ar5416_reset.c revision 211307
1/*
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $FreeBSD: head/sys/dev/ath/ath_hal/ar5416/ar5416_reset.c 211307 2010-08-14 15:29:21Z adrian $
18 */
19#include "opt_ah.h"
20
21#include "ah.h"
22#include "ah_internal.h"
23#include "ah_devid.h"
24
25#include "ah_eeprom_v14.h"
26
27#include "ar5416/ar5416.h"
28#include "ar5416/ar5416reg.h"
29#include "ar5416/ar5416phy.h"
30
31/* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */
32#define	EEP_MINOR(_ah) \
33	(AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
34#define IS_EEP_MINOR_V2(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
35#define IS_EEP_MINOR_V3(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3)
36
37/* Additional Time delay to wait after activiting the Base band */
38#define BASE_ACTIVATE_DELAY	100	/* 100 usec */
39#define PLL_SETTLE_DELAY	300	/* 300 usec */
40#define RTC_PLL_SETTLE_DELAY    1000    /* 1 ms     */
41
42static void ar5416InitDMA(struct ath_hal *ah);
43static void ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *);
44static void ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode);
45static void ar5416InitQoS(struct ath_hal *ah);
46static void ar5416InitUserSettings(struct ath_hal *ah);
47
48#if 0
49static HAL_BOOL	ar5416ChannelChange(struct ath_hal *, const struct ieee80211_channel *);
50#endif
51static void ar5416SetDeltaSlope(struct ath_hal *, const struct ieee80211_channel *);
52
53static HAL_BOOL ar5416SetResetPowerOn(struct ath_hal *ah);
54static HAL_BOOL ar5416SetReset(struct ath_hal *ah, int type);
55static void ar5416InitPLL(struct ath_hal *ah, const struct ieee80211_channel *chan);
56static HAL_BOOL ar5416SetPowerPerRateTable(struct ath_hal *ah,
57	struct ar5416eeprom *pEepData,
58	const struct ieee80211_channel *chan, int16_t *ratesArray,
59	uint16_t cfgCtl, uint16_t AntennaReduction,
60	uint16_t twiceMaxRegulatoryPower,
61	uint16_t powerLimit);
62static HAL_BOOL ar5416SetPowerCalTable(struct ath_hal *ah,
63	struct ar5416eeprom *pEepData,
64	const struct ieee80211_channel *chan,
65	int16_t *pTxPowerIndexOffset);
66static uint16_t ar5416GetMaxEdgePower(uint16_t freq,
67	CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz);
68
69static int16_t interpolate(uint16_t target, uint16_t srcLeft,
70	uint16_t srcRight, int16_t targetLeft, int16_t targetRight);
71static void ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan);
72static void ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah,
73	const struct ieee80211_channel *chan, CAL_DATA_PER_FREQ *pRawDataSet,
74	uint8_t * bChans, uint16_t availPiers,
75	uint16_t tPdGainOverlap, int16_t *pMinCalPower,
76	uint16_t * pPdGainBoundaries, uint8_t * pPDADCValues,
77	uint16_t numXpdGains);
78static HAL_BOOL getLowerUpperIndex(uint8_t target, uint8_t *pList,
79	uint16_t listSize,  uint16_t *indexL, uint16_t *indexR);
80static HAL_BOOL ar5416FillVpdTable(uint8_t pwrMin, uint8_t pwrMax,
81	uint8_t *pPwrList, uint8_t *pVpdList,
82	uint16_t numIntercepts, uint8_t *pRetVpdList);
83
84/*
85 * Places the device in and out of reset and then places sane
86 * values in the registers based on EEPROM config, initialization
87 * vectors (as determined by the mode), and station configuration
88 *
89 * bChannelChange is used to preserve DMA/PCU registers across
90 * a HW Reset during channel change.
91 */
92HAL_BOOL
93ar5416Reset(struct ath_hal *ah, HAL_OPMODE opmode,
94	struct ieee80211_channel *chan,
95	HAL_BOOL bChannelChange, HAL_STATUS *status)
96{
97#define	N(a)	(sizeof (a) / sizeof (a[0]))
98#define	FAIL(_code)	do { ecode = _code; goto bad; } while (0)
99	struct ath_hal_5212 *ahp = AH5212(ah);
100	HAL_CHANNEL_INTERNAL *ichan;
101	uint32_t saveDefAntenna, saveLedState;
102	uint32_t macStaId1;
103	uint16_t rfXpdGain[2];
104	HAL_STATUS ecode;
105	uint32_t powerVal, rssiThrReg;
106	uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow;
107	int i;
108
109	OS_MARK(ah, AH_MARK_RESET, bChannelChange);
110
111	/* Bring out of sleep mode */
112	if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
113		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n",
114		    __func__);
115		FAIL(HAL_EIO);
116	}
117
118	/*
119	 * Map public channel to private.
120	 */
121	ichan = ath_hal_checkchannel(ah, chan);
122	if (ichan == AH_NULL)
123		FAIL(HAL_EINVAL);
124	switch (opmode) {
125	case HAL_M_STA:
126	case HAL_M_IBSS:
127	case HAL_M_HOSTAP:
128	case HAL_M_MONITOR:
129		break;
130	default:
131		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
132		    __func__, opmode);
133		FAIL(HAL_EINVAL);
134		break;
135	}
136	HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
137
138	/* XXX Turn on fast channel change for 5416 */
139	/*
140	 * Preserve the bmiss rssi threshold and count threshold
141	 * across resets
142	 */
143	rssiThrReg = OS_REG_READ(ah, AR_RSSI_THR);
144	/* If reg is zero, first time thru set to default val */
145	if (rssiThrReg == 0)
146		rssiThrReg = INIT_RSSI_THR;
147
148	/*
149	 * Preserve the antenna on a channel change
150	 */
151	saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
152	if (saveDefAntenna == 0)		/* XXX magic constants */
153		saveDefAntenna = 1;
154
155	/* Save hardware flag before chip reset clears the register */
156	macStaId1 = OS_REG_READ(ah, AR_STA_ID1) &
157		(AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT);
158
159	/* Save led state from pci config register */
160	saveLedState = OS_REG_READ(ah, AR_MAC_LED) &
161		(AR_MAC_LED_ASSOC | AR_MAC_LED_MODE |
162		 AR_MAC_LED_BLINK_THRESH_SEL | AR_MAC_LED_BLINK_SLOW);
163
164	if (!ar5416ChipReset(ah, chan)) {
165		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
166		FAIL(HAL_EIO);
167	}
168
169	/* Restore bmiss rssi & count thresholds */
170	OS_REG_WRITE(ah, AR_RSSI_THR, rssiThrReg);
171
172	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
173	if (AR_SREV_MERLIN_10_OR_LATER(ah))
174		OS_REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
175
176	if (AR_SREV_KITE(ah)) {
177		uint32_t val;
178		val = OS_REG_READ(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS);
179		val &= ~AR_PHY_RIFS_INIT_DELAY;
180		OS_REG_WRITE(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, val);
181	}
182
183	AH5416(ah)->ah_writeIni(ah, chan);
184
185	/* Setup 11n MAC/Phy mode registers */
186	ar5416Set11nRegs(ah, chan);
187
188	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
189
190	HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_DAG_CTRLCCK=0x%x\n",
191		__func__, OS_REG_READ(ah,AR_PHY_DAG_CTRLCCK));
192	HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_ADC_CTL=0x%x\n",
193		__func__, OS_REG_READ(ah,AR_PHY_ADC_CTL));
194
195	/* Set the mute mask to the correct default */
196	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2)
197		OS_REG_WRITE(ah, AR_SEQ_MASK, 0x0000000F);
198
199	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_3) {
200		/* Clear reg to alllow RX_CLEAR line debug */
201		OS_REG_WRITE(ah, AR_PHY_BLUETOOTH,  0);
202	}
203	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_4) {
204#ifdef notyet
205		/* Enable burst prefetch for the data queues */
206		OS_REG_RMW_FIELD(ah, AR_D_FPCTL, ... );
207		/* Enable double-buffering */
208		OS_REG_CLR_BIT(ah, AR_TXCFG, AR_TXCFG_DBL_BUF_DIS);
209#endif
210	}
211
212	/* Set ADC/DAC select values */
213	OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
214
215	if (AH5416(ah)->ah_rx_chainmask == 0x5 ||
216	    AH5416(ah)->ah_tx_chainmask == 0x5)
217		OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
218	/* Setup Chain Masks */
219	OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
220	OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
221	OS_REG_WRITE(ah, AR_SELFGEN_MASK, AH5416(ah)->ah_tx_chainmask);
222
223	/* Setup the transmit power values. */
224	if (!ah->ah_setTxPower(ah, chan, rfXpdGain)) {
225		HALDEBUG(ah, HAL_DEBUG_ANY,
226		    "%s: error init'ing transmit power\n", __func__);
227		FAIL(HAL_EIO);
228	}
229
230	/* Write the analog registers */
231	if (!ahp->ah_rfHal->setRfRegs(ah, chan,
232	    IEEE80211_IS_CHAN_2GHZ(chan) ? 2: 1, rfXpdGain)) {
233		HALDEBUG(ah, HAL_DEBUG_ANY,
234		    "%s: ar5212SetRfRegs failed\n", __func__);
235		FAIL(HAL_EIO);
236	}
237
238	/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
239	if (IEEE80211_IS_CHAN_OFDM(chan)|| IEEE80211_IS_CHAN_HT(chan))
240		ar5416SetDeltaSlope(ah, chan);
241
242	AH5416(ah)->ah_spurMitigate(ah, chan);
243
244	/* Setup board specific options for EEPROM version 3 */
245	if (!ah->ah_setBoardValues(ah, chan)) {
246		HALDEBUG(ah, HAL_DEBUG_ANY,
247		    "%s: error setting board options\n", __func__);
248		FAIL(HAL_EIO);
249	}
250
251	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
252
253	OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
254	OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
255		| macStaId1
256		| AR_STA_ID1_RTS_USE_DEF
257		| ahp->ah_staId1Defaults
258	);
259	ar5212SetOperatingMode(ah, opmode);
260
261	/* Set Venice BSSID mask according to current state */
262	OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
263	OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
264
265	/* Restore previous led state */
266	OS_REG_WRITE(ah, AR_MAC_LED, OS_REG_READ(ah, AR_MAC_LED) | saveLedState);
267
268	/* Restore previous antenna */
269	OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
270
271	/* then our BSSID */
272	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
273	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
274
275	/* Restore bmiss rssi & count thresholds */
276	OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
277
278	OS_REG_WRITE(ah, AR_ISR, ~0);		/* cleared on write */
279
280	if (!ar5212SetChannel(ah, chan))
281		FAIL(HAL_EIO);
282
283	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
284
285	/* Set 1:1 QCU to DCU mapping for all queues */
286	for (i = 0; i < AR_NUM_DCU; i++)
287		OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
288
289	ahp->ah_intrTxqs = 0;
290	for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++)
291		ar5212ResetTxQueue(ah, i);
292
293	ar5416InitIMR(ah, opmode);
294	ar5212SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1);
295	ar5416InitQoS(ah);
296	ar5416InitUserSettings(ah);
297
298	/*
299	 * disable seq number generation in hw
300	 */
301	 OS_REG_WRITE(ah, AR_STA_ID1,
302	     OS_REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
303
304	ar5416InitDMA(ah);
305
306	/*
307	 * program OBS bus to see MAC interrupts
308	 */
309	OS_REG_WRITE(ah, AR_OBS, 8);
310
311#ifdef AR5416_INT_MITIGATION
312	OS_REG_WRITE(ah, AR_MIRT, 0);
313	OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
314	OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
315#endif
316
317	ar5416InitBB(ah, chan);
318
319	/* Setup compression registers */
320	ar5212SetCompRegs(ah);		/* XXX not needed? */
321
322	/*
323	 * 5416 baseband will check the per rate power table
324	 * and select the lower of the two
325	 */
326	ackTpcPow = 63;
327	ctsTpcPow = 63;
328	chirpTpcPow = 63;
329	powerVal = SM(ackTpcPow, AR_TPC_ACK) |
330		SM(ctsTpcPow, AR_TPC_CTS) |
331		SM(chirpTpcPow, AR_TPC_CHIRP);
332	OS_REG_WRITE(ah, AR_TPC, powerVal);
333
334	if (!ar5416InitCal(ah, chan))
335		FAIL(HAL_ESELFTEST);
336
337	AH_PRIVATE(ah)->ah_opmode = opmode;	/* record operating mode */
338
339	if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan))
340		chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
341
342	HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
343
344	OS_MARK(ah, AH_MARK_RESET_DONE, 0);
345
346	return AH_TRUE;
347bad:
348	OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
349	if (status != AH_NULL)
350		*status = ecode;
351	return AH_FALSE;
352#undef FAIL
353#undef N
354}
355
356#if 0
357/*
358 * This channel change evaluates whether the selected hardware can
359 * perform a synthesizer-only channel change (no reset).  If the
360 * TX is not stopped, or the RFBus cannot be granted in the given
361 * time, the function returns false as a reset is necessary
362 */
363HAL_BOOL
364ar5416ChannelChange(struct ath_hal *ah, const structu ieee80211_channel *chan)
365{
366	uint32_t       ulCount;
367	uint32_t   data, synthDelay, qnum;
368	uint16_t   rfXpdGain[4];
369	struct ath_hal_5212 *ahp = AH5212(ah);
370	HAL_CHANNEL_INTERNAL *ichan;
371
372	/*
373	 * Map public channel to private.
374	 */
375	ichan = ath_hal_checkchannel(ah, chan);
376
377	/* TX must be stopped or RF Bus grant will not work */
378	for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) {
379		if (ar5212NumTxPending(ah, qnum)) {
380			HALDEBUG(ah, HAL_DEBUG_ANY,
381			    "%s: frames pending on queue %d\n", __func__, qnum);
382			return AH_FALSE;
383		}
384	}
385
386	/*
387	 * Kill last Baseband Rx Frame - Request analog bus grant
388	 */
389	OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST);
390	if (!ath_hal_wait(ah, AR_PHY_RFBUS_GNT, AR_PHY_RFBUS_GRANT_EN, AR_PHY_RFBUS_GRANT_EN)) {
391		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: could not kill baseband rx\n",
392		    __func__);
393		return AH_FALSE;
394	}
395
396	ar5416Set11nRegs(ah, chan);	/* NB: setup 5416-specific regs */
397
398	/* Change the synth */
399	if (!ar5212SetChannel(ah, chan))
400		return AH_FALSE;
401
402	/* Setup the transmit power values. */
403	if (!ar5416SetTransmitPower(ah, chan, rfXpdGain)) {
404		HALDEBUG(ah, HAL_DEBUG_ANY,
405		    "%s: error init'ing transmit power\n", __func__);
406		return AH_FALSE;
407	}
408
409	/*
410	 * Wait for the frequency synth to settle (synth goes on
411	 * via PHY_ACTIVE_EN).  Read the phy active delay register.
412	 * Value is in 100ns increments.
413	 */
414	data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
415	if (IS_CHAN_CCK(ichan)) {
416		synthDelay = (4 * data) / 22;
417	} else {
418		synthDelay = data / 10;
419	}
420
421	OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
422
423	/* Release the RFBus Grant */
424	OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
425
426	/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
427	if (IEEE80211_IS_CHAN_OFDM(ichan)|| IEEE80211_IS_CHAN_HT(chan)) {
428		HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3);
429		ar5212SetSpurMitigation(ah, chan);
430		ar5416SetDeltaSlope(ah, chan);
431	}
432
433	/* XXX spur mitigation for Melin */
434
435	if (!IEEE80211_IS_CHAN_DFS(chan))
436		chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
437
438	ichan->channel_time = 0;
439	ichan->tsf_last = ar5212GetTsf64(ah);
440	ar5212TxEnable(ah, AH_TRUE);
441	return AH_TRUE;
442}
443#endif
444
445static void
446ar5416InitDMA(struct ath_hal *ah)
447{
448	struct ath_hal_5212 *ahp = AH5212(ah);
449
450	/*
451	 * set AHB_MODE not to do cacheline prefetches
452	 */
453	OS_REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
454
455	/*
456	 * let mac dma reads be in 128 byte chunks
457	 */
458	OS_REG_WRITE(ah, AR_TXCFG,
459		(OS_REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK) | AR_TXCFG_DMASZ_128B);
460
461	/*
462	 * let mac dma writes be in 128 byte chunks
463	 */
464	OS_REG_WRITE(ah, AR_RXCFG,
465		(OS_REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK) | AR_RXCFG_DMASZ_128B);
466
467	/* restore TX trigger level */
468	OS_REG_WRITE(ah, AR_TXCFG,
469		(OS_REG_READ(ah, AR_TXCFG) &~ AR_FTRIG) |
470		    SM(ahp->ah_txTrigLev, AR_FTRIG));
471
472	/*
473	 * Setup receive FIFO threshold to hold off TX activities
474	 */
475	OS_REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
476
477	/*
478	 * reduce the number of usable entries in PCU TXBUF to avoid
479	 * wrap around.
480	 */
481	OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_PCU_TXBUF_CTRL_USABLE_SIZE);
482}
483
484static void
485ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *chan)
486{
487	uint32_t synthDelay;
488
489	/*
490	 * Wait for the frequency synth to settle (synth goes on
491	 * via AR_PHY_ACTIVE_EN).  Read the phy active delay register.
492	 * Value is in 100ns increments.
493	  */
494	synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
495	if (IEEE80211_IS_CHAN_CCK(chan)) {
496		synthDelay = (4 * synthDelay) / 22;
497	} else {
498		synthDelay /= 10;
499	}
500
501	/* Turn on PLL on 5416 */
502	HALDEBUG(ah, HAL_DEBUG_RESET, "%s %s channel\n",
503	    __func__, IEEE80211_IS_CHAN_5GHZ(chan) ? "5GHz" : "2GHz");
504	ar5416InitPLL(ah, chan);
505
506	/* Activate the PHY (includes baseband activate and synthesizer on) */
507	OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
508
509	/*
510	 * If the AP starts the calibration before the base band timeout
511	 * completes  we could get rx_clear false triggering.  Add an
512	 * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
513	 * does not happen.
514	 */
515	if (IEEE80211_IS_CHAN_HALF(chan)) {
516		OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY);
517	} else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
518		OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY);
519	} else {
520		OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
521	}
522}
523
524static void
525ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode)
526{
527	struct ath_hal_5212 *ahp = AH5212(ah);
528
529	/*
530	 * Setup interrupt handling.  Note that ar5212ResetTxQueue
531	 * manipulates the secondary IMR's as queues are enabled
532	 * and disabled.  This is done with RMW ops to insure the
533	 * settings we make here are preserved.
534	 */
535        ahp->ah_maskReg = AR_IMR_TXERR | AR_IMR_TXURN
536			| AR_IMR_RXERR | AR_IMR_RXORN
537                        | AR_IMR_BCNMISC;
538
539#ifdef AR5416_INT_MITIGATION
540       	ahp->ah_maskReg |= AR_IMR_TXINTM | AR_IMR_RXINTM
541			|  AR_IMR_TXMINTR | AR_IMR_RXMINTR;
542#else
543        ahp->ah_maskReg |= AR_IMR_TXOK | AR_IMR_RXOK;
544#endif
545	if (opmode == HAL_M_HOSTAP)
546		ahp->ah_maskReg |= AR_IMR_MIB;
547	OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
548	/* Enable bus errors that are OR'd to set the HIUERR bit */
549#if 0
550	OS_REG_WRITE(ah, AR_IMR_S2,
551	    	OS_REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT | AR_IMR_S2_CST);
552#endif
553}
554
555static void
556ar5416InitQoS(struct ath_hal *ah)
557{
558	/* QoS support */
559	OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa);	/* XXX magic */
560	OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210);	/* XXX magic */
561
562	/* Turn on NOACK Support for QoS packets */
563	OS_REG_WRITE(ah, AR_NOACK,
564		SM(2, AR_NOACK_2BIT_VALUE) |
565		SM(5, AR_NOACK_BIT_OFFSET) |
566		SM(0, AR_NOACK_BYTE_OFFSET));
567
568    	/*
569    	 * initialize TXOP for all TIDs
570    	 */
571	OS_REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
572	OS_REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
573	OS_REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
574	OS_REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
575	OS_REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
576}
577
578static void
579ar5416InitUserSettings(struct ath_hal *ah)
580{
581	struct ath_hal_5212 *ahp = AH5212(ah);
582
583	/* Restore user-specified settings */
584	if (ahp->ah_miscMode != 0)
585		OS_REG_WRITE(ah, AR_MISC_MODE, ahp->ah_miscMode);
586	if (ahp->ah_sifstime != (u_int) -1)
587		ar5212SetSifsTime(ah, ahp->ah_sifstime);
588	if (ahp->ah_slottime != (u_int) -1)
589		ar5212SetSlotTime(ah, ahp->ah_slottime);
590	if (ahp->ah_acktimeout != (u_int) -1)
591		ar5212SetAckTimeout(ah, ahp->ah_acktimeout);
592	if (ahp->ah_ctstimeout != (u_int) -1)
593		ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout);
594	if (AH_PRIVATE(ah)->ah_diagreg != 0)
595		OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
596#if 0 /* XXX Todo */
597	if (ahp->ah_globaltxtimeout != (u_int) -1)
598        	ar5416SetGlobalTxTimeout(ah, ahp->ah_globaltxtimeout);
599#endif
600}
601
602/*
603 * Places the hardware into reset and then pulls it out of reset
604 */
605HAL_BOOL
606ar5416ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan)
607{
608	OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->ic_freq : 0);
609	/*
610	 * Warm reset is optimistic.
611	 */
612	if (AR_SREV_MERLIN_20_OR_LATER(ah) &&
613	    ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
614		if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
615			return AH_FALSE;
616	} else {
617		if (!ar5416SetResetReg(ah, HAL_RESET_WARM))
618			return AH_FALSE;
619	}
620
621	/* Bring out of sleep mode (AGAIN) */
622	if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
623	       return AH_FALSE;
624
625	ar5416InitPLL(ah, chan);
626
627	/*
628	 * Perform warm reset before the mode/PLL/turbo registers
629	 * are changed in order to deactivate the radio.  Mode changes
630	 * with an active radio can result in corrupted shifts to the
631	 * radio device.
632	 */
633	if (chan != AH_NULL) {
634		uint32_t rfMode;
635
636		/* treat channel B as channel G , no  B mode suport in owl */
637		rfMode = IEEE80211_IS_CHAN_CCK(chan) ?
638		    AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
639		if (AR_SREV_MERLIN_20(ah) && IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
640			/* phy mode bits for 5GHz channels require Fast Clock */
641			rfMode |= AR_PHY_MODE_DYNAMIC
642			       |  AR_PHY_MODE_DYN_CCK_DISABLE;
643		} else if (!AR_SREV_MERLIN_10_OR_LATER(ah)) {
644			rfMode |= IEEE80211_IS_CHAN_5GHZ(chan) ?
645				AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
646		}
647		OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
648	}
649	return AH_TRUE;
650}
651
652/*
653 * Delta slope coefficient computation.
654 * Required for OFDM operation.
655 */
656static void
657ar5416GetDeltaSlopeValues(struct ath_hal *ah, uint32_t coef_scaled,
658                          uint32_t *coef_mantissa, uint32_t *coef_exponent)
659{
660#define COEF_SCALE_S 24
661    uint32_t coef_exp, coef_man;
662    /*
663     * ALGO -> coef_exp = 14-floor(log2(coef));
664     * floor(log2(x)) is the highest set bit position
665     */
666    for (coef_exp = 31; coef_exp > 0; coef_exp--)
667            if ((coef_scaled >> coef_exp) & 0x1)
668                    break;
669    /* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */
670    HALASSERT(coef_exp);
671    coef_exp = 14 - (coef_exp - COEF_SCALE_S);
672
673    /*
674     * ALGO -> coef_man = floor(coef* 2^coef_exp+0.5);
675     * The coefficient is already shifted up for scaling
676     */
677    coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
678
679    *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
680    *coef_exponent = coef_exp - 16;
681
682#undef COEF_SCALE_S
683}
684
685void
686ar5416SetDeltaSlope(struct ath_hal *ah, const struct ieee80211_channel *chan)
687{
688#define INIT_CLOCKMHZSCALED	0x64000000
689	uint32_t coef_scaled, ds_coef_exp, ds_coef_man;
690	uint32_t clockMhzScaled;
691
692	CHAN_CENTERS centers;
693
694	/* half and quarter rate can divide the scaled clock by 2 or 4 respectively */
695	/* scale for selected channel bandwidth */
696	clockMhzScaled = INIT_CLOCKMHZSCALED;
697	if (IEEE80211_IS_CHAN_TURBO(chan))
698		clockMhzScaled <<= 1;
699	else if (IEEE80211_IS_CHAN_HALF(chan))
700		clockMhzScaled >>= 1;
701	else if (IEEE80211_IS_CHAN_QUARTER(chan))
702		clockMhzScaled >>= 2;
703
704	/*
705	 * ALGO -> coef = 1e8/fcarrier*fclock/40;
706	 * scaled coef to provide precision for this floating calculation
707	 */
708	ar5416GetChannelCenters(ah, chan, &centers);
709	coef_scaled = clockMhzScaled / centers.synth_center;
710
711 	ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
712
713	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
714		AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
715	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
716		AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
717
718        /*
719         * For Short GI,
720         * scaled coeff is 9/10 that of normal coeff
721         */
722        coef_scaled = (9 * coef_scaled)/10;
723
724        ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
725
726        /* for short gi */
727        OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
728                AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
729        OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
730                AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
731#undef INIT_CLOCKMHZSCALED
732}
733
734/*
735 * Set a limit on the overall output power.  Used for dynamic
736 * transmit power control and the like.
737 *
738 * NB: limit is in units of 0.5 dbM.
739 */
740HAL_BOOL
741ar5416SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
742{
743	uint16_t dummyXpdGains[2];
744
745	AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
746	return ar5416SetTransmitPower(ah, AH_PRIVATE(ah)->ah_curchan,
747			dummyXpdGains);
748}
749
750HAL_BOOL
751ar5416GetChipPowerLimits(struct ath_hal *ah,
752	struct ieee80211_channel *chan)
753{
754	struct ath_hal_5212 *ahp = AH5212(ah);
755	int16_t minPower, maxPower;
756
757	/*
758	 * Get Pier table max and min powers.
759	 */
760	if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) {
761		/* NB: rf code returns 1/4 dBm units, convert */
762		chan->ic_maxpower = maxPower / 2;
763		chan->ic_minpower = minPower / 2;
764	} else {
765		HALDEBUG(ah, HAL_DEBUG_ANY,
766		    "%s: no min/max power for %u/0x%x\n",
767		    __func__, chan->ic_freq, chan->ic_flags);
768		chan->ic_maxpower = AR5416_MAX_RATE_POWER;
769		chan->ic_minpower = 0;
770	}
771	HALDEBUG(ah, HAL_DEBUG_RESET,
772	    "Chan %d: MaxPow = %d MinPow = %d\n",
773	    chan->ic_freq, chan->ic_maxpower, chan->ic_minpower);
774	return AH_TRUE;
775}
776
777/* XXX gag, this is sick */
778typedef enum Ar5416_Rates {
779	rate6mb,  rate9mb,  rate12mb, rate18mb,
780	rate24mb, rate36mb, rate48mb, rate54mb,
781	rate1l,   rate2l,   rate2s,   rate5_5l,
782	rate5_5s, rate11l,  rate11s,  rateXr,
783	rateHt20_0, rateHt20_1, rateHt20_2, rateHt20_3,
784	rateHt20_4, rateHt20_5, rateHt20_6, rateHt20_7,
785	rateHt40_0, rateHt40_1, rateHt40_2, rateHt40_3,
786	rateHt40_4, rateHt40_5, rateHt40_6, rateHt40_7,
787	rateDupCck, rateDupOfdm, rateExtCck, rateExtOfdm,
788	Ar5416RateSize
789} AR5416_RATES;
790
791/**************************************************************
792 * ar5416SetTransmitPower
793 *
794 * Set the transmit power in the baseband for the given
795 * operating channel and mode.
796 */
797HAL_BOOL
798ar5416SetTransmitPower(struct ath_hal *ah,
799	const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
800{
801#define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
802#define N(a)            (sizeof (a) / sizeof (a[0]))
803
804    MODAL_EEP_HEADER	*pModal;
805    struct ath_hal_5212 *ahp = AH5212(ah);
806    int16_t		ratesArray[Ar5416RateSize];
807    int16_t		txPowerIndexOffset = 0;
808    uint8_t		ht40PowerIncForPdadc = 2;
809    int			i;
810
811    uint16_t		cfgCtl;
812    uint16_t		powerLimit;
813    uint16_t		twiceAntennaReduction;
814    uint16_t		twiceMaxRegulatoryPower;
815    int16_t		maxPower;
816    HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
817    struct ar5416eeprom	*pEepData = &ee->ee_base;
818
819    HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
820
821    /* Setup info for the actual eeprom */
822    OS_MEMZERO(ratesArray, sizeof(ratesArray));
823    cfgCtl = ath_hal_getctl(ah, chan);
824    powerLimit = chan->ic_maxregpower * 2;
825    twiceAntennaReduction = chan->ic_maxantgain;
826    twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
827    pModal = &pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)];
828    HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
829	__func__,chan->ic_freq, cfgCtl );
830
831    if (IS_EEP_MINOR_V2(ah)) {
832        ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
833    }
834
835    if (!ar5416SetPowerPerRateTable(ah, pEepData,  chan,
836                                    &ratesArray[0],cfgCtl,
837                                    twiceAntennaReduction,
838				    twiceMaxRegulatoryPower, powerLimit)) {
839        HALDEBUG(ah, HAL_DEBUG_ANY,
840	    "%s: unable to set tx power per rate table\n", __func__);
841        return AH_FALSE;
842    }
843
844    if (!ar5416SetPowerCalTable(ah,  pEepData, chan, &txPowerIndexOffset)) {
845        HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
846	    __func__);
847        return AH_FALSE;
848    }
849
850    maxPower = AH_MAX(ratesArray[rate6mb], ratesArray[rateHt20_0]);
851
852    if (IEEE80211_IS_CHAN_2GHZ(chan)) {
853        maxPower = AH_MAX(maxPower, ratesArray[rate1l]);
854    }
855
856    if (IEEE80211_IS_CHAN_HT40(chan)) {
857        maxPower = AH_MAX(maxPower, ratesArray[rateHt40_0]);
858    }
859
860    ahp->ah_tx6PowerInHalfDbm = maxPower;
861    AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
862    ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
863
864    /*
865     * txPowerIndexOffset is set by the SetPowerTable() call -
866     *  adjust the rate table (0 offset if rates EEPROM not loaded)
867     */
868    for (i = 0; i < N(ratesArray); i++) {
869        ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
870        if (ratesArray[i] > AR5416_MAX_RATE_POWER)
871            ratesArray[i] = AR5416_MAX_RATE_POWER;
872    }
873
874#ifdef AH_EEPROM_DUMP
875    ar5416PrintPowerPerRate(ah, ratesArray);
876#endif
877
878    /* Write the OFDM power per rate set */
879    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
880        POW_SM(ratesArray[rate18mb], 24)
881          | POW_SM(ratesArray[rate12mb], 16)
882          | POW_SM(ratesArray[rate9mb], 8)
883          | POW_SM(ratesArray[rate6mb], 0)
884    );
885    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
886        POW_SM(ratesArray[rate54mb], 24)
887          | POW_SM(ratesArray[rate48mb], 16)
888          | POW_SM(ratesArray[rate36mb], 8)
889          | POW_SM(ratesArray[rate24mb], 0)
890    );
891
892    if (IEEE80211_IS_CHAN_2GHZ(chan)) {
893        /* Write the CCK power per rate set */
894        OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
895            POW_SM(ratesArray[rate2s], 24)
896              | POW_SM(ratesArray[rate2l],  16)
897              | POW_SM(ratesArray[rateXr],  8) /* XR target power */
898              | POW_SM(ratesArray[rate1l],   0)
899        );
900        OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
901            POW_SM(ratesArray[rate11s], 24)
902              | POW_SM(ratesArray[rate11l], 16)
903              | POW_SM(ratesArray[rate5_5s], 8)
904              | POW_SM(ratesArray[rate5_5l], 0)
905        );
906    HALDEBUG(ah, HAL_DEBUG_RESET,
907	"%s AR_PHY_POWER_TX_RATE3=0x%x AR_PHY_POWER_TX_RATE4=0x%x\n",
908	    __func__, OS_REG_READ(ah,AR_PHY_POWER_TX_RATE3),
909	    OS_REG_READ(ah,AR_PHY_POWER_TX_RATE4));
910    }
911
912    /* Write the HT20 power per rate set */
913    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
914        POW_SM(ratesArray[rateHt20_3], 24)
915          | POW_SM(ratesArray[rateHt20_2], 16)
916          | POW_SM(ratesArray[rateHt20_1], 8)
917          | POW_SM(ratesArray[rateHt20_0], 0)
918    );
919    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
920        POW_SM(ratesArray[rateHt20_7], 24)
921          | POW_SM(ratesArray[rateHt20_6], 16)
922          | POW_SM(ratesArray[rateHt20_5], 8)
923          | POW_SM(ratesArray[rateHt20_4], 0)
924    );
925
926    if (IEEE80211_IS_CHAN_HT40(chan)) {
927        /* Write the HT40 power per rate set */
928	/* Correct PAR difference between HT40 and HT20/LEGACY */
929        OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
930            POW_SM(ratesArray[rateHt40_3] + ht40PowerIncForPdadc, 24)
931              | POW_SM(ratesArray[rateHt40_2] + ht40PowerIncForPdadc, 16)
932              | POW_SM(ratesArray[rateHt40_1] + ht40PowerIncForPdadc, 8)
933              | POW_SM(ratesArray[rateHt40_0] + ht40PowerIncForPdadc, 0)
934        );
935        OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
936            POW_SM(ratesArray[rateHt40_7] + ht40PowerIncForPdadc, 24)
937              | POW_SM(ratesArray[rateHt40_6] + ht40PowerIncForPdadc, 16)
938              | POW_SM(ratesArray[rateHt40_5] + ht40PowerIncForPdadc, 8)
939              | POW_SM(ratesArray[rateHt40_4] + ht40PowerIncForPdadc, 0)
940        );
941        /* Write the Dup/Ext 40 power per rate set */
942        OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
943            POW_SM(ratesArray[rateExtOfdm], 24)
944              | POW_SM(ratesArray[rateExtCck], 16)
945              | POW_SM(ratesArray[rateDupOfdm], 8)
946              | POW_SM(ratesArray[rateDupCck], 0)
947        );
948    }
949
950    /* Write the Power subtraction for dynamic chain changing, for per-packet powertx */
951    OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
952        POW_SM(pModal->pwrDecreaseFor3Chain, 6)
953          | POW_SM(pModal->pwrDecreaseFor2Chain, 0)
954    );
955    return AH_TRUE;
956#undef POW_SM
957#undef N
958}
959
960/*
961 * Exported call to check for a recent gain reading and return
962 * the current state of the thermal calibration gain engine.
963 */
964HAL_RFGAIN
965ar5416GetRfgain(struct ath_hal *ah)
966{
967	return HAL_RFGAIN_INACTIVE;
968}
969
970/*
971 * Places all of hardware into reset
972 */
973HAL_BOOL
974ar5416Disable(struct ath_hal *ah)
975{
976	if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
977		return AH_FALSE;
978	return ar5416SetResetReg(ah, HAL_RESET_COLD);
979}
980
981/*
982 * Places the PHY and Radio chips into reset.  A full reset
983 * must be called to leave this state.  The PCI/MAC/PCU are
984 * not placed into reset as we must receive interrupt to
985 * re-enable the hardware.
986 */
987HAL_BOOL
988ar5416PhyDisable(struct ath_hal *ah)
989{
990	return ar5416SetResetReg(ah, HAL_RESET_WARM);
991}
992
993/*
994 * Write the given reset bit mask into the reset register
995 */
996HAL_BOOL
997ar5416SetResetReg(struct ath_hal *ah, uint32_t type)
998{
999	switch (type) {
1000	case HAL_RESET_POWER_ON:
1001		return ar5416SetResetPowerOn(ah);
1002	case HAL_RESET_WARM:
1003	case HAL_RESET_COLD:
1004		return ar5416SetReset(ah, type);
1005	default:
1006		HALASSERT(AH_FALSE);
1007		return AH_FALSE;
1008	}
1009}
1010
1011static HAL_BOOL
1012ar5416SetResetPowerOn(struct ath_hal *ah)
1013{
1014    /* Power On Reset (Hard Reset) */
1015
1016    /*
1017     * Set force wake
1018     *
1019     * If the MAC was running, previously calling
1020     * reset will wake up the MAC but it may go back to sleep
1021     * before we can start polling.
1022     * Set force wake  stops that
1023     * This must be called before initiating a hard reset.
1024     */
1025    OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1026            AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1027
1028    /*
1029     * RTC reset and clear
1030     */
1031    OS_REG_WRITE(ah, AR_RC, AR_RC_AHB);
1032    OS_REG_WRITE(ah, AR_RTC_RESET, 0);
1033    OS_DELAY(20);
1034    OS_REG_WRITE(ah, AR_RC, 0);
1035
1036    OS_REG_WRITE(ah, AR_RTC_RESET, 1);
1037
1038    /*
1039     * Poll till RTC is ON
1040     */
1041    if (!ath_hal_wait(ah, AR_RTC_STATUS, AR_RTC_PM_STATUS_M, AR_RTC_STATUS_ON)) {
1042        HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC not waking up\n", __func__);
1043        return AH_FALSE;
1044    }
1045
1046    return ar5416SetReset(ah, HAL_RESET_COLD);
1047}
1048
1049static HAL_BOOL
1050ar5416SetReset(struct ath_hal *ah, int type)
1051{
1052    uint32_t tmpReg, mask;
1053
1054    /*
1055     * Force wake
1056     */
1057    OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1058	AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1059
1060    /*
1061     * Reset AHB
1062     */
1063    tmpReg = OS_REG_READ(ah, AR_INTR_SYNC_CAUSE);
1064    if (tmpReg & (AR_INTR_SYNC_LOCAL_TIMEOUT|AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1065	OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1066	OS_REG_WRITE(ah, AR_RC, AR_RC_AHB|AR_RC_HOSTIF);
1067    } else {
1068	OS_REG_WRITE(ah, AR_RC, AR_RC_AHB);
1069    }
1070
1071    /*
1072     * Set Mac(BB,Phy) Warm Reset
1073     */
1074    switch (type) {
1075    case HAL_RESET_WARM:
1076            OS_REG_WRITE(ah, AR_RTC_RC, AR_RTC_RC_MAC_WARM);
1077            break;
1078    case HAL_RESET_COLD:
1079            OS_REG_WRITE(ah, AR_RTC_RC, AR_RTC_RC_MAC_WARM|AR_RTC_RC_MAC_COLD);
1080            break;
1081    default:
1082            HALASSERT(AH_FALSE);
1083            break;
1084    }
1085
1086    /*
1087     * Clear resets and force wakeup
1088     */
1089    OS_REG_WRITE(ah, AR_RTC_RC, 0);
1090    if (!ath_hal_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0)) {
1091        HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC stuck in MAC reset\n", __func__);
1092        return AH_FALSE;
1093    }
1094
1095    /* Clear AHB reset */
1096    OS_REG_WRITE(ah, AR_RC, 0);
1097
1098	if (type == HAL_RESET_COLD) {
1099		if (isBigEndian()) {
1100			/*
1101			 * Set CFG, little-endian for register
1102			 * and descriptor accesses.
1103			 */
1104			mask = INIT_CONFIG_STATUS | AR_CFG_SWRD | AR_CFG_SWRG;
1105#ifndef AH_NEED_DESC_SWAP
1106			mask |= AR_CFG_SWTD;
1107#endif
1108			HALDEBUG(ah, HAL_DEBUG_RESET,
1109			    "%s Applying descriptor swap\n", __func__);
1110			OS_REG_WRITE(ah, AR_CFG, LE_READ_4(&mask));
1111		} else
1112			OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
1113	}
1114
1115    ar5416InitPLL(ah, AH_NULL);
1116
1117    return AH_TRUE;
1118}
1119
1120#ifndef IS_5GHZ_FAST_CLOCK_EN
1121#define	IS_5GHZ_FAST_CLOCK_EN(ah, chan)	AH_FALSE
1122#endif
1123
1124static void
1125ar5416InitPLL(struct ath_hal *ah, const struct ieee80211_channel *chan)
1126{
1127	uint32_t pll;
1128
1129	if (AR_SREV_MERLIN_20(ah) &&
1130	    chan != AH_NULL && IEEE80211_IS_CHAN_5GHZ(chan)) {
1131		/*
1132		 * PLL WAR for Merlin 2.0/2.1
1133		 * When doing fast clock, set PLL to 0x142c
1134		 * Else, set PLL to 0x2850 to prevent reset-to-reset variation
1135		 */
1136		pll = IS_5GHZ_FAST_CLOCK_EN(ah, chan) ? 0x142c : 0x2850;
1137	} else if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1138		pll = SM(0x5, AR_RTC_SOWL_PLL_REFDIV);
1139		if (chan != AH_NULL) {
1140			if (IEEE80211_IS_CHAN_HALF(chan))
1141				pll |= SM(0x1, AR_RTC_SOWL_PLL_CLKSEL);
1142			else if (IEEE80211_IS_CHAN_QUARTER(chan))
1143				pll |= SM(0x2, AR_RTC_SOWL_PLL_CLKSEL);
1144			else if (IEEE80211_IS_CHAN_5GHZ(chan))
1145				pll |= SM(0x28, AR_RTC_SOWL_PLL_DIV);
1146			else
1147				pll |= SM(0x2c, AR_RTC_SOWL_PLL_DIV);
1148		} else
1149			pll |= SM(0x2c, AR_RTC_SOWL_PLL_DIV);
1150	} else if (AR_SREV_SOWL_10_OR_LATER(ah)) {
1151		pll = SM(0x5, AR_RTC_SOWL_PLL_REFDIV);
1152		if (chan != AH_NULL) {
1153			if (IEEE80211_IS_CHAN_HALF(chan))
1154				pll |= SM(0x1, AR_RTC_SOWL_PLL_CLKSEL);
1155			else if (IEEE80211_IS_CHAN_QUARTER(chan))
1156				pll |= SM(0x2, AR_RTC_SOWL_PLL_CLKSEL);
1157			else if (IEEE80211_IS_CHAN_5GHZ(chan))
1158				pll |= SM(0x50, AR_RTC_SOWL_PLL_DIV);
1159			else
1160				pll |= SM(0x58, AR_RTC_SOWL_PLL_DIV);
1161		} else
1162			pll |= SM(0x58, AR_RTC_SOWL_PLL_DIV);
1163	} else {
1164		pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1165		if (chan != AH_NULL) {
1166			if (IEEE80211_IS_CHAN_HALF(chan))
1167				pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1168			else if (IEEE80211_IS_CHAN_QUARTER(chan))
1169				pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1170			else if (IEEE80211_IS_CHAN_5GHZ(chan))
1171				pll |= SM(0xa, AR_RTC_PLL_DIV);
1172			else
1173				pll |= SM(0xb, AR_RTC_PLL_DIV);
1174		} else
1175			pll |= SM(0xb, AR_RTC_PLL_DIV);
1176	}
1177	OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1178
1179	/* TODO:
1180	* For multi-band owl, switch between bands by reiniting the PLL.
1181	*/
1182
1183	OS_DELAY(RTC_PLL_SETTLE_DELAY);
1184
1185	OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_SLEEP_DERIVED_CLK);
1186}
1187
1188/*
1189 * Read EEPROM header info and program the device for correct operation
1190 * given the channel value.
1191 */
1192HAL_BOOL
1193ar5416SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
1194{
1195    const HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
1196    const struct ar5416eeprom *eep = &ee->ee_base;
1197    const MODAL_EEP_HEADER *pModal;
1198    int			i, regChainOffset;
1199    uint8_t		txRxAttenLocal;    /* workaround for eeprom versions <= 14.2 */
1200
1201    HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
1202    pModal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)];
1203
1204    /* NB: workaround for eeprom versions <= 14.2 */
1205    txRxAttenLocal = IEEE80211_IS_CHAN_2GHZ(chan) ? 23 : 44;
1206
1207    OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
1208    for (i = 0; i < AR5416_MAX_CHAINS; i++) {
1209	   if (AR_SREV_MERLIN(ah)) {
1210		if (i >= 2) break;
1211	   }
1212       	   if (AR_SREV_OWL_20_OR_LATER(ah) &&
1213            (AH5416(ah)->ah_rx_chainmask == 0x5 ||
1214	     AH5416(ah)->ah_tx_chainmask == 0x5) && i != 0) {
1215            /* Regs are swapped from chain 2 to 1 for 5416 2_0 with
1216             * only chains 0 and 2 populated
1217             */
1218            regChainOffset = (i == 1) ? 0x2000 : 0x1000;
1219        } else {
1220            regChainOffset = i * 0x1000;
1221        }
1222
1223        OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, pModal->antCtrlChain[i]);
1224        OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4 + regChainOffset,
1225        	(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4 + regChainOffset) &
1226        	~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
1227        	SM(pModal->iqCalICh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
1228        	SM(pModal->iqCalQCh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
1229
1230        /*
1231         * Large signal upgrade.
1232	 * XXX update
1233         */
1234
1235        if ((i == 0) || AR_SREV_OWL_20_OR_LATER(ah)) {
1236            OS_REG_WRITE(ah, AR_PHY_RXGAIN + regChainOffset,
1237		(OS_REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) & ~AR_PHY_RXGAIN_TXRX_ATTEN) |
1238			SM(IS_EEP_MINOR_V3(ah)  ? pModal->txRxAttenCh[i] : txRxAttenLocal,
1239				AR_PHY_RXGAIN_TXRX_ATTEN));
1240
1241            OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1242	    	(OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) & ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
1243			SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
1244        }
1245    }
1246
1247    OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
1248    OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
1249    OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_PGA, pModal->pgaDesiredSize);
1250    OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
1251        SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
1252        | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
1253        | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
1254        | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
1255
1256    OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
1257
1258    if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1259	OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
1260	    pModal->thresh62);
1261	OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
1262	    pModal->thresh62);
1263    } else {
1264	OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
1265	    pModal->thresh62);
1266	OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA_THRESH62,
1267	    pModal->thresh62);
1268    }
1269
1270    /* Minor Version Specific application */
1271    if (IS_EEP_MINOR_V2(ah)) {
1272        OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,  AR_PHY_TX_FRAME_TO_DATA_START, pModal->txFrameToDataStart);
1273        OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,  AR_PHY_TX_FRAME_TO_PA_ON, pModal->txFrameToPaOn);
1274    }
1275
1276    if (IS_EEP_MINOR_V3(ah)) {
1277	if (IEEE80211_IS_CHAN_HT40(chan)) {
1278		/* Overwrite switch settling with HT40 value */
1279		OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
1280	}
1281
1282        if ((AR_SREV_OWL_20_OR_LATER(ah)) &&
1283            (  AH5416(ah)->ah_rx_chainmask == 0x5 || AH5416(ah)->ah_tx_chainmask == 0x5)){
1284            /* Reg Offsets are swapped for logical mapping */
1285		OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
1286			SM(pModal->bswMargin[2], AR_PHY_GAIN_2GHZ_BSW_MARGIN));
1287		OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
1288			SM(pModal->bswAtten[2], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
1289		OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
1290			SM(pModal->bswMargin[1], AR_PHY_GAIN_2GHZ_BSW_MARGIN));
1291		OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
1292			SM(pModal->bswAtten[1], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
1293        } else {
1294		OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
1295			SM(pModal->bswMargin[1], AR_PHY_GAIN_2GHZ_BSW_MARGIN));
1296		OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
1297			SM(pModal->bswAtten[1], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
1298		OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
1299			SM(pModal->bswMargin[2],AR_PHY_GAIN_2GHZ_BSW_MARGIN));
1300		OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
1301			SM(pModal->bswAtten[2], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
1302        }
1303        OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_BSW_MARGIN, pModal->bswMargin[0]);
1304        OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_BSW_ATTEN, pModal->bswAtten[0]);
1305    }
1306    return AH_TRUE;
1307}
1308
1309/*
1310 * Helper functions common for AP/CB/XB
1311 */
1312
1313/*
1314 * ar5416SetPowerPerRateTable
1315 *
1316 * Sets the transmit power in the baseband for the given
1317 * operating channel and mode.
1318 */
1319static HAL_BOOL
1320ar5416SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom *pEepData,
1321                           const struct ieee80211_channel *chan,
1322                           int16_t *ratesArray, uint16_t cfgCtl,
1323                           uint16_t AntennaReduction,
1324                           uint16_t twiceMaxRegulatoryPower,
1325                           uint16_t powerLimit)
1326{
1327#define	N(a)	(sizeof(a)/sizeof(a[0]))
1328/* Local defines to distinguish between extension and control CTL's */
1329#define EXT_ADDITIVE (0x8000)
1330#define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
1331#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
1332#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
1333
1334	uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
1335	int i;
1336	int16_t  twiceLargestAntenna;
1337	CAL_CTL_DATA *rep;
1338	CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}};
1339	CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}};
1340	CAL_TARGET_POWER_HT  targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}};
1341	int16_t scaledPower, minCtlPower;
1342
1343#define SUB_NUM_CTL_MODES_AT_5G_40 2   /* excluding HT40, EXT-OFDM */
1344#define SUB_NUM_CTL_MODES_AT_2G_40 3   /* excluding HT40, EXT-OFDM, EXT-CCK */
1345	static const uint16_t ctlModesFor11a[] = {
1346	   CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
1347	};
1348	static const uint16_t ctlModesFor11g[] = {
1349	   CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
1350	};
1351	const uint16_t *pCtlMode;
1352	uint16_t numCtlModes, ctlMode, freq;
1353	CHAN_CENTERS centers;
1354
1355	ar5416GetChannelCenters(ah,  chan, &centers);
1356
1357	/* Compute TxPower reduction due to Antenna Gain */
1358
1359	twiceLargestAntenna = AH_MAX(AH_MAX(
1360	    pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0],
1361	    pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]),
1362	    pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
1363#if 0
1364	/* Turn it back on if we need to calculate per chain antenna gain reduction */
1365	/* Use only if the expected gain > 6dbi */
1366	/* Chain 0 is always used */
1367	twiceLargestAntenna = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0];
1368
1369	/* Look at antenna gains of Chains 1 and 2 if the TX mask is set */
1370	if (ahp->ah_tx_chainmask & 0x2)
1371		twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
1372			pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
1373
1374	if (ahp->ah_tx_chainmask & 0x4)
1375		twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
1376			pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
1377#endif
1378	twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
1379
1380	/* XXX setup for 5212 use (really used?) */
1381	ath_hal_eepromSet(ah,
1382	    IEEE80211_IS_CHAN_2GHZ(chan) ? AR_EEP_ANTGAINMAX_2 : AR_EEP_ANTGAINMAX_5,
1383	    twiceLargestAntenna);
1384
1385	/*
1386	 * scaledPower is the minimum of the user input power level and
1387	 * the regulatory allowed power level
1388	 */
1389	scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
1390
1391	/* Reduce scaled Power by number of chains active to get to per chain tx power level */
1392	/* TODO: better value than these? */
1393	switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) {
1394	case 1:
1395		break;
1396	case 2:
1397		scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor2Chain;
1398		break;
1399	case 3:
1400		scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor3Chain;
1401		break;
1402	default:
1403		return AH_FALSE; /* Unsupported number of chains */
1404	}
1405
1406	scaledPower = AH_MAX(0, scaledPower);
1407
1408	/* Get target powers from EEPROM - our baseline for TX Power */
1409	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1410		/* Setup for CTL modes */
1411		numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
1412		pCtlMode = ctlModesFor11g;
1413
1414		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
1415				AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
1416		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
1417				AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
1418		ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT20,
1419				AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
1420
1421		if (IEEE80211_IS_CHAN_HT40(chan)) {
1422			numCtlModes = N(ctlModesFor11g);    /* All 2G CTL's */
1423
1424			ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT40,
1425				AR5416_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
1426			/* Get target powers for extension channels */
1427			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
1428				AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
1429			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
1430				AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
1431		}
1432	} else {
1433		/* Setup for CTL modes */
1434		numCtlModes = N(ctlModesFor11a) - SUB_NUM_CTL_MODES_AT_5G_40; /* CTL_11A, CTL_5GHT20 */
1435		pCtlMode = ctlModesFor11a;
1436
1437		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower5G,
1438				AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
1439		ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower5GHT20,
1440				AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
1441
1442		if (IEEE80211_IS_CHAN_HT40(chan)) {
1443			numCtlModes = N(ctlModesFor11a); /* All 5G CTL's */
1444
1445			ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower5GHT40,
1446				AR5416_NUM_5G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
1447			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower5G,
1448				AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
1449		}
1450	}
1451
1452	/*
1453	 * For MIMO, need to apply regulatory caps individually across dynamically
1454	 * running modes: CCK, OFDM, HT20, HT40
1455	 *
1456	 * The outer loop walks through each possible applicable runtime mode.
1457	 * The inner loop walks through each ctlIndex entry in EEPROM.
1458	 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
1459	 *
1460	 */
1461	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
1462		HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
1463		    (pCtlMode[ctlMode] == CTL_2GHT40);
1464		if (isHt40CtlMode) {
1465			freq = centers.ctl_center;
1466		} else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
1467			freq = centers.ext_center;
1468		} else {
1469			freq = centers.ctl_center;
1470		}
1471
1472		/* walk through each CTL index stored in EEPROM */
1473		for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
1474			uint16_t twiceMinEdgePower;
1475
1476			/* compare test group from regulatory channel list with test mode from pCtlMode list */
1477			if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
1478				(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1479				 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
1480				rep = &(pEepData->ctlData[i]);
1481				twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
1482							rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1],
1483							IEEE80211_IS_CHAN_2GHZ(chan));
1484				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1485					/* Find the minimum of all CTL edge powers that apply to this channel */
1486					twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
1487				} else {
1488					/* specific */
1489					twiceMaxEdgePower = twiceMinEdgePower;
1490					break;
1491				}
1492			}
1493		}
1494		minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
1495		/* Apply ctl mode to correct target power set */
1496		switch(pCtlMode[ctlMode]) {
1497		case CTL_11B:
1498			for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
1499				targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
1500			}
1501			break;
1502		case CTL_11A:
1503		case CTL_11G:
1504			for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
1505				targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
1506			}
1507			break;
1508		case CTL_5GHT20:
1509		case CTL_2GHT20:
1510			for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
1511				targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
1512			}
1513			break;
1514		case CTL_11B_EXT:
1515			targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
1516			break;
1517		case CTL_11A_EXT:
1518		case CTL_11G_EXT:
1519			targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
1520			break;
1521		case CTL_5GHT40:
1522		case CTL_2GHT40:
1523			for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
1524				targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
1525			}
1526			break;
1527		default:
1528			return AH_FALSE;
1529			break;
1530		}
1531	} /* end ctl mode checking */
1532
1533	/* Set rates Array from collected data */
1534	ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] = ratesArray[rate18mb] = ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
1535	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
1536	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
1537	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
1538	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
1539
1540	for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
1541		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
1542	}
1543
1544	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1545		ratesArray[rate1l]  = targetPowerCck.tPow2x[0];
1546		ratesArray[rate2s] = ratesArray[rate2l]  = targetPowerCck.tPow2x[1];
1547		ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
1548		ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
1549	}
1550	if (IEEE80211_IS_CHAN_HT40(chan)) {
1551		for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
1552			ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
1553		}
1554		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
1555		ratesArray[rateDupCck]  = targetPowerHt40.tPow2x[0];
1556		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
1557		if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1558			ratesArray[rateExtCck]  = targetPowerCckExt.tPow2x[0];
1559		}
1560	}
1561	return AH_TRUE;
1562#undef EXT_ADDITIVE
1563#undef CTL_11A_EXT
1564#undef CTL_11G_EXT
1565#undef CTL_11B_EXT
1566#undef SUB_NUM_CTL_MODES_AT_5G_40
1567#undef SUB_NUM_CTL_MODES_AT_2G_40
1568#undef N
1569}
1570
1571/**************************************************************************
1572 * fbin2freq
1573 *
1574 * Get channel value from binary representation held in eeprom
1575 * RETURNS: the frequency in MHz
1576 */
1577static uint16_t
1578fbin2freq(uint8_t fbin, HAL_BOOL is2GHz)
1579{
1580    /*
1581     * Reserved value 0xFF provides an empty definition both as
1582     * an fbin and as a frequency - do not convert
1583     */
1584    if (fbin == AR5416_BCHAN_UNUSED) {
1585        return fbin;
1586    }
1587
1588    return (uint16_t)((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
1589}
1590
1591/*
1592 * ar5416GetMaxEdgePower
1593 *
1594 * Find the maximum conformance test limit for the given channel and CTL info
1595 */
1596static uint16_t
1597ar5416GetMaxEdgePower(uint16_t freq, CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz)
1598{
1599    uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
1600    int      i;
1601
1602    /* Get the edge power */
1603    for (i = 0; (i < AR5416_NUM_BAND_EDGES) && (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED) ; i++) {
1604        /*
1605         * If there's an exact channel match or an inband flag set
1606         * on the lower channel use the given rdEdgePower
1607         */
1608        if (freq == fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
1609            twiceMaxEdgePower = MS(pRdEdgesPower[i].tPowerFlag, CAL_CTL_EDGES_POWER);
1610            break;
1611        } else if ((i > 0) && (freq < fbin2freq(pRdEdgesPower[i].bChannel, is2GHz))) {
1612            if (fbin2freq(pRdEdgesPower[i - 1].bChannel, is2GHz) < freq && (pRdEdgesPower[i - 1].tPowerFlag & CAL_CTL_EDGES_FLAG) != 0) {
1613                twiceMaxEdgePower = MS(pRdEdgesPower[i - 1].tPowerFlag, CAL_CTL_EDGES_POWER);
1614            }
1615            /* Leave loop - no more affecting edges possible in this monotonic increasing list */
1616            break;
1617        }
1618    }
1619    HALASSERT(twiceMaxEdgePower > 0);
1620    return twiceMaxEdgePower;
1621}
1622
1623/**************************************************************
1624 * ar5416GetTargetPowers
1625 *
1626 * Return the rates of target power for the given target power table
1627 * channel, and number of channels
1628 */
1629void
1630ar5416GetTargetPowers(struct ath_hal *ah,  const struct ieee80211_channel *chan,
1631                      CAL_TARGET_POWER_HT *powInfo, uint16_t numChannels,
1632                      CAL_TARGET_POWER_HT *pNewPower, uint16_t numRates,
1633                      HAL_BOOL isHt40Target)
1634{
1635    uint16_t clo, chi;
1636    int i;
1637    int matchIndex = -1, lowIndex = -1;
1638    uint16_t freq;
1639    CHAN_CENTERS centers;
1640
1641    ar5416GetChannelCenters(ah,  chan, &centers);
1642    freq = isHt40Target ? centers.synth_center : centers.ctl_center;
1643
1644    /* Copy the target powers into the temp channel list */
1645    if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
1646        matchIndex = 0;
1647    } else {
1648        for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
1649            if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
1650                matchIndex = i;
1651                break;
1652            } else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) &&
1653                       (freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))))
1654            {
1655                lowIndex = i - 1;
1656                break;
1657            }
1658        }
1659        if ((matchIndex == -1) && (lowIndex == -1)) {
1660            HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)));
1661            matchIndex = i - 1;
1662        }
1663    }
1664
1665    if (matchIndex != -1) {
1666        OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
1667    } else {
1668        HALASSERT(lowIndex != -1);
1669        /*
1670         * Get the lower and upper channels, target powers,
1671         * and interpolate between them.
1672         */
1673        clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
1674        chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
1675
1676        for (i = 0; i < numRates; i++) {
1677            pNewPower->tPow2x[i] = (uint8_t)interpolate(freq, clo, chi,
1678                                   powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
1679        }
1680    }
1681}
1682/**************************************************************
1683 * ar5416GetTargetPowersLeg
1684 *
1685 * Return the four rates of target power for the given target power table
1686 * channel, and number of channels
1687 */
1688void
1689ar5416GetTargetPowersLeg(struct ath_hal *ah,
1690                         const struct ieee80211_channel *chan,
1691                         CAL_TARGET_POWER_LEG *powInfo, uint16_t numChannels,
1692                         CAL_TARGET_POWER_LEG *pNewPower, uint16_t numRates,
1693			 HAL_BOOL isExtTarget)
1694{
1695    uint16_t clo, chi;
1696    int i;
1697    int matchIndex = -1, lowIndex = -1;
1698    uint16_t freq;
1699    CHAN_CENTERS centers;
1700
1701    ar5416GetChannelCenters(ah,  chan, &centers);
1702    freq = (isExtTarget) ? centers.ext_center :centers.ctl_center;
1703
1704    /* Copy the target powers into the temp channel list */
1705    if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
1706        matchIndex = 0;
1707    } else {
1708        for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
1709            if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
1710                matchIndex = i;
1711                break;
1712            } else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) &&
1713                       (freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))))
1714            {
1715                lowIndex = i - 1;
1716                break;
1717            }
1718        }
1719        if ((matchIndex == -1) && (lowIndex == -1)) {
1720            HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)));
1721            matchIndex = i - 1;
1722        }
1723    }
1724
1725    if (matchIndex != -1) {
1726        OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
1727    } else {
1728        HALASSERT(lowIndex != -1);
1729        /*
1730         * Get the lower and upper channels, target powers,
1731         * and interpolate between them.
1732         */
1733        clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
1734        chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
1735
1736        for (i = 0; i < numRates; i++) {
1737            pNewPower->tPow2x[i] = (uint8_t)interpolate(freq, clo, chi,
1738                                   powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
1739        }
1740    }
1741}
1742
1743/**************************************************************
1744 * ar5416SetPowerCalTable
1745 *
1746 * Pull the PDADC piers from cal data and interpolate them across the given
1747 * points as well as from the nearest pier(s) to get a power detector
1748 * linear voltage to power level table.
1749 */
1750static HAL_BOOL
1751ar5416SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom *pEepData,
1752	const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
1753{
1754    CAL_DATA_PER_FREQ *pRawDataset;
1755    uint8_t  *pCalBChans = AH_NULL;
1756    uint16_t pdGainOverlap_t2;
1757    static uint8_t  pdadcValues[AR5416_NUM_PDADC_VALUES];
1758    uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK];
1759    uint16_t numPiers, i, j;
1760    int16_t  tMinCalPower;
1761    uint16_t numXpdGain, xpdMask;
1762    uint16_t xpdGainValues[AR5416_NUM_PD_GAINS];
1763    uint32_t reg32, regOffset, regChainOffset;
1764
1765    OS_MEMZERO(xpdGainValues, sizeof(xpdGainValues));
1766
1767    xpdMask = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].xpdGain;
1768
1769    if (IS_EEP_MINOR_V2(ah)) {
1770        pdGainOverlap_t2 = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pdGainOverlap;
1771    } else {
1772    	pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
1773    }
1774
1775    if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1776        pCalBChans = pEepData->calFreqPier2G;
1777        numPiers = AR5416_NUM_2G_CAL_PIERS;
1778    } else {
1779        pCalBChans = pEepData->calFreqPier5G;
1780        numPiers = AR5416_NUM_5G_CAL_PIERS;
1781    }
1782
1783    numXpdGain = 0;
1784    /* Calculate the value of xpdgains from the xpdGain Mask */
1785    for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
1786        if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
1787            if (numXpdGain >= AR5416_NUM_PD_GAINS) {
1788                HALASSERT(0);
1789                break;
1790            }
1791            xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i);
1792            numXpdGain++;
1793        }
1794    }
1795
1796    /* Write the detector gain biases and their number */
1797    OS_REG_WRITE(ah, AR_PHY_TPCRG1, (OS_REG_READ(ah, AR_PHY_TPCRG1) &
1798    	~(AR_PHY_TPCRG1_NUM_PD_GAIN | AR_PHY_TPCRG1_PD_GAIN_1 | AR_PHY_TPCRG1_PD_GAIN_2 | AR_PHY_TPCRG1_PD_GAIN_3)) |
1799	SM(numXpdGain - 1, AR_PHY_TPCRG1_NUM_PD_GAIN) | SM(xpdGainValues[0], AR_PHY_TPCRG1_PD_GAIN_1 ) |
1800	SM(xpdGainValues[1], AR_PHY_TPCRG1_PD_GAIN_2) | SM(xpdGainValues[2],  AR_PHY_TPCRG1_PD_GAIN_3));
1801
1802    for (i = 0; i < AR5416_MAX_CHAINS; i++) {
1803
1804            if (AR_SREV_OWL_20_OR_LATER(ah) &&
1805            ( AH5416(ah)->ah_rx_chainmask == 0x5 || AH5416(ah)->ah_tx_chainmask == 0x5) && (i != 0)) {
1806            /* Regs are swapped from chain 2 to 1 for 5416 2_0 with
1807             * only chains 0 and 2 populated
1808             */
1809            regChainOffset = (i == 1) ? 0x2000 : 0x1000;
1810        } else {
1811            regChainOffset = i * 0x1000;
1812        }
1813
1814        if (pEepData->baseEepHeader.txMask & (1 << i)) {
1815            if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1816                pRawDataset = pEepData->calPierData2G[i];
1817            } else {
1818                pRawDataset = pEepData->calPierData5G[i];
1819            }
1820
1821            ar5416GetGainBoundariesAndPdadcs(ah,  chan, pRawDataset,
1822                                             pCalBChans, numPiers,
1823                                             pdGainOverlap_t2,
1824                                             &tMinCalPower, gainBoundaries,
1825                                             pdadcValues, numXpdGain);
1826
1827            if ((i == 0) || AR_SREV_OWL_20_OR_LATER(ah)) {
1828                /*
1829                 * Note the pdadc table may not start at 0 dBm power, could be
1830                 * negative or greater than 0.  Need to offset the power
1831                 * values by the amount of minPower for griffin
1832                 */
1833
1834                OS_REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
1835                     SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
1836                     SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)  |
1837                     SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)  |
1838                     SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)  |
1839                     SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
1840            }
1841
1842            /* Write the power values into the baseband power table */
1843            regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
1844
1845            for (j = 0; j < 32; j++) {
1846                reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0)  |
1847                    ((pdadcValues[4*j + 1] & 0xFF) << 8)  |
1848                    ((pdadcValues[4*j + 2] & 0xFF) << 16) |
1849                    ((pdadcValues[4*j + 3] & 0xFF) << 24) ;
1850                OS_REG_WRITE(ah, regOffset, reg32);
1851
1852#ifdef PDADC_DUMP
1853		ath_hal_printf(ah, "PDADC: Chain %d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d |\n",
1854			       i,
1855			       4*j, pdadcValues[4*j],
1856			       4*j+1, pdadcValues[4*j + 1],
1857			       4*j+2, pdadcValues[4*j + 2],
1858			       4*j+3, pdadcValues[4*j + 3]);
1859#endif
1860                regOffset += 4;
1861            }
1862        }
1863    }
1864    *pTxPowerIndexOffset = 0;
1865
1866    return AH_TRUE;
1867}
1868
1869/**************************************************************
1870 * ar5416GetGainBoundariesAndPdadcs
1871 *
1872 * Uses the data points read from EEPROM to reconstruct the pdadc power table
1873 * Called by ar5416SetPowerCalTable only.
1874 */
1875static void
1876ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah,
1877                                 const struct ieee80211_channel *chan,
1878				 CAL_DATA_PER_FREQ *pRawDataSet,
1879                                 uint8_t * bChans,  uint16_t availPiers,
1880                                 uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries,
1881                                 uint8_t * pPDADCValues, uint16_t numXpdGains)
1882{
1883
1884    int       i, j, k;
1885    int16_t   ss;         /* potentially -ve index for taking care of pdGainOverlap */
1886    uint16_t  idxL, idxR, numPiers; /* Pier indexes */
1887
1888    /* filled out Vpd table for all pdGains (chanL) */
1889    static uint8_t   vpdTableL[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
1890
1891    /* filled out Vpd table for all pdGains (chanR) */
1892    static uint8_t   vpdTableR[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
1893
1894    /* filled out Vpd table for all pdGains (interpolated) */
1895    static uint8_t   vpdTableI[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
1896
1897    uint8_t   *pVpdL, *pVpdR, *pPwrL, *pPwrR;
1898    uint8_t   minPwrT4[AR5416_NUM_PD_GAINS];
1899    uint8_t   maxPwrT4[AR5416_NUM_PD_GAINS];
1900    int16_t   vpdStep;
1901    int16_t   tmpVal;
1902    uint16_t  sizeCurrVpdTable, maxIndex, tgtIndex;
1903    HAL_BOOL    match;
1904    int16_t  minDelta = 0;
1905    CHAN_CENTERS centers;
1906
1907    ar5416GetChannelCenters(ah, chan, &centers);
1908
1909    /* Trim numPiers for the number of populated channel Piers */
1910    for (numPiers = 0; numPiers < availPiers; numPiers++) {
1911        if (bChans[numPiers] == AR5416_BCHAN_UNUSED) {
1912            break;
1913        }
1914    }
1915
1916    /* Find pier indexes around the current channel */
1917    match = getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center, IEEE80211_IS_CHAN_2GHZ(chan)),
1918			bChans, numPiers, &idxL, &idxR);
1919
1920    if (match) {
1921        /* Directly fill both vpd tables from the matching index */
1922        for (i = 0; i < numXpdGains; i++) {
1923            minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
1924            maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
1925            ar5416FillVpdTable(minPwrT4[i], maxPwrT4[i], pRawDataSet[idxL].pwrPdg[i],
1926                               pRawDataSet[idxL].vpdPdg[i], AR5416_PD_GAIN_ICEPTS, vpdTableI[i]);
1927        }
1928    } else {
1929        for (i = 0; i < numXpdGains; i++) {
1930            pVpdL = pRawDataSet[idxL].vpdPdg[i];
1931            pPwrL = pRawDataSet[idxL].pwrPdg[i];
1932            pVpdR = pRawDataSet[idxR].vpdPdg[i];
1933            pPwrR = pRawDataSet[idxR].pwrPdg[i];
1934
1935            /* Start Vpd interpolation from the max of the minimum powers */
1936            minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]);
1937
1938            /* End Vpd interpolation from the min of the max powers */
1939            maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
1940            HALASSERT(maxPwrT4[i] > minPwrT4[i]);
1941
1942            /* Fill pier Vpds */
1943            ar5416FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL, AR5416_PD_GAIN_ICEPTS, vpdTableL[i]);
1944            ar5416FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR, AR5416_PD_GAIN_ICEPTS, vpdTableR[i]);
1945
1946            /* Interpolate the final vpd */
1947            for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
1948                vpdTableI[i][j] = (uint8_t)(interpolate((uint16_t)FREQ2FBIN(centers.synth_center, IEEE80211_IS_CHAN_2GHZ(chan)),
1949                    bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j]));
1950            }
1951        }
1952    }
1953    *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
1954
1955    k = 0; /* index for the final table */
1956    for (i = 0; i < numXpdGains; i++) {
1957        if (i == (numXpdGains - 1)) {
1958            pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2);
1959        } else {
1960            pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
1961        }
1962
1963        pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
1964
1965	/* NB: only applies to owl 1.0 */
1966        if ((i == 0) && !AR_SREV_OWL_20_OR_LATER(ah) ) {
1967	    /*
1968             * fix the gain delta, but get a delta that can be applied to min to
1969             * keep the upper power values accurate, don't think max needs to
1970             * be adjusted because should not be at that area of the table?
1971	     */
1972            minDelta = pPdGainBoundaries[0] - 23;
1973            pPdGainBoundaries[0] = 23;
1974        }
1975        else {
1976            minDelta = 0;
1977        }
1978
1979        /* Find starting index for this pdGain */
1980        if (i == 0) {
1981            ss = 0; /* for the first pdGain, start from index 0 */
1982        } else {
1983	    /* need overlap entries extrapolated below. */
1984            ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta);
1985        }
1986        vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
1987        vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
1988        /*
1989         *-ve ss indicates need to extrapolate data below for this pdGain
1990         */
1991        while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
1992            tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
1993            pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal);
1994            ss++;
1995        }
1996
1997        sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1);
1998        tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2));
1999        maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
2000
2001        while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2002            pPDADCValues[k++] = vpdTableI[i][ss++];
2003        }
2004
2005        vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]);
2006        vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
2007        /*
2008         * for last gain, pdGainBoundary == Pmax_t2, so will
2009         * have to extrapolate
2010         */
2011        if (tgtIndex >= maxIndex) {  /* need to extrapolate above */
2012            while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2013                tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
2014                          (ss - maxIndex +1) * vpdStep));
2015                pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal);
2016                ss++;
2017            }
2018        }               /* extrapolated above */
2019    }                   /* for all pdGainUsed */
2020
2021    /* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */
2022    while (i < AR5416_PD_GAINS_IN_MASK) {
2023        pPdGainBoundaries[i] = pPdGainBoundaries[i-1];
2024        i++;
2025    }
2026
2027    while (k < AR5416_NUM_PDADC_VALUES) {
2028        pPDADCValues[k] = pPDADCValues[k-1];
2029        k++;
2030    }
2031    return;
2032}
2033
2034/**************************************************************
2035 * getLowerUppderIndex
2036 *
2037 * Return indices surrounding the value in sorted integer lists.
2038 * Requirement: the input list must be monotonically increasing
2039 *     and populated up to the list size
2040 * Returns: match is set if an index in the array matches exactly
2041 *     or a the target is before or after the range of the array.
2042 */
2043HAL_BOOL
2044getLowerUpperIndex(uint8_t target, uint8_t *pList, uint16_t listSize,
2045                   uint16_t *indexL, uint16_t *indexR)
2046{
2047    uint16_t i;
2048
2049    /*
2050     * Check first and last elements for beyond ordered array cases.
2051     */
2052    if (target <= pList[0]) {
2053        *indexL = *indexR = 0;
2054        return AH_TRUE;
2055    }
2056    if (target >= pList[listSize-1]) {
2057        *indexL = *indexR = (uint16_t)(listSize - 1);
2058        return AH_TRUE;
2059    }
2060
2061    /* look for value being near or between 2 values in list */
2062    for (i = 0; i < listSize - 1; i++) {
2063        /*
2064         * If value is close to the current value of the list
2065         * then target is not between values, it is one of the values
2066         */
2067        if (pList[i] == target) {
2068            *indexL = *indexR = i;
2069            return AH_TRUE;
2070        }
2071        /*
2072         * Look for value being between current value and next value
2073         * if so return these 2 values
2074         */
2075        if (target < pList[i + 1]) {
2076            *indexL = i;
2077            *indexR = (uint16_t)(i + 1);
2078            return AH_FALSE;
2079        }
2080    }
2081    HALASSERT(0);
2082    *indexL = *indexR = 0;
2083    return AH_FALSE;
2084}
2085
2086/**************************************************************
2087 * ar5416FillVpdTable
2088 *
2089 * Fill the Vpdlist for indices Pmax-Pmin
2090 * Note: pwrMin, pwrMax and Vpdlist are all in dBm * 4
2091 */
2092static HAL_BOOL
2093ar5416FillVpdTable(uint8_t pwrMin, uint8_t pwrMax, uint8_t *pPwrList,
2094                   uint8_t *pVpdList, uint16_t numIntercepts, uint8_t *pRetVpdList)
2095{
2096    uint16_t  i, k;
2097    uint8_t   currPwr = pwrMin;
2098    uint16_t  idxL, idxR;
2099
2100    HALASSERT(pwrMax > pwrMin);
2101    for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
2102        getLowerUpperIndex(currPwr, pPwrList, numIntercepts,
2103                           &(idxL), &(idxR));
2104        if (idxR < 1)
2105            idxR = 1;           /* extrapolate below */
2106        if (idxL == numIntercepts - 1)
2107            idxL = (uint16_t)(numIntercepts - 2);   /* extrapolate above */
2108        if (pPwrList[idxL] == pPwrList[idxR])
2109            k = pVpdList[idxL];
2110        else
2111            k = (uint16_t)( ((currPwr - pPwrList[idxL]) * pVpdList[idxR] + (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
2112                  (pPwrList[idxR] - pPwrList[idxL]) );
2113        HALASSERT(k < 256);
2114        pRetVpdList[i] = (uint8_t)k;
2115        currPwr += 2;               /* half dB steps */
2116    }
2117
2118    return AH_TRUE;
2119}
2120
2121/**************************************************************************
2122 * interpolate
2123 *
2124 * Returns signed interpolated or the scaled up interpolated value
2125 */
2126static int16_t
2127interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
2128            int16_t targetLeft, int16_t targetRight)
2129{
2130    int16_t rv;
2131
2132    if (srcRight == srcLeft) {
2133        rv = targetLeft;
2134    } else {
2135        rv = (int16_t)( ((target - srcLeft) * targetRight +
2136              (srcRight - target) * targetLeft) / (srcRight - srcLeft) );
2137    }
2138    return rv;
2139}
2140
2141static void
2142ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan)
2143{
2144	uint32_t phymode;
2145	HAL_HT_MACMODE macmode;		/* MAC - 20/40 mode */
2146
2147	if (!IEEE80211_IS_CHAN_HT(chan))
2148		return;
2149
2150	/* Enable 11n HT, 20 MHz */
2151	phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
2152		| AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH;
2153
2154	/* Configure baseband for dynamic 20/40 operation */
2155	if (IEEE80211_IS_CHAN_HT40(chan)) {
2156		phymode |= AR_PHY_FC_DYN2040_EN | AR_PHY_FC_SHORT_GI_40;
2157
2158		/* Configure control (primary) channel at +-10MHz */
2159		if (IEEE80211_IS_CHAN_HT40U(chan))
2160			phymode |= AR_PHY_FC_DYN2040_PRI_CH;
2161#if 0
2162		/* Configure 20/25 spacing */
2163		if (ht->ht_extprotspacing == HAL_HT_EXTPROTSPACING_25)
2164			phymode |= AR_PHY_FC_DYN2040_EXT_CH;
2165#endif
2166		macmode = HAL_HT_MACMODE_2040;
2167	} else
2168		macmode = HAL_HT_MACMODE_20;
2169	OS_REG_WRITE(ah, AR_PHY_TURBO, phymode);
2170
2171	/* Configure MAC for 20/40 operation */
2172	ar5416Set11nMac2040(ah, macmode);
2173
2174	/* global transmit timeout (25 TUs default)*/
2175	/* XXX - put this elsewhere??? */
2176	OS_REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S) ;
2177
2178	/* carrier sense timeout */
2179	OS_REG_SET_BIT(ah, AR_GTTM, AR_GTTM_CST_USEC);
2180	OS_REG_WRITE(ah, AR_CST, 1 << AR_CST_TIMEOUT_LIMIT_S);
2181}
2182
2183void
2184ar5416GetChannelCenters(struct ath_hal *ah,
2185	const struct ieee80211_channel *chan, CHAN_CENTERS *centers)
2186{
2187	uint16_t freq = ath_hal_gethwchannel(ah, chan);
2188
2189	centers->ctl_center = freq;
2190	centers->synth_center = freq;
2191	/*
2192	 * In 20/40 phy mode, the center frequency is
2193	 * "between" the control and extension channels.
2194	 */
2195	if (IEEE80211_IS_CHAN_HT40U(chan)) {
2196		centers->synth_center += HT40_CHANNEL_CENTER_SHIFT;
2197		centers->ext_center =
2198		    centers->synth_center + HT40_CHANNEL_CENTER_SHIFT;
2199	} else if (IEEE80211_IS_CHAN_HT40D(chan)) {
2200		centers->synth_center -= HT40_CHANNEL_CENTER_SHIFT;
2201		centers->ext_center =
2202		    centers->synth_center - HT40_CHANNEL_CENTER_SHIFT;
2203	} else {
2204		centers->ext_center = freq;
2205	}
2206}
2207