
682
683#ifdef  ADRIAN_NOTYET
684	/* This is straight from ath9k */
685	if (! AR_SREV_HOWL(ah)) {
686		OS_REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
687		OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
688		OS_REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
689	}
690#endif
691
692	/* Enable bus errors that are OR'd to set the HIUERR bit */
693#if 0
694	OS_REG_WRITE(ah, AR_IMR_S2,
695	    	OS_REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT | AR_IMR_S2_CST);
696#endif
697}
698
699static void
700ar5416InitQoS(struct ath_hal *ah)
701{
702	/* QoS support */
703	OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa);	/* XXX magic */
704	OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210);	/* XXX magic */
705
706	/* Turn on NOACK Support for QoS packets */
707	OS_REG_WRITE(ah, AR_NOACK,
708		SM(2, AR_NOACK_2BIT_VALUE) |
709		SM(5, AR_NOACK_BIT_OFFSET) |
710		SM(0, AR_NOACK_BYTE_OFFSET));
711
712    	/*
713    	 * initialize TXOP for all TIDs
714    	 */
715	OS_REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
716	OS_REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
717	OS_REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
718	OS_REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
719	OS_REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
720}
721
722static void
723ar5416InitUserSettings(struct ath_hal *ah)
724{
725	struct ath_hal_5212 *ahp = AH5212(ah);
726
727	/* Restore user-specified settings */
728	if (ahp->ah_miscMode != 0)
729		OS_REG_WRITE(ah, AR_MISC_MODE, OS_REG_READ(ah, AR_MISC_MODE)
730		    | ahp->ah_miscMode);
731	if (ahp->ah_sifstime != (u_int) -1)
732		ar5212SetSifsTime(ah, ahp->ah_sifstime);
733	if (ahp->ah_slottime != (u_int) -1)
734		ar5212SetSlotTime(ah, ahp->ah_slottime);
735	if (ahp->ah_acktimeout != (u_int) -1)
736		ar5212SetAckTimeout(ah, ahp->ah_acktimeout);
737	if (ahp->ah_ctstimeout != (u_int) -1)
738		ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout);
739	if (AH_PRIVATE(ah)->ah_diagreg != 0)
740		OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
741	if (AH5416(ah)->ah_globaltxtimeout != (u_int) -1)
742        	ar5416SetGlobalTxTimeout(ah, AH5416(ah)->ah_globaltxtimeout);
743}
744
745static void
746ar5416SetRfMode(struct ath_hal *ah, const struct ieee80211_channel *chan)
747{
748	uint32_t rfMode;
749
750	if (chan == AH_NULL)
751		return;
752
753	/* treat channel B as channel G , no  B mode suport in owl */
754	rfMode = IEEE80211_IS_CHAN_CCK(chan) ?
755	    AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
756
757	if (AR_SREV_MERLIN_20(ah) && IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
758		/* phy mode bits for 5GHz channels require Fast Clock */
759		rfMode |= AR_PHY_MODE_DYNAMIC
760		       |  AR_PHY_MODE_DYN_CCK_DISABLE;
761	} else if (!AR_SREV_MERLIN_10_OR_LATER(ah)) {
762		rfMode |= IEEE80211_IS_CHAN_5GHZ(chan) ?
763			AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
764	}
765
766	OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
767}
768
769/*
770 * Places the hardware into reset and then pulls it out of reset
771 */
772HAL_BOOL
773ar5416ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan)
774{
775	OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->ic_freq : 0);
776	/*
777	 * Warm reset is optimistic for open-loop TX power control.
778	 */
779	if (AR_SREV_MERLIN(ah) &&
780	    ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
781		if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
782			return AH_FALSE;
783	} else if (ah->ah_config.ah_force_full_reset) {
784		if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
785			return AH_FALSE;
786	} else {
787		if (!ar5416SetResetReg(ah, HAL_RESET_WARM))
788			return AH_FALSE;
789	}
790
791	/* Bring out of sleep mode (AGAIN) */
792	if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
793	       return AH_FALSE;
794
795#ifdef notyet
796	ahp->ah_chipFullSleep = AH_FALSE;
797#endif
798
799	AH5416(ah)->ah_initPLL(ah, chan);
800
801	/*
802	 * Perform warm reset before the mode/PLL/turbo registers
803	 * are changed in order to deactivate the radio.  Mode changes
804	 * with an active radio can result in corrupted shifts to the
805	 * radio device.
806	 */
807	ar5416SetRfMode(ah, chan);
808
809	return AH_TRUE;
810}
811
812/*
813 * Delta slope coefficient computation.
814 * Required for OFDM operation.
815 */
816static void
817ar5416GetDeltaSlopeValues(struct ath_hal *ah, uint32_t coef_scaled,
818                          uint32_t *coef_mantissa, uint32_t *coef_exponent)
819{
820#define COEF_SCALE_S 24
821    uint32_t coef_exp, coef_man;
822    /*
823     * ALGO -> coef_exp = 14-floor(log2(coef));
824     * floor(log2(x)) is the highest set bit position
825     */
826    for (coef_exp = 31; coef_exp > 0; coef_exp--)
827            if ((coef_scaled >> coef_exp) & 0x1)
828                    break;
829    /* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */
830    HALASSERT(coef_exp);
831    coef_exp = 14 - (coef_exp - COEF_SCALE_S);
832
833    /*
834     * ALGO -> coef_man = floor(coef* 2^coef_exp+0.5);
835     * The coefficient is already shifted up for scaling
836     */
837    coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
838
839    *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
840    *coef_exponent = coef_exp - 16;
841
842#undef COEF_SCALE_S
843}
844
845void
846ar5416SetDeltaSlope(struct ath_hal *ah, const struct ieee80211_channel *chan)
847{
848#define INIT_CLOCKMHZSCALED	0x64000000
849	uint32_t coef_scaled, ds_coef_exp, ds_coef_man;
850	uint32_t clockMhzScaled;
851
852	CHAN_CENTERS centers;
853
854	/* half and quarter rate can divide the scaled clock by 2 or 4 respectively */
855	/* scale for selected channel bandwidth */
856	clockMhzScaled = INIT_CLOCKMHZSCALED;
857	if (IEEE80211_IS_CHAN_TURBO(chan))
858		clockMhzScaled <<= 1;
859	else if (IEEE80211_IS_CHAN_HALF(chan))
860		clockMhzScaled >>= 1;
861	else if (IEEE80211_IS_CHAN_QUARTER(chan))
862		clockMhzScaled >>= 2;
863
864	/*
865	 * ALGO -> coef = 1e8/fcarrier*fclock/40;
866	 * scaled coef to provide precision for this floating calculation
867	 */
868	ar5416GetChannelCenters(ah, chan, &centers);
869	coef_scaled = clockMhzScaled / centers.synth_center;
870
871 	ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
872
873	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
874		AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
875	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
876		AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
877
878        /*
879         * For Short GI,
880         * scaled coeff is 9/10 that of normal coeff
881         */
882        coef_scaled = (9 * coef_scaled)/10;
883
884        ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
885
886        /* for short gi */
887        OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
888                AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
889        OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
890                AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
891#undef INIT_CLOCKMHZSCALED
892}
893
894/*
895 * Set a limit on the overall output power.  Used for dynamic
896 * transmit power control and the like.
897 *
898 * NB: limit is in units of 0.5 dbM.
899 */
900HAL_BOOL
901ar5416SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
902{
903	uint16_t dummyXpdGains[2];
904
905	AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
906	return ah->ah_setTxPower(ah, AH_PRIVATE(ah)->ah_curchan,
907			dummyXpdGains);
908}
909
910HAL_BOOL
911ar5416GetChipPowerLimits(struct ath_hal *ah,
912	struct ieee80211_channel *chan)
913{
914	struct ath_hal_5212 *ahp = AH5212(ah);
915	int16_t minPower, maxPower;
916
917	/*
918	 * Get Pier table max and min powers.
919	 */
920	if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) {
921		/* NB: rf code returns 1/4 dBm units, convert */
922		chan->ic_maxpower = maxPower / 2;
923		chan->ic_minpower = minPower / 2;
924	} else {
925		HALDEBUG(ah, HAL_DEBUG_ANY,
926		    "%s: no min/max power for %u/0x%x\n",
927		    __func__, chan->ic_freq, chan->ic_flags);
928		chan->ic_maxpower = AR5416_MAX_RATE_POWER;
929		chan->ic_minpower = 0;
930	}
931	HALDEBUG(ah, HAL_DEBUG_RESET,
932	    "Chan %d: MaxPow = %d MinPow = %d\n",
933	    chan->ic_freq, chan->ic_maxpower, chan->ic_minpower);
934	return AH_TRUE;
935}
936
937/**************************************************************
938 * ar5416WriteTxPowerRateRegisters
939 *
940 * Write the TX power rate registers from the raw values given
941 * in ratesArray[].
942 *
943 * The CCK and HT40 rate registers are only written if needed.
944 * HT20 and 11g/11a OFDM rate registers are always written.
945 *
946 * The values written are raw values which should be written
947 * to the registers - so it's up to the caller to pre-adjust
948 * them (eg CCK power offset value, or Merlin TX power offset,
949 * etc.)
950 */
951void
952ar5416WriteTxPowerRateRegisters(struct ath_hal *ah,
953    const struct ieee80211_channel *chan, const int16_t ratesArray[])
954{
955#define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
956
957    /* Write the OFDM power per rate set */
958    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
959        POW_SM(ratesArray[rate18mb], 24)
960          | POW_SM(ratesArray[rate12mb], 16)
961          | POW_SM(ratesArray[rate9mb], 8)
962          | POW_SM(ratesArray[rate6mb], 0)
963    );
964    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
965        POW_SM(ratesArray[rate54mb], 24)
966          | POW_SM(ratesArray[rate48mb], 16)
967          | POW_SM(ratesArray[rate36mb], 8)
968          | POW_SM(ratesArray[rate24mb], 0)
969    );
970
971    if (IEEE80211_IS_CHAN_2GHZ(chan)) {
972        /* Write the CCK power per rate set */
973        OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
974            POW_SM(ratesArray[rate2s], 24)
975              | POW_SM(ratesArray[rate2l],  16)
976              | POW_SM(ratesArray[rateXr],  8) /* XR target power */
977              | POW_SM(ratesArray[rate1l],   0)
978        );
979        OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
980            POW_SM(ratesArray[rate11s], 24)
981              | POW_SM(ratesArray[rate11l], 16)
982              | POW_SM(ratesArray[rate5_5s], 8)
983              | POW_SM(ratesArray[rate5_5l], 0)
984        );
985    HALDEBUG(ah, HAL_DEBUG_RESET,
986	"%s AR_PHY_POWER_TX_RATE3=0x%x AR_PHY_POWER_TX_RATE4=0x%x\n",
987	    __func__, OS_REG_READ(ah,AR_PHY_POWER_TX_RATE3),
988	    OS_REG_READ(ah,AR_PHY_POWER_TX_RATE4));
989    }
990
991    /* Write the HT20 power per rate set */
992    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
993        POW_SM(ratesArray[rateHt20_3], 24)
994          | POW_SM(ratesArray[rateHt20_2], 16)
995          | POW_SM(ratesArray[rateHt20_1], 8)
996          | POW_SM(ratesArray[rateHt20_0], 0)
997    );
998    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
999        POW_SM(ratesArray[rateHt20_7], 24)
1000          | POW_SM(ratesArray[rateHt20_6], 16)
1001          | POW_SM(ratesArray[rateHt20_5], 8)
1002          | POW_SM(ratesArray[rateHt20_4], 0)
1003    );
1004
1005    if (IEEE80211_IS_CHAN_HT40(chan)) {
1006        /* Write the HT40 power per rate set */
1007        OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1008            POW_SM(ratesArray[rateHt40_3], 24)
1009              | POW_SM(ratesArray[rateHt40_2], 16)
1010              | POW_SM(ratesArray[rateHt40_1], 8)
1011              | POW_SM(ratesArray[rateHt40_0], 0)
1012        );
1013        OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1014            POW_SM(ratesArray[rateHt40_7], 24)
1015              | POW_SM(ratesArray[rateHt40_6], 16)
1016              | POW_SM(ratesArray[rateHt40_5], 8)
1017              | POW_SM(ratesArray[rateHt40_4], 0)
1018        );
1019        /* Write the Dup/Ext 40 power per rate set */
1020        OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1021            POW_SM(ratesArray[rateExtOfdm], 24)
1022              | POW_SM(ratesArray[rateExtCck], 16)
1023              | POW_SM(ratesArray[rateDupOfdm], 8)
1024              | POW_SM(ratesArray[rateDupCck], 0)
1025        );
1026    }
1027
1028    /*
1029     * Set max power to 30 dBm and, optionally,
1030     * enable TPC in tx descriptors.
1031     */
1032    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER |
1033      (AH5212(ah)->ah_tpcEnabled ? AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE : 0));
1034#undef POW_SM
1035}
1036
1037
1038/**************************************************************
1039 * ar5416SetTransmitPower
1040 *
1041 * Set the transmit power in the baseband for the given
1042 * operating channel and mode.
1043 */
1044HAL_BOOL
1045ar5416SetTransmitPower(struct ath_hal *ah,
1046	const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
1047{
1048#define N(a)            (sizeof (a) / sizeof (a[0]))
1049#define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
1050
1051    MODAL_EEP_HEADER	*pModal;
1052    struct ath_hal_5212 *ahp = AH5212(ah);
1053    int16_t		txPowerIndexOffset = 0;
1054    int			i;
1055
1056    uint16_t		cfgCtl;
1057    uint16_t		powerLimit;
1058    uint16_t		twiceAntennaReduction;
1059    uint16_t		twiceMaxRegulatoryPower;
1060    int16_t		maxPower;
1061    HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
1062    struct ar5416eeprom	*pEepData = &ee->ee_base;
1063
1064    HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
1065
1066    /*
1067     * Default to 2, is overridden based on the EEPROM version / value.
1068     */
1069    AH5416(ah)->ah_ht40PowerIncForPdadc = 2;
1070
1071    /* Setup info for the actual eeprom */
1072    OS_MEMZERO(AH5416(ah)->ah_ratesArray, sizeof(AH5416(ah)->ah_ratesArray));
1073    cfgCtl = ath_hal_getctl(ah, chan);
1074    powerLimit = chan->ic_maxregpower * 2;
1075    twiceAntennaReduction = chan->ic_maxantgain;
1076    twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
1077    pModal = &pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)];
1078    HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
1079	__func__,chan->ic_freq, cfgCtl );
1080
1081    if (IS_EEP_MINOR_V2(ah)) {
1082        AH5416(ah)->ah_ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1083    }
1084
1085    if (!ar5416SetPowerPerRateTable(ah, pEepData,  chan,
1086                                    &AH5416(ah)->ah_ratesArray[0],
1087				    cfgCtl,
1088                                    twiceAntennaReduction,
1089				    twiceMaxRegulatoryPower, powerLimit)) {
1090        HALDEBUG(ah, HAL_DEBUG_ANY,
1091	    "%s: unable to set tx power per rate table\n", __func__);
1092        return AH_FALSE;
1093    }
1094
1095    if (!AH5416(ah)->ah_setPowerCalTable(ah,  pEepData, chan, &txPowerIndexOffset)) {
1096        HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
1097	    __func__);
1098        return AH_FALSE;
1099    }
1100
1101    maxPower = AH_MAX(AH5416(ah)->ah_ratesArray[rate6mb],
1102      AH5416(ah)->ah_ratesArray[rateHt20_0]);
1103
1104    if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1105        maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rate1l]);
1106    }
1107
1108    if (IEEE80211_IS_CHAN_HT40(chan)) {
1109        maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rateHt40_0]);
1110    }
1111
1112    ahp->ah_tx6PowerInHalfDbm = maxPower;
1113    AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
1114    ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
1115
1116    /*
1117     * txPowerIndexOffset is set by the SetPowerTable() call -
1118     *  adjust the rate table (0 offset if rates EEPROM not loaded)
1119     */
1120    for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) {
1121        AH5416(ah)->ah_ratesArray[i] =
1122          (int16_t)(txPowerIndexOffset + AH5416(ah)->ah_ratesArray[i]);
1123        if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER)
1124            AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER;
1125    }
1126
1127#ifdef AH_EEPROM_DUMP
1128    /*
1129     * Dump the rate array whilst it represents the intended dBm*2
1130     * values versus what's being adjusted before being programmed
1131     * in. Keep this in mind if you code up this function and enable
1132     * this debugging; the values won't necessarily be what's being
1133     * programmed into the hardware.
1134     */
1135    ar5416PrintPowerPerRate(ah, AH5416(ah)->ah_ratesArray);
1136#endif
1137
1138    /*
1139     * Merlin and later have a power offset, so subtract
1140     * pwr_table_offset * 2 from each value. The default
1141     * power offset is -5 dBm - ie, a register value of 0
1142     * equates to a TX power of -5 dBm.
1143     */
1144    if (AR_SREV_MERLIN_20_OR_LATER(ah)) {
1145        int8_t pwr_table_offset;
1146
1147	(void) ath_hal_eepromGet(ah, AR_EEP_PWR_TABLE_OFFSET,
1148	    &pwr_table_offset);
1149	/* Underflow power gets clamped at raw value 0 */
1150	/* Overflow power gets camped at AR5416_MAX_RATE_POWER */
1151	for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) {
1152		/*
1153		 * + pwr_table_offset is in dBm
1154		 * + ratesArray is in 1/2 dBm
1155		 */
1156		AH5416(ah)->ah_ratesArray[i] -= (pwr_table_offset * 2);
1157		if (AH5416(ah)->ah_ratesArray[i] < 0)
1158			AH5416(ah)->ah_ratesArray[i] = 0;
1159		else if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER)
1160		    AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER;
1161	}
1162    }
1163
1164    /*
1165     * Adjust rates for OLC where needed
1166     *
1167     * The following CCK rates need adjusting when doing 2.4ghz
1168     * CCK transmission.
1169     *
1170     * + rate2s, rate2l, rate1l, rate11s, rate11l, rate5_5s, rate5_5l
1171     * + rateExtCck, rateDupCck
1172     *
1173     * They're adjusted here regardless. The hardware then gets
1174     * programmed as needed. 5GHz operation doesn't program in CCK
1175     * rates for legacy mode but they seem to be initialised for
1176     * HT40 regardless of channel type.
1177     */
1178    if (AR_SREV_MERLIN_20_OR_LATER(ah) &&
1179	    ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
1180        int adj[] = {
1181	              rate2s, rate2l, rate1l, rate11s, rate11l,
1182	              rate5_5s, rate5_5l, rateExtCck, rateDupCck
1183		    };
1184        int cck_ofdm_delta = 2;
1185	int i;
1186	for (i = 0; i < N(adj); i++) {
1187            AH5416(ah)->ah_ratesArray[adj[i]] -= cck_ofdm_delta;
1188	    if (AH5416(ah)->ah_ratesArray[adj[i]] < 0)
1189	        AH5416(ah)->ah_ratesArray[adj[i]] = 0;
1190        }
1191    }
1192
1193    /*
1194     * Adjust the HT40 power to meet the correct target TX power
1195     * for 40MHz mode, based on TX power curves that are established
1196     * for 20MHz mode.
1197     *
1198     * XXX handle overflow/too high power level?
1199     */
1200    if (IEEE80211_IS_CHAN_HT40(chan)) {
1201	AH5416(ah)->ah_ratesArray[rateHt40_0] +=
1202	  AH5416(ah)->ah_ht40PowerIncForPdadc;
1203	AH5416(ah)->ah_ratesArray[rateHt40_1] +=
1204	  AH5416(ah)->ah_ht40PowerIncForPdadc;
1205	AH5416(ah)->ah_ratesArray[rateHt40_2] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1206	AH5416(ah)->ah_ratesArray[rateHt40_3] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1207	AH5416(ah)->ah_ratesArray[rateHt40_4] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1208	AH5416(ah)->ah_ratesArray[rateHt40_5] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1209	AH5416(ah)->ah_ratesArray[rateHt40_6] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1210	AH5416(ah)->ah_ratesArray[rateHt40_7] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1211    }
1212
1213    /* Write the TX power rate registers */
1214    ar5416WriteTxPowerRateRegisters(ah, chan, AH5416(ah)->ah_ratesArray);
1215
1216    /* Write the Power subtraction for dynamic chain changing, for per-packet powertx */
1217    OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
1218        POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1219          | POW_SM(pModal->pwrDecreaseFor2Chain, 0)
1220    );
1221    return AH_TRUE;
1222#undef POW_SM
1223#undef N
1224}
1225
1226/*
1227 * Exported call to check for a recent gain reading and return
1228 * the current state of the thermal calibration gain engine.
1229 */
1230HAL_RFGAIN
1231ar5416GetRfgain(struct ath_hal *ah)
1232{
1233
1234	return (HAL_RFGAIN_INACTIVE);
1235}
1236
1237/*
1238 * Places all of hardware into reset
1239 */
1240HAL_BOOL
1241ar5416Disable(struct ath_hal *ah)
1242{
1243
1244	if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
1245		return AH_FALSE;
1246	if (! ar5416SetResetReg(ah, HAL_RESET_COLD))
1247		return AH_FALSE;
1248
1249	AH5416(ah)->ah_initPLL(ah, AH_NULL);
1250	return (AH_TRUE);
1251}
1252
1253/*
1254 * Places the PHY and Radio chips into reset.  A full reset
1255 * must be called to leave this state.  The PCI/MAC/PCU are
1256 * not placed into reset as we must receive interrupt to
1257 * re-enable the hardware.
1258 */
1259HAL_BOOL
1260ar5416PhyDisable(struct ath_hal *ah)
1261{
1262
1263	if (! ar5416SetResetReg(ah, HAL_RESET_WARM))
1264		return AH_FALSE;
1265
1266	AH5416(ah)->ah_initPLL(ah, AH_NULL);
1267	return (AH_TRUE);
1268}
1269
1270/*
1271 * Write the given reset bit mask into the reset register
1272 */
1273HAL_BOOL
1274ar5416SetResetReg(struct ath_hal *ah, uint32_t type)
1275{
1276	/*
1277	 * Set force wake
1278	 */
1279	OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1280	    AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1281
1282	switch (type) {
1283	case HAL_RESET_POWER_ON:
1284		return ar5416SetResetPowerOn(ah);
1285	case HAL_RESET_WARM:
1286	case HAL_RESET_COLD:
1287		return ar5416SetReset(ah, type);
1288	default:
1289		HALASSERT(AH_FALSE);
1290		return AH_FALSE;
1291	}
1292}
1293
1294static HAL_BOOL
1295ar5416SetResetPowerOn(struct ath_hal *ah)
1296{
1297    /* Power On Reset (Hard Reset) */
1298
1299    /*
1300     * Set force wake
1301     *
1302     * If the MAC was running, previously calling
1303     * reset will wake up the MAC but it may go back to sleep
1304     * before we can start polling.
1305     * Set force wake  stops that
1306     * This must be called before initiating a hard reset.
1307     */
1308    OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1309            AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1310
1311    /*
1312     * PowerOn reset can be used in open loop power control or failure recovery.
1313     * If we do RTC reset while DMA is still running, hardware may corrupt memory.
1314     * Therefore, we need to reset AHB first to stop DMA.
1315     */
1316    if (! AR_SREV_HOWL(ah))
1317    	OS_REG_WRITE(ah, AR_RC, AR_RC_AHB);
1318    /*
1319     * RTC reset and clear
1320     */
1321    OS_REG_WRITE(ah, AR_RTC_RESET, 0);
1322    OS_DELAY(20);
1323
1324    if (! AR_SREV_HOWL(ah))
1325    	OS_REG_WRITE(ah, AR_RC, 0);
1326
1327    OS_REG_WRITE(ah, AR_RTC_RESET, 1);
1328
1329    /*
1330     * Poll till RTC is ON
1331     */
1332    if (!ath_hal_wait(ah, AR_RTC_STATUS, AR_RTC_PM_STATUS_M, AR_RTC_STATUS_ON)) {
1333        HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC not waking up\n", __func__);
1334        return AH_FALSE;
1335    }
1336
1337    return ar5416SetReset(ah, HAL_RESET_COLD);
1338}
1339
1340static HAL_BOOL
1341ar5416SetReset(struct ath_hal *ah, int type)
1342{
1343    uint32_t tmpReg, mask;
1344    uint32_t rst_flags;
1345
1346#ifdef	AH_SUPPORT_AR9130	/* Because of the AR9130 specific registers */
1347    if (AR_SREV_HOWL(ah)) {
1348        HALDEBUG(ah, HAL_DEBUG_ANY, "[ath] HOWL: Fiddling with derived clk!\n");
1349        uint32_t val = OS_REG_READ(ah, AR_RTC_DERIVED_CLK);
1350        val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1351        val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1352        OS_REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1353        (void) OS_REG_READ(ah, AR_RTC_DERIVED_CLK);
1354    }
1355#endif	/* AH_SUPPORT_AR9130 */
1356
1357    /*
1358     * Force wake
1359     */
1360    OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1361	AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1362
1363#ifdef	AH_SUPPORT_AR9130
1364    if (AR_SREV_HOWL(ah)) {
1365        rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1366          AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1367    } else {
1368#endif	/* AH_SUPPORT_AR9130 */
1369        /*
1370         * Reset AHB
1371         *
1372         * (In case the last interrupt source was a bus timeout.)
1373         * XXX TODO: this is not the way to do it! It should be recorded
1374         * XXX by the interrupt handler and passed _into_ the
1375         * XXX reset path routine so this occurs.
1376         */
1377        tmpReg = OS_REG_READ(ah, AR_INTR_SYNC_CAUSE);
1378        if (tmpReg & (AR_INTR_SYNC_LOCAL_TIMEOUT|AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1379            OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1380            OS_REG_WRITE(ah, AR_RC, AR_RC_AHB|AR_RC_HOSTIF);
1381        } else {
1382	    OS_REG_WRITE(ah, AR_RC, AR_RC_AHB);
1383        }
1384        rst_flags = AR_RTC_RC_MAC_WARM;
1385        if (type == HAL_RESET_COLD)
1386            rst_flags |= AR_RTC_RC_MAC_COLD;
1387#ifdef	AH_SUPPORT_AR9130
1388    }
1389#endif	/* AH_SUPPORT_AR9130 */
1390
1391    OS_REG_WRITE(ah, AR_RTC_RC, rst_flags);
1392
1393    if (AR_SREV_HOWL(ah))
1394        OS_DELAY(10000);
1395    else
1396        OS_DELAY(100);
1397
1398    /*
1399     * Clear resets and force wakeup
1400     */
1401    OS_REG_WRITE(ah, AR_RTC_RC, 0);
1402    if (!ath_hal_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0)) {
1403        HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC stuck in MAC reset\n", __func__);
1404        return AH_FALSE;
1405    }
1406
1407    /* Clear AHB reset */
1408    if (! AR_SREV_HOWL(ah))
1409        OS_REG_WRITE(ah, AR_RC, 0);
1410
1411    if (AR_SREV_HOWL(ah))
1412        OS_DELAY(50);
1413
1414    if (AR_SREV_HOWL(ah)) {
1415                uint32_t mask;
1416                mask = OS_REG_READ(ah, AR_CFG);
1417                if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1418                        HALDEBUG(ah, HAL_DEBUG_RESET,
1419                                "CFG Byte Swap Set 0x%x\n", mask);
1420                } else {
1421                        mask =
1422                                INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1423                        OS_REG_WRITE(ah, AR_CFG, mask);
1424                        HALDEBUG(ah, HAL_DEBUG_RESET,
1425                                "Setting CFG 0x%x\n", OS_REG_READ(ah, AR_CFG));
1426                }
1427    } else {
1428	if (type == HAL_RESET_COLD) {
1429		if (isBigEndian()) {
1430			/*
1431			 * Set CFG, little-endian for descriptor accesses.
1432			 */
1433			mask = INIT_CONFIG_STATUS | AR_CFG_SWRD;
1434#ifndef AH_NEED_DESC_SWAP
1435			mask |= AR_CFG_SWTD;
1436#endif
1437			HALDEBUG(ah, HAL_DEBUG_RESET,
1438			    "%s Applying descriptor swap\n", __func__);
1439			OS_REG_WRITE(ah, AR_CFG, mask);
1440		} else
1441			OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
1442	}
1443    }
1444
1445    return AH_TRUE;
1446}
1447
1448void
1449ar5416InitChainMasks(struct ath_hal *ah)
1450{
1451	int rx_chainmask = AH5416(ah)->ah_rx_chainmask;
1452
1453	/* Flip this for this chainmask regardless of chip */
1454	if (rx_chainmask == 0x5)
1455		OS_REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
1456
1457	/*
1458	 * Workaround for OWL 1.0 calibration failure; enable multi-chain;
1459	 * then set true mask after calibration.
1460	 */
1461	if (IS_5416V1(ah) && (rx_chainmask == 0x5 || rx_chainmask == 0x3)) {
1462		OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1463		OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1464	} else {
1465		OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
1466		OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
1467	}
1468	OS_REG_WRITE(ah, AR_SELFGEN_MASK, AH5416(ah)->ah_tx_chainmask);
1469
1470	if (AH5416(ah)->ah_tx_chainmask == 0x5)
1471		OS_REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
1472
1473	if (AR_SREV_HOWL(ah)) {
1474		OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1475		OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1476	}
1477}
1478
1479/*
1480 * Work-around for Owl 1.0 calibration failure.
1481 *
1482 * ar5416InitChainMasks sets the RX chainmask to 0x7 if it's Owl 1.0
1483 * due to init calibration failures. ar5416RestoreChainMask restores
1484 * these registers to the correct setting.
1485 */
1486void
1487ar5416RestoreChainMask(struct ath_hal *ah)
1488{
1489	int rx_chainmask = AH5416(ah)->ah_rx_chainmask;
1490
1491	if (IS_5416V1(ah) && (rx_chainmask == 0x5 || rx_chainmask == 0x3)) {
1492		OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1493		OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1494	}
1495}
1496
1497void
1498ar5416InitPLL(struct ath_hal *ah, const struct ieee80211_channel *chan)
1499{
1500	uint32_t pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1501	if (chan != AH_NULL) {
1502		if (IEEE80211_IS_CHAN_HALF(chan))
1503			pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1504		else if (IEEE80211_IS_CHAN_QUARTER(chan))
1505			pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1506
1507		if (IEEE80211_IS_CHAN_5GHZ(chan))
1508			pll |= SM(0xa, AR_RTC_PLL_DIV);
1509		else
1510			pll |= SM(0xb, AR_RTC_PLL_DIV);
1511	} else
1512		pll |= SM(0xb, AR_RTC_PLL_DIV);
1513
1514	OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1515
1516	/* TODO:
1517	* For multi-band owl, switch between bands by reiniting the PLL.
1518	*/
1519
1520	OS_DELAY(RTC_PLL_SETTLE_DELAY);
1521
1522	OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_SLEEP_DERIVED_CLK);
1523}
1524
1525static void
1526ar5416SetDefGainValues(struct ath_hal *ah,
1527    const MODAL_EEP_HEADER *pModal,
1528    const struct ar5416eeprom *eep,
1529    uint8_t txRxAttenLocal, int regChainOffset, int i)
1530{
1531
1532	if (IS_EEP_MINOR_V3(ah)) {
1533		txRxAttenLocal = pModal->txRxAttenCh[i];
1534
1535		if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1536			OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1537			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
1538			      pModal->bswMargin[i]);
1539			OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1540			      AR_PHY_GAIN_2GHZ_XATTEN1_DB,
1541			      pModal->bswAtten[i]);
1542			OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1543			      AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
1544			      pModal->xatten2Margin[i]);
1545			OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1546			      AR_PHY_GAIN_2GHZ_XATTEN2_DB,
1547			      pModal->xatten2Db[i]);
1548		} else {
1549			OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1550			      AR_PHY_GAIN_2GHZ_BSW_MARGIN,
1551			      pModal->bswMargin[i]);
1552			OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1553			      AR_PHY_GAIN_2GHZ_BSW_ATTEN,
1554			      pModal->bswAtten[i]);
1555		}
1556	}
1557
1558	if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1559		OS_REG_RMW_FIELD(ah,
1560		      AR_PHY_RXGAIN + regChainOffset,
1561		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
1562		OS_REG_RMW_FIELD(ah,
1563		      AR_PHY_RXGAIN + regChainOffset,
1564		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
1565	} else {
1566		OS_REG_RMW_FIELD(ah,
1567			  AR_PHY_RXGAIN + regChainOffset,
1568			  AR_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
1569		OS_REG_RMW_FIELD(ah,
1570			  AR_PHY_GAIN_2GHZ + regChainOffset,
1571			  AR_PHY_GAIN_2GHZ_RXTX_MARGIN, pModal->rxTxMarginCh[i]);
1572	}
1573}
1574
1575/*
1576 * Get the register chain offset for the given chain.
1577 *
1578 * Take into account the register chain swapping with AR5416 v2.0.
1579 *
1580 * XXX make sure that the reg chain swapping is only done for
1581 * XXX AR5416 v2.0 or greater, and not later chips?
1582 */
1583int
1584ar5416GetRegChainOffset(struct ath_hal *ah, int i)
1585{
1586	int regChainOffset;
1587
1588	if (AR_SREV_5416_V20_OR_LATER(ah) &&
1589	    (AH5416(ah)->ah_rx_chainmask == 0x5 ||
1590	    AH5416(ah)->ah_tx_chainmask == 0x5) && (i != 0)) {
1591		/* Regs are swapped from chain 2 to 1 for 5416 2_0 with
1592		 * only chains 0 and 2 populated
1593		 */
1594		regChainOffset = (i == 1) ? 0x2000 : 0x1000;
1595	} else {
1596		regChainOffset = i * 0x1000;
1597	}
1598
1599	return regChainOffset;
1600}
1601
1602/*
1603 * Read EEPROM header info and program the device for correct operation
1604 * given the channel value.
1605 */
1606HAL_BOOL
1607ar5416SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
1608{
1609    const HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
1610    const struct ar5416eeprom *eep = &ee->ee_base;
1611    const MODAL_EEP_HEADER *pModal;
1612    int			i, regChainOffset;
1613    uint8_t		txRxAttenLocal;    /* workaround for eeprom versions <= 14.2 */
1614
1615    HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
1616    pModal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)];
1617
1618    /* NB: workaround for eeprom versions <= 14.2 */
1619    txRxAttenLocal = IEEE80211_IS_CHAN_2GHZ(chan) ? 23 : 44;
1620
1621    OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
1622    for (i = 0; i < AR5416_MAX_CHAINS; i++) {
1623	   if (AR_SREV_MERLIN(ah)) {
1624		if (i >= 2) break;
1625	   }
1626	regChainOffset = ar5416GetRegChainOffset(ah, i);
1627
1628        OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, pModal->antCtrlChain[i]);
1629
1630        OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4 + regChainOffset,
1631        	(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4 + regChainOffset) &
1632        	~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
1633        	SM(pModal->iqCalICh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
1634        	SM(pModal->iqCalQCh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
1635
1636        /*
1637         * Large signal upgrade,
1638	 * If 14.3 or later EEPROM, use
1639	 * txRxAttenLocal = pModal->txRxAttenCh[i]
1640	 * else txRxAttenLocal is fixed value above.
1641         */
1642
1643        if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah))
1644	    ar5416SetDefGainValues(ah, pModal, eep, txRxAttenLocal, regChainOffset, i);
1645
1646    }
1647
1648	if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1649                if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1650                        OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_OB, pModal->ob);
1651                        OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_DB, pModal->db);
1652                        OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_OB, pModal->ob_ch1);
1653                        OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_DB, pModal->db_ch1);
1654                } else {
1655                        OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_OB5, pModal->ob);
1656                        OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_DB5, pModal->db);
1657                        OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_OB5, pModal->ob_ch1);
1658                        OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_DB5, pModal->db_ch1);
1659                }
1660                OS_A_REG_RMW_FIELD(ah, AR_AN_TOP2, AR_AN_TOP2_XPABIAS_LVL, pModal->xpaBiasLvl);
1661                OS_A_REG_RMW_FIELD(ah, AR_AN_TOP2, AR_AN_TOP2_LOCALBIAS,
1662		    !!(pModal->flagBits & AR5416_EEP_FLAG_LOCALBIAS));
1663                OS_A_REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
1664		    !!(pModal->flagBits & AR5416_EEP_FLAG_FORCEXPAON));
1665        }
1666
1667    OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
1668    OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
1669
1670    if (! AR_SREV_MERLIN_10_OR_LATER(ah))
1671    	OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_PGA, pModal->pgaDesiredSize);
1672
1673    OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
1674        SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
1675        | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
1676        | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
1677        | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
1678
1679    OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1680	pModal->txEndToRxOn);
1681
1682    if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1683	OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
1684	    pModal->thresh62);
1685	OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
1686	    pModal->thresh62);
1687    } else {
1688	OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
1689	    pModal->thresh62);
1690	OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA, AR_PHY_EXT_CCA_THRESH62,
1691	    pModal->thresh62);
1692    }
1693
1694    /* Minor Version Specific application */
1695    if (IS_EEP_MINOR_V2(ah)) {
1696        OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_DATA_START,
1697	    pModal->txFrameToDataStart);
1698        OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_PA_ON,
1699	    pModal->txFrameToPaOn);
1700    }
1701
1702    if (IS_EEP_MINOR_V3(ah) && IEEE80211_IS_CHAN_HT40(chan))
1703		/* Overwrite switch settling with HT40 value */
1704		OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
1705		    pModal->swSettleHt40);
1706
1707    if (AR_SREV_MERLIN_20_OR_LATER(ah) && EEP_MINOR(ah) >= AR5416_EEP_MINOR_VER_19)
1708         OS_REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL, AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK, pModal->miscBits);
1709
1710        if (AR_SREV_MERLIN_20(ah) && EEP_MINOR(ah) >= AR5416_EEP_MINOR_VER_20) {
1711                if (IEEE80211_IS_CHAN_2GHZ(chan))
1712                        OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
1713			    eep->baseEepHeader.dacLpMode);
1714                else if (eep->baseEepHeader.dacHiPwrMode_5G)
1715                        OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
1716                else
1717                        OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
1718			    eep->baseEepHeader.dacLpMode);
1719
1720		OS_DELAY(100);
1721
1722                OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
1723		    pModal->miscBits >> 2);
1724                OS_REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9, AR_PHY_TX_DESIRED_SCALE_CCK,
1725		    eep->baseEepHeader.desiredScaleCCK);
1726        }
1727
1728    return (AH_TRUE);
1729}
1730
1731/*
1732 * Helper functions common for AP/CB/XB
1733 */
1734
1735/*
1736 * Set the target power array "ratesArray" from the
1737 * given set of target powers.
1738 *
1739 * This is used by the various chipset/EEPROM TX power
1740 * setup routines.
1741 */
1742void
1743ar5416SetRatesArrayFromTargetPower(struct ath_hal *ah,
1744    const struct ieee80211_channel *chan,
1745    int16_t *ratesArray,
1746    const CAL_TARGET_POWER_LEG *targetPowerCck,
1747    const CAL_TARGET_POWER_LEG *targetPowerCckExt,
1748    const CAL_TARGET_POWER_LEG *targetPowerOfdm,
1749    const CAL_TARGET_POWER_LEG *targetPowerOfdmExt,
1750    const CAL_TARGET_POWER_HT *targetPowerHt20,
1751    const CAL_TARGET_POWER_HT *targetPowerHt40)
1752{
1753#define	N(a)	(sizeof(a)/sizeof(a[0]))
1754	int i;
1755
1756	/* Blank the rates array, to be consistent */
1757	for (i = 0; i < Ar5416RateSize; i++)
1758		ratesArray[i] = 0;
1759
1760	/* Set rates Array from collected data */
1761	ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1762	ratesArray[rate18mb] = ratesArray[rate24mb] =
1763	    targetPowerOfdm->tPow2x[0];
1764	ratesArray[rate36mb] = targetPowerOfdm->tPow2x[1];
1765	ratesArray[rate48mb] = targetPowerOfdm->tPow2x[2];
1766	ratesArray[rate54mb] = targetPowerOfdm->tPow2x[3];
1767	ratesArray[rateXr] = targetPowerOfdm->tPow2x[0];
1768
1769	for (i = 0; i < N(targetPowerHt20->tPow2x); i++) {
1770		ratesArray[rateHt20_0 + i] = targetPowerHt20->tPow2x[i];
1771	}
1772
1773	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1774		ratesArray[rate1l]  = targetPowerCck->tPow2x[0];
1775		ratesArray[rate2s] = ratesArray[rate2l]  = targetPowerCck->tPow2x[1];
1776		ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck->tPow2x[2];
1777		ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck->tPow2x[3];
1778	}
1779	if (IEEE80211_IS_CHAN_HT40(chan)) {
1780		for (i = 0; i < N(targetPowerHt40->tPow2x); i++) {
1781			ratesArray[rateHt40_0 + i] = targetPowerHt40->tPow2x[i];
1782		}
1783		ratesArray[rateDupOfdm] = targetPowerHt40->tPow2x[0];
1784		ratesArray[rateDupCck]  = targetPowerHt40->tPow2x[0];
1785		ratesArray[rateExtOfdm] = targetPowerOfdmExt->tPow2x[0];
1786		if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1787			ratesArray[rateExtCck]  = targetPowerCckExt->tPow2x[0];
1788		}
1789	}
1790#undef	N
1791}
1792
1793/*
1794 * ar5416SetPowerPerRateTable
1795 *
1796 * Sets the transmit power in the baseband for the given
1797 * operating channel and mode.
1798 */
1799static HAL_BOOL
1800ar5416SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom *pEepData,
1801                           const struct ieee80211_channel *chan,
1802                           int16_t *ratesArray, uint16_t cfgCtl,
1803                           uint16_t AntennaReduction,
1804                           uint16_t twiceMaxRegulatoryPower,
1805                           uint16_t powerLimit)
1806{
1807#define	N(a)	(sizeof(a)/sizeof(a[0]))
1808/* Local defines to distinguish between extension and control CTL's */
1809#define EXT_ADDITIVE (0x8000)
1810#define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
1811#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
1812#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
1813
1814	uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
1815	int i;
1816	int16_t  twiceLargestAntenna;
1817	CAL_CTL_DATA *rep;
1818	CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}};
1819	CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}};
1820	CAL_TARGET_POWER_HT  targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}};
1821	int16_t scaledPower, minCtlPower;
1822
1823#define SUB_NUM_CTL_MODES_AT_5G_40 2   /* excluding HT40, EXT-OFDM */
1824#define SUB_NUM_CTL_MODES_AT_2G_40 3   /* excluding HT40, EXT-OFDM, EXT-CCK */
1825	static const uint16_t ctlModesFor11a[] = {
1826	   CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
1827	};
1828	static const uint16_t ctlModesFor11g[] = {
1829	   CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
1830	};
1831	const uint16_t *pCtlMode;
1832	uint16_t numCtlModes, ctlMode, freq;
1833	CHAN_CENTERS centers;
1834
1835	ar5416GetChannelCenters(ah,  chan, &centers);
1836
1837	/* Compute TxPower reduction due to Antenna Gain */
1838
1839	twiceLargestAntenna = AH_MAX(AH_MAX(
1840	    pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0],
1841	    pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]),
1842	    pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
1843#if 0
1844	/* Turn it back on if we need to calculate per chain antenna gain reduction */
1845	/* Use only if the expected gain > 6dbi */
1846	/* Chain 0 is always used */
1847	twiceLargestAntenna = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0];
1848
1849	/* Look at antenna gains of Chains 1 and 2 if the TX mask is set */
1850	if (ahp->ah_tx_chainmask & 0x2)
1851		twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
1852			pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
1853
1854	if (ahp->ah_tx_chainmask & 0x4)
1855		twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
1856			pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
1857#endif
1858	twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
1859
1860	/* XXX setup for 5212 use (really used?) */
1861	ath_hal_eepromSet(ah,
1862	    IEEE80211_IS_CHAN_2GHZ(chan) ? AR_EEP_ANTGAINMAX_2 : AR_EEP_ANTGAINMAX_5,
1863	    twiceLargestAntenna);
1864
1865	/*
1866	 * scaledPower is the minimum of the user input power level and
1867	 * the regulatory allowed power level
1868	 */
1869	scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
1870
1871	/* Reduce scaled Power by number of chains active to get to per chain tx power level */
1872	/* TODO: better value than these? */
1873	switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) {
1874	case 1:
1875		break;
1876	case 2:
1877		scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor2Chain;
1878		break;
1879	case 3:
1880		scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor3Chain;
1881		break;
1882	default:
1883		return AH_FALSE; /* Unsupported number of chains */
1884	}
1885
1886	scaledPower = AH_MAX(0, scaledPower);
1887
1888	/* Get target powers from EEPROM - our baseline for TX Power */
1889	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1890		/* Setup for CTL modes */
1891		numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
1892		pCtlMode = ctlModesFor11g;
1893
1894		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
1895				AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
1896		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
1897				AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
1898		ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT20,
1899				AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
1900
1901		if (IEEE80211_IS_CHAN_HT40(chan)) {
1902			numCtlModes = N(ctlModesFor11g);    /* All 2G CTL's */
1903
1904			ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT40,
1905				AR5416_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
1906			/* Get target powers for extension channels */
1907			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
1908				AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
1909			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
1910				AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
1911		}
1912	} else {
1913		/* Setup for CTL modes */
1914		numCtlModes = N(ctlModesFor11a) - SUB_NUM_CTL_MODES_AT_5G_40; /* CTL_11A, CTL_5GHT20 */
1915		pCtlMode = ctlModesFor11a;
1916
1917		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower5G,
1918				AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
1919		ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower5GHT20,
1920				AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
1921
1922		if (IEEE80211_IS_CHAN_HT40(chan)) {
1923			numCtlModes = N(ctlModesFor11a); /* All 5G CTL's */
1924
1925			ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower5GHT40,
1926				AR5416_NUM_5G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
1927			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower5G,
1928				AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
1929		}
1930	}
1931
1932	/*
1933	 * For MIMO, need to apply regulatory caps individually across dynamically
1934	 * running modes: CCK, OFDM, HT20, HT40
1935	 *
1936	 * The outer loop walks through each possible applicable runtime mode.
1937	 * The inner loop walks through each ctlIndex entry in EEPROM.
1938	 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
1939	 *
1940	 */
1941	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
1942		HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
1943		    (pCtlMode[ctlMode] == CTL_2GHT40);
1944		if (isHt40CtlMode) {
1945			freq = centers.ctl_center;
1946		} else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
1947			freq = centers.ext_center;
1948		} else {
1949			freq = centers.ctl_center;
1950		}
1951
1952		/* walk through each CTL index stored in EEPROM */
1953		for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
1954			uint16_t twiceMinEdgePower;
1955
1956			/* compare test group from regulatory channel list with test mode from pCtlMode list */
1957			if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
1958				(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1959				 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
1960				rep = &(pEepData->ctlData[i]);
1961				twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
1962							rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1],
1963							IEEE80211_IS_CHAN_2GHZ(chan));
1964				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1965					/* Find the minimum of all CTL edge powers that apply to this channel */
1966					twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
1967				} else {
1968					/* specific */
1969					twiceMaxEdgePower = twiceMinEdgePower;
1970					break;
1971				}
1972			}
1973		}
1974		minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
1975		/* Apply ctl mode to correct target power set */
1976		switch(pCtlMode[ctlMode]) {
1977		case CTL_11B:
1978			for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
1979				targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
1980			}
1981			break;
1982		case CTL_11A:
1983		case CTL_11G:
1984			for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
1985				targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
1986			}
1987			break;
1988		case CTL_5GHT20:
1989		case CTL_2GHT20:
1990			for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
1991				targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
1992			}
1993			break;
1994		case CTL_11B_EXT:
1995			targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
1996			break;
1997		case CTL_11A_EXT:
1998		case CTL_11G_EXT:
1999			targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
2000			break;
2001		case CTL_5GHT40:
2002		case CTL_2GHT40:
2003			for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
2004				targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
2005			}
2006			break;
2007		default:
2008			return AH_FALSE;
2009			break;
2010		}
2011	} /* end ctl mode checking */
2012
2013	/* Set rates Array from collected data */
2014	ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray,
2015	    &targetPowerCck,
2016	    &targetPowerCckExt,
2017	    &targetPowerOfdm,
2018	    &targetPowerOfdmExt,
2019	    &targetPowerHt20,
2020	    &targetPowerHt40);
2021	return AH_TRUE;
2022#undef EXT_ADDITIVE
2023#undef CTL_11A_EXT
2024#undef CTL_11G_EXT
2025#undef CTL_11B_EXT
2026#undef SUB_NUM_CTL_MODES_AT_5G_40
2027#undef SUB_NUM_CTL_MODES_AT_2G_40
2028#undef N
2029}
2030
2031/**************************************************************************
2032 * fbin2freq
2033 *
2034 * Get channel value from binary representation held in eeprom
2035 * RETURNS: the frequency in MHz
2036 */
2037static uint16_t
2038fbin2freq(uint8_t fbin, HAL_BOOL is2GHz)
2039{
2040    /*
2041     * Reserved value 0xFF provides an empty definition both as
2042     * an fbin and as a frequency - do not convert
2043     */
2044    if (fbin == AR5416_BCHAN_UNUSED) {
2045        return fbin;
2046    }
2047
2048    return (uint16_t)((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
2049}
2050
2051/*
2052 * ar5416GetMaxEdgePower
2053 *
2054 * Find the maximum conformance test limit for the given channel and CTL info
2055 */
2056uint16_t
2057ar5416GetMaxEdgePower(uint16_t freq, CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz)
2058{
2059    uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
2060    int      i;
2061
2062    /* Get the edge power */
2063    for (i = 0; (i < AR5416_NUM_BAND_EDGES) && (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED) ; i++) {
2064        /*
2065         * If there's an exact channel match or an inband flag set
2066         * on the lower channel use the given rdEdgePower
2067         */
2068        if (freq == fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
2069            twiceMaxEdgePower = MS(pRdEdgesPower[i].tPowerFlag, CAL_CTL_EDGES_POWER);
2070            break;
2071        } else if ((i > 0) && (freq < fbin2freq(pRdEdgesPower[i].bChannel, is2GHz))) {
2072            if (fbin2freq(pRdEdgesPower[i - 1].bChannel, is2GHz) < freq && (pRdEdgesPower[i - 1].tPowerFlag & CAL_CTL_EDGES_FLAG) != 0) {
2073                twiceMaxEdgePower = MS(pRdEdgesPower[i - 1].tPowerFlag, CAL_CTL_EDGES_POWER);
2074            }
2075            /* Leave loop - no more affecting edges possible in this monotonic increasing list */
2076            break;
2077        }
2078    }
2079    HALASSERT(twiceMaxEdgePower > 0);
2080    return twiceMaxEdgePower;
2081}
2082
2083/**************************************************************
2084 * ar5416GetTargetPowers
2085 *
2086 * Return the rates of target power for the given target power table
2087 * channel, and number of channels
2088 */
2089void
2090ar5416GetTargetPowers(struct ath_hal *ah,  const struct ieee80211_channel *chan,
2091                      CAL_TARGET_POWER_HT *powInfo, uint16_t numChannels,
2092                      CAL_TARGET_POWER_HT *pNewPower, uint16_t numRates,
2093                      HAL_BOOL isHt40Target)
2094{
2095    uint16_t clo, chi;
2096    int i;
2097    int matchIndex = -1, lowIndex = -1;
2098    uint16_t freq;
2099    CHAN_CENTERS centers;
2100
2101    ar5416GetChannelCenters(ah,  chan, &centers);
2102    freq = isHt40Target ? centers.synth_center : centers.ctl_center;
2103
2104    /* Copy the target powers into the temp channel list */
2105    if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
2106        matchIndex = 0;
2107    } else {
2108        for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
2109            if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
2110                matchIndex = i;
2111                break;
2112            } else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) &&
2113                       (freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))))
2114            {
2115                lowIndex = i - 1;
2116                break;
2117            }
2118        }
2119        if ((matchIndex == -1) && (lowIndex == -1)) {
2120            HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)));
2121            matchIndex = i - 1;
2122        }
2123    }
2124
2125    if (matchIndex != -1) {
2126        OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
2127    } else {
2128        HALASSERT(lowIndex != -1);
2129        /*
2130         * Get the lower and upper channels, target powers,
2131         * and interpolate between them.
2132         */
2133        clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
2134        chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
2135
2136        for (i = 0; i < numRates; i++) {
2137            pNewPower->tPow2x[i] = (uint8_t)ath_ee_interpolate(freq, clo, chi,
2138                                   powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
2139        }
2140    }
2141}
2142/**************************************************************
2143 * ar5416GetTargetPowersLeg
2144 *
2145 * Return the four rates of target power for the given target power table
2146 * channel, and number of channels
2147 */
2148void
2149ar5416GetTargetPowersLeg(struct ath_hal *ah,
2150                         const struct ieee80211_channel *chan,
2151                         CAL_TARGET_POWER_LEG *powInfo, uint16_t numChannels,
2152                         CAL_TARGET_POWER_LEG *pNewPower, uint16_t numRates,
2153			 HAL_BOOL isExtTarget)
2154{
2155    uint16_t clo, chi;
2156    int i;
2157    int matchIndex = -1, lowIndex = -1;
2158    uint16_t freq;
2159    CHAN_CENTERS centers;
2160
2161    ar5416GetChannelCenters(ah,  chan, &centers);
2162    freq = (isExtTarget) ? centers.ext_center :centers.ctl_center;
2163
2164    /* Copy the target powers into the temp channel list */
2165    if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
2166        matchIndex = 0;
2167    } else {
2168        for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
2169            if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
2170                matchIndex = i;
2171                break;
2172            } else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) &&
2173                       (freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))))
2174            {
2175                lowIndex = i - 1;
2176                break;
2177            }
2178        }
2179        if ((matchIndex == -1) && (lowIndex == -1)) {
2180            HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)));
2181            matchIndex = i - 1;
2182        }
2183    }
2184
2185    if (matchIndex != -1) {
2186        OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
2187    } else {
2188        HALASSERT(lowIndex != -1);
2189        /*
2190         * Get the lower and upper channels, target powers,
2191         * and interpolate between them.
2192         */
2193        clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
2194        chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
2195
2196        for (i = 0; i < numRates; i++) {
2197            pNewPower->tPow2x[i] = (uint8_t)ath_ee_interpolate(freq, clo, chi,
2198                                   powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
2199        }
2200    }
2201}
2202
2203/*
2204 * Set the gain boundaries for the given radio chain.
2205 *
2206 * The gain boundaries tell the hardware at what point in the
2207 * PDADC array to "switch over" from one PD gain setting
2208 * to another. There's also a gain overlap between two
2209 * PDADC array gain curves where there's valid PD values
2210 * for 2 gain settings.
2211 *
2212 * The hardware uses the gain overlap and gain boundaries
2213 * to determine which gain curve to use for the given
2214 * target TX power.
2215 */
2216void
2217ar5416SetGainBoundariesClosedLoop(struct ath_hal *ah, int i,
2218    uint16_t pdGainOverlap_t2, uint16_t gainBoundaries[])
2219{
2220	int regChainOffset;
2221
2222	regChainOffset = ar5416GetRegChainOffset(ah, i);
2223
2224	HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: chain %d: gainOverlap_t2: %d,"
2225	    " gainBoundaries: %d, %d, %d, %d\n", __func__, i, pdGainOverlap_t2,
2226	    gainBoundaries[0], gainBoundaries[1], gainBoundaries[2],
2227	    gainBoundaries[3]);
2228	OS_REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
2229	    SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
2230	    SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)  |
2231	    SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)  |
2232	    SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)  |
2233	    SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
2234}
2235
2236/*
2237 * Get the gain values and the number of gain levels given
2238 * in xpdMask.
2239 *
2240 * The EEPROM xpdMask determines which power detector gain
2241 * levels were used during calibration. Each of these mask
2242 * bits maps to a fixed gain level in hardware.
2243 */
2244uint16_t
2245ar5416GetXpdGainValues(struct ath_hal *ah, uint16_t xpdMask,
2246    uint16_t xpdGainValues[])
2247{
2248    int i;
2249    uint16_t numXpdGain = 0;
2250
2251    for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
2252        if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
2253            if (numXpdGain >= AR5416_NUM_PD_GAINS) {
2254                HALASSERT(0);
2255                break;
2256            }
2257            xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i);
2258            numXpdGain++;
2259        }
2260    }
2261    return numXpdGain;
2262}
2263
2264/*
2265 * Write the detector gain and biases.
2266 *
2267 * There are four power detector gain levels. The xpdMask in the EEPROM
2268 * determines which power detector gain levels have TX power calibration
2269 * data associated with them. This function writes the number of
2270 * PD gain levels and their values into the hardware.
2271 *
2272 * This is valid for all TX chains - the calibration data itself however
2273 * will likely differ per-chain.
2274 */
2275void
2276ar5416WriteDetectorGainBiases(struct ath_hal *ah, uint16_t numXpdGain,
2277    uint16_t xpdGainValues[])
2278{
2279    HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: numXpdGain: %d,"
2280      " xpdGainValues: %d, %d, %d\n", __func__, numXpdGain,
2281      xpdGainValues[0], xpdGainValues[1], xpdGainValues[2]);
2282
2283    OS_REG_WRITE(ah, AR_PHY_TPCRG1, (OS_REG_READ(ah, AR_PHY_TPCRG1) &
2284    	~(AR_PHY_TPCRG1_NUM_PD_GAIN | AR_PHY_TPCRG1_PD_GAIN_1 |
2285	AR_PHY_TPCRG1_PD_GAIN_2 | AR_PHY_TPCRG1_PD_GAIN_3)) |
2286	SM(numXpdGain - 1, AR_PHY_TPCRG1_NUM_PD_GAIN) |
2287	SM(xpdGainValues[0], AR_PHY_TPCRG1_PD_GAIN_1 ) |
2288	SM(xpdGainValues[1], AR_PHY_TPCRG1_PD_GAIN_2) |
2289	SM(xpdGainValues[2],  AR_PHY_TPCRG1_PD_GAIN_3));
2290}
2291
2292/*
2293 * Write the PDADC array to the given radio chain i.
2294 *
2295 * The 32 PDADC registers are written without any care about
2296 * their contents - so if various chips treat values as "special",
2297 * this routine will not care.
2298 */
2299void
2300ar5416WritePdadcValues(struct ath_hal *ah, int i, uint8_t pdadcValues[])
2301{
2302	int regOffset, regChainOffset;
2303	int j;
2304	int reg32;
2305
2306	regChainOffset = ar5416GetRegChainOffset(ah, i);
2307	regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
2308
2309	for (j = 0; j < 32; j++) {
2310		reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0)  |
2311		    ((pdadcValues[4*j + 1] & 0xFF) << 8)  |
2312		    ((pdadcValues[4*j + 2] & 0xFF) << 16) |
2313		    ((pdadcValues[4*j + 3] & 0xFF) << 24) ;
2314		OS_REG_WRITE(ah, regOffset, reg32);
2315		HALDEBUG(ah, HAL_DEBUG_EEPROM, "PDADC: Chain %d |"
2316		    " PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d"
2317		    " Value %3d | PDADC %3d Value %3d |\n",
2318		    i,
2319		    4*j, pdadcValues[4*j],
2320		    4*j+1, pdadcValues[4*j + 1],
2321		    4*j+2, pdadcValues[4*j + 2],
2322		    4*j+3, pdadcValues[4*j + 3]);
2323		regOffset += 4;
2324	}
2325}
2326
2327/**************************************************************
2328 * ar5416SetPowerCalTable
2329 *
2330 * Pull the PDADC piers from cal data and interpolate them across the given
2331 * points as well as from the nearest pier(s) to get a power detector
2332 * linear voltage to power level table.
2333 */
2334HAL_BOOL
2335ar5416SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom *pEepData,
2336	const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
2337{
2338    CAL_DATA_PER_FREQ *pRawDataset;
2339    uint8_t  *pCalBChans = AH_NULL;
2340    uint16_t pdGainOverlap_t2;
2341    static uint8_t  pdadcValues[AR5416_NUM_PDADC_VALUES];
2342    uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK];
2343    uint16_t numPiers, i;
2344    int16_t  tMinCalPower;
2345    uint16_t numXpdGain, xpdMask;
2346    uint16_t xpdGainValues[AR5416_NUM_PD_GAINS];
2347    uint32_t regChainOffset;
2348
2349    OS_MEMZERO(xpdGainValues, sizeof(xpdGainValues));
2350
2351    xpdMask = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].xpdGain;
2352
2353    if (IS_EEP_MINOR_V2(ah)) {
2354        pdGainOverlap_t2 = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pdGainOverlap;
2355    } else {
2356    	pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
2357    }
2358
2359    if (IEEE80211_IS_CHAN_2GHZ(chan)) {
2360        pCalBChans = pEepData->calFreqPier2G;
2361        numPiers = AR5416_NUM_2G_CAL_PIERS;
2362    } else {
2363        pCalBChans = pEepData->calFreqPier5G;
2364        numPiers = AR5416_NUM_5G_CAL_PIERS;
2365    }
2366
2367    /* Calculate the value of xpdgains from the xpdGain Mask */
2368    numXpdGain = ar5416GetXpdGainValues(ah, xpdMask, xpdGainValues);
2369
2370    /* Write the detector gain biases and their number */
2371    ar5416WriteDetectorGainBiases(ah, numXpdGain, xpdGainValues);
2372
2373    for (i = 0; i < AR5416_MAX_CHAINS; i++) {
2374	regChainOffset = ar5416GetRegChainOffset(ah, i);
2375
2376        if (pEepData->baseEepHeader.txMask & (1 << i)) {
2377            if (IEEE80211_IS_CHAN_2GHZ(chan)) {
2378                pRawDataset = pEepData->calPierData2G[i];
2379            } else {
2380                pRawDataset = pEepData->calPierData5G[i];
2381            }
2382
2383            /* Fetch the gain boundaries and the PDADC values */
2384	    ar5416GetGainBoundariesAndPdadcs(ah,  chan, pRawDataset,
2385                                             pCalBChans, numPiers,
2386                                             pdGainOverlap_t2,
2387                                             &tMinCalPower, gainBoundaries,
2388                                             pdadcValues, numXpdGain);
2389
2390            if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
2391		ar5416SetGainBoundariesClosedLoop(ah, i, pdGainOverlap_t2,
2392		  gainBoundaries);
2393            }
2394
2395            /* Write the power values into the baseband power table */
2396	    ar5416WritePdadcValues(ah, i, pdadcValues);
2397        }
2398    }
2399    *pTxPowerIndexOffset = 0;
2400
2401    return AH_TRUE;
2402}
2403
2404/**************************************************************
2405 * ar5416GetGainBoundariesAndPdadcs
2406 *
2407 * Uses the data points read from EEPROM to reconstruct the pdadc power table
2408 * Called by ar5416SetPowerCalTable only.
2409 */
2410void
2411ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah,
2412                                 const struct ieee80211_channel *chan,
2413				 CAL_DATA_PER_FREQ *pRawDataSet,
2414                                 uint8_t * bChans,  uint16_t availPiers,
2415                                 uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries,
2416                                 uint8_t * pPDADCValues, uint16_t numXpdGains)
2417{
2418
2419    int       i, j, k;
2420    int16_t   ss;         /* potentially -ve index for taking care of pdGainOverlap */
2421    uint16_t  idxL, idxR, numPiers; /* Pier indexes */
2422
2423    /* filled out Vpd table for all pdGains (chanL) */
2424    static uint8_t   vpdTableL[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
2425
2426    /* filled out Vpd table for all pdGains (chanR) */
2427    static uint8_t   vpdTableR[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
2428
2429    /* filled out Vpd table for all pdGains (interpolated) */
2430    static uint8_t   vpdTableI[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
2431
2432    uint8_t   *pVpdL, *pVpdR, *pPwrL, *pPwrR;
2433    uint8_t   minPwrT4[AR5416_NUM_PD_GAINS];
2434    uint8_t   maxPwrT4[AR5416_NUM_PD_GAINS];
2435    int16_t   vpdStep;
2436    int16_t   tmpVal;
2437    uint16_t  sizeCurrVpdTable, maxIndex, tgtIndex;
2438    HAL_BOOL    match;
2439    int16_t  minDelta = 0;
2440    CHAN_CENTERS centers;
2441
2442    ar5416GetChannelCenters(ah, chan, &centers);
2443
2444    /* Trim numPiers for the number of populated channel Piers */
2445    for (numPiers = 0; numPiers < availPiers; numPiers++) {
2446        if (bChans[numPiers] == AR5416_BCHAN_UNUSED) {
2447            break;
2448        }
2449    }
2450
2451    /* Find pier indexes around the current channel */
2452    match = ath_ee_getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center,
2453	IEEE80211_IS_CHAN_2GHZ(chan)), bChans, numPiers, &idxL, &idxR);
2454
2455    if (match) {
2456        /* Directly fill both vpd tables from the matching index */
2457        for (i = 0; i < numXpdGains; i++) {
2458            minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
2459            maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
2460            ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pRawDataSet[idxL].pwrPdg[i],
2461                               pRawDataSet[idxL].vpdPdg[i], AR5416_PD_GAIN_ICEPTS, vpdTableI[i]);
2462        }
2463    } else {
2464        for (i = 0; i < numXpdGains; i++) {
2465            pVpdL = pRawDataSet[idxL].vpdPdg[i];
2466            pPwrL = pRawDataSet[idxL].pwrPdg[i];
2467            pVpdR = pRawDataSet[idxR].vpdPdg[i];
2468            pPwrR = pRawDataSet[idxR].pwrPdg[i];
2469
2470            /* Start Vpd interpolation from the max of the minimum powers */
2471            minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]);
2472
2473            /* End Vpd interpolation from the min of the max powers */
2474            maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
2475            HALASSERT(maxPwrT4[i] > minPwrT4[i]);
2476
2477            /* Fill pier Vpds */
2478            ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL, AR5416_PD_GAIN_ICEPTS, vpdTableL[i]);
2479            ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR, AR5416_PD_GAIN_ICEPTS, vpdTableR[i]);
2480
2481            /* Interpolate the final vpd */
2482            for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
2483                vpdTableI[i][j] = (uint8_t)(ath_ee_interpolate((uint16_t)FREQ2FBIN(centers.synth_center,
2484		    IEEE80211_IS_CHAN_2GHZ(chan)),
2485                    bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j]));
2486            }
2487        }
2488    }
2489    *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
2490
2491    k = 0; /* index for the final table */
2492    for (i = 0; i < numXpdGains; i++) {
2493        if (i == (numXpdGains - 1)) {
2494            pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2);
2495        } else {
2496            pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
2497        }
2498
2499        pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
2500
2501	/* NB: only applies to owl 1.0 */
2502        if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah) ) {
2503	    /*
2504             * fix the gain delta, but get a delta that can be applied to min to
2505             * keep the upper power values accurate, don't think max needs to
2506             * be adjusted because should not be at that area of the table?
2507	     */
2508            minDelta = pPdGainBoundaries[0] - 23;
2509            pPdGainBoundaries[0] = 23;
2510        }
2511        else {
2512            minDelta = 0;
2513        }
2514
2515        /* Find starting index for this pdGain */
2516        if (i == 0) {
2517            if (AR_SREV_MERLIN_10_OR_LATER(ah))
2518                ss = (int16_t)(0 - (minPwrT4[i] / 2));
2519            else
2520                ss = 0; /* for the first pdGain, start from index 0 */
2521        } else {
2522	    /* need overlap entries extrapolated below. */
2523            ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta);
2524        }
2525        vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
2526        vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
2527        /*
2528         *-ve ss indicates need to extrapolate data below for this pdGain
2529         */
2530        while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2531            tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
2532            pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal);
2533            ss++;
2534        }
2535
2536        sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1);
2537        tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2));
2538        maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
2539
2540        while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2541            pPDADCValues[k++] = vpdTableI[i][ss++];
2542        }
2543
2544        vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]);
2545        vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
2546        /*
2547         * for last gain, pdGainBoundary == Pmax_t2, so will
2548         * have to extrapolate
2549         */
2550        if (tgtIndex >= maxIndex) {  /* need to extrapolate above */
2551            while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2552                tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
2553                          (ss - maxIndex +1) * vpdStep));
2554                pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal);
2555                ss++;
2556            }
2557        }               /* extrapolated above */
2558    }                   /* for all pdGainUsed */
2559
2560    /* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */
2561    while (i < AR5416_PD_GAINS_IN_MASK) {
2562        pPdGainBoundaries[i] = pPdGainBoundaries[i-1];
2563        i++;
2564    }
2565
2566    while (k < AR5416_NUM_PDADC_VALUES) {
2567        pPDADCValues[k] = pPDADCValues[k-1];
2568        k++;
2569    }
2570    return;
2571}
2572
2573/*
2574 * The linux ath9k driver and (from what I've been told) the reference
2575 * Atheros driver enables the 11n PHY by default whether or not it's
2576 * configured.
2577 */
2578static void
2579ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan)
2580{
2581	uint32_t phymode;
2582	uint32_t enableDacFifo = 0;
2583	HAL_HT_MACMODE macmode;		/* MAC - 20/40 mode */
2584
2585	if (AR_SREV_KITE_10_OR_LATER(ah))
2586		enableDacFifo = (OS_REG_READ(ah, AR_PHY_TURBO) & AR_PHY_FC_ENABLE_DAC_FIFO);
2587
2588	/* Enable 11n HT, 20 MHz */
2589	phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
2590		| AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
2591
2592	/* Configure baseband for dynamic 20/40 operation */
2593	if (IEEE80211_IS_CHAN_HT40(chan)) {
2594		phymode |= AR_PHY_FC_DYN2040_EN;
2595
2596		/* Configure control (primary) channel at +-10MHz */
2597		if (IEEE80211_IS_CHAN_HT40U(chan))
2598			phymode |= AR_PHY_FC_DYN2040_PRI_CH;
2599#if 0
2600		/* Configure 20/25 spacing */
2601		if (ht->ht_extprotspacing == HAL_HT_EXTPROTSPACING_25)
2602			phymode |= AR_PHY_FC_DYN2040_EXT_CH;
2603#endif
2604		macmode = HAL_HT_MACMODE_2040;
2605	} else
2606		macmode = HAL_HT_MACMODE_20;
2607	OS_REG_WRITE(ah, AR_PHY_TURBO, phymode);
2608
2609	/* Configure MAC for 20/40 operation */
2610	ar5416Set11nMac2040(ah, macmode);
2611
2612	/* global transmit timeout (25 TUs default)*/
2613	/* XXX - put this elsewhere??? */
2614	OS_REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S) ;
2615
2616	/* carrier sense timeout */
2617	OS_REG_SET_BIT(ah, AR_GTTM, AR_GTTM_CST_USEC);
2618	OS_REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
2619}
2620
2621void
2622ar5416GetChannelCenters(struct ath_hal *ah,
2623	const struct ieee80211_channel *chan, CHAN_CENTERS *centers)
2624{
2625	uint16_t freq = ath_hal_gethwchannel(ah, chan);
2626
2627	centers->ctl_center = freq;
2628	centers->synth_center = freq;
2629	/*
2630	 * In 20/40 phy mode, the center frequency is
2631	 * "between" the control and extension channels.
2632	 */
2633	if (IEEE80211_IS_CHAN_HT40U(chan)) {
2634		centers->synth_center += HT40_CHANNEL_CENTER_SHIFT;
2635		centers->ext_center =
2636		    centers->synth_center + HT40_CHANNEL_CENTER_SHIFT;
2637	} else if (IEEE80211_IS_CHAN_HT40D(chan)) {
2638		centers->synth_center -= HT40_CHANNEL_CENTER_SHIFT;
2639		centers->ext_center =
2640		    centers->synth_center - HT40_CHANNEL_CENTER_SHIFT;
2641	} else {
2642		centers->ext_center = freq;
2643	}
2644}
2645
2646/*
2647 * Override the INI vals being programmed.
2648 */
2649static void
2650ar5416OverrideIni(struct ath_hal *ah, const struct ieee80211_channel *chan)
2651{
2652	uint32_t val;
2653
2654	/*
2655	 * Set the RX_ABORT and RX_DIS and clear if off only after
2656	 * RXE is set for MAC. This prevents frames with corrupted
2657	 * descriptor status.
2658	 */
2659	OS_REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
2660
2661	if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
2662		val = OS_REG_READ(ah, AR_PCU_MISC_MODE2);
2663		val &= (~AR_PCU_MISC_MODE2_ADHOC_MCAST_KEYID_ENABLE);
2664		if (!AR_SREV_9271(ah))
2665			val &= ~AR_PCU_MISC_MODE2_HWWAR1;
2666
2667		if (AR_SREV_KIWI_10_OR_LATER(ah))
2668			val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
2669
2670		OS_REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
2671	}
2672
2673	/*
2674	 * Disable RIFS search on some chips to avoid baseband
2675	 * hang issues.
2676	 */
2677	if (AR_SREV_HOWL(ah) || AR_SREV_SOWL(ah))
2678		(void) ar5416SetRifsDelay(ah, chan, AH_FALSE);
2679
2680        if (!AR_SREV_5416_V20_OR_LATER(ah) || AR_SREV_MERLIN(ah))
2681		return;
2682
2683	/*
2684	 * Disable BB clock gating
2685	 * Necessary to avoid issues on AR5416 2.0
2686	 */
2687	OS_REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
2688}
2689
2690struct ini {
2691	uint32_t        *data;          /* NB: !const */
2692	int             rows, cols;
2693};
2694
2695/*
2696 * Override XPA bias level based on operating frequency.
2697 * This is a v14 EEPROM specific thing for the AR9160.
2698 */
2699void
2700ar5416EepromSetAddac(struct ath_hal *ah, const struct ieee80211_channel *chan)
2701{
2702#define	XPA_LVL_FREQ(cnt)	(pModal->xpaBiasLvlFreq[cnt])
2703	MODAL_EEP_HEADER	*pModal;
2704	HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
2705	struct ar5416eeprom	*eep = &ee->ee_base;
2706	uint8_t biaslevel;
2707
2708	if (! AR_SREV_SOWL(ah))
2709		return;
2710
2711        if (EEP_MINOR(ah) < AR5416_EEP_MINOR_VER_7)
2712                return;
2713
2714	pModal = &(eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)]);
2715
2716	if (pModal->xpaBiasLvl != 0xff)
2717		biaslevel = pModal->xpaBiasLvl;
2718	else {
2719		uint16_t resetFreqBin, freqBin, freqCount = 0;
2720		CHAN_CENTERS centers;
2721
2722		ar5416GetChannelCenters(ah, chan, &centers);
2723
2724		resetFreqBin = FREQ2FBIN(centers.synth_center, IEEE80211_IS_CHAN_2GHZ(chan));
2725		freqBin = XPA_LVL_FREQ(0) & 0xff;
2726		biaslevel = (uint8_t) (XPA_LVL_FREQ(0) >> 14);
2727
2728		freqCount++;
2729
2730		while (freqCount < 3) {
2731			if (XPA_LVL_FREQ(freqCount) == 0x0)
2732			break;
2733
2734			freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
2735			if (resetFreqBin >= freqBin)
2736				biaslevel = (uint8_t)(XPA_LVL_FREQ(freqCount) >> 14);
2737			else
2738				break;
2739			freqCount++;
2740		}
2741	}
2742
2743	HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: overriding XPA bias level = %d\n",
2744	    __func__, biaslevel);
2745
2746	/*
2747	 * This is a dirty workaround for the const initval data,
2748	 * which will upset multiple AR9160's on the same board.
2749	 *
2750	 * The HAL should likely just have a private copy of the addac
2751	 * data per instance.
2752	 */
2753	if (IEEE80211_IS_CHAN_2GHZ(chan))
2754                HAL_INI_VAL((struct ini *) &AH5416(ah)->ah_ini_addac, 7, 1) =
2755		    (HAL_INI_VAL(&AH5416(ah)->ah_ini_addac, 7, 1) & (~0x18)) | biaslevel << 3;
2756        else
2757                HAL_INI_VAL((struct ini *) &AH5416(ah)->ah_ini_addac, 6, 1) =
2758		    (HAL_INI_VAL(&AH5416(ah)->ah_ini_addac, 6, 1) & (~0xc0)) | biaslevel << 6;
2759#undef XPA_LVL_FREQ
2760}
2761
2762static void
2763ar5416MarkPhyInactive(struct ath_hal *ah)
2764{
2765	OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
2766}
2767
2768#define	AR5416_IFS_SLOT_FULL_RATE_40	0x168	/* 9 us half, 40 MHz core clock (9*40) */
2769#define	AR5416_IFS_SLOT_HALF_RATE_40	0x104	/* 13 us half, 20 MHz core clock (13*20) */
2770#define	AR5416_IFS_SLOT_QUARTER_RATE_40	0xD2	/* 21 us quarter, 10 MHz core clock (21*10) */
2771
2772#define	AR5416_IFS_EIFS_FULL_RATE_40	0xE60	/* (74 + (2 * 9)) * 40MHz core clock */
2773#define	AR5416_IFS_EIFS_HALF_RATE_40	0xDAC	/* (149 + (2 * 13)) * 20MHz core clock */
2774#define	AR5416_IFS_EIFS_QUARTER_RATE_40	0xD48	/* (298 + (2 * 21)) * 10MHz core clock */
2775
2776#define	AR5416_IFS_SLOT_FULL_RATE_44	0x18c	/* 9 us half, 44 MHz core clock (9*44) */
2777#define	AR5416_IFS_SLOT_HALF_RATE_44	0x11e	/* 13 us half, 22 MHz core clock (13*22) */
2778#define	AR5416_IFS_SLOT_QUARTER_RATE_44	0xe7	/* 21 us quarter, 11 MHz core clock (21*11) */
2779
2780#define	AR5416_IFS_EIFS_FULL_RATE_44	0xfd0	/* (74 + (2 * 9)) * 44MHz core clock */
2781#define	AR5416_IFS_EIFS_HALF_RATE_44	0xf0a	/* (149 + (2 * 13)) * 22MHz core clock */
2782#define	AR5416_IFS_EIFS_QUARTER_RATE_44	0xe9c	/* (298 + (2 * 21)) * 11MHz core clock */
2783
2784#define	AR5416_INIT_USEC_40		40
2785#define	AR5416_HALF_RATE_USEC_40	19 /* ((40 / 2) - 1 ) */
2786#define	AR5416_QUARTER_RATE_USEC_40	9  /* ((40 / 4) - 1 ) */
2787
2788#define	AR5416_INIT_USEC_44		44
2789#define	AR5416_HALF_RATE_USEC_44	21 /* ((44 / 2) - 1 ) */
2790#define	AR5416_QUARTER_RATE_USEC_44	10  /* ((44 / 4) - 1 ) */
2791
2792
2793/* XXX What should these be for 40/44MHz clocks (and half/quarter) ? */
2794#define	AR5416_RX_NON_FULL_RATE_LATENCY		63
2795#define	AR5416_TX_HALF_RATE_LATENCY		108
2796#define	AR5416_TX_QUARTER_RATE_LATENCY		216
2797
2798/*
2799 * Adjust various register settings based on half/quarter rate clock setting.
2800 * This includes:
2801 *
2802 * + USEC, TX/RX latency,
2803 * + IFS params: slot, eifs, misc etc.
2804 *
2805 * TODO:
2806 *
2807 * + Verify which other registers need to be tweaked;
2808 * + Verify the behaviour of this for 5GHz fast and non-fast clock mode;
2809 * + This just plain won't work for long distance links - the coverage class
2810 *   code isn't aware of the slot/ifs/ACK/RTS timeout values that need to
2811 *   change;
2812 * + Verify whether the 32KHz USEC value needs to be kept for the 802.11n
2813 *   series chips?
2814 * + Calculate/derive values for 2GHz, 5GHz, 5GHz fast clock
2815 */
2816static void
2817ar5416SetIFSTiming(struct ath_hal *ah, const struct ieee80211_channel *chan)
2818{
2819	uint32_t txLat, rxLat, usec, slot, refClock, eifs, init_usec;
2820	int clk_44 = 0;
2821
2822	HALASSERT(IEEE80211_IS_CHAN_HALF(chan) ||
2823	    IEEE80211_IS_CHAN_QUARTER(chan));
2824
2825	/* 2GHz and 5GHz fast clock - 44MHz; else 40MHz */
2826	if (IEEE80211_IS_CHAN_2GHZ(chan))
2827		clk_44 = 1;
2828	else if (IEEE80211_IS_CHAN_5GHZ(chan) &&
2829	    IS_5GHZ_FAST_CLOCK_EN(ah, chan))
2830		clk_44 = 1;
2831
2832	/* XXX does this need save/restoring for the 11n chips? */
2833	refClock = OS_REG_READ(ah, AR_USEC) & AR_USEC_USEC32;
2834
2835	/*
2836	 * XXX This really should calculate things, not use
2837	 * hard coded values! Ew.
2838	 */
2839	if (IEEE80211_IS_CHAN_HALF(chan)) {
2840		if (clk_44) {
2841			slot = AR5416_IFS_SLOT_HALF_RATE_44;
2842			rxLat = AR5416_RX_NON_FULL_RATE_LATENCY <<
2843			    AR5416_USEC_RX_LAT_S;
2844			txLat = AR5416_TX_HALF_RATE_LATENCY <<
2845			    AR5416_USEC_TX_LAT_S;
2846			usec = AR5416_HALF_RATE_USEC_44;
2847			eifs = AR5416_IFS_EIFS_HALF_RATE_44;
2848			init_usec = AR5416_INIT_USEC_44 >> 1;
2849		} else {
2850			slot = AR5416_IFS_SLOT_HALF_RATE_40;
2851			rxLat = AR5416_RX_NON_FULL_RATE_LATENCY <<
2852			    AR5416_USEC_RX_LAT_S;
2853			txLat = AR5416_TX_HALF_RATE_LATENCY <<
2854			    AR5416_USEC_TX_LAT_S;
2855			usec = AR5416_HALF_RATE_USEC_40;
2856			eifs = AR5416_IFS_EIFS_HALF_RATE_40;
2857			init_usec = AR5416_INIT_USEC_40 >> 1;
2858		}
2859	} else { /* quarter rate */
2860		if (clk_44) {
2861			slot = AR5416_IFS_SLOT_QUARTER_RATE_44;
2862			rxLat = AR5416_RX_NON_FULL_RATE_LATENCY <<
2863			    AR5416_USEC_RX_LAT_S;
2864			txLat = AR5416_TX_QUARTER_RATE_LATENCY <<
2865			    AR5416_USEC_TX_LAT_S;
2866			usec = AR5416_QUARTER_RATE_USEC_44;
2867			eifs = AR5416_IFS_EIFS_QUARTER_RATE_44;
2868			init_usec = AR5416_INIT_USEC_44 >> 2;
2869		} else {
2870			slot = AR5416_IFS_SLOT_QUARTER_RATE_40;
2871			rxLat = AR5416_RX_NON_FULL_RATE_LATENCY <<
2872			    AR5416_USEC_RX_LAT_S;
2873			txLat = AR5416_TX_QUARTER_RATE_LATENCY <<
2874			    AR5416_USEC_TX_LAT_S;
2875			usec = AR5416_QUARTER_RATE_USEC_40;
2876			eifs = AR5416_IFS_EIFS_QUARTER_RATE_40;
2877			init_usec = AR5416_INIT_USEC_40 >> 2;
2878		}
2879	}
2880
2881	/* XXX verify these! */
2882	OS_REG_WRITE(ah, AR_USEC, (usec | refClock | txLat | rxLat));
2883	OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot);
2884	OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs);
2885	OS_REG_RMW_FIELD(ah, AR_D_GBL_IFS_MISC,
2886	    AR_D_GBL_IFS_MISC_USEC_DURATION, init_usec);
2887}
2888
2889