ar5416_reset.c revision 191909
1/*
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $FreeBSD: head/sys/dev/ath/ath_hal/ar5416/ar5416_reset.c 191909 2009-05-08 00:23:00Z sam $
18 */
19#include "opt_ah.h"
20
21#include "ah.h"
22#include "ah_internal.h"
23#include "ah_devid.h"
24
25#include "ah_eeprom_v14.h"
26
27#include "ar5416/ar5416.h"
28#include "ar5416/ar5416reg.h"
29#include "ar5416/ar5416phy.h"
30
31/* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */
32#define	EEP_MINOR(_ah) \
33	(AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
34#define IS_EEP_MINOR_V2(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
35#define IS_EEP_MINOR_V3(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3)
36
37/* Additional Time delay to wait after activiting the Base band */
38#define BASE_ACTIVATE_DELAY	100	/* 100 usec */
39#define PLL_SETTLE_DELAY	300	/* 300 usec */
40#define RTC_PLL_SETTLE_DELAY    1000    /* 1 ms     */
41
42static void ar5416InitDMA(struct ath_hal *ah);
43static void ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *);
44static void ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode);
45static void ar5416InitQoS(struct ath_hal *ah);
46static void ar5416InitUserSettings(struct ath_hal *ah);
47
48static HAL_BOOL ar5416SetTransmitPower(struct ath_hal *ah,
49	const struct ieee80211_channel *chan, uint16_t *rfXpdGain);
50
51#if 0
52static HAL_BOOL	ar5416ChannelChange(struct ath_hal *, const struct ieee80211_channel *);
53#endif
54static void ar5416SetDeltaSlope(struct ath_hal *, const struct ieee80211_channel *);
55
56static HAL_BOOL ar5416SetResetPowerOn(struct ath_hal *ah);
57static HAL_BOOL ar5416SetReset(struct ath_hal *ah, int type);
58static void ar5416InitPLL(struct ath_hal *ah, const struct ieee80211_channel *chan);
59static HAL_BOOL ar5416SetBoardValues(struct ath_hal *, const struct ieee80211_channel *);
60static HAL_BOOL ar5416SetPowerPerRateTable(struct ath_hal *ah,
61	struct ar5416eeprom *pEepData,
62	const struct ieee80211_channel *chan, int16_t *ratesArray,
63	uint16_t cfgCtl, uint16_t AntennaReduction,
64	uint16_t twiceMaxRegulatoryPower,
65	uint16_t powerLimit);
66static HAL_BOOL ar5416SetPowerCalTable(struct ath_hal *ah,
67	struct ar5416eeprom *pEepData,
68	const struct ieee80211_channel *chan,
69	int16_t *pTxPowerIndexOffset);
70static uint16_t ar5416GetMaxEdgePower(uint16_t freq,
71	CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz);
72static void ar5416GetTargetPowers(struct ath_hal *ah,
73	const struct ieee80211_channel *chan, CAL_TARGET_POWER_HT *powInfo,
74	uint16_t numChannels, CAL_TARGET_POWER_HT *pNewPower,
75	uint16_t numRates, HAL_BOOL isHt40Target);
76static void ar5416GetTargetPowersLeg(struct ath_hal *ah,
77	const struct ieee80211_channel *chan, CAL_TARGET_POWER_LEG *powInfo,
78	uint16_t numChannels, CAL_TARGET_POWER_LEG *pNewPower,
79	uint16_t numRates, HAL_BOOL isExtTarget);
80
81static int16_t interpolate(uint16_t target, uint16_t srcLeft,
82	uint16_t srcRight, int16_t targetLeft, int16_t targetRight);
83static void ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan);
84static void ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah,
85	const struct ieee80211_channel *chan, CAL_DATA_PER_FREQ *pRawDataSet,
86	uint8_t * bChans, uint16_t availPiers,
87	uint16_t tPdGainOverlap, int16_t *pMinCalPower,
88	uint16_t * pPdGainBoundaries, uint8_t * pPDADCValues,
89	uint16_t numXpdGains);
90static HAL_BOOL getLowerUpperIndex(uint8_t target, uint8_t *pList,
91	uint16_t listSize,  uint16_t *indexL, uint16_t *indexR);
92static HAL_BOOL ar5416FillVpdTable(uint8_t pwrMin, uint8_t pwrMax,
93	uint8_t *pPwrList, uint8_t *pVpdList,
94	uint16_t numIntercepts, uint8_t *pRetVpdList);
95
96/*
97 * Places the device in and out of reset and then places sane
98 * values in the registers based on EEPROM config, initialization
99 * vectors (as determined by the mode), and station configuration
100 *
101 * bChannelChange is used to preserve DMA/PCU registers across
102 * a HW Reset during channel change.
103 */
104HAL_BOOL
105ar5416Reset(struct ath_hal *ah, HAL_OPMODE opmode,
106	struct ieee80211_channel *chan,
107	HAL_BOOL bChannelChange, HAL_STATUS *status)
108{
109#define	N(a)	(sizeof (a) / sizeof (a[0]))
110#define	FAIL(_code)	do { ecode = _code; goto bad; } while (0)
111	struct ath_hal_5212 *ahp = AH5212(ah);
112	HAL_CHANNEL_INTERNAL *ichan;
113	uint32_t saveDefAntenna, saveLedState;
114	uint32_t macStaId1;
115	uint16_t rfXpdGain[2];
116	HAL_STATUS ecode;
117	uint32_t powerVal, rssiThrReg;
118	uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow;
119	int i;
120
121	OS_MARK(ah, AH_MARK_RESET, bChannelChange);
122
123	/* Bring out of sleep mode */
124	if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
125		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n",
126		    __func__);
127		FAIL(HAL_EIO);
128	}
129
130	/*
131	 * Map public channel to private.
132	 */
133	ichan = ath_hal_checkchannel(ah, chan);
134	if (ichan == AH_NULL)
135		FAIL(HAL_EINVAL);
136	switch (opmode) {
137	case HAL_M_STA:
138	case HAL_M_IBSS:
139	case HAL_M_HOSTAP:
140	case HAL_M_MONITOR:
141		break;
142	default:
143		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
144		    __func__, opmode);
145		FAIL(HAL_EINVAL);
146		break;
147	}
148	HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
149
150	/* XXX Turn on fast channel change for 5416 */
151	/*
152	 * Preserve the bmiss rssi threshold and count threshold
153	 * across resets
154	 */
155	rssiThrReg = OS_REG_READ(ah, AR_RSSI_THR);
156	/* If reg is zero, first time thru set to default val */
157	if (rssiThrReg == 0)
158		rssiThrReg = INIT_RSSI_THR;
159
160	/*
161	 * Preserve the antenna on a channel change
162	 */
163	saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
164	if (saveDefAntenna == 0)		/* XXX magic constants */
165		saveDefAntenna = 1;
166
167	/* Save hardware flag before chip reset clears the register */
168	macStaId1 = OS_REG_READ(ah, AR_STA_ID1) &
169		(AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT);
170
171	/* Save led state from pci config register */
172	saveLedState = OS_REG_READ(ah, AR_MAC_LED) &
173		(AR_MAC_LED_ASSOC | AR_MAC_LED_MODE |
174		 AR_MAC_LED_BLINK_THRESH_SEL | AR_MAC_LED_BLINK_SLOW);
175
176	if (!ar5416ChipReset(ah, chan)) {
177		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
178		FAIL(HAL_EIO);
179	}
180
181	/* Restore bmiss rssi & count thresholds */
182	OS_REG_WRITE(ah, AR_RSSI_THR, rssiThrReg);
183
184	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
185
186	AH5416(ah)->ah_writeIni(ah, chan);
187
188	/* Setup 11n MAC/Phy mode registers */
189	ar5416Set11nRegs(ah, chan);
190
191	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
192
193	HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_DAG_CTRLCCK=0x%x\n",
194		__func__, OS_REG_READ(ah,AR_PHY_DAG_CTRLCCK));
195	HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_ADC_CTL=0x%x\n",
196		__func__, OS_REG_READ(ah,AR_PHY_ADC_CTL));
197
198	/* Set the mute mask to the correct default */
199	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2)
200		OS_REG_WRITE(ah, AR_SEQ_MASK, 0x0000000F);
201
202	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_3) {
203		/* Clear reg to alllow RX_CLEAR line debug */
204		OS_REG_WRITE(ah, AR_PHY_BLUETOOTH,  0);
205	}
206	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_4) {
207#ifdef notyet
208		/* Enable burst prefetch for the data queues */
209		OS_REG_RMW_FIELD(ah, AR_D_FPCTL, ... );
210		/* Enable double-buffering */
211		OS_REG_CLR_BIT(ah, AR_TXCFG, AR_TXCFG_DBL_BUF_DIS);
212#endif
213	}
214
215	/* Set ADC/DAC select values */
216	OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
217
218	if (AH5416(ah)->ah_rx_chainmask == 0x5 ||
219	    AH5416(ah)->ah_tx_chainmask == 0x5)
220		OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
221	/* Setup Chain Masks */
222	OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
223	OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
224	OS_REG_WRITE(ah, AR_SELFGEN_MASK, AH5416(ah)->ah_tx_chainmask);
225
226	/* Setup the transmit power values. */
227	if (!ar5416SetTransmitPower(ah, chan, rfXpdGain)) {
228		HALDEBUG(ah, HAL_DEBUG_ANY,
229		    "%s: error init'ing transmit power\n", __func__);
230		FAIL(HAL_EIO);
231	}
232
233	/* Write the analog registers */
234	if (!ahp->ah_rfHal->setRfRegs(ah, chan,
235	    IEEE80211_IS_CHAN_2GHZ(chan) ? 2: 1, rfXpdGain)) {
236		HALDEBUG(ah, HAL_DEBUG_ANY,
237		    "%s: ar5212SetRfRegs failed\n", __func__);
238		FAIL(HAL_EIO);
239	}
240
241	/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
242	if (IEEE80211_IS_CHAN_OFDM(chan)|| IEEE80211_IS_CHAN_HT(chan))
243		ar5416SetDeltaSlope(ah, chan);
244
245	AH5416(ah)->ah_spurMitigate(ah, chan);
246
247	/* Setup board specific options for EEPROM version 3 */
248	if (!ar5416SetBoardValues(ah, chan)) {
249		HALDEBUG(ah, HAL_DEBUG_ANY,
250		    "%s: error setting board options\n", __func__);
251		FAIL(HAL_EIO);
252	}
253
254	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
255
256	OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
257	OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
258		| macStaId1
259		| AR_STA_ID1_RTS_USE_DEF
260		| ahp->ah_staId1Defaults
261	);
262	ar5212SetOperatingMode(ah, opmode);
263
264	/* Set Venice BSSID mask according to current state */
265	OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
266	OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
267
268	/* Restore previous led state */
269	OS_REG_WRITE(ah, AR_MAC_LED, OS_REG_READ(ah, AR_MAC_LED) | saveLedState);
270
271	/* Restore previous antenna */
272	OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
273
274	/* then our BSSID */
275	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
276	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
277
278	/* Restore bmiss rssi & count thresholds */
279	OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
280
281	OS_REG_WRITE(ah, AR_ISR, ~0);		/* cleared on write */
282
283	if (!ar5212SetChannel(ah, chan))
284		FAIL(HAL_EIO);
285
286	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
287
288	/* Set 1:1 QCU to DCU mapping for all queues */
289	for (i = 0; i < AR_NUM_DCU; i++)
290		OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
291
292	ahp->ah_intrTxqs = 0;
293	for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++)
294		ar5212ResetTxQueue(ah, i);
295
296	ar5416InitIMR(ah, opmode);
297	ar5212SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1);
298	ar5416InitQoS(ah);
299	ar5416InitUserSettings(ah);
300
301	/*
302	 * disable seq number generation in hw
303	 */
304	 OS_REG_WRITE(ah, AR_STA_ID1,
305	     OS_REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
306
307	ar5416InitDMA(ah);
308
309	/*
310	 * program OBS bus to see MAC interrupts
311	 */
312	OS_REG_WRITE(ah, AR_OBS, 8);
313
314#ifdef AR5416_INT_MITIGATION
315	OS_REG_WRITE(ah, AR_MIRT, 0);
316	OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
317	OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
318#endif
319
320	ar5416InitBB(ah, chan);
321
322	/* Setup compression registers */
323	ar5212SetCompRegs(ah);		/* XXX not needed? */
324
325	/*
326	 * 5416 baseband will check the per rate power table
327	 * and select the lower of the two
328	 */
329	ackTpcPow = 63;
330	ctsTpcPow = 63;
331	chirpTpcPow = 63;
332	powerVal = SM(ackTpcPow, AR_TPC_ACK) |
333		SM(ctsTpcPow, AR_TPC_CTS) |
334		SM(chirpTpcPow, AR_TPC_CHIRP);
335	OS_REG_WRITE(ah, AR_TPC, powerVal);
336
337	if (!ar5416InitCal(ah, chan))
338		FAIL(HAL_ESELFTEST);
339
340	AH_PRIVATE(ah)->ah_opmode = opmode;	/* record operating mode */
341
342	if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan))
343		chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
344
345	HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
346
347	OS_MARK(ah, AH_MARK_RESET_DONE, 0);
348
349	return AH_TRUE;
350bad:
351	OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
352	if (status != AH_NULL)
353		*status = ecode;
354	return AH_FALSE;
355#undef FAIL
356#undef N
357}
358
359#if 0
360/*
361 * This channel change evaluates whether the selected hardware can
362 * perform a synthesizer-only channel change (no reset).  If the
363 * TX is not stopped, or the RFBus cannot be granted in the given
364 * time, the function returns false as a reset is necessary
365 */
366HAL_BOOL
367ar5416ChannelChange(struct ath_hal *ah, const structu ieee80211_channel *chan)
368{
369	uint32_t       ulCount;
370	uint32_t   data, synthDelay, qnum;
371	uint16_t   rfXpdGain[4];
372	struct ath_hal_5212 *ahp = AH5212(ah);
373	HAL_CHANNEL_INTERNAL *ichan;
374
375	/*
376	 * Map public channel to private.
377	 */
378	ichan = ath_hal_checkchannel(ah, chan);
379
380	/* TX must be stopped or RF Bus grant will not work */
381	for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) {
382		if (ar5212NumTxPending(ah, qnum)) {
383			HALDEBUG(ah, HAL_DEBUG_ANY,
384			    "%s: frames pending on queue %d\n", __func__, qnum);
385			return AH_FALSE;
386		}
387	}
388
389	/*
390	 * Kill last Baseband Rx Frame - Request analog bus grant
391	 */
392	OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST);
393	if (!ath_hal_wait(ah, AR_PHY_RFBUS_GNT, AR_PHY_RFBUS_GRANT_EN, AR_PHY_RFBUS_GRANT_EN)) {
394		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: could not kill baseband rx\n",
395		    __func__);
396		return AH_FALSE;
397	}
398
399	ar5416Set11nRegs(ah, chan);	/* NB: setup 5416-specific regs */
400
401	/* Change the synth */
402	if (!ar5212SetChannel(ah, chan))
403		return AH_FALSE;
404
405	/* Setup the transmit power values. */
406	if (!ar5416SetTransmitPower(ah, chan, rfXpdGain)) {
407		HALDEBUG(ah, HAL_DEBUG_ANY,
408		    "%s: error init'ing transmit power\n", __func__);
409		return AH_FALSE;
410	}
411
412	/*
413	 * Wait for the frequency synth to settle (synth goes on
414	 * via PHY_ACTIVE_EN).  Read the phy active delay register.
415	 * Value is in 100ns increments.
416	 */
417	data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
418	if (IS_CHAN_CCK(ichan)) {
419		synthDelay = (4 * data) / 22;
420	} else {
421		synthDelay = data / 10;
422	}
423
424	OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
425
426	/* Release the RFBus Grant */
427	OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
428
429	/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
430	if (IEEE80211_IS_CHAN_OFDM(ichan)|| IEEE80211_IS_CHAN_HT(chan)) {
431		HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3);
432		ar5212SetSpurMitigation(ah, chan);
433		ar5416SetDeltaSlope(ah, chan);
434	}
435
436	/* XXX spur mitigation for Melin */
437
438	if (!IEEE80211_IS_CHAN_DFS(chan))
439		chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
440
441	ichan->channel_time = 0;
442	ichan->tsf_last = ar5212GetTsf64(ah);
443	ar5212TxEnable(ah, AH_TRUE);
444	return AH_TRUE;
445}
446#endif
447
448static void
449ar5416InitDMA(struct ath_hal *ah)
450{
451
452	/*
453	 * set AHB_MODE not to do cacheline prefetches
454	 */
455	OS_REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
456
457	/*
458	 * let mac dma reads be in 128 byte chunks
459	 */
460	OS_REG_WRITE(ah, AR_TXCFG,
461		(OS_REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK) | AR_TXCFG_DMASZ_128B);
462
463	/*
464	 * let mac dma writes be in 128 byte chunks
465	 */
466	OS_REG_WRITE(ah, AR_RXCFG,
467		(OS_REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK) | AR_RXCFG_DMASZ_128B);
468
469	/* XXX restore TX trigger level */
470
471	/*
472	 * Setup receive FIFO threshold to hold off TX activities
473	 */
474	OS_REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
475
476	/*
477	 * reduce the number of usable entries in PCU TXBUF to avoid
478	 * wrap around.
479	 */
480	OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_PCU_TXBUF_CTRL_USABLE_SIZE);
481}
482
483static void
484ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *chan)
485{
486	uint32_t synthDelay;
487
488	/*
489	 * Wait for the frequency synth to settle (synth goes on
490	 * via AR_PHY_ACTIVE_EN).  Read the phy active delay register.
491	 * Value is in 100ns increments.
492	  */
493	synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
494	if (IEEE80211_IS_CHAN_CCK(chan)) {
495		synthDelay = (4 * synthDelay) / 22;
496	} else {
497		synthDelay /= 10;
498	}
499
500	/* Turn on PLL on 5416 */
501	HALDEBUG(ah, HAL_DEBUG_RESET, "%s %s channel\n",
502	    __func__, IEEE80211_IS_CHAN_5GHZ(chan) ? "5GHz" : "2GHz");
503	ar5416InitPLL(ah, chan);
504
505	/* Activate the PHY (includes baseband activate and synthesizer on) */
506	OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
507
508	/*
509	 * If the AP starts the calibration before the base band timeout
510	 * completes  we could get rx_clear false triggering.  Add an
511	 * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
512	 * does not happen.
513	 */
514	if (IEEE80211_IS_CHAN_HALF(chan)) {
515		OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY);
516	} else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
517		OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY);
518	} else {
519		OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
520	}
521}
522
523static void
524ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode)
525{
526	struct ath_hal_5212 *ahp = AH5212(ah);
527
528	/*
529	 * Setup interrupt handling.  Note that ar5212ResetTxQueue
530	 * manipulates the secondary IMR's as queues are enabled
531	 * and disabled.  This is done with RMW ops to insure the
532	 * settings we make here are preserved.
533	 */
534        ahp->ah_maskReg = AR_IMR_TXERR | AR_IMR_TXURN
535			| AR_IMR_RXERR | AR_IMR_RXORN
536                        | AR_IMR_BCNMISC;
537
538#ifdef AR5416_INT_MITIGATION
539       	ahp->ah_maskReg |= AR_IMR_TXINTM | AR_IMR_RXINTM
540			|  AR_IMR_TXMINTR | AR_IMR_RXMINTR;
541#else
542        ahp->ah_maskReg |= AR_IMR_TXOK | AR_IMR_RXOK;
543#endif
544	if (opmode == HAL_M_HOSTAP)
545		ahp->ah_maskReg |= AR_IMR_MIB;
546	OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
547	/* Enable bus errors that are OR'd to set the HIUERR bit */
548#if 0
549	OS_REG_WRITE(ah, AR_IMR_S2,
550	    	OS_REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT | AR_IMR_S2_CST);
551#endif
552}
553
554static void
555ar5416InitQoS(struct ath_hal *ah)
556{
557	/* QoS support */
558	OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa);	/* XXX magic */
559	OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210);	/* XXX magic */
560
561	/* Turn on NOACK Support for QoS packets */
562	OS_REG_WRITE(ah, AR_NOACK,
563		SM(2, AR_NOACK_2BIT_VALUE) |
564		SM(5, AR_NOACK_BIT_OFFSET) |
565		SM(0, AR_NOACK_BYTE_OFFSET));
566
567    	/*
568    	 * initialize TXOP for all TIDs
569    	 */
570	OS_REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
571	OS_REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
572	OS_REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
573	OS_REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
574	OS_REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
575}
576
577static void
578ar5416InitUserSettings(struct ath_hal *ah)
579{
580	struct ath_hal_5212 *ahp = AH5212(ah);
581
582	/* Restore user-specified settings */
583	if (ahp->ah_miscMode != 0)
584		OS_REG_WRITE(ah, AR_MISC_MODE, ahp->ah_miscMode);
585	if (ahp->ah_sifstime != (u_int) -1)
586		ar5212SetSifsTime(ah, ahp->ah_sifstime);
587	if (ahp->ah_slottime != (u_int) -1)
588		ar5212SetSlotTime(ah, ahp->ah_slottime);
589	if (ahp->ah_acktimeout != (u_int) -1)
590		ar5212SetAckTimeout(ah, ahp->ah_acktimeout);
591	if (ahp->ah_ctstimeout != (u_int) -1)
592		ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout);
593	if (AH_PRIVATE(ah)->ah_diagreg != 0)
594		OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
595#if 0 /* XXX Todo */
596	if (ahp->ah_globaltxtimeout != (u_int) -1)
597        	ar5416SetGlobalTxTimeout(ah, ahp->ah_globaltxtimeout);
598#endif
599}
600
601/*
602 * Places the hardware into reset and then pulls it out of reset
603 */
604HAL_BOOL
605ar5416ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan)
606{
607	OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->ic_freq : 0);
608	/*
609	 * Warm reset is optimistic.
610	 */
611	if (AR_SREV_MERLIN_20_OR_LATER(ah) &&
612	    ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
613		if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
614			return AH_FALSE;
615	} else {
616		if (!ar5416SetResetReg(ah, HAL_RESET_WARM))
617			return AH_FALSE;
618	}
619
620	/* Bring out of sleep mode (AGAIN) */
621	if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
622	       return AH_FALSE;
623
624	ar5416InitPLL(ah, chan);
625
626	/*
627	 * Perform warm reset before the mode/PLL/turbo registers
628	 * are changed in order to deactivate the radio.  Mode changes
629	 * with an active radio can result in corrupted shifts to the
630	 * radio device.
631	 */
632	if (chan != AH_NULL) {
633		uint32_t rfMode;
634
635		/* treat channel B as channel G , no  B mode suport in owl */
636		rfMode = IEEE80211_IS_CHAN_CCK(chan) ?
637		    AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
638		if (AR_SREV_MERLIN_20(ah) && IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
639			/* phy mode bits for 5GHz channels require Fast Clock */
640			rfMode |= AR_PHY_MODE_DYNAMIC
641			       |  AR_PHY_MODE_DYN_CCK_DISABLE;
642		} else if (!AR_SREV_MERLIN_10_OR_LATER(ah)) {
643			rfMode |= IEEE80211_IS_CHAN_5GHZ(chan) ?
644				AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
645		}
646		OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
647	}
648	return AH_TRUE;
649}
650
651/*
652 * Delta slope coefficient computation.
653 * Required for OFDM operation.
654 */
655static void
656ar5416GetDeltaSlopeValues(struct ath_hal *ah, uint32_t coef_scaled,
657                          uint32_t *coef_mantissa, uint32_t *coef_exponent)
658{
659#define COEF_SCALE_S 24
660    uint32_t coef_exp, coef_man;
661    /*
662     * ALGO -> coef_exp = 14-floor(log2(coef));
663     * floor(log2(x)) is the highest set bit position
664     */
665    for (coef_exp = 31; coef_exp > 0; coef_exp--)
666            if ((coef_scaled >> coef_exp) & 0x1)
667                    break;
668    /* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */
669    HALASSERT(coef_exp);
670    coef_exp = 14 - (coef_exp - COEF_SCALE_S);
671
672    /*
673     * ALGO -> coef_man = floor(coef* 2^coef_exp+0.5);
674     * The coefficient is already shifted up for scaling
675     */
676    coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
677
678    *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
679    *coef_exponent = coef_exp - 16;
680
681#undef COEF_SCALE_S
682}
683
684void
685ar5416SetDeltaSlope(struct ath_hal *ah, const struct ieee80211_channel *chan)
686{
687#define INIT_CLOCKMHZSCALED	0x64000000
688	uint32_t coef_scaled, ds_coef_exp, ds_coef_man;
689	uint32_t clockMhzScaled;
690
691	CHAN_CENTERS centers;
692
693	/* half and quarter rate can divide the scaled clock by 2 or 4 respectively */
694	/* scale for selected channel bandwidth */
695	clockMhzScaled = INIT_CLOCKMHZSCALED;
696	if (IEEE80211_IS_CHAN_TURBO(chan))
697		clockMhzScaled <<= 1;
698	else if (IEEE80211_IS_CHAN_HALF(chan))
699		clockMhzScaled >>= 1;
700	else if (IEEE80211_IS_CHAN_QUARTER(chan))
701		clockMhzScaled >>= 2;
702
703	/*
704	 * ALGO -> coef = 1e8/fcarrier*fclock/40;
705	 * scaled coef to provide precision for this floating calculation
706	 */
707	ar5416GetChannelCenters(ah, chan, &centers);
708	coef_scaled = clockMhzScaled / centers.synth_center;
709
710 	ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
711
712	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
713		AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
714	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
715		AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
716
717        /*
718         * For Short GI,
719         * scaled coeff is 9/10 that of normal coeff
720         */
721        coef_scaled = (9 * coef_scaled)/10;
722
723        ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
724
725        /* for short gi */
726        OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
727                AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
728        OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
729                AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
730#undef INIT_CLOCKMHZSCALED
731}
732
733/*
734 * Set a limit on the overall output power.  Used for dynamic
735 * transmit power control and the like.
736 *
737 * NB: limit is in units of 0.5 dbM.
738 */
739HAL_BOOL
740ar5416SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
741{
742	uint16_t dummyXpdGains[2];
743
744	AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
745	return ar5416SetTransmitPower(ah, AH_PRIVATE(ah)->ah_curchan,
746			dummyXpdGains);
747}
748
749HAL_BOOL
750ar5416GetChipPowerLimits(struct ath_hal *ah,
751	struct ieee80211_channel *chan)
752{
753	struct ath_hal_5212 *ahp = AH5212(ah);
754	int16_t minPower, maxPower;
755
756	/*
757	 * Get Pier table max and min powers.
758	 */
759	if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) {
760		/* NB: rf code returns 1/4 dBm units, convert */
761		chan->ic_maxpower = maxPower / 2;
762		chan->ic_minpower = minPower / 2;
763	} else {
764		HALDEBUG(ah, HAL_DEBUG_ANY,
765		    "%s: no min/max power for %u/0x%x\n",
766		    __func__, chan->ic_freq, chan->ic_flags);
767		chan->ic_maxpower = AR5416_MAX_RATE_POWER;
768		chan->ic_minpower = 0;
769	}
770	HALDEBUG(ah, HAL_DEBUG_RESET,
771	    "Chan %d: MaxPow = %d MinPow = %d\n",
772	    chan->ic_freq, chan->ic_maxpower, chan->ic_minpower);
773	return AH_TRUE;
774}
775
776/* XXX gag, this is sick */
777typedef enum Ar5416_Rates {
778	rate6mb,  rate9mb,  rate12mb, rate18mb,
779	rate24mb, rate36mb, rate48mb, rate54mb,
780	rate1l,   rate2l,   rate2s,   rate5_5l,
781	rate5_5s, rate11l,  rate11s,  rateXr,
782	rateHt20_0, rateHt20_1, rateHt20_2, rateHt20_3,
783	rateHt20_4, rateHt20_5, rateHt20_6, rateHt20_7,
784	rateHt40_0, rateHt40_1, rateHt40_2, rateHt40_3,
785	rateHt40_4, rateHt40_5, rateHt40_6, rateHt40_7,
786	rateDupCck, rateDupOfdm, rateExtCck, rateExtOfdm,
787	Ar5416RateSize
788} AR5416_RATES;
789
790/**************************************************************
791 * ar5416SetTransmitPower
792 *
793 * Set the transmit power in the baseband for the given
794 * operating channel and mode.
795 */
796static HAL_BOOL
797ar5416SetTransmitPower(struct ath_hal *ah,
798	const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
799{
800#define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
801#define N(a)            (sizeof (a) / sizeof (a[0]))
802
803    MODAL_EEP_HEADER	*pModal;
804    struct ath_hal_5212 *ahp = AH5212(ah);
805    int16_t		ratesArray[Ar5416RateSize];
806    int16_t		txPowerIndexOffset = 0;
807    uint8_t		ht40PowerIncForPdadc = 2;
808    int			i;
809
810    uint16_t		cfgCtl;
811    uint16_t		powerLimit;
812    uint16_t		twiceAntennaReduction;
813    uint16_t		twiceMaxRegulatoryPower;
814    int16_t		maxPower;
815    HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
816    struct ar5416eeprom	*pEepData = &ee->ee_base;
817
818    HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
819
820    /* Setup info for the actual eeprom */
821    OS_MEMZERO(ratesArray, sizeof(ratesArray));
822    cfgCtl = ath_hal_getctl(ah, chan);
823    powerLimit = chan->ic_maxregpower * 2;
824    twiceAntennaReduction = chan->ic_maxantgain;
825    twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
826    pModal = &pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)];
827    HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
828	__func__,chan->ic_freq, cfgCtl );
829
830    if (IS_EEP_MINOR_V2(ah)) {
831        ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
832    }
833
834    if (!ar5416SetPowerPerRateTable(ah, pEepData,  chan,
835                                    &ratesArray[0],cfgCtl,
836                                    twiceAntennaReduction,
837				    twiceMaxRegulatoryPower, powerLimit)) {
838        HALDEBUG(ah, HAL_DEBUG_ANY,
839	    "%s: unable to set tx power per rate table\n", __func__);
840        return AH_FALSE;
841    }
842
843    if (!ar5416SetPowerCalTable(ah,  pEepData, chan, &txPowerIndexOffset)) {
844        HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
845	    __func__);
846        return AH_FALSE;
847    }
848
849    maxPower = AH_MAX(ratesArray[rate6mb], ratesArray[rateHt20_0]);
850
851    if (IEEE80211_IS_CHAN_2GHZ(chan)) {
852        maxPower = AH_MAX(maxPower, ratesArray[rate1l]);
853    }
854
855    if (IEEE80211_IS_CHAN_HT40(chan)) {
856        maxPower = AH_MAX(maxPower, ratesArray[rateHt40_0]);
857    }
858
859    ahp->ah_tx6PowerInHalfDbm = maxPower;
860    AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
861    ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
862
863    /*
864     * txPowerIndexOffset is set by the SetPowerTable() call -
865     *  adjust the rate table (0 offset if rates EEPROM not loaded)
866     */
867    for (i = 0; i < N(ratesArray); i++) {
868        ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
869        if (ratesArray[i] > AR5416_MAX_RATE_POWER)
870            ratesArray[i] = AR5416_MAX_RATE_POWER;
871    }
872
873#ifdef AH_EEPROM_DUMP
874    ar5416PrintPowerPerRate(ah, ratesArray);
875#endif
876
877    /* Write the OFDM power per rate set */
878    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
879        POW_SM(ratesArray[rate18mb], 24)
880          | POW_SM(ratesArray[rate12mb], 16)
881          | POW_SM(ratesArray[rate9mb], 8)
882          | POW_SM(ratesArray[rate6mb], 0)
883    );
884    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
885        POW_SM(ratesArray[rate54mb], 24)
886          | POW_SM(ratesArray[rate48mb], 16)
887          | POW_SM(ratesArray[rate36mb], 8)
888          | POW_SM(ratesArray[rate24mb], 0)
889    );
890
891    if (IEEE80211_IS_CHAN_2GHZ(chan)) {
892        /* Write the CCK power per rate set */
893        OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
894            POW_SM(ratesArray[rate2s], 24)
895              | POW_SM(ratesArray[rate2l],  16)
896              | POW_SM(ratesArray[rateXr],  8) /* XR target power */
897              | POW_SM(ratesArray[rate1l],   0)
898        );
899        OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
900            POW_SM(ratesArray[rate11s], 24)
901              | POW_SM(ratesArray[rate11l], 16)
902              | POW_SM(ratesArray[rate5_5s], 8)
903              | POW_SM(ratesArray[rate5_5l], 0)
904        );
905    HALDEBUG(ah, HAL_DEBUG_RESET,
906	"%s AR_PHY_POWER_TX_RATE3=0x%x AR_PHY_POWER_TX_RATE4=0x%x\n",
907	    __func__, OS_REG_READ(ah,AR_PHY_POWER_TX_RATE3),
908	    OS_REG_READ(ah,AR_PHY_POWER_TX_RATE4));
909    }
910
911    /* Write the HT20 power per rate set */
912    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
913        POW_SM(ratesArray[rateHt20_3], 24)
914          | POW_SM(ratesArray[rateHt20_2], 16)
915          | POW_SM(ratesArray[rateHt20_1], 8)
916          | POW_SM(ratesArray[rateHt20_0], 0)
917    );
918    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
919        POW_SM(ratesArray[rateHt20_7], 24)
920          | POW_SM(ratesArray[rateHt20_6], 16)
921          | POW_SM(ratesArray[rateHt20_5], 8)
922          | POW_SM(ratesArray[rateHt20_4], 0)
923    );
924
925    if (IEEE80211_IS_CHAN_HT40(chan)) {
926        /* Write the HT40 power per rate set */
927	/* Correct PAR difference between HT40 and HT20/LEGACY */
928        OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
929            POW_SM(ratesArray[rateHt40_3] + ht40PowerIncForPdadc, 24)
930              | POW_SM(ratesArray[rateHt40_2] + ht40PowerIncForPdadc, 16)
931              | POW_SM(ratesArray[rateHt40_1] + ht40PowerIncForPdadc, 8)
932              | POW_SM(ratesArray[rateHt40_0] + ht40PowerIncForPdadc, 0)
933        );
934        OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
935            POW_SM(ratesArray[rateHt40_7] + ht40PowerIncForPdadc, 24)
936              | POW_SM(ratesArray[rateHt40_6] + ht40PowerIncForPdadc, 16)
937              | POW_SM(ratesArray[rateHt40_5] + ht40PowerIncForPdadc, 8)
938              | POW_SM(ratesArray[rateHt40_4] + ht40PowerIncForPdadc, 0)
939        );
940        /* Write the Dup/Ext 40 power per rate set */
941        OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
942            POW_SM(ratesArray[rateExtOfdm], 24)
943              | POW_SM(ratesArray[rateExtCck], 16)
944              | POW_SM(ratesArray[rateDupOfdm], 8)
945              | POW_SM(ratesArray[rateDupCck], 0)
946        );
947    }
948
949    /* Write the Power subtraction for dynamic chain changing, for per-packet powertx */
950    OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
951        POW_SM(pModal->pwrDecreaseFor3Chain, 6)
952          | POW_SM(pModal->pwrDecreaseFor2Chain, 0)
953    );
954    return AH_TRUE;
955#undef POW_SM
956#undef N
957}
958
959/*
960 * Exported call to check for a recent gain reading and return
961 * the current state of the thermal calibration gain engine.
962 */
963HAL_RFGAIN
964ar5416GetRfgain(struct ath_hal *ah)
965{
966	return HAL_RFGAIN_INACTIVE;
967}
968
969/*
970 * Places all of hardware into reset
971 */
972HAL_BOOL
973ar5416Disable(struct ath_hal *ah)
974{
975	if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
976		return AH_FALSE;
977	return ar5416SetResetReg(ah, HAL_RESET_COLD);
978}
979
980/*
981 * Places the PHY and Radio chips into reset.  A full reset
982 * must be called to leave this state.  The PCI/MAC/PCU are
983 * not placed into reset as we must receive interrupt to
984 * re-enable the hardware.
985 */
986HAL_BOOL
987ar5416PhyDisable(struct ath_hal *ah)
988{
989	return ar5416SetResetReg(ah, HAL_RESET_WARM);
990}
991
992/*
993 * Write the given reset bit mask into the reset register
994 */
995HAL_BOOL
996ar5416SetResetReg(struct ath_hal *ah, uint32_t type)
997{
998	switch (type) {
999	case HAL_RESET_POWER_ON:
1000		return ar5416SetResetPowerOn(ah);
1001	case HAL_RESET_WARM:
1002	case HAL_RESET_COLD:
1003		return ar5416SetReset(ah, type);
1004	default:
1005		HALASSERT(AH_FALSE);
1006		return AH_FALSE;
1007	}
1008}
1009
1010static HAL_BOOL
1011ar5416SetResetPowerOn(struct ath_hal *ah)
1012{
1013    /* Power On Reset (Hard Reset) */
1014
1015    /*
1016     * Set force wake
1017     *
1018     * If the MAC was running, previously calling
1019     * reset will wake up the MAC but it may go back to sleep
1020     * before we can start polling.
1021     * Set force wake  stops that
1022     * This must be called before initiating a hard reset.
1023     */
1024    OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1025            AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1026
1027    /*
1028     * RTC reset and clear
1029     */
1030    OS_REG_WRITE(ah, AR_RTC_RESET, 0);
1031    OS_DELAY(20);
1032    OS_REG_WRITE(ah, AR_RTC_RESET, 1);
1033
1034    /*
1035     * Poll till RTC is ON
1036     */
1037    if (!ath_hal_wait(ah, AR_RTC_STATUS, AR_RTC_PM_STATUS_M, AR_RTC_STATUS_ON)) {
1038        HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC not waking up\n", __func__);
1039        return AH_FALSE;
1040    }
1041
1042    return ar5416SetReset(ah, HAL_RESET_COLD);
1043}
1044
1045static HAL_BOOL
1046ar5416SetReset(struct ath_hal *ah, int type)
1047{
1048    uint32_t tmpReg;
1049
1050    /*
1051     * Force wake
1052     */
1053    OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1054	AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1055
1056    /*
1057     * Reset AHB
1058     */
1059    tmpReg = OS_REG_READ(ah, AR_INTR_SYNC_CAUSE);
1060    if (tmpReg & (AR_INTR_SYNC_LOCAL_TIMEOUT|AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1061	OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1062	OS_REG_WRITE(ah, AR_RC, AR_RC_AHB|AR_RC_HOSTIF);
1063    } else {
1064	OS_REG_WRITE(ah, AR_RC, AR_RC_AHB);
1065    }
1066
1067    /*
1068     * Set Mac(BB,Phy) Warm Reset
1069     */
1070    switch (type) {
1071    case HAL_RESET_WARM:
1072            OS_REG_WRITE(ah, AR_RTC_RC, AR_RTC_RC_MAC_WARM);
1073            break;
1074    case HAL_RESET_COLD:
1075            OS_REG_WRITE(ah, AR_RTC_RC, AR_RTC_RC_MAC_WARM|AR_RTC_RC_MAC_COLD);
1076            break;
1077    default:
1078            HALASSERT(AH_FALSE);
1079            break;
1080    }
1081
1082    /*
1083     * Clear resets and force wakeup
1084     */
1085    OS_REG_WRITE(ah, AR_RTC_RC, 0);
1086    if (!ath_hal_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0)) {
1087        HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC stuck in MAC reset\n", __func__);
1088        return AH_FALSE;
1089    }
1090
1091    /* Clear AHB reset */
1092    OS_REG_WRITE(ah, AR_RC, 0);
1093
1094   /* Set register and descriptor swapping on
1095    * Bigendian platforms on cold reset
1096    */
1097#ifdef __BIG_ENDIAN__
1098    if (type == HAL_RESET_COLD) {
1099    		uint32_t	mask;
1100
1101		HALDEBUG(ah, HAL_DEBUG_RESET,
1102		    "%s Applying descriptor swap\n", __func__);
1103
1104		mask = INIT_CONFIG_STATUS | AR_CFG_SWRD | AR_CFG_SWRG;
1105#ifndef AH_NEED_DESC_SWAP
1106		mask |= AR_CFG_SWTD;
1107#endif
1108		OS_REG_WRITE(ah, AR_CFG, LE_READ_4(&mask));
1109	}
1110#endif
1111
1112    ar5416InitPLL(ah, AH_NULL);
1113
1114    return AH_TRUE;
1115}
1116
1117#ifndef IS_5GHZ_FAST_CLOCK_EN
1118#define	IS_5GHZ_FAST_CLOCK_EN(ah, chan)	AH_FALSE
1119#endif
1120
1121static void
1122ar5416InitPLL(struct ath_hal *ah, const struct ieee80211_channel *chan)
1123{
1124	uint32_t pll;
1125
1126	if (AR_SREV_MERLIN_20(ah) &&
1127	    chan != AH_NULL && IEEE80211_IS_CHAN_5GHZ(chan)) {
1128		/*
1129		 * PLL WAR for Merlin 2.0/2.1
1130		 * When doing fast clock, set PLL to 0x142c
1131		 * Else, set PLL to 0x2850 to prevent reset-to-reset variation
1132		 */
1133		pll = IS_5GHZ_FAST_CLOCK_EN(ah, chan) ? 0x142c : 0x2850;
1134	} else if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1135		pll = SM(0x5, AR_RTC_SOWL_PLL_REFDIV);
1136		if (chan != AH_NULL) {
1137			if (IEEE80211_IS_CHAN_HALF(chan))
1138				pll |= SM(0x1, AR_RTC_SOWL_PLL_CLKSEL);
1139			else if (IEEE80211_IS_CHAN_QUARTER(chan))
1140				pll |= SM(0x2, AR_RTC_SOWL_PLL_CLKSEL);
1141			else if (IEEE80211_IS_CHAN_5GHZ(chan))
1142				pll |= SM(0x28, AR_RTC_SOWL_PLL_DIV);
1143			else
1144				pll |= SM(0x2c, AR_RTC_SOWL_PLL_DIV);
1145		} else
1146			pll |= SM(0x2c, AR_RTC_SOWL_PLL_DIV);
1147	} else if (AR_SREV_SOWL_10_OR_LATER(ah)) {
1148		pll = SM(0x5, AR_RTC_SOWL_PLL_REFDIV);
1149		if (chan != AH_NULL) {
1150			if (IEEE80211_IS_CHAN_HALF(chan))
1151				pll |= SM(0x1, AR_RTC_SOWL_PLL_CLKSEL);
1152			else if (IEEE80211_IS_CHAN_QUARTER(chan))
1153				pll |= SM(0x2, AR_RTC_SOWL_PLL_CLKSEL);
1154			else if (IEEE80211_IS_CHAN_5GHZ(chan))
1155				pll |= SM(0x50, AR_RTC_SOWL_PLL_DIV);
1156			else
1157				pll |= SM(0x58, AR_RTC_SOWL_PLL_DIV);
1158		} else
1159			pll |= SM(0x58, AR_RTC_SOWL_PLL_DIV);
1160	} else {
1161		pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1162		if (chan != AH_NULL) {
1163			if (IEEE80211_IS_CHAN_HALF(chan))
1164				pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1165			else if (IEEE80211_IS_CHAN_QUARTER(chan))
1166				pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1167			else if (IEEE80211_IS_CHAN_5GHZ(chan))
1168				pll |= SM(0xa, AR_RTC_PLL_DIV);
1169			else
1170				pll |= SM(0xb, AR_RTC_PLL_DIV);
1171		} else
1172			pll |= SM(0xb, AR_RTC_PLL_DIV);
1173	}
1174	OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1175
1176	/* TODO:
1177	* For multi-band owl, switch between bands by reiniting the PLL.
1178	*/
1179
1180	OS_DELAY(RTC_PLL_SETTLE_DELAY);
1181
1182	OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_SLEEP_DERIVED_CLK);
1183}
1184
1185/*
1186 * Read EEPROM header info and program the device for correct operation
1187 * given the channel value.
1188 */
1189static HAL_BOOL
1190ar5416SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
1191{
1192    const HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
1193    const struct ar5416eeprom *eep = &ee->ee_base;
1194    const MODAL_EEP_HEADER *pModal;
1195    int			i, regChainOffset;
1196    uint8_t		txRxAttenLocal;    /* workaround for eeprom versions <= 14.2 */
1197
1198    HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
1199    pModal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)];
1200
1201    /* NB: workaround for eeprom versions <= 14.2 */
1202    txRxAttenLocal = IEEE80211_IS_CHAN_2GHZ(chan) ? 23 : 44;
1203
1204    OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
1205    for (i = 0; i < AR5416_MAX_CHAINS; i++) {
1206	   if (AR_SREV_MERLIN(ah)) {
1207		if (i >= 2) break;
1208	   }
1209       	   if (AR_SREV_OWL_20_OR_LATER(ah) &&
1210            (AH5416(ah)->ah_rx_chainmask == 0x5 ||
1211	     AH5416(ah)->ah_tx_chainmask == 0x5) && i != 0) {
1212            /* Regs are swapped from chain 2 to 1 for 5416 2_0 with
1213             * only chains 0 and 2 populated
1214             */
1215            regChainOffset = (i == 1) ? 0x2000 : 0x1000;
1216        } else {
1217            regChainOffset = i * 0x1000;
1218        }
1219
1220        OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, pModal->antCtrlChain[i]);
1221        OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4 + regChainOffset,
1222        	(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4 + regChainOffset) &
1223        	~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
1224        	SM(pModal->iqCalICh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
1225        	SM(pModal->iqCalQCh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
1226
1227        /*
1228         * Large signal upgrade.
1229	 * XXX update
1230         */
1231
1232        if ((i == 0) || AR_SREV_OWL_20_OR_LATER(ah)) {
1233            OS_REG_WRITE(ah, AR_PHY_RXGAIN + regChainOffset,
1234		(OS_REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) & ~AR_PHY_RXGAIN_TXRX_ATTEN) |
1235			SM(IS_EEP_MINOR_V3(ah)  ? pModal->txRxAttenCh[i] : txRxAttenLocal,
1236				AR_PHY_RXGAIN_TXRX_ATTEN));
1237
1238            OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1239	    	(OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) & ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
1240			SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
1241        }
1242    }
1243
1244    OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
1245    OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
1246    OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_PGA, pModal->pgaDesiredSize);
1247    OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
1248        SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
1249        | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
1250        | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
1251        | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
1252
1253    OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
1254
1255    if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1256	OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
1257	    pModal->thresh62);
1258	OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
1259	    pModal->thresh62);
1260    } else {
1261	OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
1262	    pModal->thresh62);
1263	OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA_THRESH62,
1264	    pModal->thresh62);
1265    }
1266
1267    /* Minor Version Specific application */
1268    if (IS_EEP_MINOR_V2(ah)) {
1269        OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,  AR_PHY_TX_FRAME_TO_DATA_START, pModal->txFrameToDataStart);
1270        OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,  AR_PHY_TX_FRAME_TO_PA_ON, pModal->txFrameToPaOn);
1271    }
1272
1273    if (IS_EEP_MINOR_V3(ah)) {
1274	if (IEEE80211_IS_CHAN_HT40(chan)) {
1275		/* Overwrite switch settling with HT40 value */
1276		OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
1277	}
1278
1279        if ((AR_SREV_OWL_20_OR_LATER(ah)) &&
1280            (  AH5416(ah)->ah_rx_chainmask == 0x5 || AH5416(ah)->ah_tx_chainmask == 0x5)){
1281            /* Reg Offsets are swapped for logical mapping */
1282		OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
1283			SM(pModal->bswMargin[2], AR_PHY_GAIN_2GHZ_BSW_MARGIN));
1284		OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
1285			SM(pModal->bswAtten[2], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
1286		OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
1287			SM(pModal->bswMargin[1], AR_PHY_GAIN_2GHZ_BSW_MARGIN));
1288		OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
1289			SM(pModal->bswAtten[1], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
1290        } else {
1291		OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
1292			SM(pModal->bswMargin[1], AR_PHY_GAIN_2GHZ_BSW_MARGIN));
1293		OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
1294			SM(pModal->bswAtten[1], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
1295		OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
1296			SM(pModal->bswMargin[2],AR_PHY_GAIN_2GHZ_BSW_MARGIN));
1297		OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
1298			SM(pModal->bswAtten[2], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
1299        }
1300        OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_BSW_MARGIN, pModal->bswMargin[0]);
1301        OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_BSW_ATTEN, pModal->bswAtten[0]);
1302    }
1303    return AH_TRUE;
1304}
1305
1306/*
1307 * Helper functions common for AP/CB/XB
1308 */
1309
1310/*
1311 * ar5416SetPowerPerRateTable
1312 *
1313 * Sets the transmit power in the baseband for the given
1314 * operating channel and mode.
1315 */
1316static HAL_BOOL
1317ar5416SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom *pEepData,
1318                           const struct ieee80211_channel *chan,
1319                           int16_t *ratesArray, uint16_t cfgCtl,
1320                           uint16_t AntennaReduction,
1321                           uint16_t twiceMaxRegulatoryPower,
1322                           uint16_t powerLimit)
1323{
1324#define	N(a)	(sizeof(a)/sizeof(a[0]))
1325/* Local defines to distinguish between extension and control CTL's */
1326#define EXT_ADDITIVE (0x8000)
1327#define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
1328#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
1329#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
1330
1331	uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
1332	int i;
1333	int16_t  twiceLargestAntenna;
1334	CAL_CTL_DATA *rep;
1335	CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}};
1336	CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}};
1337	CAL_TARGET_POWER_HT  targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}};
1338	int16_t scaledPower, minCtlPower;
1339
1340#define SUB_NUM_CTL_MODES_AT_5G_40 2   /* excluding HT40, EXT-OFDM */
1341#define SUB_NUM_CTL_MODES_AT_2G_40 3   /* excluding HT40, EXT-OFDM, EXT-CCK */
1342	static const uint16_t ctlModesFor11a[] = {
1343	   CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
1344	};
1345	static const uint16_t ctlModesFor11g[] = {
1346	   CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
1347	};
1348	const uint16_t *pCtlMode;
1349	uint16_t numCtlModes, ctlMode, freq;
1350	CHAN_CENTERS centers;
1351
1352	ar5416GetChannelCenters(ah,  chan, &centers);
1353
1354	/* Compute TxPower reduction due to Antenna Gain */
1355
1356	twiceLargestAntenna = AH_MAX(AH_MAX(
1357	    pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0],
1358	    pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]),
1359	    pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
1360#if 0
1361	/* Turn it back on if we need to calculate per chain antenna gain reduction */
1362	/* Use only if the expected gain > 6dbi */
1363	/* Chain 0 is always used */
1364	twiceLargestAntenna = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0];
1365
1366	/* Look at antenna gains of Chains 1 and 2 if the TX mask is set */
1367	if (ahp->ah_tx_chainmask & 0x2)
1368		twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
1369			pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
1370
1371	if (ahp->ah_tx_chainmask & 0x4)
1372		twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
1373			pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
1374#endif
1375	twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
1376
1377	/* XXX setup for 5212 use (really used?) */
1378	ath_hal_eepromSet(ah,
1379	    IEEE80211_IS_CHAN_2GHZ(chan) ? AR_EEP_ANTGAINMAX_2 : AR_EEP_ANTGAINMAX_5,
1380	    twiceLargestAntenna);
1381
1382	/*
1383	 * scaledPower is the minimum of the user input power level and
1384	 * the regulatory allowed power level
1385	 */
1386	scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
1387
1388	/* Reduce scaled Power by number of chains active to get to per chain tx power level */
1389	/* TODO: better value than these? */
1390	switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) {
1391	case 1:
1392		break;
1393	case 2:
1394		scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor2Chain;
1395		break;
1396	case 3:
1397		scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor3Chain;
1398		break;
1399	default:
1400		return AH_FALSE; /* Unsupported number of chains */
1401	}
1402
1403	scaledPower = AH_MAX(0, scaledPower);
1404
1405	/* Get target powers from EEPROM - our baseline for TX Power */
1406	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1407		/* Setup for CTL modes */
1408		numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
1409		pCtlMode = ctlModesFor11g;
1410
1411		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
1412				AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
1413		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
1414				AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
1415		ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT20,
1416				AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
1417
1418		if (IEEE80211_IS_CHAN_HT40(chan)) {
1419			numCtlModes = N(ctlModesFor11g);    /* All 2G CTL's */
1420
1421			ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT40,
1422				AR5416_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
1423			/* Get target powers for extension channels */
1424			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
1425				AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
1426			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
1427				AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
1428		}
1429	} else {
1430		/* Setup for CTL modes */
1431		numCtlModes = N(ctlModesFor11a) - SUB_NUM_CTL_MODES_AT_5G_40; /* CTL_11A, CTL_5GHT20 */
1432		pCtlMode = ctlModesFor11a;
1433
1434		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower5G,
1435				AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
1436		ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower5GHT20,
1437				AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
1438
1439		if (IEEE80211_IS_CHAN_HT40(chan)) {
1440			numCtlModes = N(ctlModesFor11a); /* All 5G CTL's */
1441
1442			ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower5GHT40,
1443				AR5416_NUM_5G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
1444			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower5G,
1445				AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
1446		}
1447	}
1448
1449	/*
1450	 * For MIMO, need to apply regulatory caps individually across dynamically
1451	 * running modes: CCK, OFDM, HT20, HT40
1452	 *
1453	 * The outer loop walks through each possible applicable runtime mode.
1454	 * The inner loop walks through each ctlIndex entry in EEPROM.
1455	 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
1456	 *
1457	 */
1458	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
1459		HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
1460		    (pCtlMode[ctlMode] == CTL_2GHT40);
1461		if (isHt40CtlMode) {
1462			freq = centers.ctl_center;
1463		} else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
1464			freq = centers.ext_center;
1465		} else {
1466			freq = centers.ctl_center;
1467		}
1468
1469		/* walk through each CTL index stored in EEPROM */
1470		for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
1471			uint16_t twiceMinEdgePower;
1472
1473			/* compare test group from regulatory channel list with test mode from pCtlMode list */
1474			if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
1475				(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1476				 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
1477				rep = &(pEepData->ctlData[i]);
1478				twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
1479							rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1],
1480							IEEE80211_IS_CHAN_2GHZ(chan));
1481				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1482					/* Find the minimum of all CTL edge powers that apply to this channel */
1483					twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
1484				} else {
1485					/* specific */
1486					twiceMaxEdgePower = twiceMinEdgePower;
1487					break;
1488				}
1489			}
1490		}
1491		minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
1492		/* Apply ctl mode to correct target power set */
1493		switch(pCtlMode[ctlMode]) {
1494		case CTL_11B:
1495			for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
1496				targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
1497			}
1498			break;
1499		case CTL_11A:
1500		case CTL_11G:
1501			for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
1502				targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
1503			}
1504			break;
1505		case CTL_5GHT20:
1506		case CTL_2GHT20:
1507			for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
1508				targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
1509			}
1510			break;
1511		case CTL_11B_EXT:
1512			targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
1513			break;
1514		case CTL_11A_EXT:
1515		case CTL_11G_EXT:
1516			targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
1517			break;
1518		case CTL_5GHT40:
1519		case CTL_2GHT40:
1520			for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
1521				targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
1522			}
1523			break;
1524		default:
1525			return AH_FALSE;
1526			break;
1527		}
1528	} /* end ctl mode checking */
1529
1530	/* Set rates Array from collected data */
1531	ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] = ratesArray[rate18mb] = ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
1532	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
1533	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
1534	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
1535	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
1536
1537	for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
1538		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
1539	}
1540
1541	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1542		ratesArray[rate1l]  = targetPowerCck.tPow2x[0];
1543		ratesArray[rate2s] = ratesArray[rate2l]  = targetPowerCck.tPow2x[1];
1544		ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
1545		ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
1546	}
1547	if (IEEE80211_IS_CHAN_HT40(chan)) {
1548		for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
1549			ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
1550		}
1551		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
1552		ratesArray[rateDupCck]  = targetPowerHt40.tPow2x[0];
1553		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
1554		if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1555			ratesArray[rateExtCck]  = targetPowerCckExt.tPow2x[0];
1556		}
1557	}
1558	return AH_TRUE;
1559#undef EXT_ADDITIVE
1560#undef CTL_11A_EXT
1561#undef CTL_11G_EXT
1562#undef CTL_11B_EXT
1563#undef SUB_NUM_CTL_MODES_AT_5G_40
1564#undef SUB_NUM_CTL_MODES_AT_2G_40
1565#undef N
1566}
1567
1568/**************************************************************************
1569 * fbin2freq
1570 *
1571 * Get channel value from binary representation held in eeprom
1572 * RETURNS: the frequency in MHz
1573 */
1574static uint16_t
1575fbin2freq(uint8_t fbin, HAL_BOOL is2GHz)
1576{
1577    /*
1578     * Reserved value 0xFF provides an empty definition both as
1579     * an fbin and as a frequency - do not convert
1580     */
1581    if (fbin == AR5416_BCHAN_UNUSED) {
1582        return fbin;
1583    }
1584
1585    return (uint16_t)((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
1586}
1587
1588/*
1589 * ar5416GetMaxEdgePower
1590 *
1591 * Find the maximum conformance test limit for the given channel and CTL info
1592 */
1593static uint16_t
1594ar5416GetMaxEdgePower(uint16_t freq, CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz)
1595{
1596    uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
1597    int      i;
1598
1599    /* Get the edge power */
1600    for (i = 0; (i < AR5416_NUM_BAND_EDGES) && (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED) ; i++) {
1601        /*
1602         * If there's an exact channel match or an inband flag set
1603         * on the lower channel use the given rdEdgePower
1604         */
1605        if (freq == fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
1606            twiceMaxEdgePower = MS(pRdEdgesPower[i].tPowerFlag, CAL_CTL_EDGES_POWER);
1607            break;
1608        } else if ((i > 0) && (freq < fbin2freq(pRdEdgesPower[i].bChannel, is2GHz))) {
1609            if (fbin2freq(pRdEdgesPower[i - 1].bChannel, is2GHz) < freq && (pRdEdgesPower[i - 1].tPowerFlag & CAL_CTL_EDGES_FLAG) != 0) {
1610                twiceMaxEdgePower = MS(pRdEdgesPower[i - 1].tPowerFlag, CAL_CTL_EDGES_POWER);
1611            }
1612            /* Leave loop - no more affecting edges possible in this monotonic increasing list */
1613            break;
1614        }
1615    }
1616    HALASSERT(twiceMaxEdgePower > 0);
1617    return twiceMaxEdgePower;
1618}
1619
1620/**************************************************************
1621 * ar5416GetTargetPowers
1622 *
1623 * Return the rates of target power for the given target power table
1624 * channel, and number of channels
1625 */
1626static void
1627ar5416GetTargetPowers(struct ath_hal *ah,  const struct ieee80211_channel *chan,
1628                      CAL_TARGET_POWER_HT *powInfo, uint16_t numChannels,
1629                      CAL_TARGET_POWER_HT *pNewPower, uint16_t numRates,
1630                      HAL_BOOL isHt40Target)
1631{
1632    uint16_t clo, chi;
1633    int i;
1634    int matchIndex = -1, lowIndex = -1;
1635    uint16_t freq;
1636    CHAN_CENTERS centers;
1637
1638    ar5416GetChannelCenters(ah,  chan, &centers);
1639    freq = isHt40Target ? centers.synth_center : centers.ctl_center;
1640
1641    /* Copy the target powers into the temp channel list */
1642    if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
1643        matchIndex = 0;
1644    } else {
1645        for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
1646            if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
1647                matchIndex = i;
1648                break;
1649            } else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) &&
1650                       (freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))))
1651            {
1652                lowIndex = i - 1;
1653                break;
1654            }
1655        }
1656        if ((matchIndex == -1) && (lowIndex == -1)) {
1657            HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)));
1658            matchIndex = i - 1;
1659        }
1660    }
1661
1662    if (matchIndex != -1) {
1663        OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
1664    } else {
1665        HALASSERT(lowIndex != -1);
1666        /*
1667         * Get the lower and upper channels, target powers,
1668         * and interpolate between them.
1669         */
1670        clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
1671        chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
1672
1673        for (i = 0; i < numRates; i++) {
1674            pNewPower->tPow2x[i] = (uint8_t)interpolate(freq, clo, chi,
1675                                   powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
1676        }
1677    }
1678}
1679/**************************************************************
1680 * ar5416GetTargetPowersLeg
1681 *
1682 * Return the four rates of target power for the given target power table
1683 * channel, and number of channels
1684 */
1685static void
1686ar5416GetTargetPowersLeg(struct ath_hal *ah,
1687                         const struct ieee80211_channel *chan,
1688                         CAL_TARGET_POWER_LEG *powInfo, uint16_t numChannels,
1689                         CAL_TARGET_POWER_LEG *pNewPower, uint16_t numRates,
1690			 HAL_BOOL isExtTarget)
1691{
1692    uint16_t clo, chi;
1693    int i;
1694    int matchIndex = -1, lowIndex = -1;
1695    uint16_t freq;
1696    CHAN_CENTERS centers;
1697
1698    ar5416GetChannelCenters(ah,  chan, &centers);
1699    freq = (isExtTarget) ? centers.ext_center :centers.ctl_center;
1700
1701    /* Copy the target powers into the temp channel list */
1702    if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
1703        matchIndex = 0;
1704    } else {
1705        for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
1706            if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
1707                matchIndex = i;
1708                break;
1709            } else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) &&
1710                       (freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))))
1711            {
1712                lowIndex = i - 1;
1713                break;
1714            }
1715        }
1716        if ((matchIndex == -1) && (lowIndex == -1)) {
1717            HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)));
1718            matchIndex = i - 1;
1719        }
1720    }
1721
1722    if (matchIndex != -1) {
1723        OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
1724    } else {
1725        HALASSERT(lowIndex != -1);
1726        /*
1727         * Get the lower and upper channels, target powers,
1728         * and interpolate between them.
1729         */
1730        clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
1731        chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
1732
1733        for (i = 0; i < numRates; i++) {
1734            pNewPower->tPow2x[i] = (uint8_t)interpolate(freq, clo, chi,
1735                                   powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
1736        }
1737    }
1738}
1739
1740/**************************************************************
1741 * ar5416SetPowerCalTable
1742 *
1743 * Pull the PDADC piers from cal data and interpolate them across the given
1744 * points as well as from the nearest pier(s) to get a power detector
1745 * linear voltage to power level table.
1746 */
1747static HAL_BOOL
1748ar5416SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom *pEepData,
1749	const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
1750{
1751    CAL_DATA_PER_FREQ *pRawDataset;
1752    uint8_t  *pCalBChans = AH_NULL;
1753    uint16_t pdGainOverlap_t2;
1754    static uint8_t  pdadcValues[AR5416_NUM_PDADC_VALUES];
1755    uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK];
1756    uint16_t numPiers, i, j;
1757    int16_t  tMinCalPower;
1758    uint16_t numXpdGain, xpdMask;
1759    uint16_t xpdGainValues[AR5416_NUM_PD_GAINS];
1760    uint32_t reg32, regOffset, regChainOffset;
1761
1762    OS_MEMZERO(xpdGainValues, sizeof(xpdGainValues));
1763
1764    xpdMask = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].xpdGain;
1765
1766    if (IS_EEP_MINOR_V2(ah)) {
1767        pdGainOverlap_t2 = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pdGainOverlap;
1768    } else {
1769    	pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
1770    }
1771
1772    if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1773        pCalBChans = pEepData->calFreqPier2G;
1774        numPiers = AR5416_NUM_2G_CAL_PIERS;
1775    } else {
1776        pCalBChans = pEepData->calFreqPier5G;
1777        numPiers = AR5416_NUM_5G_CAL_PIERS;
1778    }
1779
1780    numXpdGain = 0;
1781    /* Calculate the value of xpdgains from the xpdGain Mask */
1782    for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
1783        if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
1784            if (numXpdGain >= AR5416_NUM_PD_GAINS) {
1785                HALASSERT(0);
1786                break;
1787            }
1788            xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i);
1789            numXpdGain++;
1790        }
1791    }
1792
1793    /* Write the detector gain biases and their number */
1794    OS_REG_WRITE(ah, AR_PHY_TPCRG1, (OS_REG_READ(ah, AR_PHY_TPCRG1) &
1795    	~(AR_PHY_TPCRG1_NUM_PD_GAIN | AR_PHY_TPCRG1_PD_GAIN_1 | AR_PHY_TPCRG1_PD_GAIN_2 | AR_PHY_TPCRG1_PD_GAIN_3)) |
1796	SM(numXpdGain - 1, AR_PHY_TPCRG1_NUM_PD_GAIN) | SM(xpdGainValues[0], AR_PHY_TPCRG1_PD_GAIN_1 ) |
1797	SM(xpdGainValues[1], AR_PHY_TPCRG1_PD_GAIN_2) | SM(xpdGainValues[2],  AR_PHY_TPCRG1_PD_GAIN_3));
1798
1799    for (i = 0; i < AR5416_MAX_CHAINS; i++) {
1800
1801            if (AR_SREV_OWL_20_OR_LATER(ah) &&
1802            ( AH5416(ah)->ah_rx_chainmask == 0x5 || AH5416(ah)->ah_tx_chainmask == 0x5) && (i != 0)) {
1803            /* Regs are swapped from chain 2 to 1 for 5416 2_0 with
1804             * only chains 0 and 2 populated
1805             */
1806            regChainOffset = (i == 1) ? 0x2000 : 0x1000;
1807        } else {
1808            regChainOffset = i * 0x1000;
1809        }
1810
1811        if (pEepData->baseEepHeader.txMask & (1 << i)) {
1812            if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1813                pRawDataset = pEepData->calPierData2G[i];
1814            } else {
1815                pRawDataset = pEepData->calPierData5G[i];
1816            }
1817
1818            ar5416GetGainBoundariesAndPdadcs(ah,  chan, pRawDataset,
1819                                             pCalBChans, numPiers,
1820                                             pdGainOverlap_t2,
1821                                             &tMinCalPower, gainBoundaries,
1822                                             pdadcValues, numXpdGain);
1823
1824            if ((i == 0) || AR_SREV_OWL_20_OR_LATER(ah)) {
1825                /*
1826                 * Note the pdadc table may not start at 0 dBm power, could be
1827                 * negative or greater than 0.  Need to offset the power
1828                 * values by the amount of minPower for griffin
1829                 */
1830
1831                OS_REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
1832                     SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
1833                     SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)  |
1834                     SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)  |
1835                     SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)  |
1836                     SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
1837            }
1838
1839            /* Write the power values into the baseband power table */
1840            regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
1841
1842            for (j = 0; j < 32; j++) {
1843                reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0)  |
1844                    ((pdadcValues[4*j + 1] & 0xFF) << 8)  |
1845                    ((pdadcValues[4*j + 2] & 0xFF) << 16) |
1846                    ((pdadcValues[4*j + 3] & 0xFF) << 24) ;
1847                OS_REG_WRITE(ah, regOffset, reg32);
1848
1849#ifdef PDADC_DUMP
1850		ath_hal_printf(ah, "PDADC: Chain %d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d |\n",
1851			       i,
1852			       4*j, pdadcValues[4*j],
1853			       4*j+1, pdadcValues[4*j + 1],
1854			       4*j+2, pdadcValues[4*j + 2],
1855			       4*j+3, pdadcValues[4*j + 3]);
1856#endif
1857                regOffset += 4;
1858            }
1859        }
1860    }
1861    *pTxPowerIndexOffset = 0;
1862
1863    return AH_TRUE;
1864}
1865
1866/**************************************************************
1867 * ar5416GetGainBoundariesAndPdadcs
1868 *
1869 * Uses the data points read from EEPROM to reconstruct the pdadc power table
1870 * Called by ar5416SetPowerCalTable only.
1871 */
1872static void
1873ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah,
1874                                 const struct ieee80211_channel *chan,
1875				 CAL_DATA_PER_FREQ *pRawDataSet,
1876                                 uint8_t * bChans,  uint16_t availPiers,
1877                                 uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries,
1878                                 uint8_t * pPDADCValues, uint16_t numXpdGains)
1879{
1880
1881    int       i, j, k;
1882    int16_t   ss;         /* potentially -ve index for taking care of pdGainOverlap */
1883    uint16_t  idxL, idxR, numPiers; /* Pier indexes */
1884
1885    /* filled out Vpd table for all pdGains (chanL) */
1886    static uint8_t   vpdTableL[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
1887
1888    /* filled out Vpd table for all pdGains (chanR) */
1889    static uint8_t   vpdTableR[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
1890
1891    /* filled out Vpd table for all pdGains (interpolated) */
1892    static uint8_t   vpdTableI[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
1893
1894    uint8_t   *pVpdL, *pVpdR, *pPwrL, *pPwrR;
1895    uint8_t   minPwrT4[AR5416_NUM_PD_GAINS];
1896    uint8_t   maxPwrT4[AR5416_NUM_PD_GAINS];
1897    int16_t   vpdStep;
1898    int16_t   tmpVal;
1899    uint16_t  sizeCurrVpdTable, maxIndex, tgtIndex;
1900    HAL_BOOL    match;
1901    int16_t  minDelta = 0;
1902    CHAN_CENTERS centers;
1903
1904    ar5416GetChannelCenters(ah, chan, &centers);
1905
1906    /* Trim numPiers for the number of populated channel Piers */
1907    for (numPiers = 0; numPiers < availPiers; numPiers++) {
1908        if (bChans[numPiers] == AR5416_BCHAN_UNUSED) {
1909            break;
1910        }
1911    }
1912
1913    /* Find pier indexes around the current channel */
1914    match = getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center, IEEE80211_IS_CHAN_2GHZ(chan)),
1915			bChans, numPiers, &idxL, &idxR);
1916
1917    if (match) {
1918        /* Directly fill both vpd tables from the matching index */
1919        for (i = 0; i < numXpdGains; i++) {
1920            minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
1921            maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
1922            ar5416FillVpdTable(minPwrT4[i], maxPwrT4[i], pRawDataSet[idxL].pwrPdg[i],
1923                               pRawDataSet[idxL].vpdPdg[i], AR5416_PD_GAIN_ICEPTS, vpdTableI[i]);
1924        }
1925    } else {
1926        for (i = 0; i < numXpdGains; i++) {
1927            pVpdL = pRawDataSet[idxL].vpdPdg[i];
1928            pPwrL = pRawDataSet[idxL].pwrPdg[i];
1929            pVpdR = pRawDataSet[idxR].vpdPdg[i];
1930            pPwrR = pRawDataSet[idxR].pwrPdg[i];
1931
1932            /* Start Vpd interpolation from the max of the minimum powers */
1933            minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]);
1934
1935            /* End Vpd interpolation from the min of the max powers */
1936            maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
1937            HALASSERT(maxPwrT4[i] > minPwrT4[i]);
1938
1939            /* Fill pier Vpds */
1940            ar5416FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL, AR5416_PD_GAIN_ICEPTS, vpdTableL[i]);
1941            ar5416FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR, AR5416_PD_GAIN_ICEPTS, vpdTableR[i]);
1942
1943            /* Interpolate the final vpd */
1944            for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
1945                vpdTableI[i][j] = (uint8_t)(interpolate((uint16_t)FREQ2FBIN(centers.synth_center, IEEE80211_IS_CHAN_2GHZ(chan)),
1946                    bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j]));
1947            }
1948        }
1949    }
1950    *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
1951
1952    k = 0; /* index for the final table */
1953    for (i = 0; i < numXpdGains; i++) {
1954        if (i == (numXpdGains - 1)) {
1955            pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2);
1956        } else {
1957            pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
1958        }
1959
1960        pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
1961
1962	/* NB: only applies to owl 1.0 */
1963        if ((i == 0) && !AR_SREV_OWL_20_OR_LATER(ah) ) {
1964	    /*
1965             * fix the gain delta, but get a delta that can be applied to min to
1966             * keep the upper power values accurate, don't think max needs to
1967             * be adjusted because should not be at that area of the table?
1968	     */
1969            minDelta = pPdGainBoundaries[0] - 23;
1970            pPdGainBoundaries[0] = 23;
1971        }
1972        else {
1973            minDelta = 0;
1974        }
1975
1976        /* Find starting index for this pdGain */
1977        if (i == 0) {
1978            ss = 0; /* for the first pdGain, start from index 0 */
1979        } else {
1980	    /* need overlap entries extrapolated below. */
1981            ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta);
1982        }
1983        vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
1984        vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
1985        /*
1986         *-ve ss indicates need to extrapolate data below for this pdGain
1987         */
1988        while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
1989            tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
1990            pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal);
1991            ss++;
1992        }
1993
1994        sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1);
1995        tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2));
1996        maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
1997
1998        while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
1999            pPDADCValues[k++] = vpdTableI[i][ss++];
2000        }
2001
2002        vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]);
2003        vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
2004        /*
2005         * for last gain, pdGainBoundary == Pmax_t2, so will
2006         * have to extrapolate
2007         */
2008        if (tgtIndex > maxIndex) {  /* need to extrapolate above */
2009            while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2010                tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
2011                          (ss - maxIndex +1) * vpdStep));
2012                pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal);
2013                ss++;
2014            }
2015        }               /* extrapolated above */
2016    }                   /* for all pdGainUsed */
2017
2018    /* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */
2019    while (i < AR5416_PD_GAINS_IN_MASK) {
2020        pPdGainBoundaries[i] = pPdGainBoundaries[i-1];
2021        i++;
2022    }
2023
2024    while (k < AR5416_NUM_PDADC_VALUES) {
2025        pPDADCValues[k] = pPDADCValues[k-1];
2026        k++;
2027    }
2028    return;
2029}
2030
2031/**************************************************************
2032 * getLowerUppderIndex
2033 *
2034 * Return indices surrounding the value in sorted integer lists.
2035 * Requirement: the input list must be monotonically increasing
2036 *     and populated up to the list size
2037 * Returns: match is set if an index in the array matches exactly
2038 *     or a the target is before or after the range of the array.
2039 */
2040HAL_BOOL
2041getLowerUpperIndex(uint8_t target, uint8_t *pList, uint16_t listSize,
2042                   uint16_t *indexL, uint16_t *indexR)
2043{
2044    uint16_t i;
2045
2046    /*
2047     * Check first and last elements for beyond ordered array cases.
2048     */
2049    if (target <= pList[0]) {
2050        *indexL = *indexR = 0;
2051        return AH_TRUE;
2052    }
2053    if (target >= pList[listSize-1]) {
2054        *indexL = *indexR = (uint16_t)(listSize - 1);
2055        return AH_TRUE;
2056    }
2057
2058    /* look for value being near or between 2 values in list */
2059    for (i = 0; i < listSize - 1; i++) {
2060        /*
2061         * If value is close to the current value of the list
2062         * then target is not between values, it is one of the values
2063         */
2064        if (pList[i] == target) {
2065            *indexL = *indexR = i;
2066            return AH_TRUE;
2067        }
2068        /*
2069         * Look for value being between current value and next value
2070         * if so return these 2 values
2071         */
2072        if (target < pList[i + 1]) {
2073            *indexL = i;
2074            *indexR = (uint16_t)(i + 1);
2075            return AH_FALSE;
2076        }
2077    }
2078    HALASSERT(0);
2079    *indexL = *indexR = 0;
2080    return AH_FALSE;
2081}
2082
2083/**************************************************************
2084 * ar5416FillVpdTable
2085 *
2086 * Fill the Vpdlist for indices Pmax-Pmin
2087 * Note: pwrMin, pwrMax and Vpdlist are all in dBm * 4
2088 */
2089static HAL_BOOL
2090ar5416FillVpdTable(uint8_t pwrMin, uint8_t pwrMax, uint8_t *pPwrList,
2091                   uint8_t *pVpdList, uint16_t numIntercepts, uint8_t *pRetVpdList)
2092{
2093    uint16_t  i, k;
2094    uint8_t   currPwr = pwrMin;
2095    uint16_t  idxL, idxR;
2096
2097    HALASSERT(pwrMax > pwrMin);
2098    for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
2099        getLowerUpperIndex(currPwr, pPwrList, numIntercepts,
2100                           &(idxL), &(idxR));
2101        if (idxR < 1)
2102            idxR = 1;           /* extrapolate below */
2103        if (idxL == numIntercepts - 1)
2104            idxL = (uint16_t)(numIntercepts - 2);   /* extrapolate above */
2105        if (pPwrList[idxL] == pPwrList[idxR])
2106            k = pVpdList[idxL];
2107        else
2108            k = (uint16_t)( ((currPwr - pPwrList[idxL]) * pVpdList[idxR] + (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
2109                  (pPwrList[idxR] - pPwrList[idxL]) );
2110        HALASSERT(k < 256);
2111        pRetVpdList[i] = (uint8_t)k;
2112        currPwr += 2;               /* half dB steps */
2113    }
2114
2115    return AH_TRUE;
2116}
2117
2118/**************************************************************************
2119 * interpolate
2120 *
2121 * Returns signed interpolated or the scaled up interpolated value
2122 */
2123static int16_t
2124interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
2125            int16_t targetLeft, int16_t targetRight)
2126{
2127    int16_t rv;
2128
2129    if (srcRight == srcLeft) {
2130        rv = targetLeft;
2131    } else {
2132        rv = (int16_t)( ((target - srcLeft) * targetRight +
2133              (srcRight - target) * targetLeft) / (srcRight - srcLeft) );
2134    }
2135    return rv;
2136}
2137
2138static void
2139ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan)
2140{
2141	uint32_t phymode;
2142	HAL_HT_MACMODE macmode;		/* MAC - 20/40 mode */
2143
2144	if (!IEEE80211_IS_CHAN_HT(chan))
2145		return;
2146
2147	/* Enable 11n HT, 20 MHz */
2148	phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
2149		| AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH;
2150
2151	/* Configure baseband for dynamic 20/40 operation */
2152	if (IEEE80211_IS_CHAN_HT40(chan)) {
2153		phymode |= AR_PHY_FC_DYN2040_EN | AR_PHY_FC_SHORT_GI_40;
2154
2155		/* Configure control (primary) channel at +-10MHz */
2156		if (IEEE80211_IS_CHAN_HT40U(chan))
2157			phymode |= AR_PHY_FC_DYN2040_PRI_CH;
2158#if 0
2159		/* Configure 20/25 spacing */
2160		if (ht->ht_extprotspacing == HAL_HT_EXTPROTSPACING_25)
2161			phymode |= AR_PHY_FC_DYN2040_EXT_CH;
2162#endif
2163		macmode = HAL_HT_MACMODE_2040;
2164	} else
2165		macmode = HAL_HT_MACMODE_20;
2166	OS_REG_WRITE(ah, AR_PHY_TURBO, phymode);
2167
2168	/* Configure MAC for 20/40 operation */
2169	ar5416Set11nMac2040(ah, macmode);
2170
2171	/* global transmit timeout (25 TUs default)*/
2172	/* XXX - put this elsewhere??? */
2173	OS_REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S) ;
2174
2175	/* carrier sense timeout */
2176	OS_REG_SET_BIT(ah, AR_GTTM, AR_GTTM_CST_USEC);
2177	OS_REG_WRITE(ah, AR_CST, 1 << AR_CST_TIMEOUT_LIMIT_S);
2178}
2179
2180void
2181ar5416GetChannelCenters(struct ath_hal *ah,
2182	const struct ieee80211_channel *chan, CHAN_CENTERS *centers)
2183{
2184	uint16_t freq = ath_hal_gethwchannel(ah, chan);
2185
2186	centers->ctl_center = freq;
2187	centers->synth_center = freq;
2188	/*
2189	 * In 20/40 phy mode, the center frequency is
2190	 * "between" the control and extension channels.
2191	 */
2192	if (IEEE80211_IS_CHAN_HT40U(chan)) {
2193		centers->synth_center += HT40_CHANNEL_CENTER_SHIFT;
2194		centers->ext_center =
2195		    centers->synth_center + HT40_CHANNEL_CENTER_SHIFT;
2196	} else if (IEEE80211_IS_CHAN_HT40D(chan)) {
2197		centers->synth_center -= HT40_CHANNEL_CENTER_SHIFT;
2198		centers->ext_center =
2199		    centers->synth_center - HT40_CHANNEL_CENTER_SHIFT;
2200	} else {
2201		centers->ext_center = freq;
2202	}
2203}
2204