1/***********************license start***************
2 * Copyright (c) 2003-2010  Cavium Inc. (support@cavium.com). All rights
3 * reserved.
4 *
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are
8 * met:
9 *
10 *   * Redistributions of source code must retain the above copyright
11 *     notice, this list of conditions and the following disclaimer.
12 *
13 *   * Redistributions in binary form must reproduce the above
14 *     copyright notice, this list of conditions and the following
15 *     disclaimer in the documentation and/or other materials provided
16 *     with the distribution.
17
18 *   * Neither the name of Cavium Inc. nor the names of
19 *     its contributors may be used to endorse or promote products
20 *     derived from this software without specific prior written
21 *     permission.
22
23 * This Software, including technical data, may be subject to U.S. export  control
24 * laws, including the U.S. Export Administration Act and its  associated
25 * regulations, and may be subject to export or import  regulations in other
26 * countries.
27
28 * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
29 * AND WITH ALL FAULTS AND CAVIUM INC. MAKES NO PROMISES, REPRESENTATIONS OR
30 * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
31 * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR
32 * DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
33 * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
34 * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
35 * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
36 * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE  RISK ARISING OUT OF USE OR
37 * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
38 ***********************license end**************************************/
39
40
41
42
43
44
45/**
46 * @file
47 * Simple allocate only memory allocator.  Used to allocate memory at application
48 * start time.
49 *
50 * <hr>$Revision: 70030 $<hr>
51 *
52 */
53#ifdef CVMX_BUILD_FOR_LINUX_KERNEL
54#include <linux/module.h>
55#include <asm/octeon/cvmx.h>
56#include <asm/octeon/cvmx-bootmem.h>
57#else
58#if !defined(__FreeBSD__) || !defined(_KERNEL)
59#include "executive-config.h"
60#endif
61#include "cvmx.h"
62#include "cvmx-bootmem.h"
63#endif
64typedef uint32_t cvmx_spinlock_t;
65
66
67//#define DEBUG
68
69#define ULL unsigned long long
70#undef	MAX
71#define MAX(a, b)  (((a) > (b)) ? (a) : (b))
72
73#undef	MIN
74#define MIN(a, b)  (((a) < (b)) ? (a) : (b))
75
76#define ALIGN_ADDR_UP(addr, align)     (((addr) + (~(align))) & (align))
77
78/**
79 * This is the physical location of a cvmx_bootmem_desc_t
80 * structure in Octeon's memory. Note that dues to addressing
81 * limits or runtime environment it might not be possible to
82 * create a C pointer to this structure.
83 */
84static CVMX_SHARED uint64_t cvmx_bootmem_desc_addr = 0;
85
86/**
87 * This macro returns the size of a member of a structure.
88 * Logically it is the same as "sizeof(s::field)" in C++, but
89 * C lacks the "::" operator.
90 */
91#define SIZEOF_FIELD(s, field) sizeof(((s*)NULL)->field)
92
93/**
94 * This macro returns a member of the cvmx_bootmem_desc_t
95 * structure. These members can't be directly addressed as
96 * they might be in memory not directly reachable. In the case
97 * where bootmem is compiled with LINUX_HOST, the structure
98 * itself might be located on a remote Octeon. The argument
99 * "field" is the member name of the cvmx_bootmem_desc_t to read.
100 * Regardless of the type of the field, the return type is always
101 * a uint64_t.
102 */
103#define CVMX_BOOTMEM_DESC_GET_FIELD(field)                          \
104    __cvmx_bootmem_desc_get(cvmx_bootmem_desc_addr,                 \
105        offsetof(cvmx_bootmem_desc_t, field),                       \
106        SIZEOF_FIELD(cvmx_bootmem_desc_t, field))
107
108/**
109 * This macro writes a member of the cvmx_bootmem_desc_t
110 * structure. These members can't be directly addressed as
111 * they might be in memory not directly reachable. In the case
112 * where bootmem is compiled with LINUX_HOST, the structure
113 * itself might be located on a remote Octeon. The argument
114 * "field" is the member name of the cvmx_bootmem_desc_t to write.
115 */
116#define CVMX_BOOTMEM_DESC_SET_FIELD(field, value)                   \
117    __cvmx_bootmem_desc_set(cvmx_bootmem_desc_addr,                 \
118        offsetof(cvmx_bootmem_desc_t, field),                       \
119        SIZEOF_FIELD(cvmx_bootmem_desc_t, field), value)
120
121/**
122 * This macro returns a member of the
123 * cvmx_bootmem_named_block_desc_t structure. These members can't
124 * be directly addressed as they might be in memory not directly
125 * reachable. In the case where bootmem is compiled with
126 * LINUX_HOST, the structure itself might be located on a remote
127 * Octeon. The argument "field" is the member name of the
128 * cvmx_bootmem_named_block_desc_t to read. Regardless of the type
129 * of the field, the return type is always a uint64_t. The "addr"
130 * parameter is the physical address of the structure.
131 */
132#define CVMX_BOOTMEM_NAMED_GET_FIELD(addr, field)                   \
133    __cvmx_bootmem_desc_get(addr,                                   \
134        offsetof(cvmx_bootmem_named_block_desc_t, field),           \
135        SIZEOF_FIELD(cvmx_bootmem_named_block_desc_t, field))
136
137/**
138 * This macro writes a member of the cvmx_bootmem_named_block_desc_t
139 * structure. These members can't be directly addressed as
140 * they might be in memory not directly reachable. In the case
141 * where bootmem is compiled with LINUX_HOST, the structure
142 * itself might be located on a remote Octeon. The argument
143 * "field" is the member name of the
144 * cvmx_bootmem_named_block_desc_t to write. The "addr" parameter
145 * is the physical address of the structure.
146 */
147#define CVMX_BOOTMEM_NAMED_SET_FIELD(addr, field, value)            \
148    __cvmx_bootmem_desc_set(addr,                                   \
149        offsetof(cvmx_bootmem_named_block_desc_t, field),           \
150        SIZEOF_FIELD(cvmx_bootmem_named_block_desc_t, field), value)
151
152/**
153 * This function is the implementation of the get macros defined
154 * for individual structure members. The argument are generated
155 * by the macros inorder to read only the needed memory.
156 *
157 * @param base   64bit physical address of the complete structure
158 * @param offset Offset from the beginning of the structure to the member being
159 *               accessed.
160 * @param size   Size of the structure member.
161 *
162 * @return Value of the structure member promoted into a uint64_t.
163 */
164static inline uint64_t __cvmx_bootmem_desc_get(uint64_t base, int offset, int size)
165{
166    base = (1ull << 63) | (base + offset);
167    switch (size)
168    {
169        case 4:
170            return cvmx_read64_uint32(base);
171        case 8:
172            return cvmx_read64_uint64(base);
173        default:
174            return 0;
175    }
176}
177
178/**
179 * This function is the implementation of the set macros defined
180 * for individual structure members. The argument are generated
181 * by the macros in order to write only the needed memory.
182 *
183 * @param base   64bit physical address of the complete structure
184 * @param offset Offset from the beginning of the structure to the member being
185 *               accessed.
186 * @param size   Size of the structure member.
187 * @param value  Value to write into the structure
188 */
189static inline void __cvmx_bootmem_desc_set(uint64_t base, int offset, int size, uint64_t value)
190{
191    base = (1ull << 63) | (base + offset);
192    switch (size)
193    {
194        case 4:
195            cvmx_write64_uint32(base, value);
196            break;
197        case 8:
198            cvmx_write64_uint64(base, value);
199            break;
200        default:
201            break;
202    }
203}
204
205/**
206 * This function retrieves the string name of a named block. It is
207 * more complicated than a simple memcpy() since the named block
208 * descriptor may not be directly accessable.
209 *
210 * @param addr   Physical address of the named block descriptor
211 * @param str    String to receive the named block string name
212 * @param len    Length of the string buffer, which must match the length
213 *               stored in the bootmem descriptor.
214 */
215static void CVMX_BOOTMEM_NAMED_GET_NAME(uint64_t addr, char *str, int len)
216{
217#ifndef CVMX_BUILD_FOR_LINUX_HOST
218    int l = len;
219    char *ptr = str;
220    addr |= (1ull << 63);
221    addr += offsetof(cvmx_bootmem_named_block_desc_t, name);
222    while (l--)
223        *ptr++ = cvmx_read64_uint8(addr++);
224    str[len] = 0;
225#else
226    extern void octeon_remote_read_mem(void *buffer, uint64_t physical_address, int length);
227    addr += offsetof(cvmx_bootmem_named_block_desc_t, name);
228    octeon_remote_read_mem(str, addr, len);
229    str[len] = 0;
230#endif
231}
232
233/**
234 * This function stores the string name of a named block. It is
235 * more complicated than a simple memcpy() since the named block
236 * descriptor may not be directly accessable.
237 *
238 * @param addr   Physical address of the named block descriptor
239 * @param str    String to store into the named block string name
240 * @param len    Length of the string buffer, which must match the length
241 *               stored in the bootmem descriptor.
242 */
243static void CVMX_BOOTMEM_NAMED_SET_NAME(uint64_t addr, const char *str, int len)
244{
245#ifndef CVMX_BUILD_FOR_LINUX_HOST
246    int l = len;
247    addr |= (1ull << 63);
248    addr += offsetof(cvmx_bootmem_named_block_desc_t, name);
249    while (l--)
250    {
251        if (l)
252            cvmx_write64_uint8(addr++, *str++);
253        else
254            cvmx_write64_uint8(addr++, 0);
255    }
256#else
257    extern void octeon_remote_write_mem(uint64_t physical_address, const void *buffer, int length);
258    char zero = 0;
259    addr += offsetof(cvmx_bootmem_named_block_desc_t, name);
260    octeon_remote_write_mem(addr, str, len-1);
261    octeon_remote_write_mem(addr+len-1, &zero, 1);
262#endif
263}
264
265/* See header file for descriptions of functions */
266
267/* Wrapper functions are provided for reading/writing the size and next block
268** values as these may not be directly addressible (in 32 bit applications, for instance.)
269*/
270/* Offsets of data elements in bootmem list, must match cvmx_bootmem_block_header_t */
271#define NEXT_OFFSET 0
272#define SIZE_OFFSET 8
273static void cvmx_bootmem_phy_set_size(uint64_t addr, uint64_t size)
274{
275    cvmx_write64_uint64((addr + SIZE_OFFSET) | (1ull << 63), size);
276}
277static void cvmx_bootmem_phy_set_next(uint64_t addr, uint64_t next)
278{
279    cvmx_write64_uint64((addr + NEXT_OFFSET) | (1ull << 63), next);
280}
281static uint64_t cvmx_bootmem_phy_get_size(uint64_t addr)
282{
283    return(cvmx_read64_uint64((addr + SIZE_OFFSET) | (1ull << 63)));
284}
285static uint64_t cvmx_bootmem_phy_get_next(uint64_t addr)
286{
287    return(cvmx_read64_uint64((addr + NEXT_OFFSET) | (1ull << 63)));
288}
289
290/**
291 * Check the version information on the bootmem descriptor
292 *
293 * @param exact_match
294 *               Exact major version to check against. A zero means
295 *               check that the version supports named blocks.
296 *
297 * @return Zero if the version is correct. Negative if the version is
298 *         incorrect. Failures also cause a message to be displayed.
299 */
300static int __cvmx_bootmem_check_version(int exact_match)
301{
302    int major_version;
303#ifdef CVMX_BUILD_FOR_LINUX_HOST
304    if (!cvmx_bootmem_desc_addr)
305        cvmx_bootmem_desc_addr = cvmx_read64_uint64(0x48100);
306#endif
307    major_version = CVMX_BOOTMEM_DESC_GET_FIELD(major_version);
308    if ((major_version > 3) || (exact_match && major_version != exact_match))
309    {
310        cvmx_dprintf("ERROR: Incompatible bootmem descriptor version: %d.%d at addr: 0x%llx\n",
311            major_version, (int)CVMX_BOOTMEM_DESC_GET_FIELD(minor_version),
312            (ULL)cvmx_bootmem_desc_addr);
313        return -1;
314    }
315    else
316        return 0;
317}
318
319/**
320 * Get the low level bootmem descriptor lock. If no locking
321 * is specified in the flags, then nothing is done.
322 *
323 * @param flags  CVMX_BOOTMEM_FLAG_NO_LOCKING means this functions should do
324 *               nothing. This is used to support nested bootmem calls.
325 */
326static inline void __cvmx_bootmem_lock(uint32_t flags)
327{
328    if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
329    {
330#ifndef CVMX_BUILD_FOR_LINUX_HOST
331        /* Unfortunately we can't use the normal cvmx-spinlock code as the
332            memory for the bootmem descriptor may be not accessable by a C
333            pointer. We use a 64bit XKPHYS address to access the memory
334            directly */
335        uint64_t lock_addr = (1ull << 63) | (cvmx_bootmem_desc_addr + offsetof(cvmx_bootmem_desc_t, lock));
336        unsigned int tmp;
337
338        __asm__ __volatile__(
339        ".set noreorder         \n"
340        "1: ll   %[tmp], 0(%[addr])\n"
341        "   bnez %[tmp], 1b     \n"
342        "   li   %[tmp], 1      \n"
343        "   sc   %[tmp], 0(%[addr])\n"
344        "   beqz %[tmp], 1b     \n"
345        "   nop                \n"
346        ".set reorder           \n"
347        : [tmp] "=&r" (tmp)
348        : [addr] "r" (lock_addr)
349        : "memory");
350#endif
351    }
352}
353
354/**
355 * Release the low level bootmem descriptor lock. If no locking
356 * is specified in the flags, then nothing is done.
357 *
358 * @param flags  CVMX_BOOTMEM_FLAG_NO_LOCKING means this functions should do
359 *               nothing. This is used to support nested bootmem calls.
360 */
361static inline void __cvmx_bootmem_unlock(uint32_t flags)
362{
363    if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
364    {
365#ifndef CVMX_BUILD_FOR_LINUX_HOST
366        /* Unfortunately we can't use the normal cvmx-spinlock code as the
367            memory for the bootmem descriptor may be not accessable by a C
368            pointer. We use a 64bit XKPHYS address to access the memory
369            directly */
370        uint64_t lock_addr = (1ull << 63) | (cvmx_bootmem_desc_addr + offsetof(cvmx_bootmem_desc_t, lock));
371
372        CVMX_SYNCW;
373        __asm__ __volatile__("sw $0, 0(%[addr])\n"
374        :: [addr] "r" (lock_addr)
375        : "memory");
376        CVMX_SYNCW;
377#endif
378    }
379}
380
381/* Some of the cvmx-bootmem functions dealing with C pointers are not supported
382    when we are compiling for CVMX_BUILD_FOR_LINUX_HOST. This ifndef removes
383    these functions when they aren't needed */
384#ifndef CVMX_BUILD_FOR_LINUX_HOST
385/* This functions takes an address range and adjusts it as necessary to
386** match the ABI that is currently being used.  This is required to ensure
387** that bootmem_alloc* functions only return valid pointers for 32 bit ABIs */
388static int __cvmx_validate_mem_range(uint64_t *min_addr_ptr, uint64_t *max_addr_ptr)
389{
390
391#if defined(__linux__) && defined(CVMX_ABI_N32)
392    {
393        extern uint64_t linux_mem32_min;
394        extern uint64_t linux_mem32_max;
395        /* For 32 bit Linux apps, we need to restrict the allocations to the range
396        ** of memory configured for access from userspace.  Also, we need to add mappings
397        ** for the data structures that we access.*/
398
399        /* Narrow range requests to be bounded by the 32 bit limits.  octeon_phy_mem_block_alloc()
400        ** will reject inconsistent req_size/range requests, so we don't repeat those checks here.
401        ** If max unspecified, set to 32 bit maximum. */
402        *min_addr_ptr = MIN(MAX(*min_addr_ptr, linux_mem32_min), linux_mem32_max);
403        if (!*max_addr_ptr)
404            *max_addr_ptr = linux_mem32_max;
405        else
406            *max_addr_ptr = MAX(MIN(*max_addr_ptr, linux_mem32_max), linux_mem32_min);
407    }
408#elif defined(CVMX_ABI_N32)
409    {
410        uint32_t max_phys = 0x0FFFFFFF;  /* Max physical address when 1-1 mappings not used */
411#if CVMX_USE_1_TO_1_TLB_MAPPINGS
412        max_phys = 0x7FFFFFFF;
413#endif
414        /* We are are running standalone simple executive, so we need to limit the range
415        ** that we allocate from */
416
417        /* Narrow range requests to be bounded by the 32 bit limits.  octeon_phy_mem_block_alloc()
418        ** will reject inconsistent req_size/range requests, so we don't repeat those checks here.
419        ** If max unspecified, set to 32 bit maximum. */
420        *min_addr_ptr = MIN(MAX(*min_addr_ptr, 0x0), max_phys);
421        if (!*max_addr_ptr)
422            *max_addr_ptr = max_phys;
423        else
424            *max_addr_ptr = MAX(MIN(*max_addr_ptr, max_phys), 0x0);
425    }
426#endif
427
428    return 0;
429}
430
431
432void *cvmx_bootmem_alloc_range(uint64_t size, uint64_t alignment, uint64_t min_addr, uint64_t max_addr)
433{
434    int64_t address;
435
436    __cvmx_validate_mem_range(&min_addr, &max_addr);
437    address = cvmx_bootmem_phy_alloc(size, min_addr, max_addr, alignment, 0);
438
439    if (address > 0)
440        return cvmx_phys_to_ptr(address);
441    else
442        return NULL;
443}
444#ifdef CVMX_BUILD_FOR_LINUX_KERNEL
445EXPORT_SYMBOL(cvmx_bootmem_alloc_range);
446#endif
447
448void *cvmx_bootmem_alloc_address(uint64_t size, uint64_t address, uint64_t alignment)
449{
450    return cvmx_bootmem_alloc_range(size, alignment, address, address + size);
451}
452
453
454void *cvmx_bootmem_alloc(uint64_t size, uint64_t alignment)
455{
456    return cvmx_bootmem_alloc_range(size, alignment, 0, 0);
457}
458#ifdef CVMX_BUILD_FOR_LINUX_KERNEL
459EXPORT_SYMBOL(cvmx_bootmem_alloc);
460#endif
461
462void *cvmx_bootmem_alloc_named_range_once(uint64_t size, uint64_t min_addr, uint64_t max_addr, uint64_t align, const char *name, void (*init)(void*))
463{
464    int64_t addr;
465    void *ptr;
466    uint64_t named_block_desc_addr;
467
468    __cvmx_bootmem_lock(0);
469
470    __cvmx_validate_mem_range(&min_addr, &max_addr);
471    named_block_desc_addr = cvmx_bootmem_phy_named_block_find(name, CVMX_BOOTMEM_FLAG_NO_LOCKING);
472
473    if (named_block_desc_addr)
474    {
475        addr = CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_desc_addr, base_addr);
476        __cvmx_bootmem_unlock(0);
477        return cvmx_phys_to_ptr(addr);
478    }
479
480    addr = cvmx_bootmem_phy_named_block_alloc(size, min_addr, max_addr, align, name, CVMX_BOOTMEM_FLAG_NO_LOCKING);
481
482    if (addr < 0)
483    {
484        __cvmx_bootmem_unlock(0);
485        return NULL;
486    }
487    ptr = cvmx_phys_to_ptr(addr);
488    init(ptr);
489    __cvmx_bootmem_unlock(0);
490    return ptr;
491}
492
493static void *cvmx_bootmem_alloc_named_range_flags(uint64_t size, uint64_t min_addr, uint64_t max_addr, uint64_t align, const char *name, uint32_t flags)
494{
495	int64_t addr;
496
497	__cvmx_validate_mem_range(&min_addr, &max_addr);
498	addr = cvmx_bootmem_phy_named_block_alloc(size, min_addr, max_addr, align, name, flags);
499	if (addr >= 0)
500		return cvmx_phys_to_ptr(addr);
501	else
502		return NULL;
503
504}
505
506void *cvmx_bootmem_alloc_named_range(uint64_t size, uint64_t min_addr, uint64_t max_addr, uint64_t align, const char *name)
507{
508    return cvmx_bootmem_alloc_named_range_flags(size, min_addr, max_addr, align, name, 0);
509}
510
511void *cvmx_bootmem_alloc_named_address(uint64_t size, uint64_t address, const char *name)
512{
513    return(cvmx_bootmem_alloc_named_range(size, address, address + size, 0, name));
514}
515
516void *cvmx_bootmem_alloc_named(uint64_t size, uint64_t alignment, const char *name)
517{
518    return(cvmx_bootmem_alloc_named_range(size, 0, 0, alignment, name));
519}
520
521void *cvmx_bootmem_alloc_named_flags(uint64_t size, uint64_t alignment, const char *name, uint32_t flags)
522{
523    return cvmx_bootmem_alloc_named_range_flags(size, 0, 0, alignment, name, flags);
524}
525
526int cvmx_bootmem_free_named(const char *name)
527{
528    return(cvmx_bootmem_phy_named_block_free(name, 0));
529}
530#endif
531
532const cvmx_bootmem_named_block_desc_t *cvmx_bootmem_find_named_block(const char *name)
533{
534    /* FIXME: Returning a single static object is probably a bad thing */
535    static cvmx_bootmem_named_block_desc_t desc;
536    uint64_t named_addr = cvmx_bootmem_phy_named_block_find(name, 0);
537    if (named_addr)
538    {
539        desc.base_addr = CVMX_BOOTMEM_NAMED_GET_FIELD(named_addr, base_addr);
540        desc.size = CVMX_BOOTMEM_NAMED_GET_FIELD(named_addr, size);
541        strncpy(desc.name, name, sizeof(desc.name));
542        desc.name[sizeof(desc.name)-1] = 0;
543        return &desc;
544    }
545    else
546        return NULL;
547}
548
549void cvmx_bootmem_print_named(void)
550{
551    cvmx_bootmem_phy_named_block_print();
552}
553
554int cvmx_bootmem_init(uint64_t mem_desc_addr)
555{
556    /* Verify that the size of cvmx_spinlock_t meets our assumptions */
557    if (sizeof(cvmx_spinlock_t) != 4)
558    {
559        cvmx_dprintf("ERROR: Unexpected size of cvmx_spinlock_t\n");
560        return(-1);
561    }
562    if (!cvmx_bootmem_desc_addr)
563        cvmx_bootmem_desc_addr = mem_desc_addr;
564    return(0);
565}
566
567
568uint64_t cvmx_bootmem_available_mem(uint64_t min_block_size)
569{
570    return(cvmx_bootmem_phy_available_mem(min_block_size));
571}
572
573
574
575
576
577/*********************************************************************
578** The cvmx_bootmem_phy* functions below return 64 bit physical addresses,
579** and expose more features that the cvmx_bootmem_functions above.  These are
580** required for full memory space access in 32 bit applications, as well as for
581** using some advance features.
582** Most applications should not need to use these.
583**
584**/
585
586
587int64_t cvmx_bootmem_phy_alloc(uint64_t req_size, uint64_t address_min, uint64_t address_max, uint64_t alignment, uint32_t flags)
588{
589
590    uint64_t head_addr;
591    uint64_t ent_addr;
592    uint64_t prev_addr = 0;  /* points to previous list entry, NULL current entry is head of list */
593    uint64_t new_ent_addr = 0;
594    uint64_t desired_min_addr;
595    uint64_t alignment_mask = ~(alignment - 1);
596
597#ifdef DEBUG
598    cvmx_dprintf("cvmx_bootmem_phy_alloc: req_size: 0x%llx, min_addr: 0x%llx, max_addr: 0x%llx, align: 0x%llx\n",
599           (ULL)req_size, (ULL)address_min, (ULL)address_max, (ULL)alignment);
600#endif
601
602    if (__cvmx_bootmem_check_version(0))
603        goto error_out;
604
605    /* Do a variety of checks to validate the arguments.  The allocator code will later assume
606    ** that these checks have been made.  We validate that the requested constraints are not
607    ** self-contradictory before we look through the list of available memory
608    */
609
610    /* 0 is not a valid req_size for this allocator */
611    if (!req_size)
612        goto error_out;
613
614    /* Round req_size up to mult of minimum alignment bytes */
615    req_size = (req_size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) & ~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1);
616
617
618    /* Enforce minimum alignment (this also keeps the minimum free block
619    ** req_size the same as the alignment req_size */
620    if (alignment < CVMX_BOOTMEM_ALIGNMENT_SIZE)
621    {
622        alignment = CVMX_BOOTMEM_ALIGNMENT_SIZE;
623    }
624    alignment_mask = ~(alignment - 1);
625
626    /* Adjust address minimum based on requested alignment (round up to meet alignment).  Do this here so we can
627    ** reject impossible requests up front. (NOP for address_min == 0) */
628    if (alignment)
629        address_min = (address_min + (alignment - 1)) & ~(alignment - 1);
630
631    /* Convert !0 address_min and 0 address_max to special case of range that specifies an exact
632     ** memory block to allocate.  Do this before other checks and adjustments so that this tranformation will be validated */
633    if (address_min && !address_max)
634        address_max = address_min + req_size;
635    else if (!address_min && !address_max)
636        address_max = ~0ull;   /* If no limits given, use max limits */
637
638    /* Reject inconsistent args.  We have adjusted these, so this may fail due to our internal changes
639    ** even if this check would pass for the values the user supplied. */
640    if (req_size > address_max - address_min)
641        goto error_out;
642
643    /* Walk through the list entries - first fit found is returned */
644
645    __cvmx_bootmem_lock(flags);
646    head_addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
647    ent_addr = head_addr;
648    while (ent_addr)
649    {
650        uint64_t usable_base, usable_max;
651        uint64_t ent_size = cvmx_bootmem_phy_get_size(ent_addr);
652
653        if (cvmx_bootmem_phy_get_next(ent_addr) && ent_addr > cvmx_bootmem_phy_get_next(ent_addr))
654        {
655            cvmx_dprintf("Internal bootmem_alloc() error: ent: 0x%llx, next: 0x%llx\n",
656                   (ULL)ent_addr, (ULL)cvmx_bootmem_phy_get_next(ent_addr));
657            goto error_out;
658        }
659
660        /* Determine if this is an entry that can satisify the request */
661        /* Check to make sure entry is large enough to satisfy request */
662        usable_base = ALIGN_ADDR_UP(MAX(address_min, ent_addr), alignment_mask);
663        usable_max = MIN(address_max, ent_addr + ent_size);
664        /* We should be able to allocate block at address usable_base */
665
666        desired_min_addr = usable_base;
667
668        /* Determine if request can be satisfied from the current entry */
669        if ((((ent_addr + ent_size) > usable_base && ent_addr < address_max))
670            && req_size <= usable_max - usable_base)
671        {
672            /* We have found an entry that has room to satisfy the request, so allocate it from this entry */
673
674            /* If end CVMX_BOOTMEM_FLAG_END_ALLOC set, then allocate from the end of this block
675            ** rather than the beginning */
676            if (flags & CVMX_BOOTMEM_FLAG_END_ALLOC)
677            {
678                desired_min_addr = usable_max - req_size;
679                /* Align desired address down to required alignment */
680                desired_min_addr &= alignment_mask;
681            }
682
683            /* Match at start of entry */
684            if (desired_min_addr == ent_addr)
685            {
686                if (req_size < ent_size)
687                {
688                    /* big enough to create a new block from top portion of block */
689                    new_ent_addr = ent_addr + req_size;
690                    cvmx_bootmem_phy_set_next(new_ent_addr, cvmx_bootmem_phy_get_next(ent_addr));
691                    cvmx_bootmem_phy_set_size(new_ent_addr, ent_size - req_size);
692
693                    /* Adjust next pointer as following code uses this */
694                    cvmx_bootmem_phy_set_next(ent_addr, new_ent_addr);
695                }
696
697                /* adjust prev ptr or head to remove this entry from list */
698                if (prev_addr)
699                {
700                    cvmx_bootmem_phy_set_next(prev_addr, cvmx_bootmem_phy_get_next(ent_addr));
701                }
702                else
703                {
704                    /* head of list being returned, so update head ptr */
705                    CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, cvmx_bootmem_phy_get_next(ent_addr));
706                }
707                __cvmx_bootmem_unlock(flags);
708                return(desired_min_addr);
709            }
710
711
712            /* block returned doesn't start at beginning of entry, so we know
713            ** that we will be splitting a block off the front of this one.  Create a new block
714            ** from the beginning, add to list, and go to top of loop again.
715            **
716            ** create new block from high portion of block, so that top block
717            ** starts at desired addr
718            **/
719            new_ent_addr = desired_min_addr;
720            cvmx_bootmem_phy_set_next(new_ent_addr, cvmx_bootmem_phy_get_next(ent_addr));
721            cvmx_bootmem_phy_set_size(new_ent_addr, cvmx_bootmem_phy_get_size(ent_addr) - (desired_min_addr - ent_addr));
722            cvmx_bootmem_phy_set_size(ent_addr, desired_min_addr - ent_addr);
723            cvmx_bootmem_phy_set_next(ent_addr, new_ent_addr);
724            /* Loop again to handle actual alloc from new block */
725        }
726
727        prev_addr = ent_addr;
728        ent_addr = cvmx_bootmem_phy_get_next(ent_addr);
729    }
730error_out:
731    /* We didn't find anything, so return error */
732    __cvmx_bootmem_unlock(flags);
733    return(-1);
734}
735
736
737
738int __cvmx_bootmem_phy_free(uint64_t phy_addr, uint64_t size, uint32_t flags)
739{
740    uint64_t cur_addr;
741    uint64_t prev_addr = 0;  /* zero is invalid */
742    int retval = 0;
743
744#ifdef DEBUG
745    cvmx_dprintf("__cvmx_bootmem_phy_free addr: 0x%llx, size: 0x%llx\n", (ULL)phy_addr, (ULL)size);
746#endif
747    if (__cvmx_bootmem_check_version(0))
748        return(0);
749
750    /* 0 is not a valid size for this allocator */
751    if (!size)
752        return(0);
753
754
755    __cvmx_bootmem_lock(flags);
756    cur_addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
757    if (cur_addr == 0 || phy_addr < cur_addr)
758    {
759        /* add at front of list - special case with changing head ptr */
760        if (cur_addr && phy_addr + size > cur_addr)
761            goto bootmem_free_done; /* error, overlapping section */
762        else if (phy_addr + size == cur_addr)
763        {
764            /* Add to front of existing first block */
765            cvmx_bootmem_phy_set_next(phy_addr, cvmx_bootmem_phy_get_next(cur_addr));
766            cvmx_bootmem_phy_set_size(phy_addr, cvmx_bootmem_phy_get_size(cur_addr) + size);
767            CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, phy_addr);
768
769        }
770        else
771        {
772            /* New block before first block */
773            cvmx_bootmem_phy_set_next(phy_addr, cur_addr);  /* OK if cur_addr is 0 */
774            cvmx_bootmem_phy_set_size(phy_addr, size);
775            CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, phy_addr);
776        }
777        retval = 1;
778        goto bootmem_free_done;
779    }
780
781    /* Find place in list to add block */
782    while (cur_addr && phy_addr > cur_addr)
783    {
784        prev_addr = cur_addr;
785        cur_addr = cvmx_bootmem_phy_get_next(cur_addr);
786    }
787
788    if (!cur_addr)
789    {
790        /* We have reached the end of the list, add on to end, checking
791        ** to see if we need to combine with last block
792        **/
793        if (prev_addr +  cvmx_bootmem_phy_get_size(prev_addr) == phy_addr)
794        {
795            cvmx_bootmem_phy_set_size(prev_addr, cvmx_bootmem_phy_get_size(prev_addr) + size);
796        }
797        else
798        {
799            cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
800            cvmx_bootmem_phy_set_size(phy_addr, size);
801            cvmx_bootmem_phy_set_next(phy_addr, 0);
802        }
803        retval = 1;
804        goto bootmem_free_done;
805    }
806    else
807    {
808        /* insert between prev and cur nodes, checking for merge with either/both */
809
810        if (prev_addr +  cvmx_bootmem_phy_get_size(prev_addr) == phy_addr)
811        {
812            /* Merge with previous */
813            cvmx_bootmem_phy_set_size(prev_addr, cvmx_bootmem_phy_get_size(prev_addr) + size);
814            if (phy_addr + size == cur_addr)
815            {
816                /* Also merge with current */
817                cvmx_bootmem_phy_set_size(prev_addr, cvmx_bootmem_phy_get_size(cur_addr) + cvmx_bootmem_phy_get_size(prev_addr));
818                cvmx_bootmem_phy_set_next(prev_addr, cvmx_bootmem_phy_get_next(cur_addr));
819            }
820            retval = 1;
821            goto bootmem_free_done;
822        }
823        else if (phy_addr + size == cur_addr)
824        {
825            /* Merge with current */
826            cvmx_bootmem_phy_set_size(phy_addr, cvmx_bootmem_phy_get_size(cur_addr) + size);
827            cvmx_bootmem_phy_set_next(phy_addr, cvmx_bootmem_phy_get_next(cur_addr));
828            cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
829            retval = 1;
830            goto bootmem_free_done;
831        }
832
833        /* It is a standalone block, add in between prev and cur */
834        cvmx_bootmem_phy_set_size(phy_addr, size);
835        cvmx_bootmem_phy_set_next(phy_addr, cur_addr);
836        cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
837
838
839    }
840    retval = 1;
841
842bootmem_free_done:
843    __cvmx_bootmem_unlock(flags);
844    return(retval);
845
846}
847
848
849
850void cvmx_bootmem_phy_list_print(void)
851{
852    uint64_t addr;
853
854    addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
855    cvmx_dprintf("\n\n\nPrinting bootmem block list, descriptor: 0x%llx,  head is 0x%llx\n",
856           (ULL)cvmx_bootmem_desc_addr, (ULL)addr);
857    cvmx_dprintf("Descriptor version: %d.%d\n",
858        (int)CVMX_BOOTMEM_DESC_GET_FIELD(major_version),
859        (int)CVMX_BOOTMEM_DESC_GET_FIELD(minor_version));
860    if (CVMX_BOOTMEM_DESC_GET_FIELD(major_version) > 3)
861    {
862        cvmx_dprintf("Warning: Bootmem descriptor version is newer than expected\n");
863    }
864    if (!addr)
865    {
866        cvmx_dprintf("mem list is empty!\n");
867    }
868    while (addr)
869    {
870        cvmx_dprintf("Block address: 0x%08llx, size: 0x%08llx, next: 0x%08llx\n",
871               (ULL)addr,
872               (ULL)cvmx_bootmem_phy_get_size(addr),
873               (ULL)cvmx_bootmem_phy_get_next(addr));
874        addr = cvmx_bootmem_phy_get_next(addr);
875    }
876    cvmx_dprintf("\n\n");
877
878}
879
880
881uint64_t cvmx_bootmem_phy_available_mem(uint64_t min_block_size)
882{
883    uint64_t addr;
884
885    uint64_t available_mem = 0;
886
887    __cvmx_bootmem_lock(0);
888    addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
889    while (addr)
890    {
891        if (cvmx_bootmem_phy_get_size(addr) >= min_block_size)
892            available_mem += cvmx_bootmem_phy_get_size(addr);
893        addr = cvmx_bootmem_phy_get_next(addr);
894    }
895    __cvmx_bootmem_unlock(0);
896    return(available_mem);
897
898}
899
900
901
902uint64_t cvmx_bootmem_phy_named_block_find(const char *name, uint32_t flags)
903{
904    uint64_t result = 0;
905
906#ifdef DEBUG
907    cvmx_dprintf("cvmx_bootmem_phy_named_block_find: %s\n", name);
908#endif
909    __cvmx_bootmem_lock(flags);
910    if (!__cvmx_bootmem_check_version(3))
911    {
912        int i;
913        uint64_t named_block_array_addr = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_array_addr);
914        int num_blocks = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_num_blocks);
915        int name_length = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_name_len);
916        uint64_t named_addr = named_block_array_addr;
917        for (i = 0; i < num_blocks; i++)
918        {
919            uint64_t named_size = CVMX_BOOTMEM_NAMED_GET_FIELD(named_addr, size);
920            if (name && named_size)
921            {
922                char name_tmp[name_length];
923                CVMX_BOOTMEM_NAMED_GET_NAME(named_addr, name_tmp, name_length);
924                if (!strncmp(name, name_tmp, name_length - 1))
925                {
926                    result = named_addr;
927                    break;
928                }
929            }
930            else if (!name && !named_size)
931            {
932                result = named_addr;
933                break;
934            }
935            named_addr += sizeof(cvmx_bootmem_named_block_desc_t);
936        }
937    }
938    __cvmx_bootmem_unlock(flags);
939    return result;
940}
941
942int cvmx_bootmem_phy_named_block_free(const char *name, uint32_t flags)
943{
944    uint64_t named_block_addr;
945
946    if (__cvmx_bootmem_check_version(3))
947        return(0);
948#ifdef DEBUG
949    cvmx_dprintf("cvmx_bootmem_phy_named_block_free: %s\n", name);
950#endif
951
952    /* Take lock here, as name lookup/block free/name free need to be atomic */
953    __cvmx_bootmem_lock(flags);
954
955    named_block_addr = cvmx_bootmem_phy_named_block_find(name, CVMX_BOOTMEM_FLAG_NO_LOCKING);
956    if (named_block_addr)
957    {
958        uint64_t named_addr = CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr, base_addr);
959        uint64_t named_size = CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr, size);
960#ifdef DEBUG
961        cvmx_dprintf("cvmx_bootmem_phy_named_block_free: %s, base: 0x%llx, size: 0x%llx\n",
962            name, (ULL)named_addr, (ULL)named_size);
963#endif
964        __cvmx_bootmem_phy_free(named_addr, named_size, CVMX_BOOTMEM_FLAG_NO_LOCKING);
965        /* Set size to zero to indicate block not used. */
966        CVMX_BOOTMEM_NAMED_SET_FIELD(named_block_addr, size, 0);
967    }
968    __cvmx_bootmem_unlock(flags);
969    return(!!named_block_addr);  /* 0 on failure, 1 on success */
970}
971
972
973
974
975
976int64_t cvmx_bootmem_phy_named_block_alloc(uint64_t size, uint64_t min_addr, uint64_t max_addr, uint64_t alignment, const char *name, uint32_t flags)
977{
978    int64_t addr_allocated;
979    uint64_t named_block_desc_addr;
980
981#ifdef DEBUG
982    cvmx_dprintf("cvmx_bootmem_phy_named_block_alloc: size: 0x%llx, min: 0x%llx, max: 0x%llx, align: 0x%llx, name: %s\n",
983                 (ULL)size,
984                 (ULL)min_addr,
985                 (ULL)max_addr,
986                 (ULL)alignment,
987                 name);
988#endif
989
990    if (__cvmx_bootmem_check_version(3))
991        return(-1);
992
993    /* Take lock here, as name lookup/block alloc/name add need to be atomic */
994
995    __cvmx_bootmem_lock(flags);
996
997    named_block_desc_addr = cvmx_bootmem_phy_named_block_find(name, flags | CVMX_BOOTMEM_FLAG_NO_LOCKING);
998    if (named_block_desc_addr)
999    {
1000        __cvmx_bootmem_unlock(flags);
1001        return(-1);
1002    }
1003
1004    /* Get pointer to first available named block descriptor */
1005    named_block_desc_addr = cvmx_bootmem_phy_named_block_find(NULL, flags | CVMX_BOOTMEM_FLAG_NO_LOCKING);
1006    if (!named_block_desc_addr)
1007    {
1008        __cvmx_bootmem_unlock(flags);
1009        return(-1);
1010    }
1011
1012    /* Round size up to mult of minimum alignment bytes
1013    ** We need the actual size allocated to allow for blocks to be coallesced
1014    ** when they are freed.  The alloc routine does the same rounding up
1015    ** on all allocations. */
1016    size = (size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) & ~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1);
1017
1018    addr_allocated = cvmx_bootmem_phy_alloc(size, min_addr, max_addr, alignment, flags | CVMX_BOOTMEM_FLAG_NO_LOCKING);
1019    if (addr_allocated >= 0)
1020    {
1021        CVMX_BOOTMEM_NAMED_SET_FIELD(named_block_desc_addr, base_addr, addr_allocated);
1022        CVMX_BOOTMEM_NAMED_SET_FIELD(named_block_desc_addr, size, size);
1023        CVMX_BOOTMEM_NAMED_SET_NAME(named_block_desc_addr, name, CVMX_BOOTMEM_DESC_GET_FIELD(named_block_name_len));
1024    }
1025
1026    __cvmx_bootmem_unlock(flags);
1027    return(addr_allocated);
1028}
1029
1030
1031
1032
1033void cvmx_bootmem_phy_named_block_print(void)
1034{
1035    int i;
1036    int printed = 0;
1037
1038    uint64_t named_block_array_addr = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_array_addr);
1039    int num_blocks = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_num_blocks);
1040    int name_length = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_name_len);
1041    uint64_t named_block_addr = named_block_array_addr;
1042
1043#ifdef DEBUG
1044    cvmx_dprintf("cvmx_bootmem_phy_named_block_print, desc addr: 0x%llx\n",
1045        (ULL)cvmx_bootmem_desc_addr);
1046#endif
1047    if (__cvmx_bootmem_check_version(3))
1048        return;
1049    cvmx_dprintf("List of currently allocated named bootmem blocks:\n");
1050    for (i = 0; i < num_blocks; i++)
1051    {
1052        uint64_t named_size = CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr, size);
1053        if (named_size)
1054        {
1055            char name_tmp[name_length];
1056            uint64_t named_addr = CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr, base_addr);
1057            CVMX_BOOTMEM_NAMED_GET_NAME(named_block_addr, name_tmp, name_length);
1058            printed++;
1059            cvmx_dprintf("Name: %s, address: 0x%08llx, size: 0x%08llx, index: %d\n",
1060                   name_tmp, (ULL)named_addr, (ULL)named_size, i);
1061        }
1062        named_block_addr += sizeof(cvmx_bootmem_named_block_desc_t);
1063    }
1064    if (!printed)
1065    {
1066        cvmx_dprintf("No named bootmem blocks exist.\n");
1067    }
1068
1069}
1070
1071
1072int64_t cvmx_bootmem_phy_mem_list_init(uint64_t mem_size, uint32_t low_reserved_bytes, cvmx_bootmem_desc_t *desc_buffer)
1073{
1074    uint64_t cur_block_addr;
1075    int64_t addr;
1076    int i;
1077
1078#ifdef DEBUG
1079    cvmx_dprintf("cvmx_bootmem_phy_mem_list_init (arg desc ptr: %p, cvmx_bootmem_desc: 0x%llx)\n",
1080        desc_buffer, (ULL)cvmx_bootmem_desc_addr);
1081#endif
1082
1083    /* Descriptor buffer needs to be in 32 bit addressable space to be compatible with
1084    ** 32 bit applications */
1085    if (!desc_buffer)
1086    {
1087        cvmx_dprintf("ERROR: no memory for cvmx_bootmem descriptor provided\n");
1088        return 0;
1089    }
1090
1091    if (mem_size > OCTEON_MAX_PHY_MEM_SIZE)
1092    {
1093        mem_size = OCTEON_MAX_PHY_MEM_SIZE;
1094        cvmx_dprintf("ERROR: requested memory size too large, truncating to maximum size\n");
1095    }
1096
1097    if (cvmx_bootmem_desc_addr)
1098        return 1;
1099
1100    /* Initialize cvmx pointer to descriptor */
1101#ifndef CVMX_BUILD_FOR_LINUX_HOST
1102    cvmx_bootmem_init(cvmx_ptr_to_phys(desc_buffer));
1103#else
1104    cvmx_bootmem_init((unsigned long)desc_buffer);
1105#endif
1106
1107    /* Fill the bootmem descriptor */
1108    CVMX_BOOTMEM_DESC_SET_FIELD(lock, 0);
1109    CVMX_BOOTMEM_DESC_SET_FIELD(flags, 0);
1110    CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, 0);
1111    CVMX_BOOTMEM_DESC_SET_FIELD(major_version, CVMX_BOOTMEM_DESC_MAJ_VER);
1112    CVMX_BOOTMEM_DESC_SET_FIELD(minor_version, CVMX_BOOTMEM_DESC_MIN_VER);
1113    CVMX_BOOTMEM_DESC_SET_FIELD(app_data_addr, 0);
1114    CVMX_BOOTMEM_DESC_SET_FIELD(app_data_size, 0);
1115
1116    /* Set up global pointer to start of list, exclude low 64k for exception vectors, space for global descriptor */
1117    cur_block_addr = (OCTEON_DDR0_BASE + low_reserved_bytes);
1118
1119    if (mem_size <= OCTEON_DDR0_SIZE)
1120    {
1121        __cvmx_bootmem_phy_free(cur_block_addr, mem_size - low_reserved_bytes, 0);
1122        goto frees_done;
1123    }
1124
1125    __cvmx_bootmem_phy_free(cur_block_addr, OCTEON_DDR0_SIZE - low_reserved_bytes, 0);
1126
1127    mem_size -= OCTEON_DDR0_SIZE;
1128
1129    /* Add DDR2 block next if present */
1130    if (mem_size > OCTEON_DDR1_SIZE)
1131    {
1132        __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0);
1133        __cvmx_bootmem_phy_free(OCTEON_DDR2_BASE, mem_size - OCTEON_DDR1_SIZE, 0);
1134    }
1135    else
1136    {
1137        __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0);
1138
1139    }
1140frees_done:
1141
1142    /* Initialize the named block structure */
1143    CVMX_BOOTMEM_DESC_SET_FIELD(named_block_name_len, CVMX_BOOTMEM_NAME_LEN);
1144    CVMX_BOOTMEM_DESC_SET_FIELD(named_block_num_blocks, CVMX_BOOTMEM_NUM_NAMED_BLOCKS);
1145    CVMX_BOOTMEM_DESC_SET_FIELD(named_block_array_addr, 0);
1146
1147    /* Allocate this near the top of the low 256 MBytes of memory */
1148    addr = cvmx_bootmem_phy_alloc(CVMX_BOOTMEM_NUM_NAMED_BLOCKS * sizeof(cvmx_bootmem_named_block_desc_t),0, 0x10000000, 0 ,CVMX_BOOTMEM_FLAG_END_ALLOC);
1149    if (addr >= 0)
1150        CVMX_BOOTMEM_DESC_SET_FIELD(named_block_array_addr, addr);
1151
1152#ifdef DEBUG
1153    cvmx_dprintf("cvmx_bootmem_phy_mem_list_init: named_block_array_addr: 0x%llx)\n",
1154        (ULL)addr);
1155#endif
1156    if (!addr)
1157    {
1158        cvmx_dprintf("FATAL ERROR: unable to allocate memory for bootmem descriptor!\n");
1159        return(0);
1160    }
1161    for (i=0; i<CVMX_BOOTMEM_NUM_NAMED_BLOCKS; i++)
1162    {
1163        CVMX_BOOTMEM_NAMED_SET_FIELD(addr, base_addr, 0);
1164        CVMX_BOOTMEM_NAMED_SET_FIELD(addr, size, 0);
1165        addr += sizeof(cvmx_bootmem_named_block_desc_t);
1166    }
1167
1168    return(1);
1169}
1170
1171
1172void cvmx_bootmem_lock(void)
1173{
1174    __cvmx_bootmem_lock(0);
1175}
1176
1177void cvmx_bootmem_unlock(void)
1178{
1179    __cvmx_bootmem_unlock(0);
1180}
1181
1182#ifndef CVMX_BUILD_FOR_LINUX_HOST
1183void *__cvmx_bootmem_internal_get_desc_ptr(void)
1184{
1185    return cvmx_phys_to_ptr(cvmx_bootmem_desc_addr);
1186}
1187#endif
1188