ar9300_misc.c revision 250003
151974Smsmith/*
251974Smsmith * Copyright (c) 2013 Qualcomm Atheros, Inc.
365245Smsmith *
465245Smsmith * Permission to use, copy, modify, and/or distribute this software for any
551974Smsmith * purpose with or without fee is hereby granted, provided that the above
651974Smsmith * copyright notice and this permission notice appear in all copies.
751974Smsmith *
851974Smsmith * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
951974Smsmith * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
1051974Smsmith * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
1151974Smsmith * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
1251974Smsmith * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
1351974Smsmith * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
1451974Smsmith * PERFORMANCE OF THIS SOFTWARE.
1551974Smsmith */
1651974Smsmith
1751974Smsmith#include "opt_ah.h"
1851974Smsmith
1951974Smsmith#ifdef AH_SUPPORT_AR9300
2051974Smsmith
2151974Smsmith#include "ah.h"
2251974Smsmith#include "ah_internal.h"
2351974Smsmith#include "ah_devid.h"
2451974Smsmith#ifdef AH_DEBUG
2551974Smsmith#include "ah_desc.h"                    /* NB: for HAL_PHYERR* */
2651974Smsmith#endif
27119418Sobrien
28139749Simp#include "ar9300/ar9300.h"
29106225Semoore#include "ar9300/ar9300reg.h"
30106225Semoore#include "ar9300/ar9300phy.h"
31106225Semoore
32106225Semoore
33106225Semoorevoid
34106225Semoorear9300_get_hw_hangs(struct ath_hal *ah, hal_hw_hangs_t *hangs)
35106225Semoore{
36106225Semoore    struct ath_hal_9300 *ahp = AH9300(ah);
37106225Semoore    *hangs = 0;
38106225Semoore
39106225Semoore    if (ar9300_get_capability(ah, HAL_CAP_BB_RIFS_HANG, 0, AH_NULL) == HAL_OK) {
40106225Semoore        *hangs |= HAL_RIFS_BB_HANG_WAR;
41105419Semoore    }
42106225Semoore    if (ar9300_get_capability(ah, HAL_CAP_BB_DFS_HANG, 0, AH_NULL) == HAL_OK) {
43105419Semoore        *hangs |= HAL_DFS_BB_HANG_WAR;
44105419Semoore    }
45106225Semoore    if (ar9300_get_capability(ah, HAL_CAP_BB_RX_CLEAR_STUCK_HANG, 0, AH_NULL)
46106225Semoore        == HAL_OK)
47106225Semoore    {
48106225Semoore        *hangs |= HAL_RX_STUCK_LOW_BB_HANG_WAR;
49106225Semoore    }
50106225Semoore    if (ar9300_get_capability(ah, HAL_CAP_MAC_HANG, 0, AH_NULL) == HAL_OK) {
51106225Semoore        *hangs |= HAL_MAC_HANG_WAR;
52106225Semoore    }
53106225Semoore    if (ar9300_get_capability(ah, HAL_CAP_PHYRESTART_CLR_WAR, 0, AH_NULL)
54106225Semoore        == HAL_OK)
55106225Semoore    {
5651974Smsmith        *hangs |= HAL_PHYRESTART_CLR_WAR;
5751974Smsmith    }
58119418Sobrien
59119418Sobrien    ahp->ah_hang_wars = *hangs;
60119418Sobrien}
6151974Smsmith
6251974Smsmithstatic u_int
6351974Smsmithar9300_mac_to_usec(struct ath_hal *ah, u_int clks)
6451974Smsmith{
6551974Smsmith    HAL_CHANNEL_INTERNAL *chan = AH_PRIVATE(ah)->ah_curchan;
6651974Smsmith
6751974Smsmith    if (chan && IS_CHAN_HT40(chan)) {
68129879Sphk        return (ath_hal_mac_usec(ah, clks) / 2);
6951974Smsmith    } else {
7065245Smsmith        return (ath_hal_mac_usec(ah, clks));
7151974Smsmith    }
7251974Smsmith}
7351974Smsmith
7451974Smsmithu_int
7551974Smsmithar9300_mac_to_clks(struct ath_hal *ah, u_int usecs)
7651974Smsmith{
7751974Smsmith    HAL_CHANNEL_INTERNAL *chan = AH_PRIVATE(ah)->ah_curchan;
7851974Smsmith
7951974Smsmith    if (chan && IS_CHAN_HT40(chan)) {
8065245Smsmith        return (ath_hal_mac_clks(ah, usecs) * 2);
8151974Smsmith    } else {
8251974Smsmith        return (ath_hal_mac_clks(ah, usecs));
8351974Smsmith    }
8451974Smsmith}
8551974Smsmith
8651974Smsmithvoid
87111441Sphkar9300_get_mac_address(struct ath_hal *ah, u_int8_t *mac)
88111441Sphk{
8951974Smsmith    struct ath_hal_9300 *ahp = AH9300(ah);
9051974Smsmith
9165245Smsmith    OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
9251974Smsmith}
9365245Smsmith
9451974SmsmithHAL_BOOL
9551974Smsmithar9300_set_mac_address(struct ath_hal *ah, const u_int8_t *mac)
9651974Smsmith{
9751974Smsmith    struct ath_hal_9300 *ahp = AH9300(ah);
9851974Smsmith
9951974Smsmith    OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
10051974Smsmith    return AH_TRUE;
10151974Smsmith}
10251974Smsmith
10351974Smsmithvoid
10451974Smsmithar9300_get_bss_id_mask(struct ath_hal *ah, u_int8_t *mask)
10551974Smsmith{
10651974Smsmith    struct ath_hal_9300 *ahp = AH9300(ah);
10751974Smsmith
10851974Smsmith    OS_MEMCPY(mask, ahp->ah_bssid_mask, IEEE80211_ADDR_LEN);
10951974Smsmith}
11051974Smsmith
111111441SphkHAL_BOOL
11251974Smsmithar9300_set_bss_id_mask(struct ath_hal *ah, const u_int8_t *mask)
113111441Sphk{
114105419Semoore    struct ath_hal_9300 *ahp = AH9300(ah);
115105419Semoore
116105419Semoore    /* save it since it must be rewritten on reset */
11751974Smsmith    OS_MEMCPY(ahp->ah_bssid_mask, mask, IEEE80211_ADDR_LEN);
11865245Smsmith
119105419Semoore    OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssid_mask));
12051974Smsmith    OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssid_mask + 4));
12151974Smsmith    return AH_TRUE;
12251974Smsmith}
12351974Smsmith
12451974Smsmith/*
12551974Smsmith * Attempt to change the cards operating regulatory domain to the given value
12651974Smsmith * Returns: A_EINVAL for an unsupported regulatory domain.
127105419Semoore *          A_HARDWARE for an unwritable EEPROM or bad EEPROM version
128105419Semoore */
129105419SemooreHAL_BOOL
130105419Semoorear9300_set_regulatory_domain(struct ath_hal *ah,
131105419Semoore        u_int16_t reg_domain, HAL_STATUS *status)
132105419Semoore{
133105419Semoore    HAL_STATUS ecode;
134105419Semoore
135105419Semoore    if (AH_PRIVATE(ah)->ah_current_rd == 0) {
136105419Semoore        AH_PRIVATE(ah)->ah_current_rd = reg_domain;
137105419Semoore        return AH_TRUE;
138125975Sphk    }
139125975Sphk    ecode = HAL_EIO;
140125975Sphk
141125975Sphk#if tbd
142105419Semoorebad:
14351974Smsmith#endif
14451974Smsmith    if (status) {
14551974Smsmith        *status = ecode;
146120988Sps    }
147120988Sps    return AH_FALSE;
148120988Sps}
14951974Smsmith
150120988Sps/*
151120988Sps * Return the wireless modes (a,b,g,t) supported by hardware.
152120988Sps *
153120988Sps * This value is what is actually supported by the hardware
154120988Sps * and is unaffected by regulatory/country code settings.
155120988Sps *
156120988Sps */
157120988Spsu_int
158120988Spsar9300_get_wireless_modes(struct ath_hal *ah)
159120988Sps{
160120988Sps    return AH_PRIVATE(ah)->ah_caps.hal_wireless_modes;
161126116Scperciva}
162126116Scperciva
163120988Sps/*
164120988Sps * Set the interrupt and GPIO values so the ISR can disable RF
165120988Sps * on a switch signal.  Assumes GPIO port and interrupt polarity
166120988Sps * are set prior to call.
167120988Sps */
168120988Spsvoid
169120988Spsar9300_enable_rf_kill(struct ath_hal *ah)
170120988Sps{
171120988Sps    /* TODO - can this really be above the hal on the GPIO interface for
172120988Sps     * TODO - the client only?
173120988Sps     */
17451974Smsmith    struct ath_hal_9300    *ahp = AH9300(ah);
17551974Smsmith
17651974Smsmith    if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
17751974Smsmith    	/* Check RF kill GPIO before set/clear RFSILENT bits. */
17851974Smsmith    	if (ar9300_gpio_get(ah, ahp->ah_gpio_select) == ahp->ah_polarity) {
17951974Smsmith            OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_RFSILENT),
18051974Smsmith                           AR_RFSILENT_FORCE);
18165245Smsmith            OS_REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
18251974Smsmith        }
183111441Sphk        else {
18451974Smsmith            OS_REG_CLR_BIT(ah, AR_HOSTIF_REG(ah, AR_RFSILENT),
18551974Smsmith                           AR_RFSILENT_FORCE);
18651974Smsmith            OS_REG_CLR_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
18765245Smsmith        }
18851974Smsmith    }
18951974Smsmith    else {
19051974Smsmith        /* Connect rfsilent_bb_l to baseband */
19165245Smsmith        OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
19251974Smsmith            AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
19351974Smsmith
19451974Smsmith        /* Set input mux for rfsilent_bb_l to GPIO #0 */
19565245Smsmith        OS_REG_CLR_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX2),
19651974Smsmith            AR_GPIO_INPUT_MUX2_RFSILENT);
19751974Smsmith        OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX2),
19851974Smsmith            (ahp->ah_gpio_select & 0x0f) << 4);
19951974Smsmith
20065245Smsmith        /*
20165245Smsmith         * Configure the desired GPIO port for input and
20251974Smsmith         * enable baseband rf silence
20351974Smsmith         */
20451974Smsmith        ath_hal_gpio_cfg_input(ah, ahp->ah_gpio_select);
20551974Smsmith        OS_REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
20651974Smsmith    }
20751974Smsmith
20865245Smsmith    /*
20951974Smsmith     * If radio disable switch connection to GPIO bit x is enabled
21065245Smsmith     * program GPIO interrupt.
21158883Smsmith     * If rfkill bit on eeprom is 1, setupeeprommap routine has already
21265245Smsmith     * verified that it is a later version of eeprom, it has a place for
21365245Smsmith     * rfkill bit and it is set to 1, indicating that GPIO bit x hardware
21465245Smsmith     * connection is present.
21558883Smsmith     */
21665245Smsmith     /*
21758883Smsmith      * RFKill uses polling not interrupt,
21851974Smsmith      * disable interrupt to avoid Eee PC 2.6.21.4 hang up issue
219105419Semoore      */
22051974Smsmith    if (ath_hal_hasrfkill_int(ah)) {
22151974Smsmith        if (ahp->ah_gpio_bit == ar9300_gpio_get(ah, ahp->ah_gpio_select)) {
22251974Smsmith            /* switch already closed, set to interrupt upon open */
22351974Smsmith            ar9300_gpio_set_intr(ah, ahp->ah_gpio_select, !ahp->ah_gpio_bit);
22451974Smsmith        } else {
22551974Smsmith            ar9300_gpio_set_intr(ah, ahp->ah_gpio_select, ahp->ah_gpio_bit);
22665245Smsmith        }
227105419Semoore    }
228105419Semoore}
22951974Smsmith
23051974Smsmith/*
23151974Smsmith * Change the LED blinking pattern to correspond to the connectivity
23251974Smsmith */
23351974Smsmithvoid
23451974Smsmithar9300_set_led_state(struct ath_hal *ah, HAL_LED_STATE state)
23551974Smsmith{
23651974Smsmith    static const u_int32_t ledbits[8] = {
23751974Smsmith        AR_CFG_LED_ASSOC_NONE,     /* HAL_LED_RESET */
23865245Smsmith        AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_INIT  */
23951974Smsmith        AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_READY */
24051974Smsmith        AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_SCAN  */
24151974Smsmith        AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_AUTH  */
24251974Smsmith        AR_CFG_LED_ASSOC_ACTIVE,   /* HAL_LED_ASSOC */
24351974Smsmith        AR_CFG_LED_ASSOC_ACTIVE,   /* HAL_LED_RUN   */
24452274Smsmith        AR_CFG_LED_ASSOC_NONE,
24551974Smsmith    };
24652784Smsmith
24751974Smsmith    OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_ASSOC_CTL, ledbits[state]);
24865245Smsmith}
24965245Smsmith
25051974Smsmith/*
251125975Sphk * Sets the Power LED on the cardbus without affecting the Network LED.
252125975Sphk */
253125975Sphkvoid
254125975Sphkar9300_set_power_led_state(struct ath_hal *ah, u_int8_t enabled)
255125975Sphk{
256125975Sphk    u_int32_t    val;
257125975Sphk
258125975Sphk    val = enabled ? AR_CFG_LED_MODE_POWER_ON : AR_CFG_LED_MODE_POWER_OFF;
259125975Sphk    OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_POWER, val);
260125975Sphk}
26165245Smsmith
26251974Smsmith/*
26365245Smsmith * Sets the Network LED on the cardbus without affecting the Power LED.
26451974Smsmith */
26551974Smsmithvoid
26651974Smsmithar9300_set_network_led_state(struct ath_hal *ah, u_int8_t enabled)
26751974Smsmith{
26851974Smsmith    u_int32_t    val;
26951974Smsmith
27051974Smsmith    val = enabled ? AR_CFG_LED_MODE_NETWORK_ON : AR_CFG_LED_MODE_NETWORK_OFF;
27151974Smsmith    OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_NETWORK, val);
27251974Smsmith}
27365245Smsmith
27451974Smsmith/*
275125975Sphk * Change association related fields programmed into the hardware.
27665245Smsmith * Writing a valid BSSID to the hardware effectively enables the hardware
27765245Smsmith * to synchronize its TSF to the correct beacons and receive frames coming
27865245Smsmith * from that BSSID. It is called by the SME JOIN operation.
27965245Smsmith */
28065245Smsmithvoid
28165245Smsmithar9300_write_associd(struct ath_hal *ah, const u_int8_t *bssid,
282125975Sphk    u_int16_t assoc_id)
28365245Smsmith{
28451974Smsmith    struct ath_hal_9300 *ahp = AH9300(ah);
28551974Smsmith
28651974Smsmith    /* save bssid and assoc_id for restore on reset */
287    OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
288    ahp->ah_assoc_id = assoc_id;
289
290    OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
291    OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) |
292                                 ((assoc_id & 0x3fff) << AR_BSS_ID1_AID_S));
293}
294
295/*
296 * Get the current hardware tsf for stamlme
297 */
298u_int64_t
299ar9300_get_tsf64(struct ath_hal *ah)
300{
301    u_int64_t tsf;
302
303    /* XXX sync multi-word read? */
304    tsf = OS_REG_READ(ah, AR_TSF_U32);
305    tsf = (tsf << 32) | OS_REG_READ(ah, AR_TSF_L32);
306    return tsf;
307}
308
309void
310ar9300_set_tsf64(struct ath_hal *ah, u_int64_t tsf)
311{
312    OS_REG_WRITE(ah, AR_TSF_L32, (tsf & 0xffffffff));
313    OS_REG_WRITE(ah, AR_TSF_U32, ((tsf >> 32) & 0xffffffff));
314}
315
316/*
317 * Get the current hardware tsf for stamlme
318 */
319u_int32_t
320ar9300_get_tsf32(struct ath_hal *ah)
321{
322    return OS_REG_READ(ah, AR_TSF_L32);
323}
324
325u_int32_t
326ar9300_get_tsf2_32(struct ath_hal *ah)
327{
328    return OS_REG_READ(ah, AR_TSF2_L32);
329}
330
331/*
332 * Reset the current hardware tsf for stamlme.
333 */
334void
335ar9300_reset_tsf(struct ath_hal *ah)
336{
337    int count;
338
339    count = 0;
340    while (OS_REG_READ(ah, AR_SLP32_MODE) & AR_SLP32_TSF_WRITE_STATUS) {
341        count++;
342        if (count > 10) {
343            HALDEBUG(ah, HAL_DEBUG_RESET,
344                "%s: AR_SLP32_TSF_WRITE_STATUS limit exceeded\n", __func__);
345            break;
346        }
347        OS_DELAY(10);
348    }
349    OS_REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
350}
351
352/*
353 * Set or clear hardware basic rate bit
354 * Set hardware basic rate set if basic rate is found
355 * and basic rate is equal or less than 2Mbps
356 */
357void
358ar9300_set_basic_rate(struct ath_hal *ah, HAL_RATE_SET *rs)
359{
360    HAL_CHANNEL_INTERNAL *chan = AH_PRIVATE(ah)->ah_curchan;
361    u_int32_t reg;
362    u_int8_t xset;
363    int i;
364
365    if (chan == AH_NULL || !IS_CHAN_CCK(chan)) {
366        return;
367    }
368    xset = 0;
369    for (i = 0; i < rs->rs_count; i++) {
370        u_int8_t rset = rs->rs_rates[i];
371        /* Basic rate defined? */
372        if ((rset & 0x80) && (rset &= 0x7f) >= xset) {
373            xset = rset;
374        }
375    }
376    /*
377     * Set the h/w bit to reflect whether or not the basic
378     * rate is found to be equal or less than 2Mbps.
379     */
380    reg = OS_REG_READ(ah, AR_STA_ID1);
381    if (xset && xset / 2 <= 2) {
382        OS_REG_WRITE(ah, AR_STA_ID1, reg | AR_STA_ID1_BASE_RATE_11B);
383    } else {
384        OS_REG_WRITE(ah, AR_STA_ID1, reg &~ AR_STA_ID1_BASE_RATE_11B);
385    }
386}
387
388/*
389 * Grab a semi-random value from hardware registers - may not
390 * change often
391 */
392u_int32_t
393ar9300_get_random_seed(struct ath_hal *ah)
394{
395    u_int32_t nf;
396
397    nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
398    if (nf & 0x100) {
399        nf = 0 - ((nf ^ 0x1ff) + 1);
400    }
401    return (OS_REG_READ(ah, AR_TSF_U32) ^
402        OS_REG_READ(ah, AR_TSF_L32) ^ nf);
403}
404
405/*
406 * Detect if our card is present
407 */
408HAL_BOOL
409ar9300_detect_card_present(struct ath_hal *ah)
410{
411    u_int16_t mac_version, mac_rev;
412    u_int32_t v;
413
414    /*
415     * Read the Silicon Revision register and compare that
416     * to what we read at attach time.  If the same, we say
417     * a card/device is present.
418     */
419    v = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_SREV)) & AR_SREV_ID;
420    if (v == 0xFF) {
421        /* new SREV format */
422        v = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_SREV));
423        /*
424         * Include 6-bit Chip Type (masked to 0) to differentiate
425         * from pre-Sowl versions
426         */
427        mac_version = (v & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
428        mac_rev = MS(v, AR_SREV_REVISION2);
429    } else {
430        mac_version = MS(v, AR_SREV_VERSION);
431        mac_rev = v & AR_SREV_REVISION;
432    }
433    return (AH_PRIVATE(ah)->ah_macVersion == mac_version &&
434            AH_PRIVATE(ah)->ah_macRev == mac_rev);
435}
436
437/*
438 * Update MIB Counters
439 */
440void
441ar9300_update_mib_mac_stats(struct ath_hal *ah)
442{
443    struct ath_hal_9300 *ahp = AH9300(ah);
444    HAL_MIB_STATS* stats = &ahp->ah_stats.ast_mibstats;
445
446    stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
447    stats->rts_bad    += OS_REG_READ(ah, AR_RTS_FAIL);
448    stats->fcs_bad    += OS_REG_READ(ah, AR_FCS_FAIL);
449    stats->rts_good   += OS_REG_READ(ah, AR_RTS_OK);
450    stats->beacons    += OS_REG_READ(ah, AR_BEACON_CNT);
451}
452
453void
454ar9300_get_mib_mac_stats(struct ath_hal *ah, HAL_MIB_STATS* stats)
455{
456    struct ath_hal_9300 *ahp = AH9300(ah);
457    HAL_MIB_STATS* istats = &ahp->ah_stats.ast_mibstats;
458
459    stats->ackrcv_bad = istats->ackrcv_bad;
460    stats->rts_bad    = istats->rts_bad;
461    stats->fcs_bad    = istats->fcs_bad;
462    stats->rts_good   = istats->rts_good;
463    stats->beacons    = istats->beacons;
464}
465
466/*
467 * Detect if the HW supports spreading a CCK signal on channel 14
468 */
469HAL_BOOL
470ar9300_is_japan_channel_spread_supported(struct ath_hal *ah)
471{
472    return AH_TRUE;
473}
474
475/*
476 * Get the rssi of frame curently being received.
477 */
478u_int32_t
479ar9300_get_cur_rssi(struct ath_hal *ah)
480{
481    /* XXX return (OS_REG_READ(ah, AR_PHY_CURRENT_RSSI) & 0xff); */
482    /* get combined RSSI */
483    return (OS_REG_READ(ah, AR_PHY_RSSI_3) & 0xff);
484}
485
486#if ATH_GEN_RANDOMNESS
487/*
488 * Get the rssi value from BB on ctl chain0.
489 */
490u_int32_t
491ar9300_get_rssi_chain0(struct ath_hal *ah)
492{
493    /* get ctl chain0 RSSI */
494    return OS_REG_READ(ah, AR_PHY_RSSI_0) & 0xff;
495}
496#endif
497
498u_int
499ar9300_get_def_antenna(struct ath_hal *ah)
500{
501    return (OS_REG_READ(ah, AR_DEF_ANTENNA) & 0x7);
502}
503
504/* Setup coverage class */
505void
506ar9300_set_coverage_class(struct ath_hal *ah, u_int8_t coverageclass, int now)
507{
508}
509
510void
511ar9300_set_def_antenna(struct ath_hal *ah, u_int antenna)
512{
513    OS_REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
514}
515
516HAL_BOOL
517ar9300_set_antenna_switch(struct ath_hal *ah,
518    HAL_ANT_SETTING settings, HAL_CHANNEL *chan, u_int8_t *tx_chainmask,
519    u_int8_t *rx_chainmask, u_int8_t *antenna_cfgd)
520{
521    struct ath_hal_9300 *ahp = AH9300(ah);
522
523    /*
524     * Owl does not support diversity or changing antennas.
525     *
526     * Instead this API and function are defined differently for AR9300.
527     * To support Tablet PC's, this interface allows the system
528     * to dramatically reduce the TX power on a particular chain.
529     *
530     * Based on the value of (redefined) diversity_control, the
531     * reset code will decrease power on chain 0 or chain 1/2.
532     *
533     * Based on the value of bit 0 of antenna_switch_swap,
534     * the mapping between OID call and chain is defined as:
535     *  0:  map A -> 0, B -> 1;
536     *  1:  map A -> 1, B -> 0;
537     *
538     * NOTE:
539     *   The devices that use this OID should use a tx_chain_mask and
540     *   tx_chain_select_legacy setting of 5 or 3 if ANTENNA_FIXED_B is
541     *   used in order to ensure an active transmit antenna.  This
542     *   API will allow the host to turn off the only transmitting
543     *   antenna to ensure the antenna closest to the user's body is
544     *   powered-down.
545     */
546    /*
547     * Set antenna control for use during reset sequence by
548     * ar9300_decrease_chain_power()
549     */
550    ahp->ah_diversity_control = settings;
551
552    return AH_TRUE;
553}
554
555HAL_BOOL
556ar9300_is_sleep_after_beacon_broken(struct ath_hal *ah)
557{
558    return AH_TRUE;
559}
560
561HAL_BOOL
562ar9300_set_slot_time(struct ath_hal *ah, u_int us)
563{
564    struct ath_hal_9300 *ahp = AH9300(ah);
565    if (us < HAL_SLOT_TIME_9 || us > ar9300_mac_to_usec(ah, 0xffff)) {
566        HALDEBUG(ah, HAL_DEBUG_RESET, "%s: bad slot time %u\n", __func__, us);
567        ahp->ah_slot_time = (u_int) -1;  /* restore default handling */
568        return AH_FALSE;
569    } else {
570        /* convert to system clocks */
571        OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ar9300_mac_to_clks(ah, us));
572        ahp->ah_slot_time = us;
573        return AH_TRUE;
574    }
575}
576
577HAL_BOOL
578ar9300_set_ack_timeout(struct ath_hal *ah, u_int us)
579{
580    struct ath_hal_9300 *ahp = AH9300(ah);
581
582    if (us > ar9300_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
583        HALDEBUG(ah, HAL_DEBUG_RESET, "%s: bad ack timeout %u\n", __func__, us);
584        ahp->ah_ack_timeout = (u_int) -1; /* restore default handling */
585        return AH_FALSE;
586    } else {
587        /* convert to system clocks */
588        OS_REG_RMW_FIELD(ah,
589            AR_TIME_OUT, AR_TIME_OUT_ACK, ar9300_mac_to_clks(ah, us));
590        ahp->ah_ack_timeout = us;
591        return AH_TRUE;
592    }
593}
594
595u_int
596ar9300_get_ack_timeout(struct ath_hal *ah)
597{
598    u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
599    return ar9300_mac_to_usec(ah, clks);      /* convert from system clocks */
600}
601
602HAL_STATUS
603ar9300_set_quiet(struct ath_hal *ah, u_int32_t period, u_int32_t duration,
604                 u_int32_t next_start, HAL_QUIET_FLAG flag)
605{
606    HAL_STATUS status = HAL_EIO;
607    u_int32_t tsf = 0, j, next_start_us = 0;
608    if (flag & HAL_QUIET_ENABLE) {
609        for (j = 0; j < 2; j++) {
610            next_start_us = TU_TO_USEC(next_start);
611            tsf = OS_REG_READ(ah, AR_TSF_L32);
612            if ((!next_start) || (flag & HAL_QUIET_ADD_CURRENT_TSF)) {
613                next_start_us += tsf;
614            }
615            if (flag & HAL_QUIET_ADD_SWBA_RESP_TIME) {
616                next_start_us +=
617                    AH_PRIVATE(ah)->ah_config.ath_hal_sw_beacon_response_time;
618            }
619            OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
620            OS_REG_WRITE(ah, AR_QUIET2, SM(duration, AR_QUIET2_QUIET_DUR));
621            OS_REG_WRITE(ah, AR_QUIET_PERIOD, TU_TO_USEC(period));
622            OS_REG_WRITE(ah, AR_NEXT_QUIET_TIMER, next_start_us);
623            OS_REG_SET_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
624            if ((OS_REG_READ(ah, AR_TSF_L32) >> 10) == tsf >> 10) {
625                status = HAL_OK;
626                break;
627            }
628            HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: TSF have moved "
629                "while trying to set quiet time TSF: 0x%08x\n", __func__, tsf);
630            /* TSF shouldn't count twice or reg access is taking forever */
631            HALASSERT(j < 1);
632        }
633    } else {
634        OS_REG_CLR_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
635        status = HAL_OK;
636    }
637
638    return status;
639}
640#ifdef ATH_SUPPORT_DFS
641void
642ar9300_cac_tx_quiet(struct ath_hal *ah, HAL_BOOL enable)
643{
644    u32 reg1, reg2;
645
646    reg1 = OS_REG_READ(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE));
647    reg2 = OS_REG_READ(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1));
648    AH9300(ah)->ah_cac_quiet_enabled = enable;
649
650    if (enable) {
651        OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE),
652                     reg1 | AR_PCU_FORCE_QUIET_COLL);
653        OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1),
654                     reg2 & ~AR_QUIET1_QUIET_ACK_CTS_ENABLE);
655    } else {
656        OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE),
657                     reg1 & ~AR_PCU_FORCE_QUIET_COLL);
658        OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1),
659                     reg2 | AR_QUIET1_QUIET_ACK_CTS_ENABLE);
660    }
661}
662#endif /* ATH_SUPPORT_DFS */
663
664void
665ar9300_set_pcu_config(struct ath_hal *ah)
666{
667    ar9300_set_operating_mode(ah, AH_PRIVATE(ah)->ah_opmode);
668}
669
670HAL_STATUS
671ar9300_get_capability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
672    u_int32_t capability, u_int32_t *result)
673{
674    struct ath_hal_9300 *ahp = AH9300(ah);
675    const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
676
677    switch (type) {
678    case HAL_CAP_CIPHER:            /* cipher handled in hardware */
679        switch (capability) {
680        case HAL_CIPHER_AES_CCM:
681        case HAL_CIPHER_AES_OCB:
682        case HAL_CIPHER_TKIP:
683        case HAL_CIPHER_WEP:
684        case HAL_CIPHER_MIC:
685        case HAL_CIPHER_CLR:
686            return HAL_OK;
687        default:
688            return HAL_ENOTSUPP;
689        }
690    case HAL_CAP_TKIP_MIC:          /* handle TKIP MIC in hardware */
691        switch (capability) {
692        case 0:         /* hardware capability */
693            return HAL_OK;
694        case 1:
695            return (ahp->ah_sta_id1_defaults &
696                    AR_STA_ID1_CRPT_MIC_ENABLE) ?  HAL_OK : HAL_ENXIO;
697        default:
698            return HAL_ENOTSUPP;
699        }
700    case HAL_CAP_TKIP_SPLIT:        /* hardware TKIP uses split keys */
701        /* XXX check rev when new parts are available */
702        return (ahp->ah_misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
703            HAL_ENXIO : HAL_OK;
704    case HAL_CAP_WME_TKIPMIC:
705        /* hardware can do TKIP MIC when WMM is turned on */
706        return HAL_OK;
707    case HAL_CAP_PHYCOUNTERS:       /* hardware PHY error counters */
708        return HAL_OK;
709    case HAL_CAP_DIVERSITY:         /* hardware supports fast diversity */
710        switch (capability) {
711        case 0:                 /* hardware capability */
712            return HAL_OK;
713        case 1:                 /* current setting */
714            return (OS_REG_READ(ah, AR_PHY_CCK_DETECT) &
715                            AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
716                            HAL_OK : HAL_ENXIO;
717        }
718        return HAL_EINVAL;
719    case HAL_CAP_TPC:
720        switch (capability) {
721        case 0:                 /* hardware capability */
722            return HAL_OK;
723        case 1:
724            return AH_PRIVATE(ah)->ah_config.ath_hal_desc_tpc ?
725                               HAL_OK : HAL_ENXIO;
726        }
727        return HAL_OK;
728    case HAL_CAP_PHYDIAG:           /* radar pulse detection capability */
729        return HAL_OK;
730    case HAL_CAP_MCAST_KEYSRCH:     /* multicast frame keycache search */
731        switch (capability) {
732        case 0:                 /* hardware capability */
733            return HAL_OK;
734        case 1:
735            if (OS_REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
736                /*
737                 * Owl and Merlin have problems in mcast key search.
738                 * Disable this cap. in Ad-hoc mode. see Bug 25776 and
739                 * 26802
740                 */
741                return HAL_ENXIO;
742            } else {
743                return (ahp->ah_sta_id1_defaults &
744                        AR_STA_ID1_MCAST_KSRCH) ? HAL_OK : HAL_ENXIO;
745            }
746        }
747        return HAL_EINVAL;
748    case HAL_CAP_TSF_ADJUST:        /* hardware has beacon tsf adjust */
749        switch (capability) {
750        case 0:                 /* hardware capability */
751            return p_cap->hal_tsf_add_support ? HAL_OK : HAL_ENOTSUPP;
752        case 1:
753            return (ahp->ah_misc_mode & AR_PCU_TX_ADD_TSF) ?
754                HAL_OK : HAL_ENXIO;
755        }
756        return HAL_EINVAL;
757    case HAL_CAP_RFSILENT:      /* rfsilent support  */
758        if (capability == 3) {  /* rfkill interrupt */
759            /*
760             * XXX: Interrupt-based notification of RF Kill state
761             *      changes not working yet. Report that this feature
762             *      is not supported so that polling is used instead.
763             */
764            return (HAL_ENOTSUPP);
765        }
766        return ath_hal_getcapability(ah, type, capability, result);
767    case HAL_CAP_4ADDR_AGGR:
768        return HAL_OK;
769    case HAL_CAP_BB_RIFS_HANG:
770        return HAL_ENOTSUPP;
771    case HAL_CAP_BB_DFS_HANG:
772        return HAL_ENOTSUPP;
773    case HAL_CAP_BB_RX_CLEAR_STUCK_HANG:
774        /* Track chips that are known to have BB hangs related
775         * to rx_clear stuck low.
776         */
777        return HAL_ENOTSUPP;
778    case HAL_CAP_MAC_HANG:
779        /* Track chips that are known to have MAC hangs.
780         */
781        return HAL_OK;
782    case HAL_CAP_RIFS_RX_ENABLED:
783        /* Is RIFS RX currently enabled */
784        return (ahp->ah_rifs_enabled == AH_TRUE) ?  HAL_OK : HAL_ENOTSUPP;
785    case HAL_CAP_ANT_CFG_2GHZ:
786        *result = p_cap->hal_num_ant_cfg_2ghz;
787        return HAL_OK;
788    case HAL_CAP_ANT_CFG_5GHZ:
789        *result = p_cap->hal_num_ant_cfg_5ghz;
790        return HAL_OK;
791    case HAL_CAP_RX_STBC:
792        *result = p_cap->hal_rx_stbc_support;
793        return HAL_OK;
794    case HAL_CAP_TX_STBC:
795        *result = p_cap->hal_tx_stbc_support;
796        return HAL_OK;
797    case HAL_CAP_LDPC:
798        *result = p_cap->hal_ldpc_support;
799        return HAL_OK;
800    case HAL_CAP_DYNAMIC_SMPS:
801        return HAL_OK;
802    case HAL_CAP_DS:
803        return (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah) ||
804                (p_cap->hal_tx_chain_mask & 0x3) != 0x3 ||
805                (p_cap->hal_rx_chain_mask & 0x3) != 0x3) ?
806            HAL_ENOTSUPP : HAL_OK;
807    case HAL_CAP_TS:
808        return (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah) ||
809                (p_cap->hal_tx_chain_mask & 0x7) != 0x7 ||
810                (p_cap->hal_rx_chain_mask & 0x7) != 0x7) ?
811            HAL_ENOTSUPP : HAL_OK;
812    case HAL_CAP_OL_PWRCTRL:
813        return (ar9300_eeprom_get(ahp, EEP_OL_PWRCTRL)) ?
814            HAL_OK : HAL_ENOTSUPP;
815    case HAL_CAP_CRDC:
816#if ATH_SUPPORT_CRDC
817        return (AR_SREV_WASP(ah) &&
818                AH_PRIVATE(ah)->ah_config.ath_hal_crdc_enable) ?
819                    HAL_OK : HAL_ENOTSUPP;
820#else
821        return HAL_ENOTSUPP;
822#endif
823    case HAL_CAP_MAX_WEP_TKIP_HT20_TX_RATEKBPS:
824        *result = (u_int32_t)(-1);
825        return HAL_OK;
826    case HAL_CAP_MAX_WEP_TKIP_HT40_TX_RATEKBPS:
827        *result = (u_int32_t)(-1);
828        return HAL_OK;
829    case HAL_CAP_BB_PANIC_WATCHDOG:
830        return HAL_OK;
831    case HAL_CAP_PHYRESTART_CLR_WAR:
832        if ((AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_OSPREY) &&
833            (AH_PRIVATE((ah))->ah_macRev < AR_SREV_REVISION_AR9580_10))
834        {
835            return HAL_OK;
836        }
837        else
838        {
839            return HAL_ENOTSUPP;
840        }
841    case HAL_CAP_ENTERPRISE_MODE:
842        *result = ahp->ah_enterprise_mode >> 16;
843        /*
844         * WAR for EV 77658 - Add delimiters to first sub-frame when using
845         * RTS/CTS with aggregation and non-enterprise Osprey.
846         *
847         * Bug fixed in AR9580/Peacock, Wasp1.1 and later
848         */
849        if ((ahp->ah_enterprise_mode && AR_ENT_OTP_MIN_PKT_SIZE_DISABLE) &&
850                !AR_SREV_AR9580_10_OR_LATER(ah) && (!AR_SREV_WASP(ah) ||
851                AR_SREV_WASP_10(ah))) {
852            *result |= AH_ENT_RTSCTS_DELIM_WAR;
853        }
854        return HAL_OK;
855    case HAL_CAP_LDPCWAR:
856        /* WAR for RIFS+LDPC issue is required for all chips currently
857         * supported by ar9300 HAL.
858         */
859        return HAL_OK;
860    case HAL_CAP_ENABLE_APM:
861        *result = p_cap->hal_enable_apm;
862        return HAL_OK;
863    case HAL_CAP_PCIE_LCR_EXTSYNC_EN:
864        return (p_cap->hal_pcie_lcr_extsync_en == AH_TRUE) ? HAL_OK : HAL_ENOTSUPP;
865    case HAL_CAP_PCIE_LCR_OFFSET:
866        *result = p_cap->hal_pcie_lcr_offset;
867        return HAL_OK;
868    case HAL_CAP_SMARTANTENNA:
869        /* FIXME A request is pending with h/w team to add feature bit in
870         * caldata to detect if board has smart antenna or not, once added
871         * we need to fix his piece of code to read and return value without
872         * any compile flags
873         */
874#if UMAC_SUPPORT_SMARTANTENNA
875        /* enable smart antenna for  Peacock, Wasp and scorpion
876           for future chips need to modify */
877        if (AR_SREV_AR9580_10(ah) || (AR_SREV_WASP(ah)) || AR_SREV_SCORPION(ah)) {
878            return HAL_OK;
879        } else {
880            return HAL_ENOTSUPP;
881        }
882#else
883        return HAL_ENOTSUPP;
884#endif
885
886#ifdef ATH_TRAFFIC_FAST_RECOVER
887    case HAL_CAP_TRAFFIC_FAST_RECOVER:
888        if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_WASP_11(ah)) {
889            return HAL_OK;
890        } else {
891            return HAL_ENOTSUPP;
892        }
893#endif
894    default:
895        return ath_hal_getcapability(ah, type, capability, result);
896    }
897}
898
899HAL_BOOL
900ar9300_set_capability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
901        u_int32_t capability, u_int32_t setting, HAL_STATUS *status)
902{
903    struct ath_hal_9300 *ahp = AH9300(ah);
904    const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
905    u_int32_t v;
906
907    switch (type) {
908    case HAL_CAP_TKIP_MIC:          /* handle TKIP MIC in hardware */
909        if (setting) {
910            ahp->ah_sta_id1_defaults |= AR_STA_ID1_CRPT_MIC_ENABLE;
911        } else {
912            ahp->ah_sta_id1_defaults &= ~AR_STA_ID1_CRPT_MIC_ENABLE;
913        }
914        return AH_TRUE;
915    case HAL_CAP_DIVERSITY:
916        v = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
917        if (setting) {
918            v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
919        } else {
920            v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
921        }
922        OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
923        return AH_TRUE;
924    case HAL_CAP_DIAG:              /* hardware diagnostic support */
925        /*
926         * NB: could split this up into virtual capabilities,
927         *     (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
928         *     seems worth the additional complexity.
929         */
930#ifdef AH_DEBUG
931        AH_PRIVATE(ah)->ah_diagreg = setting;
932#else
933        AH_PRIVATE(ah)->ah_diagreg = setting & 0x6;     /* ACK+CTS */
934#endif
935        OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
936        return AH_TRUE;
937    case HAL_CAP_TPC:
938        AH_PRIVATE(ah)->ah_config.ath_hal_desc_tpc = (setting != 0);
939        return AH_TRUE;
940    case HAL_CAP_MCAST_KEYSRCH:     /* multicast frame keycache search */
941        if (setting) {
942            ahp->ah_sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
943        } else {
944            ahp->ah_sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
945        }
946        return AH_TRUE;
947    case HAL_CAP_TSF_ADJUST:        /* hardware has beacon tsf adjust */
948        if (p_cap->hal_tsf_add_support) {
949            if (setting) {
950                ahp->ah_misc_mode |= AR_PCU_TX_ADD_TSF;
951            } else {
952                ahp->ah_misc_mode &= ~AR_PCU_TX_ADD_TSF;
953            }
954            return AH_TRUE;
955        }
956        return AH_FALSE;
957    case HAL_CAP_RXBUFSIZE:         /* set MAC receive buffer size */
958        ahp->rx_buf_size = setting & AR_DATABUF_MASK;
959        OS_REG_WRITE(ah, AR_DATABUF, ahp->rx_buf_size);
960        return AH_TRUE;
961
962        /* fall thru... */
963    default:
964        return ath_hal_setcapability(ah, type, capability, setting, status);
965    }
966}
967
968#ifdef AH_DEBUG
969static void
970ar9300_print_reg(struct ath_hal *ah, u_int32_t args)
971{
972    u_int32_t i = 0;
973
974    /* Read 0x80d0 to trigger pcie analyzer */
975    HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
976        "0x%04x 0x%08x\n", 0x80d0, OS_REG_READ(ah, 0x80d0));
977
978    if (args & HAL_DIAG_PRINT_REG_COUNTER) {
979        struct ath_hal_9300 *ahp = AH9300(ah);
980        u_int32_t tf, rf, rc, cc;
981
982        tf = OS_REG_READ(ah, AR_TFCNT);
983        rf = OS_REG_READ(ah, AR_RFCNT);
984        rc = OS_REG_READ(ah, AR_RCCNT);
985        cc = OS_REG_READ(ah, AR_CCCNT);
986
987        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
988            "AR_TFCNT Diff= 0x%x\n", tf - ahp->last_tf);
989        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
990            "AR_RFCNT Diff= 0x%x\n", rf - ahp->last_rf);
991        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
992            "AR_RCCNT Diff= 0x%x\n", rc - ahp->last_rc);
993        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
994            "AR_CCCNT Diff= 0x%x\n", cc - ahp->last_cc);
995
996        ahp->last_tf = tf;
997        ahp->last_rf = rf;
998        ahp->last_rc = rc;
999        ahp->last_cc = cc;
1000
1001        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1002            "DMADBG0 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_0));
1003        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1004            "DMADBG1 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_1));
1005        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1006            "DMADBG2 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_2));
1007        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1008            "DMADBG3 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_3));
1009        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1010            "DMADBG4 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_4));
1011        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1012            "DMADBG5 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_5));
1013        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1014            "DMADBG6 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_6));
1015        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1016            "DMADBG7 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_7));
1017    }
1018
1019    if (args & HAL_DIAG_PRINT_REG_ALL) {
1020        for (i = 0x8; i <= 0xB8; i += sizeof(u_int32_t)) {
1021            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1022                i, OS_REG_READ(ah, i));
1023        }
1024
1025        for (i = 0x800; i <= (0x800 + (10 << 2)); i += sizeof(u_int32_t)) {
1026            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1027                i, OS_REG_READ(ah, i));
1028        }
1029
1030        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1031            "0x%04x 0x%08x\n", 0x840, OS_REG_READ(ah, i));
1032
1033        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1034            "0x%04x 0x%08x\n", 0x880, OS_REG_READ(ah, i));
1035
1036        for (i = 0x8C0; i <= (0x8C0 + (10 << 2)); i += sizeof(u_int32_t)) {
1037            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1038                i, OS_REG_READ(ah, i));
1039        }
1040
1041        for (i = 0x1F00; i <= 0x1F04; i += sizeof(u_int32_t)) {
1042            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1043                i, OS_REG_READ(ah, i));
1044        }
1045
1046        for (i = 0x4000; i <= 0x408C; i += sizeof(u_int32_t)) {
1047            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1048                i, OS_REG_READ(ah, i));
1049        }
1050
1051        for (i = 0x5000; i <= 0x503C; i += sizeof(u_int32_t)) {
1052            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1053                i, OS_REG_READ(ah, i));
1054        }
1055
1056        for (i = 0x7040; i <= 0x7058; i += sizeof(u_int32_t)) {
1057            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1058                i, OS_REG_READ(ah, i));
1059        }
1060
1061        for (i = 0x8000; i <= 0x8098; i += sizeof(u_int32_t)) {
1062            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1063                i, OS_REG_READ(ah, i));
1064        }
1065
1066        for (i = 0x80D4; i <= 0x8200; i += sizeof(u_int32_t)) {
1067            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1068                i, OS_REG_READ(ah, i));
1069        }
1070
1071        for (i = 0x8240; i <= 0x97FC; i += sizeof(u_int32_t)) {
1072            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1073                i, OS_REG_READ(ah, i));
1074        }
1075
1076        for (i = 0x9800; i <= 0x99f0; i += sizeof(u_int32_t)) {
1077            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1078                i, OS_REG_READ(ah, i));
1079        }
1080
1081        for (i = 0x9c10; i <= 0x9CFC; i += sizeof(u_int32_t)) {
1082            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1083                i, OS_REG_READ(ah, i));
1084        }
1085
1086        for (i = 0xA200; i <= 0xA26C; i += sizeof(u_int32_t)) {
1087            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1088                i, OS_REG_READ(ah, i));
1089        }
1090    }
1091}
1092#endif
1093
1094HAL_BOOL
1095ar9300_get_diag_state(struct ath_hal *ah, int request,
1096        const void *args, u_int32_t argsize,
1097        void **result, u_int32_t *resultsize)
1098{
1099    struct ath_hal_9300 *ahp = AH9300(ah);
1100
1101    (void) ahp;
1102    if (ath_hal_getdiagstate(ah, request, args, argsize, result, resultsize)) {
1103        return AH_TRUE;
1104    }
1105    switch (request) {
1106#ifdef AH_PRIVATE_DIAG
1107    case HAL_DIAG_EEPROM:
1108        *result = &ahp->ah_eeprom;
1109        *resultsize = sizeof(HAL_EEPROM);
1110        return AH_TRUE;
1111
1112#if 0   /* XXX - TODO */
1113    case HAL_DIAG_EEPROM_EXP_11A:
1114    case HAL_DIAG_EEPROM_EXP_11B:
1115    case HAL_DIAG_EEPROM_EXP_11G:
1116        pe = &ahp->ah_mode_power_array2133[request - HAL_DIAG_EEPROM_EXP_11A];
1117        *result = pe->p_channels;
1118        *resultsize = (*result == AH_NULL) ? 0 :
1119            roundup(sizeof(u_int16_t) * pe->num_channels,
1120            sizeof(u_int32_t)) +
1121                sizeof(EXPN_DATA_PER_CHANNEL_2133) * pe->num_channels;
1122        return AH_TRUE;
1123#endif
1124    case HAL_DIAG_RFGAIN:
1125        *result = &ahp->ah_gain_values;
1126        *resultsize = sizeof(GAIN_VALUES);
1127        return AH_TRUE;
1128    case HAL_DIAG_RFGAIN_CURSTEP:
1129        *result = (void *) ahp->ah_gain_values.curr_step;
1130        *resultsize = (*result == AH_NULL) ?
1131                0 : sizeof(GAIN_OPTIMIZATION_STEP);
1132        return AH_TRUE;
1133#if 0   /* XXX - TODO */
1134    case HAL_DIAG_PCDAC:
1135        *result = ahp->ah_pcdac_table;
1136        *resultsize = ahp->ah_pcdac_table_size;
1137        return AH_TRUE;
1138#endif
1139    case HAL_DIAG_ANI_CURRENT:
1140        *result = ar9300_ani_get_current_state(ah);
1141        *resultsize = (*result == AH_NULL) ?
1142            0 : sizeof(struct ar9300_ani_state);
1143        return AH_TRUE;
1144    case HAL_DIAG_ANI_STATS:
1145        *result = ar9300_ani_get_current_stats(ah);
1146        *resultsize = (*result == AH_NULL) ?
1147            0 : sizeof(struct ar9300_stats);
1148        return AH_TRUE;
1149    case HAL_DIAG_ANI_CMD:
1150        if (argsize != 2*sizeof(u_int32_t)) {
1151            return AH_FALSE;
1152        }
1153        ar9300_ani_control(
1154            ah, ((const u_int32_t *)args)[0], ((const u_int32_t *)args)[1]);
1155        return AH_TRUE;
1156    case HAL_DIAG_TXCONT:
1157        /*AR9300_CONTTXMODE(ah, (struct ath_desc *)args, argsize );*/
1158        return AH_TRUE;
1159#endif /* AH_PRIVATE_DIAG */
1160    case HAL_DIAG_CHANNELS:
1161        *result = &(ahp->ah_priv.ah_channels[0]);
1162        *resultsize =
1163            sizeof(ahp->ah_priv.ah_channels[0]) * ahp->ah_priv.priv.ah_nchan;
1164        return AH_TRUE;
1165#ifdef AH_DEBUG
1166    case HAL_DIAG_PRINT_REG:
1167        ar9300_print_reg(ah, *((const u_int32_t *)args));
1168        return AH_TRUE;
1169#endif
1170    default:
1171        break;
1172    }
1173
1174    return AH_FALSE;
1175}
1176
1177void
1178ar9300_dma_reg_dump(struct ath_hal *ah)
1179{
1180#ifdef AH_DEBUG
1181#define NUM_DMA_DEBUG_REGS  8
1182#define NUM_QUEUES          10
1183
1184    u_int32_t val[NUM_DMA_DEBUG_REGS];
1185    int       qcu_offset = 0, dcu_offset = 0;
1186    u_int32_t *qcu_base  = &val[0], *dcu_base = &val[4], reg;
1187    int       i, j, k;
1188    int16_t nfarray[NUM_NF_READINGS];
1189    HAL_NFCAL_HIST_FULL *h = AH_HOME_CHAN_NFCAL_HIST(ah);
1190
1191     /* selecting DMA OBS 8 */
1192    OS_REG_WRITE(ah, AR_MACMISC,
1193        ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
1194         (AR_MACMISC_MISC_OBS_BUS_1 << AR_MACMISC_MISC_OBS_BUS_MSB_S)));
1195
1196    ath_hal_printf(ah, "Raw DMA Debug values:\n");
1197    for (i = 0; i < NUM_DMA_DEBUG_REGS; i++) {
1198        if (i % 4 == 0) {
1199            ath_hal_printf(ah, "\n");
1200        }
1201
1202        val[i] = OS_REG_READ(ah, AR_DMADBG_0 + (i * sizeof(u_int32_t)));
1203        ath_hal_printf(ah, "%d: %08x ", i, val[i]);
1204    }
1205
1206    ath_hal_printf(ah, "\n\n");
1207    ath_hal_printf(ah, "Num QCU: chain_st fsp_ok fsp_st DCU: chain_st\n");
1208
1209    for (i = 0; i < NUM_QUEUES; i++, qcu_offset += 4, dcu_offset += 5) {
1210        if (i == 8) {
1211            /* only 8 QCU entries in val[0] */
1212            qcu_offset = 0;
1213            qcu_base++;
1214        }
1215
1216        if (i == 6) {
1217            /* only 6 DCU entries in val[4] */
1218            dcu_offset = 0;
1219            dcu_base++;
1220        }
1221
1222        ath_hal_printf(ah,
1223            "%2d          %2x      %1x     %2x           %2x\n",
1224            i,
1225            (*qcu_base & (0x7 << qcu_offset)) >> qcu_offset,
1226            (*qcu_base & (0x8 << qcu_offset)) >> (qcu_offset + 3),
1227            val[2] & (0x7 << (i * 3)) >> (i * 3),
1228            (*dcu_base & (0x1f << dcu_offset)) >> dcu_offset);
1229    }
1230
1231    ath_hal_printf(ah, "\n");
1232    ath_hal_printf(ah,
1233        "qcu_stitch state:   %2x    qcu_fetch state:        %2x\n",
1234        (val[3] & 0x003c0000) >> 18, (val[3] & 0x03c00000) >> 22);
1235    ath_hal_printf(ah,
1236        "qcu_complete state: %2x    dcu_complete state:     %2x\n",
1237        (val[3] & 0x1c000000) >> 26, (val[6] & 0x3));
1238    ath_hal_printf(ah,
1239        "dcu_arb state:      %2x    dcu_fp state:           %2x\n",
1240        (val[5] & 0x06000000) >> 25, (val[5] & 0x38000000) >> 27);
1241    ath_hal_printf(ah,
1242        "chan_idle_dur:     %3d    chan_idle_dur_valid:     %1d\n",
1243        (val[6] & 0x000003fc) >> 2, (val[6] & 0x00000400) >> 10);
1244    ath_hal_printf(ah,
1245        "txfifo_valid_0:      %1d    txfifo_valid_1:          %1d\n",
1246        (val[6] & 0x00000800) >> 11, (val[6] & 0x00001000) >> 12);
1247    ath_hal_printf(ah,
1248        "txfifo_dcu_num_0:   %2d    txfifo_dcu_num_1:       %2d\n",
1249        (val[6] & 0x0001e000) >> 13, (val[6] & 0x001e0000) >> 17);
1250    ath_hal_printf(ah, "pcu observe 0x%x \n", OS_REG_READ(ah, AR_OBS_BUS_1));
1251    ath_hal_printf(ah, "AR_CR 0x%x \n", OS_REG_READ(ah, AR_CR));
1252
1253    ar9300_upload_noise_floor(ah, 1, nfarray);
1254    ath_hal_printf(ah, "2G:\n");
1255    ath_hal_printf(ah, "Min CCA Out:\n");
1256    ath_hal_printf(ah, "\t\tChain 0\t\tChain 1\t\tChain 2\n");
1257    ath_hal_printf(ah, "Control:\t%8d\t%8d\t%8d\n",
1258                   nfarray[0], nfarray[1], nfarray[2]);
1259    ath_hal_printf(ah, "Extension:\t%8d\t%8d\t%8d\n\n",
1260                   nfarray[3], nfarray[4], nfarray[5]);
1261
1262    ar9300_upload_noise_floor(ah, 0, nfarray);
1263    ath_hal_printf(ah, "5G:\n");
1264    ath_hal_printf(ah, "Min CCA Out:\n");
1265    ath_hal_printf(ah, "\t\tChain 0\t\tChain 1\t\tChain 2\n");
1266    ath_hal_printf(ah, "Control:\t%8d\t%8d\t%8d\n",
1267                   nfarray[0], nfarray[1], nfarray[2]);
1268    ath_hal_printf(ah, "Extension:\t%8d\t%8d\t%8d\n\n",
1269                   nfarray[3], nfarray[4], nfarray[5]);
1270
1271    for (i = 0; i < NUM_NF_READINGS; i++) {
1272        ath_hal_printf(ah, "%s Chain %d NF History:\n",
1273                       ((i < 3) ? "Control " : "Extension "), i%3);
1274        for (j = 0, k = h->base.curr_index;
1275             j < HAL_NF_CAL_HIST_LEN_FULL;
1276             j++, k++) {
1277            ath_hal_printf(ah, "Element %d: %d\n",
1278                j, h->nf_cal_buffer[k % HAL_NF_CAL_HIST_LEN_FULL][i]);
1279        }
1280        ath_hal_printf(ah, "Last Programmed NF: %d\n\n", h->base.priv_nf[i]);
1281    }
1282
1283    reg = OS_REG_READ(ah, AR_PHY_FIND_SIG_LOW);
1284    ath_hal_printf(ah, "FIRStep Low = 0x%x (%d)\n",
1285                   MS(reg, AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW),
1286                   MS(reg, AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW));
1287    reg = OS_REG_READ(ah, AR_PHY_DESIRED_SZ);
1288    ath_hal_printf(ah, "Total Desired = 0x%x (%d)\n",
1289                   MS(reg, AR_PHY_DESIRED_SZ_TOT_DES),
1290                   MS(reg, AR_PHY_DESIRED_SZ_TOT_DES));
1291    ath_hal_printf(ah, "ADC Desired = 0x%x (%d)\n",
1292                   MS(reg, AR_PHY_DESIRED_SZ_ADC),
1293                   MS(reg, AR_PHY_DESIRED_SZ_ADC));
1294    reg = OS_REG_READ(ah, AR_PHY_FIND_SIG);
1295    ath_hal_printf(ah, "FIRStep = 0x%x (%d)\n",
1296                   MS(reg, AR_PHY_FIND_SIG_FIRSTEP),
1297                   MS(reg, AR_PHY_FIND_SIG_FIRSTEP));
1298    reg = OS_REG_READ(ah, AR_PHY_AGC);
1299    ath_hal_printf(ah, "Coarse High = 0x%x (%d)\n",
1300                   MS(reg, AR_PHY_AGC_COARSE_HIGH),
1301                   MS(reg, AR_PHY_AGC_COARSE_HIGH));
1302    ath_hal_printf(ah, "Coarse Low = 0x%x (%d)\n",
1303                   MS(reg, AR_PHY_AGC_COARSE_LOW),
1304                   MS(reg, AR_PHY_AGC_COARSE_LOW));
1305    ath_hal_printf(ah, "Coarse Power Constant = 0x%x (%d)\n",
1306                   MS(reg, AR_PHY_AGC_COARSE_PWR_CONST),
1307                   MS(reg, AR_PHY_AGC_COARSE_PWR_CONST));
1308    reg = OS_REG_READ(ah, AR_PHY_TIMING5);
1309    ath_hal_printf(ah, "Enable Cyclic Power Thresh = %d\n",
1310                   MS(reg, AR_PHY_TIMING5_CYCPWR_THR1_ENABLE));
1311    ath_hal_printf(ah, "Cyclic Power Thresh = 0x%x (%d)\n",
1312                   MS(reg, AR_PHY_TIMING5_CYCPWR_THR1),
1313                   MS(reg, AR_PHY_TIMING5_CYCPWR_THR1));
1314    ath_hal_printf(ah, "Cyclic Power Thresh 1A= 0x%x (%d)\n",
1315                   MS(reg, AR_PHY_TIMING5_CYCPWR_THR1A),
1316                   MS(reg, AR_PHY_TIMING5_CYCPWR_THR1A));
1317    reg = OS_REG_READ(ah, AR_PHY_DAG_CTRLCCK);
1318    ath_hal_printf(ah, "Barker RSSI Thresh Enable = %d\n",
1319                   MS(reg, AR_PHY_DAG_CTRLCCK_EN_RSSI_THR));
1320    ath_hal_printf(ah, "Barker RSSI Thresh = 0x%x (%d)\n",
1321                   MS(reg, AR_PHY_DAG_CTRLCCK_RSSI_THR),
1322                   MS(reg, AR_PHY_DAG_CTRLCCK_RSSI_THR));
1323
1324
1325    /* Step 1a: Set bit 23 of register 0xa360 to 0 */
1326    reg = OS_REG_READ(ah, 0xa360);
1327    reg &= ~0x00800000;
1328    OS_REG_WRITE(ah, 0xa360, reg);
1329
1330    /* Step 2a: Set register 0xa364 to 0x1000 */
1331    reg = 0x1000;
1332    OS_REG_WRITE(ah, 0xa364, reg);
1333
1334    /* Step 3a: Read bits 17:0 of register 0x9c20 */
1335    reg = OS_REG_READ(ah, 0x9c20);
1336    reg &= 0x0003ffff;
1337    ath_hal_printf(ah,
1338        "%s: Test Control Status [0x1000] 0x9c20[17:0] = 0x%x\n",
1339        __func__, reg);
1340
1341    /* Step 1b: Set bit 23 of register 0xa360 to 0 */
1342    reg = OS_REG_READ(ah, 0xa360);
1343    reg &= ~0x00800000;
1344    OS_REG_WRITE(ah, 0xa360, reg);
1345
1346    /* Step 2b: Set register 0xa364 to 0x1400 */
1347    reg = 0x1400;
1348    OS_REG_WRITE(ah, 0xa364, reg);
1349
1350    /* Step 3b: Read bits 17:0 of register 0x9c20 */
1351    reg = OS_REG_READ(ah, 0x9c20);
1352    reg &= 0x0003ffff;
1353    ath_hal_printf(ah,
1354        "%s: Test Control Status [0x1400] 0x9c20[17:0] = 0x%x\n",
1355        __func__, reg);
1356
1357    /* Step 1c: Set bit 23 of register 0xa360 to 0 */
1358    reg = OS_REG_READ(ah, 0xa360);
1359    reg &= ~0x00800000;
1360    OS_REG_WRITE(ah, 0xa360, reg);
1361
1362    /* Step 2c: Set register 0xa364 to 0x3C00 */
1363    reg = 0x3c00;
1364    OS_REG_WRITE(ah, 0xa364, reg);
1365
1366    /* Step 3c: Read bits 17:0 of register 0x9c20 */
1367    reg = OS_REG_READ(ah, 0x9c20);
1368    reg &= 0x0003ffff;
1369    ath_hal_printf(ah,
1370        "%s: Test Control Status [0x3C00] 0x9c20[17:0] = 0x%x\n",
1371        __func__, reg);
1372
1373    /* Step 1d: Set bit 24 of register 0xa360 to 0 */
1374    reg = OS_REG_READ(ah, 0xa360);
1375    reg &= ~0x001040000;
1376    OS_REG_WRITE(ah, 0xa360, reg);
1377
1378    /* Step 2d: Set register 0xa364 to 0x5005D */
1379    reg = 0x5005D;
1380    OS_REG_WRITE(ah, 0xa364, reg);
1381
1382    /* Step 3d: Read bits 17:0 of register 0xa368 */
1383    reg = OS_REG_READ(ah, 0xa368);
1384    reg &= 0x0003ffff;
1385    ath_hal_printf(ah,
1386        "%s: Test Control Status [0x5005D] 0xa368[17:0] = 0x%x\n",
1387        __func__, reg);
1388
1389    /* Step 1e: Set bit 24 of register 0xa360 to 0 */
1390    reg = OS_REG_READ(ah, 0xa360);
1391    reg &= ~0x001040000;
1392    OS_REG_WRITE(ah, 0xa360, reg);
1393
1394    /* Step 2e: Set register 0xa364 to 0x7005D */
1395    reg = 0x7005D;
1396    OS_REG_WRITE(ah, 0xa364, reg);
1397
1398    /* Step 3e: Read bits 17:0 of register 0xa368 */
1399    reg = OS_REG_READ(ah, 0xa368);
1400    reg &= 0x0003ffff;
1401    ath_hal_printf(ah,
1402        "%s: Test Control Status [0x7005D] 0xa368[17:0] = 0x%x\n",
1403       __func__, reg);
1404
1405    /* Step 1f: Set bit 24 of register 0xa360 to 0 */
1406    reg = OS_REG_READ(ah, 0xa360);
1407    reg &= ~0x001000000;
1408    reg |= 0x40000;
1409    OS_REG_WRITE(ah, 0xa360, reg);
1410
1411    /* Step 2f: Set register 0xa364 to 0x3005D */
1412    reg = 0x3005D;
1413    OS_REG_WRITE(ah, 0xa364, reg);
1414
1415    /* Step 3f: Read bits 17:0 of register 0xa368 */
1416    reg = OS_REG_READ(ah, 0xa368);
1417    reg &= 0x0003ffff;
1418    ath_hal_printf(ah,
1419        "%s: Test Control Status [0x3005D] 0xa368[17:0] = 0x%x\n",
1420        __func__, reg);
1421
1422    /* Step 1g: Set bit 24 of register 0xa360 to 0 */
1423    reg = OS_REG_READ(ah, 0xa360);
1424    reg &= ~0x001000000;
1425    reg |= 0x40000;
1426    OS_REG_WRITE(ah, 0xa360, reg);
1427
1428    /* Step 2g: Set register 0xa364 to 0x6005D */
1429    reg = 0x6005D;
1430    OS_REG_WRITE(ah, 0xa364, reg);
1431
1432    /* Step 3g: Read bits 17:0 of register 0xa368 */
1433    reg = OS_REG_READ(ah, 0xa368);
1434    reg &= 0x0003ffff;
1435    ath_hal_printf(ah,
1436        "%s: Test Control Status [0x6005D] 0xa368[17:0] = 0x%x\n",
1437        __func__, reg);
1438#endif /* AH_DEBUG */
1439}
1440
1441/*
1442 * Return the busy for rx_frame, rx_clear, and tx_frame
1443 */
1444u_int32_t
1445ar9300_get_mib_cycle_counts_pct(struct ath_hal *ah, u_int32_t *rxc_pcnt,
1446    u_int32_t *rxf_pcnt, u_int32_t *txf_pcnt)
1447{
1448    struct ath_hal_9300 *ahp = AH9300(ah);
1449    u_int32_t good = 1;
1450
1451    u_int32_t rc = OS_REG_READ(ah, AR_RCCNT);
1452    u_int32_t rf = OS_REG_READ(ah, AR_RFCNT);
1453    u_int32_t tf = OS_REG_READ(ah, AR_TFCNT);
1454    u_int32_t cc = OS_REG_READ(ah, AR_CCCNT); /* read cycles last */
1455
1456    if (ahp->ah_cycles == 0 || ahp->ah_cycles > cc) {
1457        /*
1458         * Cycle counter wrap (or initial call); it's not possible
1459         * to accurately calculate a value because the registers
1460         * right shift rather than wrap--so punt and return 0.
1461         */
1462        HALDEBUG(ah, HAL_DEBUG_CHANNEL,
1463            "%s: cycle counter wrap. ExtBusy = 0\n", __func__);
1464        good = 0;
1465    } else {
1466        u_int32_t cc_d = cc - ahp->ah_cycles;
1467        u_int32_t rc_d = rc - ahp->ah_rx_clear;
1468        u_int32_t rf_d = rf - ahp->ah_rx_frame;
1469        u_int32_t tf_d = tf - ahp->ah_tx_frame;
1470
1471        if (cc_d != 0) {
1472            *rxc_pcnt = rc_d * 100 / cc_d;
1473            *rxf_pcnt = rf_d * 100 / cc_d;
1474            *txf_pcnt = tf_d * 100 / cc_d;
1475        } else {
1476            good = 0;
1477        }
1478    }
1479
1480    ahp->ah_cycles = cc;
1481    ahp->ah_rx_frame = rf;
1482    ahp->ah_rx_clear = rc;
1483    ahp->ah_tx_frame = tf;
1484
1485    return good;
1486}
1487
1488/*
1489 * Return approximation of extension channel busy over an time interval
1490 * 0% (clear) -> 100% (busy)
1491 * -1 for invalid estimate
1492 */
1493int8_t
1494ar9300_get_11n_ext_busy(struct ath_hal *ah)
1495{
1496    /*
1497     * Overflow condition to check before multiplying to get %
1498     * (x * 100 > 0xFFFFFFFF ) => (x > 0x28F5C28)
1499     */
1500#define OVERFLOW_LIMIT  0x28F5C28
1501#define ERROR_CODE      -1
1502
1503    struct ath_hal_9300 *ahp = AH9300(ah);
1504    u_int32_t busy = 0; /* percentage */
1505    int8_t busyper = 0;
1506    u_int32_t cycle_count, ctl_busy, ext_busy;
1507
1508    /* cycle_count will always be the first to wrap; therefore, read it last
1509     * This sequence of reads is not atomic, and MIB counter wrap
1510     * could happen during it ?
1511     */
1512    ctl_busy = OS_REG_READ(ah, AR_RCCNT);
1513    ext_busy = OS_REG_READ(ah, AR_EXTRCCNT);
1514    cycle_count = OS_REG_READ(ah, AR_CCCNT);
1515
1516    if ((ahp->ah_cycle_count == 0) || (ahp->ah_cycle_count > cycle_count) ||
1517        (ahp->ah_ctl_busy > ctl_busy) || (ahp->ah_ext_busy > ext_busy))
1518    {
1519        /*
1520         * Cycle counter wrap (or initial call); it's not possible
1521         * to accurately calculate a value because the registers
1522         * right shift rather than wrap--so punt and return 0.
1523         */
1524        busyper = ERROR_CODE;
1525        HALDEBUG(ah, HAL_DEBUG_CHANNEL,
1526            "%s: cycle counter wrap. ExtBusy = 0\n", __func__);
1527    } else {
1528        u_int32_t cycle_delta = cycle_count - ahp->ah_cycle_count;
1529        u_int32_t ext_busy_delta = ext_busy - ahp->ah_ext_busy;
1530
1531        /*
1532         * Compute extension channel busy percentage
1533         * Overflow condition: 0xFFFFFFFF < ext_busy_delta * 100
1534         * Underflow condition/Divide-by-zero: check that cycle_delta >> 7 != 0
1535         * Will never happen, since (ext_busy_delta < cycle_delta) always,
1536         * and shift necessitated by large ext_busy_delta.
1537         * Due to timing difference to read the registers and counter overflow,
1538         * it may still happen that cycle_delta >> 7 = 0.
1539         *
1540         */
1541        if (cycle_delta) {
1542            if (ext_busy_delta > OVERFLOW_LIMIT) {
1543                if (cycle_delta >> 7) {
1544                    busy = ((ext_busy_delta >> 7) * 100) / (cycle_delta  >> 7);
1545                } else {
1546                    busyper = ERROR_CODE;
1547                }
1548            } else {
1549                busy = (ext_busy_delta * 100) / cycle_delta;
1550            }
1551        } else {
1552            busyper = ERROR_CODE;
1553        }
1554
1555        if (busy > 100) {
1556            busy = 100;
1557        }
1558        if ( busyper != ERROR_CODE ) {
1559            busyper = busy;
1560        }
1561    }
1562
1563    ahp->ah_cycle_count = cycle_count;
1564    ahp->ah_ctl_busy = ctl_busy;
1565    ahp->ah_ext_busy = ext_busy;
1566
1567    return busyper;
1568#undef OVERFLOW_LIMIT
1569#undef ERROR_CODE
1570}
1571
1572/* BB Panic Watchdog declarations */
1573#define HAL_BB_PANIC_WD_HT20_FACTOR         74  /* 0.74 */
1574#define HAL_BB_PANIC_WD_HT40_FACTOR         37  /* 0.37 */
1575
1576void
1577ar9300_config_bb_panic_watchdog(struct ath_hal *ah)
1578{
1579#define HAL_BB_PANIC_IDLE_TIME_OUT 0x0a8c0000
1580    HAL_CHANNEL_INTERNAL *chan = AH_PRIVATE(ah)->ah_curchan;
1581    u_int32_t idle_tmo_ms = AH_PRIVATE(ah)->ah_bb_panic_timeout_ms;
1582    u_int32_t val, idle_count;
1583
1584    if (idle_tmo_ms != 0) {
1585        /* enable IRQ, disable chip-reset for BB panic */
1586        val = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2) &
1587            AR_PHY_BB_PANIC_CNTL2_MASK;
1588        OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_2,
1589            (val | AR_PHY_BB_PANIC_IRQ_ENABLE) & ~AR_PHY_BB_PANIC_RST_ENABLE);
1590        /* bound limit to 10 secs */
1591        if (idle_tmo_ms > 10000) {
1592            idle_tmo_ms = 10000;
1593        }
1594        if (chan != AH_NULL && IS_CHAN_HT40(chan)) {
1595            idle_count = (100 * idle_tmo_ms) / HAL_BB_PANIC_WD_HT40_FACTOR;
1596        } else {
1597            idle_count = (100 * idle_tmo_ms) / HAL_BB_PANIC_WD_HT20_FACTOR;
1598        }
1599        /*
1600         * enable panic in non-IDLE mode,
1601         * disable in IDLE mode,
1602         * set idle time-out
1603         */
1604
1605        // EV92527 : Enable IDLE mode panic
1606
1607        OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_1,
1608                     AR_PHY_BB_PANIC_NON_IDLE_ENABLE |
1609                     AR_PHY_BB_PANIC_IDLE_ENABLE |
1610                     (AR_PHY_BB_PANIC_IDLE_MASK & HAL_BB_PANIC_IDLE_TIME_OUT) |
1611                     (AR_PHY_BB_PANIC_NON_IDLE_MASK & (idle_count << 2)));
1612    } else {
1613        /* disable IRQ, disable chip-reset for BB panic */
1614        OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_2,
1615            OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2) &
1616            ~(AR_PHY_BB_PANIC_RST_ENABLE | AR_PHY_BB_PANIC_IRQ_ENABLE));
1617        /* disable panic in non-IDLE mode, disable in IDLE mode */
1618        OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_1,
1619            OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_1) &
1620            ~(AR_PHY_BB_PANIC_NON_IDLE_ENABLE | AR_PHY_BB_PANIC_IDLE_ENABLE));
1621    }
1622
1623    HALDEBUG(ah, HAL_DEBUG_RF_PARAM, "%s: %s BB Panic Watchdog tmo=%ums\n",
1624             __func__, idle_tmo_ms ? "Enabled" : "Disabled", idle_tmo_ms);
1625#undef HAL_BB_PANIC_IDLE_TIME_OUT
1626}
1627
1628
1629void
1630ar9300_handle_bb_panic(struct ath_hal *ah)
1631{
1632    u_int32_t status;
1633    /*
1634     * we want to avoid printing in ISR context so we save
1635     * panic watchdog status to be printed later in DPC context
1636     */
1637    AH_PRIVATE(ah)->ah_bb_panic_last_status = status =
1638        OS_REG_READ(ah, AR_PHY_PANIC_WD_STATUS);
1639    /*
1640     * panic watchdog timer should reset on status read
1641     * but to make sure we write 0 to the watchdog status bit
1642     */
1643    OS_REG_WRITE(ah, AR_PHY_PANIC_WD_STATUS, status & ~AR_PHY_BB_WD_STATUS_CLR);
1644}
1645
1646int
1647ar9300_get_bb_panic_info(struct ath_hal *ah, struct hal_bb_panic_info *bb_panic)
1648{
1649    bb_panic->status = AH_PRIVATE(ah)->ah_bb_panic_last_status;
1650
1651    /*
1652     * For signature 04000539 do not print anything.
1653     * This is a very common occurence as a compromise between
1654     * BB Panic and AH_FALSE detects (EV71009). It indicates
1655     * radar hang, which can be cleared by reprogramming
1656     * radar related register and does not requre a chip reset
1657     */
1658
1659    /* Suppress BB Status mesg following signature */
1660    switch (bb_panic->status) {
1661		case 0x04000539:
1662		case 0x04008009:
1663		case 0x04000b09:
1664		case 0x1300000a:
1665        return -1;
1666    }
1667
1668    bb_panic->tsf = ar9300_get_tsf32(ah);
1669    bb_panic->wd = MS(bb_panic->status, AR_PHY_BB_WD_STATUS);
1670    bb_panic->det = MS(bb_panic->status, AR_PHY_BB_WD_DET_HANG);
1671    bb_panic->rdar = MS(bb_panic->status, AR_PHY_BB_WD_RADAR_SM);
1672    bb_panic->r_odfm = MS(bb_panic->status, AR_PHY_BB_WD_RX_OFDM_SM);
1673    bb_panic->r_cck = MS(bb_panic->status, AR_PHY_BB_WD_RX_CCK_SM);
1674    bb_panic->t_odfm = MS(bb_panic->status, AR_PHY_BB_WD_TX_OFDM_SM);
1675    bb_panic->t_cck = MS(bb_panic->status, AR_PHY_BB_WD_TX_CCK_SM);
1676    bb_panic->agc = MS(bb_panic->status, AR_PHY_BB_WD_AGC_SM);
1677    bb_panic->src = MS(bb_panic->status, AR_PHY_BB_WD_SRCH_SM);
1678    bb_panic->phy_panic_wd_ctl1 = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_1);
1679    bb_panic->phy_panic_wd_ctl2 = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2);
1680    bb_panic->phy_gen_ctrl = OS_REG_READ(ah, AR_PHY_GEN_CTRL);
1681    bb_panic->rxc_pcnt = bb_panic->rxf_pcnt = bb_panic->txf_pcnt = 0;
1682    bb_panic->cycles = ar9300_get_mib_cycle_counts_pct(ah,
1683                                        &bb_panic->rxc_pcnt,
1684                                        &bb_panic->rxf_pcnt,
1685                                        &bb_panic->txf_pcnt);
1686
1687    if (AH_PRIVATE(ah)->ah_config.ath_hal_show_bb_panic) {
1688        ath_hal_printf(ah, "\n==== BB update: BB status=0x%08x, "
1689            "tsf=0x%08x ====\n", bb_panic->status, bb_panic->tsf);
1690        ath_hal_printf(ah, "** BB state: wd=%u det=%u rdar=%u rOFDM=%d "
1691            "rCCK=%u tOFDM=%u tCCK=%u agc=%u src=%u **\n",
1692            bb_panic->wd, bb_panic->det, bb_panic->rdar,
1693            bb_panic->r_odfm, bb_panic->r_cck, bb_panic->t_odfm,
1694            bb_panic->t_cck, bb_panic->agc, bb_panic->src);
1695        ath_hal_printf(ah, "** BB WD cntl: cntl1=0x%08x cntl2=0x%08x **\n",
1696            bb_panic->phy_panic_wd_ctl1, bb_panic->phy_panic_wd_ctl2);
1697        ath_hal_printf(ah, "** BB mode: BB_gen_controls=0x%08x **\n",
1698            bb_panic->phy_gen_ctrl);
1699        if (bb_panic->cycles) {
1700            ath_hal_printf(ah, "** BB busy times: rx_clear=%d%%, "
1701                "rx_frame=%d%%, tx_frame=%d%% **\n", bb_panic->rxc_pcnt,
1702                bb_panic->rxf_pcnt, bb_panic->txf_pcnt);
1703        }
1704        ath_hal_printf(ah, "==== BB update: done ====\n\n");
1705    }
1706
1707    return 0; //The returned data will be stored for athstats to retrieve it
1708}
1709
1710/* set the reason for HAL reset */
1711void
1712ar9300_set_hal_reset_reason(struct ath_hal *ah, u_int8_t resetreason)
1713{
1714    AH_PRIVATE(ah)->ah_reset_reason = resetreason;
1715}
1716
1717/*
1718 * Configure 20/40 operation
1719 *
1720 * 20/40 = joint rx clear (control and extension)
1721 * 20    = rx clear (control)
1722 *
1723 * - NOTE: must stop MAC (tx) and requeue 40 MHz packets as 20 MHz
1724 *         when changing from 20/40 => 20 only
1725 */
1726void
1727ar9300_set_11n_mac2040(struct ath_hal *ah, HAL_HT_MACMODE mode)
1728{
1729    u_int32_t macmode;
1730
1731    /* Configure MAC for 20/40 operation */
1732    if (mode == HAL_HT_MACMODE_2040 &&
1733        !AH_PRIVATE(ah)->ah_config.ath_hal_cwm_ignore_ext_cca) {
1734        macmode = AR_2040_JOINED_RX_CLEAR;
1735    } else {
1736        macmode = 0;
1737    }
1738    OS_REG_WRITE(ah, AR_2040_MODE, macmode);
1739}
1740
1741/*
1742 * Get Rx clear (control/extension channel)
1743 *
1744 * Returns active low (busy) for ctrl/ext channel
1745 * Owl 2.0
1746 */
1747HAL_HT_RXCLEAR
1748ar9300_get_11n_rx_clear(struct ath_hal *ah)
1749{
1750    HAL_HT_RXCLEAR rxclear = 0;
1751    u_int32_t val;
1752
1753    val = OS_REG_READ(ah, AR_DIAG_SW);
1754
1755    /* control channel */
1756    if (val & AR_DIAG_RX_CLEAR_CTL_LOW) {
1757        rxclear |= HAL_RX_CLEAR_CTL_LOW;
1758    }
1759    /* extension channel */
1760    if (val & AR_DIAG_RX_CLEAR_EXT_LOW) {
1761        rxclear |= HAL_RX_CLEAR_EXT_LOW;
1762    }
1763    return rxclear;
1764}
1765
1766/*
1767 * Set Rx clear (control/extension channel)
1768 *
1769 * Useful for forcing the channel to appear busy for
1770 * debugging/diagnostics
1771 * Owl 2.0
1772 */
1773void
1774ar9300_set_11n_rx_clear(struct ath_hal *ah, HAL_HT_RXCLEAR rxclear)
1775{
1776    /* control channel */
1777    if (rxclear & HAL_RX_CLEAR_CTL_LOW) {
1778        OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_CTL_LOW);
1779    } else {
1780        OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_CTL_LOW);
1781    }
1782    /* extension channel */
1783    if (rxclear & HAL_RX_CLEAR_EXT_LOW) {
1784        OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_EXT_LOW);
1785    } else {
1786        OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_EXT_LOW);
1787    }
1788}
1789
1790
1791/*
1792 * HAL support code for force ppm tracking workaround.
1793 */
1794
1795u_int32_t
1796ar9300_ppm_get_rssi_dump(struct ath_hal *ah)
1797{
1798    u_int32_t retval;
1799    u_int32_t off1;
1800    u_int32_t off2;
1801
1802    if (OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) & AR_PHY_SWAP_ALT_CHAIN) {
1803        off1 = 0x2000;
1804        off2 = 0x1000;
1805    } else {
1806        off1 = 0x1000;
1807        off2 = 0x2000;
1808    }
1809
1810    retval = ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0       )) << 0) |
1811             ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0 + off1)) << 8) |
1812             ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0 + off2)) << 16);
1813
1814    return retval;
1815}
1816
1817u_int32_t
1818ar9300_ppm_force(struct ath_hal *ah)
1819{
1820    u_int32_t data_fine;
1821    u_int32_t data4;
1822    //u_int32_t off1;
1823    //u_int32_t off2;
1824    HAL_BOOL signed_val = AH_FALSE;
1825
1826//    if (OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) & AR_PHY_SWAP_ALT_CHAIN) {
1827//        off1 = 0x2000;
1828//        off2 = 0x1000;
1829//    } else {
1830//        off1 = 0x1000;
1831//        off2 = 0x2000;
1832//    }
1833    data_fine =
1834        AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK &
1835        OS_REG_READ(ah, AR_PHY_CHNINFO_GAINDIFF);
1836
1837    /*
1838     * bit [11-0] is new ppm value. bit 11 is the signed bit.
1839     * So check value from bit[10:0].
1840     * Now get the abs val of the ppm value read in bit[0:11].
1841     * After that do bound check on abs value.
1842     * if value is off limit, CAP the value and and restore signed bit.
1843     */
1844    if (data_fine & AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_SIGNED_BIT)
1845    {
1846        /* get the positive value */
1847        data_fine = (~data_fine + 1) & AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK;
1848        signed_val = AH_TRUE;
1849    }
1850    if (data_fine > AR_PHY_CHAN_INFO_GAIN_DIFF_UPPER_LIMIT)
1851    {
1852        HALDEBUG(ah, HAL_DEBUG_REG_IO,
1853            "%s Correcting ppm out of range %x\n",
1854            __func__, (data_fine & 0x7ff));
1855        data_fine = AR_PHY_CHAN_INFO_GAIN_DIFF_UPPER_LIMIT;
1856    }
1857    /*
1858     * Restore signed value if changed above.
1859     * Use typecast to avoid compilation errors
1860     */
1861    if (signed_val) {
1862        data_fine = (-(int32_t)data_fine) &
1863            AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK;
1864    }
1865
1866    /* write value */
1867    data4 = OS_REG_READ(ah, AR_PHY_TIMING2) &
1868        ~(AR_PHY_TIMING2_USE_FORCE_PPM | AR_PHY_TIMING2_FORCE_PPM_VAL);
1869    OS_REG_WRITE(ah, AR_PHY_TIMING2,
1870        data4 | data_fine | AR_PHY_TIMING2_USE_FORCE_PPM);
1871
1872    return data_fine;
1873}
1874
1875void
1876ar9300_ppm_un_force(struct ath_hal *ah)
1877{
1878    u_int32_t data4;
1879
1880    data4 = OS_REG_READ(ah, AR_PHY_TIMING2) & ~AR_PHY_TIMING2_USE_FORCE_PPM;
1881    OS_REG_WRITE(ah, AR_PHY_TIMING2, data4);
1882}
1883
1884u_int32_t
1885ar9300_ppm_arm_trigger(struct ath_hal *ah)
1886{
1887    u_int32_t val;
1888    u_int32_t ret;
1889
1890    val = OS_REG_READ(ah, AR_PHY_CHAN_INFO_MEMORY);
1891    ret = OS_REG_READ(ah, AR_TSF_L32);
1892    OS_REG_WRITE(ah, AR_PHY_CHAN_INFO_MEMORY,
1893        val | AR_PHY_CHAN_INFO_MEMORY_CAPTURE_MASK);
1894
1895    /* return low word of TSF at arm time */
1896    return ret;
1897}
1898
1899int
1900ar9300_ppm_get_trigger(struct ath_hal *ah)
1901{
1902    if (OS_REG_READ(ah, AR_PHY_CHAN_INFO_MEMORY) &
1903        AR_PHY_CHAN_INFO_MEMORY_CAPTURE_MASK)
1904    {
1905        /* has not triggered yet, return AH_FALSE */
1906        return 0;
1907    }
1908
1909    /* else triggered, return AH_TRUE */
1910    return 1;
1911}
1912
1913void
1914ar9300_mark_phy_inactive(struct ath_hal *ah)
1915{
1916    OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1917}
1918
1919/* DEBUG */
1920u_int32_t
1921ar9300_ppm_get_force_state(struct ath_hal *ah)
1922{
1923    return
1924        OS_REG_READ(ah, AR_PHY_TIMING2) &
1925        (AR_PHY_TIMING2_USE_FORCE_PPM | AR_PHY_TIMING2_FORCE_PPM_VAL);
1926}
1927
1928/*
1929 * Return the Cycle counts for rx_frame, rx_clear, and tx_frame
1930 */
1931void
1932ar9300_get_mib_cycle_counts(struct ath_hal *ah, HAL_COUNTERS* p_cnts)
1933{
1934    p_cnts->tx_frame_count = OS_REG_READ(ah, AR_TFCNT);
1935    p_cnts->rx_frame_count = OS_REG_READ(ah, AR_RFCNT);
1936    p_cnts->rx_clear_count = OS_REG_READ(ah, AR_RCCNT);
1937    p_cnts->cycle_count   = OS_REG_READ(ah, AR_CCCNT);
1938    p_cnts->is_tx_active   = (OS_REG_READ(ah, AR_TFCNT) ==
1939                           p_cnts->tx_frame_count) ? AH_FALSE : AH_TRUE;
1940    p_cnts->is_rx_active   = (OS_REG_READ(ah, AR_RFCNT) ==
1941                           p_cnts->rx_frame_count) ? AH_FALSE : AH_TRUE;
1942}
1943
1944void
1945ar9300_clear_mib_counters(struct ath_hal *ah)
1946{
1947    u_int32_t reg_val;
1948
1949    reg_val = OS_REG_READ(ah, AR_MIBC);
1950    OS_REG_WRITE(ah, AR_MIBC, reg_val | AR_MIBC_CMC);
1951    OS_REG_WRITE(ah, AR_MIBC, reg_val & ~AR_MIBC_CMC);
1952}
1953
1954
1955/* Enable or Disable RIFS Rx capability as part of SW WAR for Bug 31602 */
1956HAL_BOOL
1957ar9300_set_rifs_delay(struct ath_hal *ah, HAL_BOOL enable)
1958{
1959    struct ath_hal_9300 *ahp = AH9300(ah);
1960    HAL_BOOL is_chan_2g = IS_CHAN_2GHZ(AH_PRIVATE(ah)->ah_curchan);
1961    u_int32_t tmp = 0;
1962
1963    if (enable) {
1964        if (ahp->ah_rifs_enabled == AH_TRUE) {
1965            return AH_TRUE;
1966        }
1967
1968        OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, ahp->ah_rifs_reg[0]);
1969        OS_REG_WRITE(ah, AR_PHY_RIFS_SRCH,
1970                     ahp->ah_rifs_reg[1]);
1971
1972        ahp->ah_rifs_enabled = AH_TRUE;
1973        OS_MEMZERO(ahp->ah_rifs_reg, sizeof(ahp->ah_rifs_reg));
1974    } else {
1975        if (ahp->ah_rifs_enabled == AH_TRUE) {
1976            ahp->ah_rifs_reg[0] = OS_REG_READ(ah,
1977                                              AR_PHY_SEARCH_START_DELAY);
1978            ahp->ah_rifs_reg[1] = OS_REG_READ(ah, AR_PHY_RIFS_SRCH);
1979        }
1980        /* Change rifs init delay to 0 */
1981        OS_REG_WRITE(ah, AR_PHY_RIFS_SRCH,
1982                     (ahp->ah_rifs_reg[1] & ~(AR_PHY_RIFS_INIT_DELAY)));
1983        tmp = 0xfffff000 & OS_REG_READ(ah, AR_PHY_SEARCH_START_DELAY);
1984        if (is_chan_2g) {
1985            if (IS_CHAN_HT40(AH_PRIVATE(ah)->ah_curchan)) {
1986                OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 500);
1987            } else { /* Sowl 2G HT-20 default is 0x134 for search start delay */
1988                OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 250);
1989            }
1990        } else {
1991            if (IS_CHAN_HT40(AH_PRIVATE(ah)->ah_curchan)) {
1992                OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 0x370);
1993            } else { /* Sowl 5G HT-20 default is 0x1b8 for search start delay */
1994                OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 0x1b8);
1995            }
1996        }
1997
1998        ahp->ah_rifs_enabled = AH_FALSE;
1999    }
2000    return AH_TRUE;
2001
2002} /* ar9300_set_rifs_delay () */
2003
2004/* Set the current RIFS Rx setting */
2005HAL_BOOL
2006ar9300_set_11n_rx_rifs(struct ath_hal *ah, HAL_BOOL enable)
2007{
2008    /* Non-Owl 11n chips */
2009    if ((ath_hal_getcapability(ah, HAL_CAP_RIFS_RX, 0, AH_NULL) == HAL_OK)) {
2010        if (ar9300_get_capability(ah, HAL_CAP_LDPCWAR, 0, AH_NULL) == HAL_OK) {
2011            return ar9300_set_rifs_delay(ah, enable);
2012        }
2013        return AH_FALSE;
2014    }
2015
2016    return AH_TRUE;
2017} /* ar9300_set_11n_rx_rifs () */
2018
2019static hal_mac_hangs_t
2020ar9300_compare_dbg_hang(struct ath_hal *ah, mac_dbg_regs_t mac_dbg,
2021  hal_mac_hang_check_t hang_check, hal_mac_hangs_t hangs, u_int8_t *dcu_chain)
2022{
2023    int i = 0;
2024    hal_mac_hangs_t found_hangs = 0;
2025
2026    if (hangs & dcu_chain_state) {
2027        for (i = 0; i < 6; i++) {
2028            if (((mac_dbg.dma_dbg_4 >> (5 * i)) & 0x1f) ==
2029                 hang_check.dcu_chain_state)
2030            {
2031                found_hangs |= dcu_chain_state;
2032                *dcu_chain = i;
2033            }
2034        }
2035        for (i = 0; i < 4; i++) {
2036            if (((mac_dbg.dma_dbg_5 >> (5 * i)) & 0x1f) ==
2037                  hang_check.dcu_chain_state)
2038            {
2039                found_hangs |= dcu_chain_state;
2040                *dcu_chain = i + 6;
2041            }
2042        }
2043    }
2044
2045    if (hangs & dcu_complete_state) {
2046        if ((mac_dbg.dma_dbg_6 & 0x3) == hang_check.dcu_complete_state) {
2047            found_hangs |= dcu_complete_state;
2048        }
2049    }
2050
2051    return found_hangs;
2052
2053} /* end - ar9300_compare_dbg_hang */
2054
2055#define NUM_STATUS_READS 50
2056HAL_BOOL
2057ar9300_detect_mac_hang(struct ath_hal *ah)
2058{
2059    struct ath_hal_9300 *ahp = AH9300(ah);
2060    mac_dbg_regs_t mac_dbg;
2061    hal_mac_hang_check_t hang_sig1_val = {0x6, 0x1, 0, 0, 0, 0, 0, 0};
2062    hal_mac_hangs_t      hang_sig1 = (dcu_chain_state | dcu_complete_state);
2063    int i = 0;
2064    u_int8_t dcu_chain = 0, current_dcu_chain_state, shift_val;
2065
2066    if (!(ahp->ah_hang_wars & HAL_MAC_HANG_WAR)) {
2067        return AH_FALSE;
2068    }
2069
2070    OS_MEMZERO(&mac_dbg, sizeof(mac_dbg));
2071
2072    mac_dbg.dma_dbg_4 = OS_REG_READ(ah, AR_DMADBG_4);
2073    mac_dbg.dma_dbg_5 = OS_REG_READ(ah, AR_DMADBG_5);
2074    mac_dbg.dma_dbg_6 = OS_REG_READ(ah, AR_DMADBG_6);
2075
2076    HALDEBUG(ah, HAL_DEBUG_DFS, " dma regs: %X %X %X \n",
2077            mac_dbg.dma_dbg_4, mac_dbg.dma_dbg_5,
2078            mac_dbg.dma_dbg_6);
2079
2080    if (hang_sig1 !=
2081            ar9300_compare_dbg_hang(ah, mac_dbg,
2082                 hang_sig1_val, hang_sig1, &dcu_chain))
2083    {
2084        HALDEBUG(ah, HAL_DEBUG_DFS, " hang sig1 not found \n");
2085        return AH_FALSE;
2086    }
2087
2088    shift_val = (dcu_chain >= 6) ? (dcu_chain-6) : (dcu_chain);
2089    shift_val *= 5;
2090
2091    for (i = 1; i <= NUM_STATUS_READS; i++) {
2092        if (dcu_chain < 6) {
2093            mac_dbg.dma_dbg_4 = OS_REG_READ(ah, AR_DMADBG_4);
2094            current_dcu_chain_state =
2095                     ((mac_dbg.dma_dbg_4 >> shift_val) & 0x1f);
2096        } else {
2097            mac_dbg.dma_dbg_5 = OS_REG_READ(ah, AR_DMADBG_5);
2098            current_dcu_chain_state = ((mac_dbg.dma_dbg_5 >> shift_val) & 0x1f);
2099        }
2100        mac_dbg.dma_dbg_6 = OS_REG_READ(ah, AR_DMADBG_6);
2101
2102        if (((mac_dbg.dma_dbg_6 & 0x3) != hang_sig1_val.dcu_complete_state)
2103            || (current_dcu_chain_state != hang_sig1_val.dcu_chain_state)) {
2104            return AH_FALSE;
2105        }
2106    }
2107    HALDEBUG(ah, HAL_DEBUG_DFS, "%s sig5count=%d sig6count=%d ", __func__,
2108             ahp->ah_hang[MAC_HANG_SIG1], ahp->ah_hang[MAC_HANG_SIG2]);
2109    ahp->ah_hang[MAC_HANG_SIG1]++;
2110    return AH_TRUE;
2111
2112} /* end - ar9300_detect_mac_hang */
2113
2114/* Determine if the baseband is hung by reading the Observation Bus Register */
2115HAL_BOOL
2116ar9300_detect_bb_hang(struct ath_hal *ah)
2117{
2118#define N(a) (sizeof(a) / sizeof(a[0]))
2119    struct ath_hal_9300 *ahp = AH9300(ah);
2120    u_int32_t hang_sig = 0;
2121    int i = 0;
2122    /* Check the PCU Observation Bus 1 register (0x806c) NUM_STATUS_READS times
2123     *
2124     * 4 known BB hang signatures -
2125     * [1] bits 8,9,11 are 0. State machine state (bits 25-31) is 0x1E
2126     * [2] bits 8,9 are 1, bit 11 is 0. State machine state (bits 25-31) is 0x52
2127     * [3] bits 8,9 are 1, bit 11 is 0. State machine state (bits 25-31) is 0x18
2128     * [4] bit 10 is 1, bit 11 is 0. WEP state (bits 12-17) is 0x2,
2129     *     Rx State (bits 20-24) is 0x7.
2130     */
2131    hal_hw_hang_check_t hang_list [] =
2132    {
2133     /* Offset        Reg Value   Reg Mask    Hang Offset */
2134       {AR_OBS_BUS_1, 0x1E000000, 0x7E000B00, BB_HANG_SIG1},
2135       {AR_OBS_BUS_1, 0x52000B00, 0x7E000B00, BB_HANG_SIG2},
2136       {AR_OBS_BUS_1, 0x18000B00, 0x7E000B00, BB_HANG_SIG3},
2137       {AR_OBS_BUS_1, 0x00702400, 0x7E7FFFEF, BB_HANG_SIG4}
2138    };
2139
2140    if (!(ahp->ah_hang_wars & (HAL_RIFS_BB_HANG_WAR |
2141                               HAL_DFS_BB_HANG_WAR |
2142                               HAL_RX_STUCK_LOW_BB_HANG_WAR))) {
2143        return AH_FALSE;
2144    }
2145
2146    hang_sig = OS_REG_READ(ah, AR_OBS_BUS_1);
2147    for (i = 1; i <= NUM_STATUS_READS; i++) {
2148        if (hang_sig != OS_REG_READ(ah, AR_OBS_BUS_1)) {
2149            return AH_FALSE;
2150        }
2151    }
2152
2153    for (i = 0; i < N(hang_list); i++) {
2154        if ((hang_sig & hang_list[i].hang_mask) == hang_list[i].hang_val) {
2155            ahp->ah_hang[hang_list[i].hang_offset]++;
2156            HALDEBUG(ah, HAL_DEBUG_DFS, "%s sig1count=%d sig2count=%d "
2157                     "sig3count=%d sig4count=%d\n", __func__,
2158                     ahp->ah_hang[BB_HANG_SIG1], ahp->ah_hang[BB_HANG_SIG2],
2159                     ahp->ah_hang[BB_HANG_SIG3], ahp->ah_hang[BB_HANG_SIG4]);
2160            return AH_TRUE;
2161        }
2162    }
2163
2164    HALDEBUG(ah, HAL_DEBUG_DFS, "%s Found an unknown BB hang signature! "
2165                              "<0x806c>=0x%x\n", __func__, hang_sig);
2166
2167    return AH_FALSE;
2168
2169#undef N
2170} /* end - ar9300_detect_bb_hang () */
2171
2172#undef NUM_STATUS_READS
2173
2174HAL_STATUS
2175ar9300_select_ant_config(struct ath_hal *ah, u_int32_t cfg)
2176{
2177    struct ath_hal_9300     *ahp = AH9300(ah);
2178    HAL_CHANNEL_INTERNAL    *chan = AH_PRIVATE(ah)->ah_curchan;
2179    const HAL_CAPABILITIES  *p_cap = &AH_PRIVATE(ah)->ah_caps;
2180    u_int16_t               ant_config;
2181    u_int32_t               hal_num_ant_config;
2182
2183    hal_num_ant_config = IS_CHAN_2GHZ(chan) ?
2184        p_cap->hal_num_ant_cfg_2ghz : p_cap->hal_num_ant_cfg_5ghz;
2185
2186    if (cfg < hal_num_ant_config) {
2187        if (HAL_OK == ar9300_eeprom_get_ant_cfg(ahp, chan, cfg, &ant_config)) {
2188            OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config);
2189            return HAL_OK;
2190        }
2191    }
2192
2193    return HAL_EINVAL;
2194}
2195
2196/*
2197 * Functions to get/set DCS mode
2198 */
2199void
2200ar9300_set_dcs_mode(struct ath_hal *ah, u_int32_t mode)
2201{
2202    AH_PRIVATE(ah)->ah_dcs_enable = mode;
2203}
2204
2205u_int32_t
2206ar9300_get_dcs_mode(struct ath_hal *ah)
2207{
2208    return AH_PRIVATE(ah)->ah_dcs_enable;
2209}
2210
2211#ifdef ATH_BT_COEX
2212void
2213ar9300_set_bt_coex_info(struct ath_hal *ah, HAL_BT_COEX_INFO *btinfo)
2214{
2215    struct ath_hal_9300 *ahp = AH9300(ah);
2216
2217    ahp->ah_bt_module = btinfo->bt_module;
2218    ahp->ah_bt_coex_config_type = btinfo->bt_coex_config;
2219    ahp->ah_bt_active_gpio_select = btinfo->bt_gpio_bt_active;
2220    ahp->ah_bt_priority_gpio_select = btinfo->bt_gpio_bt_priority;
2221    ahp->ah_wlan_active_gpio_select = btinfo->bt_gpio_wlan_active;
2222    ahp->ah_bt_active_polarity = btinfo->bt_active_polarity;
2223    ahp->ah_bt_coex_single_ant = btinfo->bt_single_ant;
2224    ahp->ah_bt_wlan_isolation = btinfo->bt_isolation;
2225}
2226
2227void
2228ar9300_bt_coex_config(struct ath_hal *ah, HAL_BT_COEX_CONFIG *btconf)
2229{
2230    struct ath_hal_9300 *ahp = AH9300(ah);
2231    HAL_BOOL rx_clear_polarity;
2232
2233    /*
2234     * For Kiwi and Osprey, the polarity of rx_clear is active high.
2235     * The bt_rxclear_polarity flag from ath_dev needs to be inverted.
2236     */
2237    rx_clear_polarity = !btconf->bt_rxclear_polarity;
2238
2239    ahp->ah_bt_coex_mode = (ahp->ah_bt_coex_mode & AR_BT_QCU_THRESH) |
2240        SM(btconf->bt_time_extend, AR_BT_TIME_EXTEND) |
2241        SM(btconf->bt_txstate_extend, AR_BT_TXSTATE_EXTEND) |
2242        SM(btconf->bt_txframe_extend, AR_BT_TX_FRAME_EXTEND) |
2243        SM(btconf->bt_mode, AR_BT_MODE) |
2244        SM(btconf->bt_quiet_collision, AR_BT_QUIET) |
2245        SM(rx_clear_polarity, AR_BT_RX_CLEAR_POLARITY) |
2246        SM(btconf->bt_priority_time, AR_BT_PRIORITY_TIME) |
2247        SM(btconf->bt_first_slot_time, AR_BT_FIRST_SLOT_TIME);
2248
2249    ahp->ah_bt_coex_mode2 |= SM(btconf->bt_hold_rxclear, AR_BT_HOLD_RX_CLEAR);
2250
2251    if (ahp->ah_bt_coex_single_ant == AH_FALSE) {
2252        /* Enable ACK to go out even though BT has higher priority. */
2253        ahp->ah_bt_coex_mode2 |= AR_BT_DISABLE_BT_ANT;
2254    }
2255}
2256
2257void
2258ar9300_bt_coex_set_qcu_thresh(struct ath_hal *ah, int qnum)
2259{
2260    struct ath_hal_9300 *ahp = AH9300(ah);
2261
2262    /* clear the old value, then set the new value */
2263    ahp->ah_bt_coex_mode &= ~AR_BT_QCU_THRESH;
2264    ahp->ah_bt_coex_mode |= SM(qnum, AR_BT_QCU_THRESH);
2265}
2266
2267void
2268ar9300_bt_coex_set_weights(struct ath_hal *ah, u_int32_t stomp_type)
2269{
2270    struct ath_hal_9300 *ahp = AH9300(ah);
2271
2272    ahp->ah_bt_coex_bt_weight[0] = AR9300_BT_WGHT;
2273    ahp->ah_bt_coex_bt_weight[1] = AR9300_BT_WGHT;
2274    ahp->ah_bt_coex_bt_weight[2] = AR9300_BT_WGHT;
2275    ahp->ah_bt_coex_bt_weight[3] = AR9300_BT_WGHT;
2276
2277    switch (stomp_type) {
2278    case HAL_BT_COEX_STOMP_ALL:
2279        ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_ALL_WLAN_WGHT0;
2280        ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_ALL_WLAN_WGHT1;
2281        break;
2282    case HAL_BT_COEX_STOMP_LOW:
2283        ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_LOW_WLAN_WGHT0;
2284        ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_LOW_WLAN_WGHT1;
2285        break;
2286    case HAL_BT_COEX_STOMP_ALL_FORCE:
2287        ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_ALL_FORCE_WLAN_WGHT0;
2288        ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_ALL_FORCE_WLAN_WGHT1;
2289        break;
2290    case HAL_BT_COEX_STOMP_LOW_FORCE:
2291        ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_LOW_FORCE_WLAN_WGHT0;
2292        ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_LOW_FORCE_WLAN_WGHT1;
2293        break;
2294    case HAL_BT_COEX_STOMP_NONE:
2295    case HAL_BT_COEX_NO_STOMP:
2296        ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_NONE_WLAN_WGHT0;
2297        ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_NONE_WLAN_WGHT1;
2298        break;
2299    default:
2300        /* There is a force_weight from registry */
2301        ahp->ah_bt_coex_wlan_weight[0] = stomp_type;
2302        ahp->ah_bt_coex_wlan_weight[1] = stomp_type;
2303        break;
2304    }
2305}
2306
2307void
2308ar9300_bt_coex_setup_bmiss_thresh(struct ath_hal *ah, u_int32_t thresh)
2309{
2310    struct ath_hal_9300 *ahp = AH9300(ah);
2311
2312    /* clear the old value, then set the new value */
2313    ahp->ah_bt_coex_mode2 &= ~AR_BT_BCN_MISS_THRESH;
2314    ahp->ah_bt_coex_mode2 |= SM(thresh, AR_BT_BCN_MISS_THRESH);
2315}
2316
2317static void
2318ar9300_bt_coex_antenna_diversity(struct ath_hal *ah, u_int32_t value)
2319{
2320    struct ath_hal_9300 *ahp = AH9300(ah);
2321#if ATH_ANT_DIV_COMB
2322    struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
2323    HAL_CHANNEL *chan = (HAL_CHANNEL *) ahpriv->ah_curchan;
2324#endif
2325
2326    if (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_ANT_DIV_ALLOW)
2327    {
2328        if (ahp->ah_diversity_control == HAL_ANT_VARIABLE)
2329        {
2330            /* Config antenna diversity */
2331#if ATH_ANT_DIV_COMB
2332            ar9300_ant_ctrl_set_lna_div_use_bt_ant(ah, value, chan);
2333#endif
2334        }
2335    }
2336}
2337
2338
2339void
2340ar9300_bt_coex_set_parameter(struct ath_hal *ah, u_int32_t type,
2341    u_int32_t value)
2342{
2343    struct ath_hal_9300 *ahp = AH9300(ah);
2344    struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
2345
2346    switch (type) {
2347        case HAL_BT_COEX_SET_ACK_PWR:
2348            if (value) {
2349                ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_LOW_ACK_PWR;
2350            } else {
2351                ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_LOW_ACK_PWR;
2352            }
2353            ar9300_set_tx_power_limit(ah, ahpriv->ah_power_limit,
2354                ahpriv->ah_extra_txpow, 0);
2355            break;
2356
2357        case HAL_BT_COEX_ANTENNA_DIVERSITY:
2358            if (AR_SREV_POSEIDON(ah)) {
2359                ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_ANT_DIV_ALLOW;
2360                if (value) {
2361                    ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_ANT_DIV_ENABLE;
2362                }
2363                else {
2364                    ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_ANT_DIV_ENABLE;
2365                }
2366                ar9300_bt_coex_antenna_diversity(ah, value);
2367            }
2368            break;
2369        case HAL_BT_COEX_LOWER_TX_PWR:
2370            if (value) {
2371                ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_LOWER_TX_PWR;
2372            }
2373            else {
2374                ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_LOWER_TX_PWR;
2375            }
2376            ar9300_set_tx_power_limit(ah, ahpriv->ah_power_limit,
2377                                      ahpriv->ah_extra_txpow, 0);
2378            break;
2379#if ATH_SUPPORT_MCI
2380        case HAL_BT_COEX_MCI_MAX_TX_PWR:
2381            if ((ahpriv->ah_config.ath_hal_mci_config &
2382                 ATH_MCI_CONFIG_CONCUR_TX) == ATH_MCI_CONCUR_TX_SHARED_CHN)
2383            {
2384                if (value) {
2385                    ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR;
2386                    ahp->ah_mci_concur_tx_en = AH_TRUE;
2387                }
2388                else {
2389                    ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR;
2390                    ahp->ah_mci_concur_tx_en = AH_FALSE;
2391                }
2392                ar9300_set_tx_power_limit(ah, ahpriv->ah_power_limit,
2393                                          ahpriv->ah_extra_txpow, 0);
2394            }
2395            HALDEBUG(ah, HAL_DEBUG_BT_COEX, "(MCI) concur_tx_en = %d\n",
2396                     ahp->ah_mci_concur_tx_en);
2397            break;
2398        case HAL_BT_COEX_MCI_FTP_STOMP_RX:
2399            if (value) {
2400                ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_MCI_FTP_STOMP_RX;
2401            }
2402            else {
2403                ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_MCI_FTP_STOMP_RX;
2404            }
2405            break;
2406#endif
2407        default:
2408            break;
2409    }
2410}
2411
2412void
2413ar9300_bt_coex_disable(struct ath_hal *ah)
2414{
2415    struct ath_hal_9300 *ahp = AH9300(ah);
2416
2417    /* Always drive rx_clear_external output as 0 */
2418    ath_hal_gpio_cfg_output(ah, ahp->ah_wlan_active_gpio_select,
2419        HAL_GPIO_OUTPUT_MUX_AS_OUTPUT);
2420
2421    if (ahp->ah_bt_coex_single_ant == AH_TRUE) {
2422        OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
2423        OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0);
2424    }
2425
2426    OS_REG_WRITE(ah, AR_BT_COEX_MODE, AR_BT_QUIET | AR_BT_MODE);
2427    OS_REG_WRITE(ah, AR_BT_COEX_MODE2, 0);
2428    OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS0, 0);
2429    OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS1, 0);
2430    OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS0, 0);
2431    OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS1, 0);
2432    OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS2, 0);
2433    OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS3, 0);
2434
2435    ahp->ah_bt_coex_enabled = AH_FALSE;
2436}
2437
2438int
2439ar9300_bt_coex_enable(struct ath_hal *ah)
2440{
2441    struct ath_hal_9300 *ahp = AH9300(ah);
2442
2443    /* Program coex mode and weight registers to actually enable coex */
2444    OS_REG_WRITE(ah, AR_BT_COEX_MODE, ahp->ah_bt_coex_mode);
2445    OS_REG_WRITE(ah, AR_BT_COEX_MODE2, ahp->ah_bt_coex_mode2);
2446    OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS0, ahp->ah_bt_coex_wlan_weight[0]);
2447    OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS1, ahp->ah_bt_coex_wlan_weight[1]);
2448    OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS0, ahp->ah_bt_coex_bt_weight[0]);
2449    OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS1, ahp->ah_bt_coex_bt_weight[1]);
2450    OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS2, ahp->ah_bt_coex_bt_weight[2]);
2451    OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS3, ahp->ah_bt_coex_bt_weight[3]);
2452
2453    if (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_LOW_ACK_PWR) {
2454        OS_REG_WRITE(ah, AR_TPC, HAL_BT_COEX_LOW_ACK_POWER);
2455    } else {
2456        OS_REG_WRITE(ah, AR_TPC, HAL_BT_COEX_HIGH_ACK_POWER);
2457    }
2458
2459    OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
2460    if (ahp->ah_bt_coex_single_ant == AH_TRUE) {
2461        OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 1);
2462    } else {
2463        OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0);
2464    }
2465
2466    if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) {
2467        /* For 3-wire, configure the desired GPIO port for rx_clear */
2468        ath_hal_gpio_cfg_output(ah,
2469            ahp->ah_wlan_active_gpio_select,
2470            HAL_GPIO_OUTPUT_MUX_AS_WLAN_ACTIVE);
2471    }
2472    else if ((ahp->ah_bt_coex_config_type >= HAL_BT_COEX_CFG_2WIRE_2CH) &&
2473        (ahp->ah_bt_coex_config_type <= HAL_BT_COEX_CFG_2WIRE_CH0))
2474    {
2475        /* For 2-wire, configure the desired GPIO port for TX_FRAME output */
2476        ath_hal_gpio_cfg_output(ah,
2477            ahp->ah_wlan_active_gpio_select,
2478            HAL_GPIO_OUTPUT_MUX_AS_TX_FRAME);
2479    }
2480
2481    /*
2482     * Enable a weak pull down on BT_ACTIVE.
2483     * When BT device is disabled, BT_ACTIVE might be floating.
2484     */
2485    OS_REG_RMW(ah, AR_HOSTIF_REG(ah, AR_GPIO_PDPU),
2486        (AR_GPIO_PULL_DOWN << (ahp->ah_bt_active_gpio_select * 2)),
2487        (AR_GPIO_PDPU_OPTION << (ahp->ah_bt_active_gpio_select * 2)));
2488
2489    ahp->ah_bt_coex_enabled = AH_TRUE;
2490
2491    return 0;
2492}
2493
2494u_int32_t ar9300_get_bt_active_gpio(struct ath_hal *ah, u_int32_t reg)
2495{
2496    return 0;
2497}
2498
2499u_int32_t ar9300_get_wlan_active_gpio(struct ath_hal *ah, u_int32_t reg,u_int32_t bOn)
2500{
2501    return bOn;
2502}
2503
2504void
2505ar9300_init_bt_coex(struct ath_hal *ah)
2506{
2507    struct ath_hal_9300 *ahp = AH9300(ah);
2508
2509    if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) {
2510        OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2511                   (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_BB |
2512                    AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB));
2513
2514        /*
2515         * Set input mux for bt_prority_async and
2516         * bt_active_async to GPIO pins
2517         */
2518        OS_REG_RMW_FIELD(ah,
2519            AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2520            AR_GPIO_INPUT_MUX1_BT_ACTIVE,
2521            ahp->ah_bt_active_gpio_select);
2522        OS_REG_RMW_FIELD(ah,
2523            AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2524            AR_GPIO_INPUT_MUX1_BT_PRIORITY,
2525            ahp->ah_bt_priority_gpio_select);
2526
2527        /* Configure the desired GPIO ports for input */
2528        ath_hal_gpio_cfg_input(ah, ahp->ah_bt_active_gpio_select);
2529        ath_hal_gpio_cfg_input(ah, ahp->ah_bt_priority_gpio_select);
2530
2531        if (ahp->ah_bt_coex_enabled) {
2532            ar9300_bt_coex_enable(ah);
2533        } else {
2534            ar9300_bt_coex_disable(ah);
2535        }
2536    }
2537    else if ((ahp->ah_bt_coex_config_type >= HAL_BT_COEX_CFG_2WIRE_2CH) &&
2538        (ahp->ah_bt_coex_config_type <= HAL_BT_COEX_CFG_2WIRE_CH0))
2539    {
2540        /* 2-wire */
2541        if (ahp->ah_bt_coex_enabled) {
2542            /* Connect bt_active_async to baseband */
2543            OS_REG_CLR_BIT(ah,
2544                AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2545                (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
2546                 AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF));
2547            OS_REG_SET_BIT(ah,
2548                AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2549                AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
2550
2551            /*
2552             * Set input mux for bt_prority_async and
2553             * bt_active_async to GPIO pins
2554             */
2555            OS_REG_RMW_FIELD(ah,
2556                AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2557                AR_GPIO_INPUT_MUX1_BT_ACTIVE,
2558                ahp->ah_bt_active_gpio_select);
2559
2560            /* Configure the desired GPIO ports for input */
2561            ath_hal_gpio_cfg_input(ah, ahp->ah_bt_active_gpio_select);
2562
2563            /* Enable coexistence on initialization */
2564            ar9300_bt_coex_enable(ah);
2565        }
2566    }
2567#if ATH_SUPPORT_MCI
2568    else if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI) {
2569        if (ahp->ah_bt_coex_enabled) {
2570            ar9300_mci_bt_coex_enable(ah);
2571        }
2572        else {
2573            ar9300_mci_bt_coex_disable(ah);
2574        }
2575    }
2576#endif /* ATH_SUPPORT_MCI */
2577}
2578
2579#endif /* ATH_BT_COEX */
2580
2581HAL_STATUS ar9300_set_proxy_sta(struct ath_hal *ah, HAL_BOOL enable)
2582{
2583    u_int32_t val;
2584    int wasp_mm_rev;
2585
2586#define AR_SOC_RST_REVISION_ID      0xB8060090
2587#define REG_READ(_reg)              *((volatile u_int32_t *)(_reg))
2588    wasp_mm_rev = (REG_READ(AR_SOC_RST_REVISION_ID) &
2589            AR_SREV_REVISION_WASP_MINOR_MINOR_MASK) >>
2590            AR_SREV_REVISION_WASP_MINOR_MINOR_SHIFT;
2591#undef AR_SOC_RST_REVISION_ID
2592#undef REG_READ
2593
2594    /*
2595     * Azimuth (ProxySTA) Mode is only supported correctly by
2596     * Peacock or WASP 1.3.0.1 or later (hopefully) chips.
2597     *
2598     * Enable this feature for Scorpion at this time. The silicon
2599     * still needs to be validated.
2600     */
2601    if (!(AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_AR9580) &&
2602        !(AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_SCORPION) &&
2603        !((AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_WASP) &&
2604          ((AH_PRIVATE((ah))->ah_macRev > AR_SREV_REVISION_WASP_13) ||
2605           (AH_PRIVATE((ah))->ah_macRev == AR_SREV_REVISION_WASP_13 &&
2606            wasp_mm_rev >= 0 /* 1 */))))
2607    {
2608        HALDEBUG(ah, HAL_DEBUG_UNMASKABLE, "%s error: current chip (ver 0x%x, "
2609                "rev 0x%x, minor minor rev 0x%x) cannot support Azimuth Mode\n",
2610                __func__, AH_PRIVATE((ah))->ah_macVersion,
2611                AH_PRIVATE((ah))->ah_macRev, wasp_mm_rev);
2612        return HAL_ENOTSUPP;
2613    }
2614
2615    OS_REG_WRITE(ah,
2616        AR_MAC_PCU_LOGIC_ANALYZER, AR_MAC_PCU_LOGIC_ANALYZER_PSTABUG75996);
2617
2618    /* turn on mode bit[24] for proxy sta */
2619    OS_REG_WRITE(ah, AR_PCU_MISC_MODE2,
2620        OS_REG_READ(ah, AR_PCU_MISC_MODE2) | AR_PCU_MISC_MODE2_PROXY_STA);
2621
2622    val = OS_REG_READ(ah, AR_AZIMUTH_MODE);
2623    if (enable) {
2624        val |= AR_AZIMUTH_KEY_SEARCH_AD1 |
2625               AR_AZIMUTH_CTS_MATCH_TX_AD2 |
2626               AR_AZIMUTH_BA_USES_AD1;
2627        /* turn off filter pass hold (bit 9) */
2628        val &= ~AR_AZIMUTH_FILTER_PASS_HOLD;
2629    } else {
2630        val &= ~(AR_AZIMUTH_KEY_SEARCH_AD1 |
2631                 AR_AZIMUTH_CTS_MATCH_TX_AD2 |
2632                 AR_AZIMUTH_BA_USES_AD1);
2633    }
2634    OS_REG_WRITE(ah, AR_AZIMUTH_MODE, val);
2635
2636    /* enable promiscous mode */
2637    OS_REG_WRITE(ah, AR_RX_FILTER,
2638        OS_REG_READ(ah, AR_RX_FILTER) | HAL_RX_FILTER_PROM);
2639    /* enable promiscous in azimuth mode */
2640    OS_REG_WRITE(ah, AR_PCU_MISC_MODE2, AR_PCU_MISC_MODE2_PROM_VC_MODE);
2641    OS_REG_WRITE(ah, AR_MAC_PCU_LOGIC_ANALYZER, AR_MAC_PCU_LOGIC_ANALYZER_VC_MODE);
2642
2643    /* turn on filter pass hold (bit 9) */
2644    OS_REG_WRITE(ah, AR_AZIMUTH_MODE,
2645        OS_REG_READ(ah, AR_AZIMUTH_MODE) | AR_AZIMUTH_FILTER_PASS_HOLD);
2646
2647    return HAL_OK;
2648}
2649
2650void ar9300_mat_enable(struct ath_hal *ah, int enable)
2651{
2652    /*
2653     * MAT (s/w ProxySTA) implementation requires to turn off interrupt
2654     * mitigation and turn on key search always for better performance.
2655     */
2656    struct ath_hal_9300 *ahp = AH9300(ah);
2657    struct ath_hal_private *ap = AH_PRIVATE(ah);
2658
2659    ahp->ah_intr_mitigation_rx = !enable;
2660    if (ahp->ah_intr_mitigation_rx) {
2661        /*
2662         * Enable Interrupt Mitigation for Rx.
2663         * If no build-specific limits for the rx interrupt mitigation
2664         * timer have been specified, use conservative defaults.
2665         */
2666        #ifndef AH_RIMT_VAL_LAST
2667            #define AH_RIMT_LAST_MICROSEC 500
2668        #endif
2669        #ifndef AH_RIMT_VAL_FIRST
2670            #define AH_RIMT_FIRST_MICROSEC 2000
2671        #endif
2672        OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, AH_RIMT_LAST_MICROSEC);
2673        OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, AH_RIMT_FIRST_MICROSEC);
2674    } else {
2675        OS_REG_WRITE(ah, AR_RIMT, 0);
2676    }
2677
2678    ap->ah_enable_keysearch_always = !!enable;
2679    ar9300_enable_keysearch_always(ah, ap->ah_enable_keysearch_always);
2680}
2681
2682
2683void ar9300_enable_tpc(struct ath_hal *ah)
2684{
2685    u_int32_t val = 0;
2686
2687    AH_PRIVATE(ah)->ah_config.ath_hal_desc_tpc = 1;
2688
2689    /* Enable TPC */
2690    OS_REG_RMW_FIELD(ah, AR_PHY_PWRTX_MAX, AR_PHY_PER_PACKET_POWERTX_MAX, 1);
2691
2692    /*
2693     * Disable per chain power reduction since we are already
2694     * accounting for this in our calculations
2695     */
2696    val = OS_REG_READ(ah, AR_PHY_POWER_TX_SUB);
2697    if (AR_SREV_WASP(ah)) {
2698        OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
2699                         val & AR_PHY_POWER_TX_SUB_2_DISABLE);
2700    } else {
2701        OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
2702                         val & AR_PHY_POWER_TX_SUB_3_DISABLE);
2703    }
2704}
2705
2706
2707/*
2708 * ar9300_force_tsf_sync
2709 * This function forces the TSF sync to the given bssid, this is implemented
2710 * as a temp hack to get the AoW demo, and is primarily used in the WDS client
2711 * mode of operation, where we sync the TSF to RootAP TSF values
2712 */
2713void
2714ar9300_force_tsf_sync(struct ath_hal *ah, const u_int8_t *bssid,
2715    u_int16_t assoc_id)
2716{
2717    ar9300_set_operating_mode(ah, HAL_M_STA);
2718    ar9300_write_associd(ah, bssid, assoc_id);
2719}
2720
2721void ar9300_chk_rssi_update_tx_pwr(struct ath_hal *ah, int rssi)
2722{
2723    struct ath_hal_9300 *ahp = AH9300(ah);
2724    u_int32_t           temp_obdb_reg_val = 0, temp_tcp_reg_val;
2725    u_int32_t           temp_powertx_rate9_reg_val;
2726    int8_t              olpc_power_offset = 0;
2727    int8_t              tmp_olpc_val = 0;
2728    HAL_RSSI_TX_POWER   old_greentx_status;
2729    u_int8_t            target_power_val_t[ar9300_rate_size];
2730    int8_t              tmp_rss1_thr1, tmp_rss1_thr2;
2731
2732    if ((AH_PRIVATE(ah)->ah_opmode != HAL_M_STA) ||
2733        !AH_PRIVATE(ah)->ah_config.ath_hal_sta_update_tx_pwr_enable) {
2734        return;
2735    }
2736
2737    old_greentx_status = AH_PRIVATE(ah)->green_tx_status;
2738    if (ahp->ah_hw_green_tx_enable) {
2739        tmp_rss1_thr1 = AR9485_HW_GREEN_TX_THRES1_DB;
2740        tmp_rss1_thr2 = AR9485_HW_GREEN_TX_THRES2_DB;
2741    } else {
2742        tmp_rss1_thr1 = WB225_SW_GREEN_TX_THRES1_DB;
2743        tmp_rss1_thr2 = WB225_SW_GREEN_TX_THRES2_DB;
2744    }
2745
2746    if ((AH_PRIVATE(ah)->ah_config.ath_hal_sta_update_tx_pwr_enable_S1)
2747        && (rssi > tmp_rss1_thr1))
2748    {
2749        if (old_greentx_status != HAL_RSSI_TX_POWER_SHORT) {
2750            AH_PRIVATE(ah)->green_tx_status = HAL_RSSI_TX_POWER_SHORT;
2751        }
2752    } else if (AH_PRIVATE(ah)->ah_config.ath_hal_sta_update_tx_pwr_enable_S2
2753        && (rssi > tmp_rss1_thr2))
2754    {
2755        if (old_greentx_status != HAL_RSSI_TX_POWER_MIDDLE) {
2756            AH_PRIVATE(ah)->green_tx_status = HAL_RSSI_TX_POWER_MIDDLE;
2757        }
2758    } else if (AH_PRIVATE(ah)->ah_config.ath_hal_sta_update_tx_pwr_enable_S3) {
2759        if (old_greentx_status != HAL_RSSI_TX_POWER_LONG) {
2760            AH_PRIVATE(ah)->green_tx_status = HAL_RSSI_TX_POWER_LONG;
2761        }
2762    }
2763
2764    /* If status is not change, don't do anything */
2765    if (old_greentx_status == AH_PRIVATE(ah)->green_tx_status) {
2766        return;
2767    }
2768
2769    /* for Poseidon which ath_hal_sta_update_tx_pwr_enable is enabled */
2770    if ((AH_PRIVATE(ah)->green_tx_status != HAL_RSSI_TX_POWER_NONE)
2771        && AR_SREV_POSEIDON(ah))
2772    {
2773        if (ahp->ah_hw_green_tx_enable) {
2774            switch (AH_PRIVATE(ah)->green_tx_status) {
2775            case HAL_RSSI_TX_POWER_SHORT:
2776                /* 1. TxPower Config */
2777                OS_MEMCPY(target_power_val_t, ar9485_hw_gtx_tp_distance_short,
2778                    sizeof(target_power_val_t));
2779                /* 1.1 Store OLPC Delta Calibration Offset*/
2780                olpc_power_offset = 0;
2781                /* 2. Store OB/DB */
2782                /* 3. Store TPC settting */
2783                temp_tcp_reg_val = (SM(14, AR_TPC_ACK) |
2784                                    SM(14, AR_TPC_CTS) |
2785                                    SM(14, AR_TPC_CHIRP) |
2786                                    SM(14, AR_TPC_RPT));
2787                /* 4. Store BB_powertx_rate9 value */
2788                temp_powertx_rate9_reg_val =
2789                    AR9485_BBPWRTXRATE9_HW_GREEN_TX_SHORT_VALUE;
2790                break;
2791            case HAL_RSSI_TX_POWER_MIDDLE:
2792                /* 1. TxPower Config */
2793                OS_MEMCPY(target_power_val_t, ar9485_hw_gtx_tp_distance_middle,
2794                    sizeof(target_power_val_t));
2795                /* 1.1 Store OLPC Delta Calibration Offset*/
2796                olpc_power_offset = 0;
2797                /* 2. Store OB/DB */
2798                /* 3. Store TPC settting */
2799                temp_tcp_reg_val = (SM(18, AR_TPC_ACK) |
2800                                    SM(18, AR_TPC_CTS) |
2801                                    SM(18, AR_TPC_CHIRP) |
2802                                    SM(18, AR_TPC_RPT));
2803                /* 4. Store BB_powertx_rate9 value */
2804                temp_powertx_rate9_reg_val =
2805                    AR9485_BBPWRTXRATE9_HW_GREEN_TX_MIDDLE_VALUE;
2806                break;
2807            case HAL_RSSI_TX_POWER_LONG:
2808            default:
2809                /* 1. TxPower Config */
2810                OS_MEMCPY(target_power_val_t, ahp->ah_default_tx_power,
2811                    sizeof(target_power_val_t));
2812                /* 1.1 Store OLPC Delta Calibration Offset*/
2813                olpc_power_offset = 0;
2814                /* 2. Store OB/DB1/DB2 */
2815                /* 3. Store TPC settting */
2816                temp_tcp_reg_val =
2817                    AH_PRIVATE(ah)->ah_ob_db1[POSEIDON_STORED_REG_TPC];
2818                /* 4. Store BB_powertx_rate9 value */
2819                temp_powertx_rate9_reg_val =
2820                  AH_PRIVATE(ah)->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9];
2821                break;
2822            }
2823        } else {
2824            switch (AH_PRIVATE(ah)->green_tx_status) {
2825            case HAL_RSSI_TX_POWER_SHORT:
2826                /* 1. TxPower Config */
2827                OS_MEMCPY(target_power_val_t, wb225_sw_gtx_tp_distance_short,
2828                    sizeof(target_power_val_t));
2829                /* 1.1 Store OLPC Delta Calibration Offset*/
2830                olpc_power_offset =
2831                    wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_SHORT_VALUE] -
2832                    wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
2833                /* 2. Store OB/DB */
2834                temp_obdb_reg_val =
2835                    AH_PRIVATE(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
2836                temp_obdb_reg_val &= ~(AR_PHY_65NM_CH0_TXRF2_DB2G |
2837                                       AR_PHY_65NM_CH0_TXRF2_OB2G_CCK |
2838                                       AR_PHY_65NM_CH0_TXRF2_OB2G_PSK |
2839                                       AR_PHY_65NM_CH0_TXRF2_OB2G_QAM);
2840                temp_obdb_reg_val |= (SM(5, AR_PHY_65NM_CH0_TXRF2_DB2G) |
2841                SM(WB225_OB_GREEN_TX_SHORT_VALUE,
2842                    AR_PHY_65NM_CH0_TXRF2_OB2G_CCK) |
2843                SM(WB225_OB_GREEN_TX_SHORT_VALUE,
2844                    AR_PHY_65NM_CH0_TXRF2_OB2G_PSK) |
2845                SM(WB225_OB_GREEN_TX_SHORT_VALUE,
2846                    AR_PHY_65NM_CH0_TXRF2_OB2G_QAM));
2847                /* 3. Store TPC settting */
2848                temp_tcp_reg_val = (SM(6, AR_TPC_ACK) |
2849                                    SM(6, AR_TPC_CTS) |
2850                                    SM(6, AR_TPC_CHIRP) |
2851                                    SM(6, AR_TPC_RPT));
2852                /* 4. Store BB_powertx_rate9 value */
2853                temp_powertx_rate9_reg_val =
2854                    WB225_BBPWRTXRATE9_SW_GREEN_TX_SHORT_VALUE;
2855                break;
2856            case HAL_RSSI_TX_POWER_MIDDLE:
2857                /* 1. TxPower Config */
2858                OS_MEMCPY(target_power_val_t, wb225_sw_gtx_tp_distance_middle,
2859                    sizeof(target_power_val_t));
2860                /* 1.1 Store OLPC Delta Calibration Offset*/
2861                olpc_power_offset =
2862                    wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_MIDDLE_VALUE] -
2863                    wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
2864                /* 2. Store OB/DB */
2865                temp_obdb_reg_val =
2866                    AH_PRIVATE(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
2867                temp_obdb_reg_val &= ~(AR_PHY_65NM_CH0_TXRF2_DB2G |
2868                                       AR_PHY_65NM_CH0_TXRF2_OB2G_CCK |
2869                                       AR_PHY_65NM_CH0_TXRF2_OB2G_PSK |
2870                                       AR_PHY_65NM_CH0_TXRF2_OB2G_QAM);
2871                temp_obdb_reg_val |= (SM(5, AR_PHY_65NM_CH0_TXRF2_DB2G) |
2872                    SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
2873                        AR_PHY_65NM_CH0_TXRF2_OB2G_CCK) |
2874                    SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
2875                        AR_PHY_65NM_CH0_TXRF2_OB2G_PSK) |
2876                    SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
2877                        AR_PHY_65NM_CH0_TXRF2_OB2G_QAM));
2878                /* 3. Store TPC settting */
2879                temp_tcp_reg_val = (SM(14, AR_TPC_ACK) |
2880                                    SM(14, AR_TPC_CTS) |
2881                                    SM(14, AR_TPC_CHIRP) |
2882                                    SM(14, AR_TPC_RPT));
2883                /* 4. Store BB_powertx_rate9 value */
2884                temp_powertx_rate9_reg_val =
2885                    WB225_BBPWRTXRATE9_SW_GREEN_TX_MIDDLE_VALUE;
2886                break;
2887            case HAL_RSSI_TX_POWER_LONG:
2888            default:
2889                /* 1. TxPower Config */
2890                OS_MEMCPY(target_power_val_t, ahp->ah_default_tx_power,
2891                    sizeof(target_power_val_t));
2892                /* 1.1 Store OLPC Delta Calibration Offset*/
2893                olpc_power_offset =
2894                    wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_LONG_VALUE] -
2895                    wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
2896                /* 2. Store OB/DB1/DB2 */
2897                temp_obdb_reg_val =
2898                    AH_PRIVATE(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
2899                /* 3. Store TPC settting */
2900                temp_tcp_reg_val =
2901                    AH_PRIVATE(ah)->ah_ob_db1[POSEIDON_STORED_REG_TPC];
2902                /* 4. Store BB_powertx_rate9 value */
2903                temp_powertx_rate9_reg_val =
2904                  AH_PRIVATE(ah)->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9];
2905                break;
2906            }
2907        }
2908        /* 1.1 Do OLPC Delta Calibration Offset */
2909        tmp_olpc_val =
2910            (int8_t) AH_PRIVATE(ah)->ah_db2[POSEIDON_STORED_REG_G2_OLPC_OFFSET];
2911        tmp_olpc_val += olpc_power_offset;
2912        OS_REG_RMW(ah, AR_PHY_TPC_11_B0,
2913            (tmp_olpc_val << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
2914            AR_PHY_TPC_OLPC_GAIN_DELTA);
2915
2916        /* 1.2 TxPower Config */
2917        ar9300_transmit_power_reg_write(ah, target_power_val_t);
2918        /* 2. Config OB/DB */
2919        if (!ahp->ah_hw_green_tx_enable) {
2920            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF2, temp_obdb_reg_val);
2921        }
2922        /* 3. config TPC settting */
2923        OS_REG_WRITE(ah, AR_TPC, temp_tcp_reg_val);
2924        /* 4. config BB_powertx_rate9 value */
2925        OS_REG_WRITE(ah, AR_PHY_BB_POWERTX_RATE9, temp_powertx_rate9_reg_val);
2926    }
2927}
2928
2929void
2930ar9300_get_vow_stats(
2931    struct ath_hal *ah, HAL_VOWSTATS* p_stats, u_int8_t vow_reg_flags)
2932{
2933    if (vow_reg_flags & AR_REG_TX_FRM_CNT) {
2934        p_stats->tx_frame_count = OS_REG_READ(ah, AR_TFCNT);
2935    }
2936    if (vow_reg_flags & AR_REG_RX_FRM_CNT) {
2937        p_stats->rx_frame_count = OS_REG_READ(ah, AR_RFCNT);
2938    }
2939    if (vow_reg_flags & AR_REG_RX_CLR_CNT) {
2940        p_stats->rx_clear_count = OS_REG_READ(ah, AR_RCCNT);
2941    }
2942    if (vow_reg_flags & AR_REG_CYCLE_CNT) {
2943        p_stats->cycle_count   = OS_REG_READ(ah, AR_CCCNT);
2944    }
2945    if (vow_reg_flags & AR_REG_EXT_CYCLE_CNT) {
2946        p_stats->ext_cycle_count   = OS_REG_READ(ah, AR_EXTRCCNT);
2947    }
2948}
2949/*
2950 * ar9300_is_skip_paprd_by_greentx
2951 *
2952 * This function check if we need to skip PAPRD tuning
2953 * when GreenTx in specific state.
2954 */
2955HAL_BOOL
2956ar9300_is_skip_paprd_by_greentx(struct ath_hal *ah)
2957{
2958    if (AR_SREV_POSEIDON(ah) &&
2959        AH_PRIVATE(ah)->ah_config.ath_hal_sta_update_tx_pwr_enable &&
2960        ((AH_PRIVATE(ah)->green_tx_status == HAL_RSSI_TX_POWER_SHORT) ||
2961         (AH_PRIVATE(ah)->green_tx_status == HAL_RSSI_TX_POWER_MIDDLE)))
2962    {
2963        return AH_TRUE;
2964    }
2965    return AH_FALSE;
2966}
2967
2968void
2969ar9300_control_signals_for_green_tx_mode(struct ath_hal *ah)
2970{
2971    unsigned int valid_obdb_0_b0 = 0x2d; // 5,5 - dB[0:2],oB[5:3]
2972    unsigned int valid_obdb_1_b0 = 0x25; // 4,5 - dB[0:2],oB[5:3]
2973    unsigned int valid_obdb_2_b0 = 0x1d; // 3,5 - dB[0:2],oB[5:3]
2974    unsigned int valid_obdb_3_b0 = 0x15; // 2,5 - dB[0:2],oB[5:3]
2975    unsigned int valid_obdb_4_b0 = 0xd;  // 1,5 - dB[0:2],oB[5:3]
2976    struct ath_hal_9300 *ahp = AH9300(ah);
2977
2978    if (AR_SREV_POSEIDON(ah) && ahp->ah_hw_green_tx_enable) {
2979        OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
2980                             AR_PHY_PAPRD_VALID_OBDB_0, valid_obdb_0_b0);
2981        OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
2982                             AR_PHY_PAPRD_VALID_OBDB_1, valid_obdb_1_b0);
2983        OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
2984                             AR_PHY_PAPRD_VALID_OBDB_2, valid_obdb_2_b0);
2985        OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
2986                             AR_PHY_PAPRD_VALID_OBDB_3, valid_obdb_3_b0);
2987        OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
2988                             AR_PHY_PAPRD_VALID_OBDB_4, valid_obdb_4_b0);
2989    }
2990}
2991
2992void ar9300_hwgreentx_set_pal_spare(struct ath_hal *ah, int value)
2993{
2994    struct ath_hal_9300 *ahp = AH9300(ah);
2995
2996    if (AR_SREV_POSEIDON(ah) && ahp->ah_hw_green_tx_enable) {
2997        if ((value == 0) || (value == 1)) {
2998            OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_TXRF3,
2999                             AR_PHY_65NM_CH0_TXRF3_OLD_PAL_SPARE, value);
3000        }
3001    }
3002}
3003
3004void ar9300_reset_hw_beacon_proc_crc(struct ath_hal *ah)
3005{
3006    OS_REG_SET_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_RESET_CRC);
3007}
3008
3009int32_t ar9300_get_hw_beacon_rssi(struct ath_hal *ah)
3010{
3011    int32_t val = OS_REG_READ_FIELD(ah, AR_BCN_RSSI_AVE, AR_BCN_RSSI_AVE_VAL);
3012
3013    /* RSSI format is 8.4.  Ignore lowest four bits */
3014    val = val >> 4;
3015    return val;
3016}
3017
3018void ar9300_set_hw_beacon_rssi_threshold(struct ath_hal *ah,
3019                                        u_int32_t rssi_threshold)
3020{
3021    struct ath_hal_9300 *ahp = AH9300(ah);
3022
3023    OS_REG_RMW_FIELD(ah, AR_RSSI_THR, AR_RSSI_THR_VAL, rssi_threshold);
3024
3025    /* save value for restoring after chip reset */
3026    ahp->ah_beacon_rssi_threshold = rssi_threshold;
3027}
3028
3029void ar9300_reset_hw_beacon_rssi(struct ath_hal *ah)
3030{
3031    OS_REG_SET_BIT(ah, AR_RSSI_THR, AR_RSSI_BCN_RSSI_RST);
3032}
3033
3034void ar9300_set_hw_beacon_proc(struct ath_hal *ah, HAL_BOOL on)
3035{
3036    if (on) {
3037        OS_REG_SET_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_CRC_ENABLE |
3038                       AR_HWBCNPROC1_EXCLUDE_TIM_ELM);
3039    }
3040    else {
3041        OS_REG_CLR_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_CRC_ENABLE |
3042                       AR_HWBCNPROC1_EXCLUDE_TIM_ELM);
3043    }
3044}
3045/*
3046 * Gets the contents of the specified key cache entry.
3047 */
3048HAL_BOOL
3049ar9300_print_keycache(struct ath_hal *ah)
3050{
3051
3052    const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
3053    u_int32_t key0, key1, key2, key3, key4;
3054    u_int32_t mac_hi, mac_lo;
3055    u_int16_t entry = 0;
3056    u_int32_t valid = 0;
3057    u_int32_t key_type;
3058
3059    ath_hal_printf(ah, "Slot   Key\t\t\t          Valid  Type  Mac  \n");
3060
3061    for (entry = 0 ; entry < p_cap->hal_key_cache_size; entry++) {
3062        key0 = OS_REG_READ(ah, AR_KEYTABLE_KEY0(entry));
3063        key1 = OS_REG_READ(ah, AR_KEYTABLE_KEY1(entry));
3064        key2 = OS_REG_READ(ah, AR_KEYTABLE_KEY2(entry));
3065        key3 = OS_REG_READ(ah, AR_KEYTABLE_KEY3(entry));
3066        key4 = OS_REG_READ(ah, AR_KEYTABLE_KEY4(entry));
3067
3068        key_type = OS_REG_READ(ah, AR_KEYTABLE_TYPE(entry));
3069
3070        mac_lo = OS_REG_READ(ah, AR_KEYTABLE_MAC0(entry));
3071        mac_hi = OS_REG_READ(ah, AR_KEYTABLE_MAC1(entry));
3072
3073        if (mac_hi & AR_KEYTABLE_VALID) {
3074            valid = 1;
3075        } else {
3076            valid = 0;
3077        }
3078
3079        if ((mac_hi != 0) && (mac_lo != 0)) {
3080            mac_hi &= ~0x8000;
3081            mac_hi <<= 1;
3082            mac_hi |= ((mac_lo & (1 << 31) )) >> 31;
3083            mac_lo <<= 1;
3084        }
3085
3086        ath_hal_printf(ah,
3087            "%03d    "
3088            "%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x"
3089            "   %02d     %02d    "
3090            "%02x:%02x:%02x:%02x:%02x:%02x \n",
3091            entry,
3092            (key0 << 24) >> 24, (key0 << 16) >> 24,
3093            (key0 << 8) >> 24, key0 >> 24,
3094            (key1 << 24) >> 24, (key1 << 16) >> 24,
3095            //(key1 << 8) >> 24, key1 >> 24,
3096            (key2 << 24) >> 24, (key2 << 16) >> 24,
3097            (key2 << 8) >> 24, key2 >> 24,
3098            (key3 << 24) >> 24, (key3 << 16) >> 24,
3099            //(key3 << 8) >> 24, key3 >> 24,
3100            (key4 << 24) >> 24, (key4 << 16) >> 24,
3101            (key4 << 8) >> 24, key4 >> 24,
3102            valid, key_type,
3103            (mac_lo << 24) >> 24, (mac_lo << 16) >> 24, (mac_lo << 8) >> 24,
3104            (mac_lo) >> 24, (mac_hi << 24) >> 24, (mac_hi << 16) >> 24 );
3105    }
3106
3107    return AH_TRUE;
3108}
3109
3110/* enable/disable smart antenna mode */
3111HAL_BOOL ar9300_set_smart_antenna(struct ath_hal *ah, HAL_BOOL enable)
3112{
3113    struct ath_hal_9300 *ahp = AH9300(ah);
3114
3115    if (enable) {
3116        OS_REG_SET_BIT(ah, AR_XRTO, AR_ENABLE_SMARTANTENNA);
3117    } else {
3118        OS_REG_CLR_BIT(ah, AR_XRTO, AR_ENABLE_SMARTANTENNA);
3119    }
3120
3121    /* if scropion and smart antenna is enabled, write swcom1 with 0x440
3122     * and swcom2 with 0
3123     * FIXME Ideally these registers need to be made read from caldata.
3124     * Until the calibration team gets them, keep them along with board
3125     * configuration.
3126     */
3127    if (enable && AR_SREV_SCORPION(ah) &&
3128           (HAL_OK == ar9300_get_capability(ah, HAL_CAP_SMARTANTENNA, 0,0))) {
3129
3130       OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, 0x440);
3131       OS_REG_WRITE(ah, AR_PHY_SWITCH_COM_2, 0);
3132    }
3133
3134    ahp->ah_smartantenna_enable = enable;
3135    return 1;
3136}
3137
3138#ifdef ATH_TX99_DIAG
3139#ifndef ATH_SUPPORT_HTC
3140void
3141ar9300_tx99_channel_pwr_update(struct ath_hal *ah, HAL_CHANNEL *c,
3142    u_int32_t txpower)
3143{
3144#define PWR_MAS(_r, _s)     (((_r) & 0x3f) << (_s))
3145    static int16_t p_pwr_array[ar9300_rate_size] = { 0 };
3146    int32_t i;
3147
3148    /* The max power is limited to 63 */
3149    if (txpower <= AR9300_MAX_RATE_POWER) {
3150        for (i = 0; i < ar9300_rate_size; i++) {
3151            p_pwr_array[i] = txpower;
3152        }
3153    } else {
3154        for (i = 0; i < ar9300_rate_size; i++) {
3155            p_pwr_array[i] = AR9300_MAX_RATE_POWER;
3156        }
3157    }
3158
3159    OS_REG_WRITE(ah, 0xa458, 0);
3160
3161    /* Write the OFDM power per rate set */
3162    /* 6 (LSB), 9, 12, 18 (MSB) */
3163    OS_REG_WRITE(ah, 0xa3c0,
3164        PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 24)
3165          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 16)
3166          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  8)
3167          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  0)
3168    );
3169    /* 24 (LSB), 36, 48, 54 (MSB) */
3170    OS_REG_WRITE(ah, 0xa3c4,
3171        PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_54], 24)
3172          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_48], 16)
3173          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_36],  8)
3174          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  0)
3175    );
3176
3177    /* Write the CCK power per rate set */
3178    /* 1L (LSB), reserved, 2L, 2S (MSB) */
3179    OS_REG_WRITE(ah, 0xa3c8,
3180        PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 24)
3181          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],  16)
3182          /* | PWR_MAS(txPowerTimes2,  8) */ /* this is reserved for Osprey */
3183          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],   0)
3184    );
3185    /* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
3186    OS_REG_WRITE(ah, 0xa3cc,
3187        PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_11S], 24)
3188          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_11L], 16)
3189          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_5S],  8)
3190          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],  0)
3191    );
3192
3193    /* Write the HT20 power per rate set */
3194    /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
3195    OS_REG_WRITE(ah, 0xa3d0,
3196        PWR_MAS(p_pwr_array[ALL_TARGET_HT20_5], 24)
3197          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_4],  16)
3198          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_1_3_9_11_17_19],  8)
3199          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_0_8_16],   0)
3200    );
3201
3202    /* 6 (LSB), 7, 12, 13 (MSB) */
3203    OS_REG_WRITE(ah, 0xa3d4,
3204        PWR_MAS(p_pwr_array[ALL_TARGET_HT20_13], 24)
3205          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_12],  16)
3206          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_7],  8)
3207          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_6],   0)
3208    );
3209
3210    /* 14 (LSB), 15, 20, 21 */
3211    OS_REG_WRITE(ah, 0xa3e4,
3212        PWR_MAS(p_pwr_array[ALL_TARGET_HT20_21], 24)
3213          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_20],  16)
3214          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_15],  8)
3215          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_14],   0)
3216    );
3217
3218    /* Mixed HT20 and HT40 rates */
3219    /* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
3220    OS_REG_WRITE(ah, 0xa3e8,
3221        PWR_MAS(p_pwr_array[ALL_TARGET_HT40_23], 24)
3222          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_22],  16)
3223          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_23],  8)
3224          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_22],   0)
3225    );
3226
3227    /* Write the HT40 power per rate set */
3228    /* correct PAR difference between HT40 and HT20/LEGACY */
3229    /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
3230    OS_REG_WRITE(ah, 0xa3d8,
3231        PWR_MAS(p_pwr_array[ALL_TARGET_HT40_5], 24)
3232          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_4],  16)
3233          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_1_3_9_11_17_19],  8)
3234          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_0_8_16],   0)
3235    );
3236
3237    /* 6 (LSB), 7, 12, 13 (MSB) */
3238    OS_REG_WRITE(ah, 0xa3dc,
3239        PWR_MAS(p_pwr_array[ALL_TARGET_HT40_13], 24)
3240          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_12],  16)
3241          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_7], 8)
3242          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_6], 0)
3243    );
3244
3245    /* 14 (LSB), 15, 20, 21 */
3246    OS_REG_WRITE(ah, 0xa3ec,
3247        PWR_MAS(p_pwr_array[ALL_TARGET_HT40_21], 24)
3248          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_20],  16)
3249          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_15],  8)
3250          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_14],   0)
3251    );
3252#undef PWR_MAS
3253}
3254
3255void
3256ar9300_tx99_chainmsk_setup(struct ath_hal *ah, int tx_chainmask)
3257{
3258    if (tx_chainmask == 0x5) {
3259        OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
3260            OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | AR_PHY_SWAP_ALT_CHAIN);
3261    }
3262    OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, tx_chainmask);
3263    OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, tx_chainmask);
3264
3265    OS_REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
3266    if (tx_chainmask == 0x5) {
3267        OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
3268            OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | AR_PHY_SWAP_ALT_CHAIN);
3269    }
3270}
3271
3272void
3273ar9300_tx99_set_single_carrier(struct ath_hal *ah, int tx_chain_mask,
3274    int chtype)
3275{
3276    OS_REG_WRITE(ah, 0x98a4, OS_REG_READ(ah, 0x98a4) | (0x7ff << 11) | 0x7ff);
3277    OS_REG_WRITE(ah, 0xa364, OS_REG_READ(ah, 0xa364) | (1 << 7) | (1 << 1));
3278    OS_REG_WRITE(ah, 0xa350,
3279        (OS_REG_READ(ah, 0xa350) | (1 << 31) | (1 << 15)) & ~(1 << 13));
3280
3281    /* 11G mode */
3282    if (!chtype) {
3283        OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3284            OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2) | (0x1 << 3) | (0x1 << 2));
3285        if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3286            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3287                OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3288            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3289                (OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3290                        | (0x1 << 26)  | (0x7 << 24))
3291                        & ~(0x1 << 22));
3292        } else {
3293            OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3294                OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3295            OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3296                (OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3297                        | (0x1 << 26)  | (0x7 << 24))
3298                        & ~(0x1 << 22));
3299        }
3300
3301        /* chain zero */
3302        if ((tx_chain_mask & 0x01) == 0x01) {
3303            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX1,
3304                (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX1)
3305                      | (0x1 << 31) | (0x5 << 15)
3306                      | (0x3 << 9)) & ~(0x1 << 27)
3307                      & ~(0x1 << 12));
3308            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3309                (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3310                      | (0x1 << 12) | (0x1 << 10)
3311                      | (0x1 << 9)  | (0x1 << 8)
3312                      | (0x1 << 7)) & ~(0x1 << 11));
3313            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3314                (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3315                      | (0x1 << 29) | (0x1 << 25)
3316                      | (0x1 << 23) | (0x1 << 19)
3317                      | (0x1 << 10) | (0x1 << 9)
3318                      | (0x1 << 8)  | (0x1 << 3))
3319                      & ~(0x1 << 28)& ~(0x1 << 24)
3320                      & ~(0x1 << 22)& ~(0x1 << 7));
3321            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3322                (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1)
3323                      | (0x1 << 23))& ~(0x1 << 21));
3324            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB1,
3325                OS_REG_READ(ah, AR_PHY_65NM_CH0_BB1)
3326                      | (0x1 << 12) | (0x1 << 10)
3327                      | (0x1 << 9)  | (0x1 << 8)
3328                      | (0x1 << 6)  | (0x1 << 5)
3329                      | (0x1 << 4)  | (0x1 << 3)
3330                      | (0x1 << 2));
3331            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB2,
3332                OS_REG_READ(ah, AR_PHY_65NM_CH0_BB2) | (0x1 << 31));
3333        }
3334        if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3335            /* chain one */
3336            if ((tx_chain_mask & 0x02) == 0x02 ) {
3337                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX1,
3338                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX1)
3339                          | (0x1 << 31) | (0x5 << 15)
3340                          | (0x3 << 9)) & ~(0x1 << 27)
3341                          & ~(0x1 << 12));
3342                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3343                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3344                          | (0x1 << 12) | (0x1 << 10)
3345                          | (0x1 << 9)  | (0x1 << 8)
3346                          | (0x1 << 7)) & ~(0x1 << 11));
3347                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3348                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3349                          | (0x1 << 29) | (0x1 << 25)
3350                          | (0x1 << 23) | (0x1 << 19)
3351                          | (0x1 << 10) | (0x1 << 9)
3352                          | (0x1 << 8)  | (0x1 << 3))
3353                          & ~(0x1 << 28)& ~(0x1 << 24)
3354                          & ~(0x1 << 22)& ~(0x1 << 7));
3355                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3356                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1)
3357                          | (0x1 << 23))& ~(0x1 << 21));
3358                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB1,
3359                    OS_REG_READ(ah, AR_PHY_65NM_CH1_BB1)
3360                          | (0x1 << 12) | (0x1 << 10)
3361                          | (0x1 << 9)  | (0x1 << 8)
3362                          | (0x1 << 6)  | (0x1 << 5)
3363                          | (0x1 << 4)  | (0x1 << 3)
3364                          | (0x1 << 2));
3365                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB2,
3366                    OS_REG_READ(ah, AR_PHY_65NM_CH1_BB2) | (0x1 << 31));
3367            }
3368        }
3369        if (AR_SREV_OSPREY(ah)) {
3370            /* chain two */
3371            if ((tx_chain_mask & 0x04) == 0x04 ) {
3372                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX1,
3373                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX1)
3374                          | (0x1 << 31) | (0x5 << 15)
3375                          | (0x3 << 9)) & ~(0x1 << 27)
3376                          & ~(0x1 << 12));
3377                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3378                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3379                          | (0x1 << 12) | (0x1 << 10)
3380                          | (0x1 << 9)  | (0x1 << 8)
3381                          | (0x1 << 7)) & ~(0x1 << 11));
3382                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3383                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3384                          | (0x1 << 29) | (0x1 << 25)
3385                          | (0x1 << 23) | (0x1 << 19)
3386                          | (0x1 << 10) | (0x1 << 9)
3387                          | (0x1 << 8)  | (0x1 << 3))
3388                          & ~(0x1 << 28)& ~(0x1 << 24)
3389                          & ~(0x1 << 22)& ~(0x1 << 7));
3390                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3391                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1)
3392                          | (0x1 << 23))& ~(0x1 << 21));
3393                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB1,
3394                    OS_REG_READ(ah, AR_PHY_65NM_CH2_BB1)
3395                          | (0x1 << 12) | (0x1 << 10)
3396                          | (0x1 << 9)  | (0x1 << 8)
3397                          | (0x1 << 6)  | (0x1 << 5)
3398                          | (0x1 << 4)  | (0x1 << 3)
3399                          | (0x1 << 2));
3400                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB2,
3401                    OS_REG_READ(ah, AR_PHY_65NM_CH2_BB2) | (0x1 << 31));
3402            }
3403        }
3404
3405        OS_REG_WRITE(ah, 0xa28c, 0x11111);
3406        OS_REG_WRITE(ah, 0xa288, 0x111);
3407    } else {
3408        /* chain zero */
3409        if ((tx_chain_mask & 0x01) == 0x01) {
3410            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX1,
3411                (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX1)
3412                      | (0x1 << 31) | (0x1 << 27)
3413                      | (0x3 << 23) | (0x1 << 19)
3414                      | (0x1 << 15) | (0x3 << 9))
3415                      & ~(0x1 << 12));
3416            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3417                (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3418                      | (0x1 << 12) | (0x1 << 10)
3419                      | (0x1 << 9)  | (0x1 << 8)
3420                      | (0x1 << 7)  | (0x1 << 3)
3421                      | (0x1 << 2)  | (0x1 << 1))
3422                      & ~(0x1 << 11)& ~(0x1 << 0));
3423            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3424                (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3425                      | (0x1 << 29) | (0x1 << 25)
3426                      | (0x1 << 23) | (0x1 << 19)
3427                      | (0x1 << 10) | (0x1 << 9)
3428                      | (0x1 << 8)  | (0x1 << 3))
3429                      & ~(0x1 << 28)& ~(0x1 << 24)
3430                      & ~(0x1 << 22)& ~(0x1 << 7));
3431            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3432                (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1)
3433                      | (0x1 << 23))& ~(0x1 << 21));
3434            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF2,
3435                OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF2)
3436                      | (0x3 << 3)  | (0x3 << 0));
3437            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF3,
3438                (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF3)
3439                      | (0x3 << 29) | (0x3 << 26)
3440                      | (0x2 << 23) | (0x2 << 20)
3441                      | (0x2 << 17))& ~(0x1 << 14));
3442            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB1,
3443                OS_REG_READ(ah, AR_PHY_65NM_CH0_BB1)
3444                      | (0x1 << 12) | (0x1 << 10)
3445                      | (0x1 << 9)  | (0x1 << 8)
3446                      | (0x1 << 6)  | (0x1 << 5)
3447                      | (0x1 << 4)  | (0x1 << 3)
3448                      | (0x1 << 2));
3449            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB2,
3450                OS_REG_READ(ah, AR_PHY_65NM_CH0_BB2) | (0x1 << 31));
3451            if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3452                OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3453                    OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3454                OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3455                    OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3456                          | (0x1 << 26) | (0x7 << 24)
3457                          | (0x3 << 22));
3458            } else {
3459                OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3460                    OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3461                OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3462                    OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3463                          | (0x1 << 26) | (0x7 << 24)
3464                          | (0x3 << 22));
3465            }
3466
3467            if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3468                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3469                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3470                          | (0x1 << 3)  | (0x1 << 2)
3471                          | (0x1 << 1)) & ~(0x1 << 0));
3472                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3473                    OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3474                          | (0x1 << 19) | (0x1 << 3));
3475                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3476                    OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1) | (0x1 << 23));
3477            }
3478            if (AR_SREV_OSPREY(ah)) {
3479                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3480                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3481                          | (0x1 << 3)  | (0x1 << 2)
3482                          | (0x1 << 1)) & ~(0x1 << 0));
3483                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3484                    OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3485                          | (0x1 << 19) | (0x1 << 3));
3486                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3487                    OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1) | (0x1 << 23));
3488            }
3489        }
3490        if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3491            /* chain one */
3492            if ((tx_chain_mask & 0x02) == 0x02 ) {
3493                OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3494                    (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3495                          | (0x1 << 3)  | (0x1 << 2)
3496                          | (0x1 << 1)) & ~(0x1 << 0));
3497                OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3498                    OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3499                          | (0x1 << 19) | (0x1 << 3));
3500                OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3501                    OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1) | (0x1 << 23));
3502                if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3503                    OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3504                        OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3505                    OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3506                        OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3507                              | (0x1 << 26) | (0x7 << 24)
3508                              | (0x3 << 22));
3509                } else {
3510                    OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3511                        OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3512                    OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3513                        OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3514                              | (0x1 << 26) | (0x7 << 24)
3515                              | (0x3 << 22));
3516                }
3517
3518                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX1,
3519                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX1)
3520                          | (0x1 << 31) | (0x1 << 27)
3521                          | (0x3 << 23) | (0x1 << 19)
3522                          | (0x1 << 15) | (0x3 << 9))
3523                          & ~(0x1 << 12));
3524                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3525                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3526                          | (0x1 << 12) | (0x1 << 10)
3527                          | (0x1 << 9)  | (0x1 << 8)
3528                          | (0x1 << 7)  | (0x1 << 3)
3529                          | (0x1 << 2)  | (0x1 << 1))
3530                          & ~(0x1 << 11)& ~(0x1 << 0));
3531                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3532                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3533                          | (0x1 << 29) | (0x1 << 25)
3534                          | (0x1 << 23) | (0x1 << 19)
3535                          | (0x1 << 10) | (0x1 << 9)
3536                          | (0x1 << 8)  | (0x1 << 3))
3537                          & ~(0x1 << 28)& ~(0x1 << 24)
3538                          & ~(0x1 << 22)& ~(0x1 << 7));
3539                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3540                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1)
3541                          | (0x1 << 23))& ~(0x1 << 21));
3542                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF2,
3543                    OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF2)
3544                          | (0x3 << 3)  | (0x3 << 0));
3545                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF3,
3546                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF3)
3547                          | (0x3 << 29) | (0x3 << 26)
3548                          | (0x2 << 23) | (0x2 << 20)
3549                          | (0x2 << 17))& ~(0x1 << 14));
3550                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB1,
3551                    OS_REG_READ(ah, AR_PHY_65NM_CH1_BB1)
3552                          | (0x1 << 12) | (0x1 << 10)
3553                          | (0x1 << 9)  | (0x1 << 8)
3554                          | (0x1 << 6)  | (0x1 << 5)
3555                          | (0x1 << 4)  | (0x1 << 3)
3556                          | (0x1 << 2));
3557                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB2,
3558                    OS_REG_READ(ah, AR_PHY_65NM_CH1_BB2) | (0x1 << 31));
3559
3560                if (AR_SREV_OSPREY(ah)) {
3561                    OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3562                        (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3563                              | (0x1 << 3)  | (0x1 << 2)
3564                              | (0x1 << 1)) & ~(0x1 << 0));
3565                    OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3566                        OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3567                              | (0x1 << 19) | (0x1 << 3));
3568                    OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3569                        OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1) | (0x1 << 23));
3570                }
3571            }
3572        }
3573        if (AR_SREV_OSPREY(ah)) {
3574            /* chain two */
3575            if ((tx_chain_mask & 0x04) == 0x04 ) {
3576                OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3577                    (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3578                          | (0x1 << 3)  | (0x1 << 2)
3579                          | (0x1 << 1)) & ~(0x1 << 0));
3580                OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3581                    OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3582                          | (0x1 << 19) | (0x1 << 3));
3583                OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3584                    OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1) | (0x1 << 23));
3585                if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3586                    OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3587                        OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3588                    OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3589                        OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3590                              | (0x1 << 26) | (0x7 << 24)
3591                              | (0x3 << 22));
3592                } else {
3593                    OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3594                        OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3595                    OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3596                        OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3597                              | (0x1 << 26) | (0x7 << 24)
3598                              | (0x3 << 22));
3599                }
3600
3601                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3602                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3603                          | (0x1 << 3)  | (0x1 << 2)
3604                          | (0x1 << 1)) & ~(0x1 << 0));
3605                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3606                    OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3607                          | (0x1 << 19) | (0x1 << 3));
3608                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3609                    OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1) | (0x1 << 23));
3610
3611                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX1,
3612                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX1)
3613                          | (0x1 << 31) | (0x1 << 27)
3614                          | (0x3 << 23) | (0x1 << 19)
3615                          | (0x1 << 15) | (0x3 << 9))
3616                          & ~(0x1 << 12));
3617                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3618                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3619                          | (0x1 << 12) | (0x1 << 10)
3620                          | (0x1 << 9)  | (0x1 << 8)
3621                          | (0x1 << 7)  | (0x1 << 3)
3622                          | (0x1 << 2)  | (0x1 << 1))
3623                          & ~(0x1 << 11)& ~(0x1 << 0));
3624                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3625                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3626                          | (0x1 << 29) | (0x1 << 25)
3627                          | (0x1 << 23) | (0x1 << 19)
3628                          | (0x1 << 10) | (0x1 << 9)
3629                          | (0x1 << 8)  | (0x1 << 3))
3630                          & ~(0x1 << 28)& ~(0x1 << 24)
3631                          & ~(0x1 << 22)& ~(0x1 << 7));
3632                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3633                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1)
3634                          | (0x1 << 23))& ~(0x1 << 21));
3635                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF2,
3636                    OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF2)
3637                          | (0x3 << 3)  | (0x3 << 0));
3638                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF3,
3639                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF3)
3640                          | (0x3 << 29) | (0x3 << 26)
3641                          | (0x2 << 23) | (0x2 << 20)
3642                          | (0x2 << 17))& ~(0x1 << 14));
3643                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB1,
3644                    OS_REG_READ(ah, AR_PHY_65NM_CH2_BB1)
3645                          | (0x1 << 12) | (0x1 << 10)
3646                          | (0x1 << 9)  | (0x1 << 8)
3647                          | (0x1 << 6)  | (0x1 << 5)
3648                          | (0x1 << 4)  | (0x1 << 3)
3649                          | (0x1 << 2));
3650                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB2,
3651                    OS_REG_READ(ah, AR_PHY_65NM_CH2_BB2) | (0x1 << 31));
3652            }
3653        }
3654
3655        OS_REG_WRITE(ah, 0xa28c, 0x22222);
3656        OS_REG_WRITE(ah, 0xa288, 0x222);
3657    }
3658}
3659
3660void
3661ar9300_tx99_start(struct ath_hal *ah, u_int8_t *data)
3662{
3663    u_int32_t val;
3664    u_int32_t qnum = (u_int32_t)data;
3665
3666    /* Disable AGC to A2 */
3667    OS_REG_WRITE(ah, AR_PHY_TEST, (OS_REG_READ(ah, AR_PHY_TEST) | PHY_AGC_CLR));
3668    OS_REG_WRITE(ah, 0x9864, OS_REG_READ(ah, 0x9864) | 0x7f000);
3669    OS_REG_WRITE(ah, 0x9924, OS_REG_READ(ah, 0x9924) | 0x7f00fe);
3670    OS_REG_WRITE(ah, AR_DIAG_SW, OS_REG_READ(ah, AR_DIAG_SW) &~ AR_DIAG_RX_DIS);
3671
3672    OS_REG_WRITE(ah, AR_CR, AR_CR_RXD);     /* set receive disable */
3673    /* set CW_MIN and CW_MAX both to 0, AIFS=2 */
3674    OS_REG_WRITE(ah, AR_DLCL_IFS(qnum), 0);
3675    OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, 20); /* 50 OK */
3676    OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, 20);
3677    /* 200 ok for HT20, 400 ok for HT40 */
3678    OS_REG_WRITE(ah, AR_TIME_OUT, 0x00000400);
3679    OS_REG_WRITE(ah, AR_DRETRY_LIMIT(qnum), 0xffffffff);
3680
3681    /* set QCU modes to early termination */
3682    val = OS_REG_READ(ah, AR_QMISC(qnum));
3683    OS_REG_WRITE(ah, AR_QMISC(qnum), val | AR_Q_MISC_DCU_EARLY_TERM_REQ);
3684}
3685
3686void
3687ar9300_tx99_stop(struct ath_hal *ah)
3688{
3689    /* this should follow the setting of start */
3690    OS_REG_WRITE(ah, AR_PHY_TEST, OS_REG_READ(ah, AR_PHY_TEST) &~ PHY_AGC_CLR);
3691    OS_REG_WRITE(ah, AR_DIAG_SW, OS_REG_READ(ah, AR_DIAG_SW) | AR_DIAG_RX_DIS);
3692}
3693#endif /* ATH_TX99_DIAG */
3694#endif /* ATH_SUPPORT_HTC */
3695
3696HAL_BOOL
3697ar9300Get3StreamSignature(struct ath_hal *ah)
3698{
3699    return AH_FALSE;
3700}
3701
3702HAL_BOOL
3703ar9300ForceVCS(struct ath_hal *ah)
3704{
3705   return AH_FALSE;
3706}
3707
3708HAL_BOOL
3709ar9300SetDfs3StreamFix(struct ath_hal *ah, u_int32_t val)
3710{
3711   return AH_FALSE;
3712}
3713
3714#endif /* AH_SUPPORT_AR9300 */
3715