1/*
2 * Copyright (c) 2013 Qualcomm Atheros, Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
9 * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
10 * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
11 * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
12 * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
13 * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
14 * PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include "opt_ah.h"
18
19#include "ah.h"
20#include "ah_internal.h"
21#include "ah_devid.h"
22#ifdef AH_DEBUG
23#include "ah_desc.h"                    /* NB: for HAL_PHYERR* */
24#endif
25
26#include "ar9300/ar9300.h"
27#include "ar9300/ar9300reg.h"
28#include "ar9300/ar9300phy.h"
29
30
31void
32ar9300_get_hw_hangs(struct ath_hal *ah, hal_hw_hangs_t *hangs)
33{
34    struct ath_hal_9300 *ahp = AH9300(ah);
35    *hangs = 0;
36
37    if (ar9300_get_capability(ah, HAL_CAP_BB_RIFS_HANG, 0, AH_NULL) == HAL_OK) {
38        *hangs |= HAL_RIFS_BB_HANG_WAR;
39    }
40    if (ar9300_get_capability(ah, HAL_CAP_BB_DFS_HANG, 0, AH_NULL) == HAL_OK) {
41        *hangs |= HAL_DFS_BB_HANG_WAR;
42    }
43    if (ar9300_get_capability(ah, HAL_CAP_BB_RX_CLEAR_STUCK_HANG, 0, AH_NULL)
44        == HAL_OK)
45    {
46        *hangs |= HAL_RX_STUCK_LOW_BB_HANG_WAR;
47    }
48    if (ar9300_get_capability(ah, HAL_CAP_MAC_HANG, 0, AH_NULL) == HAL_OK) {
49        *hangs |= HAL_MAC_HANG_WAR;
50    }
51    if (ar9300_get_capability(ah, HAL_CAP_PHYRESTART_CLR_WAR, 0, AH_NULL)
52        == HAL_OK)
53    {
54        *hangs |= HAL_PHYRESTART_CLR_WAR;
55    }
56
57    ahp->ah_hang_wars = *hangs;
58}
59
60/*
61 * XXX FreeBSD: the HAL version of ath_hal_mac_usec() knows about
62 * HT20, HT40, fast-clock, turbo mode, etc.
63 */
64static u_int
65ar9300_mac_to_usec(struct ath_hal *ah, u_int clks)
66{
67#if 0
68    const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
69
70    if (chan && IEEE80211_IS_CHAN_HT40(chan)) {
71        return (ath_hal_mac_usec(ah, clks) / 2);
72    } else {
73        return (ath_hal_mac_usec(ah, clks));
74    }
75#endif
76    return (ath_hal_mac_usec(ah, clks));
77}
78
79u_int
80ar9300_mac_to_clks(struct ath_hal *ah, u_int usecs)
81{
82#if 0
83    const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
84
85    if (chan && IEEE80211_IS_CHAN_HT40(chan)) {
86        return (ath_hal_mac_clks(ah, usecs) * 2);
87    } else {
88        return (ath_hal_mac_clks(ah, usecs));
89    }
90#endif
91    return (ath_hal_mac_clks(ah, usecs));
92}
93
94void
95ar9300_get_mac_address(struct ath_hal *ah, u_int8_t *mac)
96{
97    struct ath_hal_9300 *ahp = AH9300(ah);
98
99    OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
100}
101
102HAL_BOOL
103ar9300_set_mac_address(struct ath_hal *ah, const u_int8_t *mac)
104{
105    struct ath_hal_9300 *ahp = AH9300(ah);
106
107    OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
108    return AH_TRUE;
109}
110
111void
112ar9300_get_bss_id_mask(struct ath_hal *ah, u_int8_t *mask)
113{
114    struct ath_hal_9300 *ahp = AH9300(ah);
115
116    OS_MEMCPY(mask, ahp->ah_bssid_mask, IEEE80211_ADDR_LEN);
117}
118
119HAL_BOOL
120ar9300_set_bss_id_mask(struct ath_hal *ah, const u_int8_t *mask)
121{
122    struct ath_hal_9300 *ahp = AH9300(ah);
123
124    /* save it since it must be rewritten on reset */
125    OS_MEMCPY(ahp->ah_bssid_mask, mask, IEEE80211_ADDR_LEN);
126
127    OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssid_mask));
128    OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssid_mask + 4));
129    return AH_TRUE;
130}
131
132/*
133 * Attempt to change the cards operating regulatory domain to the given value
134 * Returns: A_EINVAL for an unsupported regulatory domain.
135 *          A_HARDWARE for an unwritable EEPROM or bad EEPROM version
136 */
137HAL_BOOL
138ar9300_set_regulatory_domain(struct ath_hal *ah,
139        u_int16_t reg_domain, HAL_STATUS *status)
140{
141    HAL_STATUS ecode;
142
143    if (AH_PRIVATE(ah)->ah_currentRD == 0) {
144        AH_PRIVATE(ah)->ah_currentRD = reg_domain;
145        return AH_TRUE;
146    }
147    ecode = HAL_EIO;
148
149#if 0
150bad:
151#endif
152    if (status) {
153        *status = ecode;
154    }
155    return AH_FALSE;
156}
157
158/*
159 * Return the wireless modes (a,b,g,t) supported by hardware.
160 *
161 * This value is what is actually supported by the hardware
162 * and is unaffected by regulatory/country code settings.
163 *
164 */
165u_int
166ar9300_get_wireless_modes(struct ath_hal *ah)
167{
168    return AH_PRIVATE(ah)->ah_caps.halWirelessModes;
169}
170
171/*
172 * Set the interrupt and GPIO values so the ISR can disable RF
173 * on a switch signal.  Assumes GPIO port and interrupt polarity
174 * are set prior to call.
175 */
176void
177ar9300_enable_rf_kill(struct ath_hal *ah)
178{
179    /* TODO - can this really be above the hal on the GPIO interface for
180     * TODO - the client only?
181     */
182    struct ath_hal_9300    *ahp = AH9300(ah);
183
184    if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
185    	/* Check RF kill GPIO before set/clear RFSILENT bits. */
186    	if (ar9300_gpio_get(ah, ahp->ah_gpio_select) == ahp->ah_polarity) {
187            OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_RFSILENT),
188                           AR_RFSILENT_FORCE);
189            OS_REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
190        }
191        else {
192            OS_REG_CLR_BIT(ah, AR_HOSTIF_REG(ah, AR_RFSILENT),
193                           AR_RFSILENT_FORCE);
194            OS_REG_CLR_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
195        }
196    }
197    else {
198        /* Connect rfsilent_bb_l to baseband */
199        OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
200            AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
201
202        /* Set input mux for rfsilent_bb_l to GPIO #0 */
203        OS_REG_CLR_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX2),
204            AR_GPIO_INPUT_MUX2_RFSILENT);
205        OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX2),
206            (ahp->ah_gpio_select & 0x0f) << 4);
207
208        /*
209         * Configure the desired GPIO port for input and
210         * enable baseband rf silence
211         */
212        ath_hal_gpioCfgInput(ah, ahp->ah_gpio_select);
213        OS_REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
214    }
215
216    /*
217     * If radio disable switch connection to GPIO bit x is enabled
218     * program GPIO interrupt.
219     * If rfkill bit on eeprom is 1, setupeeprommap routine has already
220     * verified that it is a later version of eeprom, it has a place for
221     * rfkill bit and it is set to 1, indicating that GPIO bit x hardware
222     * connection is present.
223     */
224     /*
225      * RFKill uses polling not interrupt,
226      * disable interrupt to avoid Eee PC 2.6.21.4 hang up issue
227      */
228    if (ath_hal_hasrfkill_int(ah)) {
229        if (ahp->ah_gpio_bit == ar9300_gpio_get(ah, ahp->ah_gpio_select)) {
230            /* switch already closed, set to interrupt upon open */
231            ar9300_gpio_set_intr(ah, ahp->ah_gpio_select, !ahp->ah_gpio_bit);
232        } else {
233            ar9300_gpio_set_intr(ah, ahp->ah_gpio_select, ahp->ah_gpio_bit);
234        }
235    }
236}
237
238/*
239 * Change the LED blinking pattern to correspond to the connectivity
240 */
241void
242ar9300_set_led_state(struct ath_hal *ah, HAL_LED_STATE state)
243{
244    static const u_int32_t ledbits[8] = {
245        AR_CFG_LED_ASSOC_NONE,     /* HAL_LED_RESET */
246        AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_INIT  */
247        AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_READY */
248        AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_SCAN  */
249        AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_AUTH  */
250        AR_CFG_LED_ASSOC_ACTIVE,   /* HAL_LED_ASSOC */
251        AR_CFG_LED_ASSOC_ACTIVE,   /* HAL_LED_RUN   */
252        AR_CFG_LED_ASSOC_NONE,
253    };
254
255    OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_ASSOC_CTL, ledbits[state]);
256}
257
258/*
259 * Sets the Power LED on the cardbus without affecting the Network LED.
260 */
261void
262ar9300_set_power_led_state(struct ath_hal *ah, u_int8_t enabled)
263{
264    u_int32_t    val;
265
266    val = enabled ? AR_CFG_LED_MODE_POWER_ON : AR_CFG_LED_MODE_POWER_OFF;
267    OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_POWER, val);
268}
269
270/*
271 * Sets the Network LED on the cardbus without affecting the Power LED.
272 */
273void
274ar9300_set_network_led_state(struct ath_hal *ah, u_int8_t enabled)
275{
276    u_int32_t    val;
277
278    val = enabled ? AR_CFG_LED_MODE_NETWORK_ON : AR_CFG_LED_MODE_NETWORK_OFF;
279    OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_NETWORK, val);
280}
281
282/*
283 * Change association related fields programmed into the hardware.
284 * Writing a valid BSSID to the hardware effectively enables the hardware
285 * to synchronize its TSF to the correct beacons and receive frames coming
286 * from that BSSID. It is called by the SME JOIN operation.
287 */
288void
289ar9300_write_associd(struct ath_hal *ah, const u_int8_t *bssid,
290    u_int16_t assoc_id)
291{
292    struct ath_hal_9300 *ahp = AH9300(ah);
293
294    /* save bssid and assoc_id for restore on reset */
295    OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
296    ahp->ah_assoc_id = assoc_id;
297
298    OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
299    OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) |
300                                 ((assoc_id & 0x3fff) << AR_BSS_ID1_AID_S));
301}
302
303/*
304 * Get the current hardware tsf for stamlme
305 */
306u_int64_t
307ar9300_get_tsf64(struct ath_hal *ah)
308{
309    u_int64_t tsf;
310
311    /* XXX sync multi-word read? */
312    tsf = OS_REG_READ(ah, AR_TSF_U32);
313    tsf = (tsf << 32) | OS_REG_READ(ah, AR_TSF_L32);
314    return tsf;
315}
316
317void
318ar9300_set_tsf64(struct ath_hal *ah, u_int64_t tsf)
319{
320    OS_REG_WRITE(ah, AR_TSF_L32, (tsf & 0xffffffff));
321    OS_REG_WRITE(ah, AR_TSF_U32, ((tsf >> 32) & 0xffffffff));
322}
323
324/*
325 * Get the current hardware tsf for stamlme
326 */
327u_int32_t
328ar9300_get_tsf32(struct ath_hal *ah)
329{
330    return OS_REG_READ(ah, AR_TSF_L32);
331}
332
333u_int32_t
334ar9300_get_tsf2_32(struct ath_hal *ah)
335{
336    return OS_REG_READ(ah, AR_TSF2_L32);
337}
338
339/*
340 * Reset the current hardware tsf for stamlme.
341 */
342void
343ar9300_reset_tsf(struct ath_hal *ah)
344{
345    int count;
346
347    count = 0;
348    while (OS_REG_READ(ah, AR_SLP32_MODE) & AR_SLP32_TSF_WRITE_STATUS) {
349        count++;
350        if (count > 10) {
351            HALDEBUG(ah, HAL_DEBUG_RESET,
352                "%s: AR_SLP32_TSF_WRITE_STATUS limit exceeded\n", __func__);
353            break;
354        }
355        OS_DELAY(10);
356    }
357    OS_REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
358}
359
360/*
361 * Set or clear hardware basic rate bit
362 * Set hardware basic rate set if basic rate is found
363 * and basic rate is equal or less than 2Mbps
364 */
365void
366ar9300_set_basic_rate(struct ath_hal *ah, HAL_RATE_SET *rs)
367{
368    const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
369    u_int32_t reg;
370    u_int8_t xset;
371    int i;
372
373    if (chan == AH_NULL || !IEEE80211_IS_CHAN_CCK(chan)) {
374        return;
375    }
376    xset = 0;
377    for (i = 0; i < rs->rs_count; i++) {
378        u_int8_t rset = rs->rs_rates[i];
379        /* Basic rate defined? */
380        if ((rset & 0x80) && (rset &= 0x7f) >= xset) {
381            xset = rset;
382        }
383    }
384    /*
385     * Set the h/w bit to reflect whether or not the basic
386     * rate is found to be equal or less than 2Mbps.
387     */
388    reg = OS_REG_READ(ah, AR_STA_ID1);
389    if (xset && xset / 2 <= 2) {
390        OS_REG_WRITE(ah, AR_STA_ID1, reg | AR_STA_ID1_BASE_RATE_11B);
391    } else {
392        OS_REG_WRITE(ah, AR_STA_ID1, reg &~ AR_STA_ID1_BASE_RATE_11B);
393    }
394}
395
396/*
397 * Grab a semi-random value from hardware registers - may not
398 * change often
399 */
400u_int32_t
401ar9300_get_random_seed(struct ath_hal *ah)
402{
403    u_int32_t nf;
404
405    nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
406    if (nf & 0x100) {
407        nf = 0 - ((nf ^ 0x1ff) + 1);
408    }
409    return (OS_REG_READ(ah, AR_TSF_U32) ^
410        OS_REG_READ(ah, AR_TSF_L32) ^ nf);
411}
412
413/*
414 * Detect if our card is present
415 */
416HAL_BOOL
417ar9300_detect_card_present(struct ath_hal *ah)
418{
419    u_int16_t mac_version, mac_rev;
420    u_int32_t v;
421
422    /*
423     * Read the Silicon Revision register and compare that
424     * to what we read at attach time.  If the same, we say
425     * a card/device is present.
426     */
427    v = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_SREV)) & AR_SREV_ID;
428    if (v == 0xFF) {
429        /* new SREV format */
430        v = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_SREV));
431        /*
432         * Include 6-bit Chip Type (masked to 0) to differentiate
433         * from pre-Sowl versions
434         */
435        mac_version = (v & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
436        mac_rev = MS(v, AR_SREV_REVISION2);
437    } else {
438        mac_version = MS(v, AR_SREV_VERSION);
439        mac_rev = v & AR_SREV_REVISION;
440    }
441    return (AH_PRIVATE(ah)->ah_macVersion == mac_version &&
442            AH_PRIVATE(ah)->ah_macRev == mac_rev);
443}
444
445/*
446 * Update MIB Counters
447 */
448void
449ar9300_update_mib_mac_stats(struct ath_hal *ah)
450{
451    struct ath_hal_9300 *ahp = AH9300(ah);
452    HAL_MIB_STATS* stats = &ahp->ah_stats.ast_mibstats;
453
454    stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
455    stats->rts_bad    += OS_REG_READ(ah, AR_RTS_FAIL);
456    stats->fcs_bad    += OS_REG_READ(ah, AR_FCS_FAIL);
457    stats->rts_good   += OS_REG_READ(ah, AR_RTS_OK);
458    stats->beacons    += OS_REG_READ(ah, AR_BEACON_CNT);
459}
460
461void
462ar9300_get_mib_mac_stats(struct ath_hal *ah, HAL_MIB_STATS* stats)
463{
464    struct ath_hal_9300 *ahp = AH9300(ah);
465    HAL_MIB_STATS* istats = &ahp->ah_stats.ast_mibstats;
466
467    stats->ackrcv_bad = istats->ackrcv_bad;
468    stats->rts_bad    = istats->rts_bad;
469    stats->fcs_bad    = istats->fcs_bad;
470    stats->rts_good   = istats->rts_good;
471    stats->beacons    = istats->beacons;
472}
473
474/*
475 * Detect if the HW supports spreading a CCK signal on channel 14
476 */
477HAL_BOOL
478ar9300_is_japan_channel_spread_supported(struct ath_hal *ah)
479{
480    return AH_TRUE;
481}
482
483/*
484 * Get the rssi of frame curently being received.
485 */
486u_int32_t
487ar9300_get_cur_rssi(struct ath_hal *ah)
488{
489    /* XXX return (OS_REG_READ(ah, AR_PHY_CURRENT_RSSI) & 0xff); */
490    /* get combined RSSI */
491    return (OS_REG_READ(ah, AR_PHY_RSSI_3) & 0xff);
492}
493
494#if ATH_GEN_RANDOMNESS
495/*
496 * Get the rssi value from BB on ctl chain0.
497 */
498u_int32_t
499ar9300_get_rssi_chain0(struct ath_hal *ah)
500{
501    /* get ctl chain0 RSSI */
502    return OS_REG_READ(ah, AR_PHY_RSSI_0) & 0xff;
503}
504#endif
505
506u_int
507ar9300_get_def_antenna(struct ath_hal *ah)
508{
509    return (OS_REG_READ(ah, AR_DEF_ANTENNA) & 0x7);
510}
511
512/* Setup coverage class */
513void
514ar9300_set_coverage_class(struct ath_hal *ah, u_int8_t coverageclass, int now)
515{
516}
517
518void
519ar9300_set_def_antenna(struct ath_hal *ah, u_int antenna)
520{
521    OS_REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
522}
523
524HAL_BOOL
525ar9300_set_antenna_switch(struct ath_hal *ah,
526    HAL_ANT_SETTING settings, const struct ieee80211_channel *chan,
527    u_int8_t *tx_chainmask, u_int8_t *rx_chainmask, u_int8_t *antenna_cfgd)
528{
529    struct ath_hal_9300 *ahp = AH9300(ah);
530
531    /*
532     * Owl does not support diversity or changing antennas.
533     *
534     * Instead this API and function are defined differently for AR9300.
535     * To support Tablet PC's, this interface allows the system
536     * to dramatically reduce the TX power on a particular chain.
537     *
538     * Based on the value of (redefined) diversity_control, the
539     * reset code will decrease power on chain 0 or chain 1/2.
540     *
541     * Based on the value of bit 0 of antenna_switch_swap,
542     * the mapping between OID call and chain is defined as:
543     *  0:  map A -> 0, B -> 1;
544     *  1:  map A -> 1, B -> 0;
545     *
546     * NOTE:
547     *   The devices that use this OID should use a tx_chain_mask and
548     *   tx_chain_select_legacy setting of 5 or 3 if ANTENNA_FIXED_B is
549     *   used in order to ensure an active transmit antenna.  This
550     *   API will allow the host to turn off the only transmitting
551     *   antenna to ensure the antenna closest to the user's body is
552     *   powered-down.
553     */
554    /*
555     * Set antenna control for use during reset sequence by
556     * ar9300_decrease_chain_power()
557     */
558    ahp->ah_diversity_control = settings;
559
560    return AH_TRUE;
561}
562
563HAL_BOOL
564ar9300_is_sleep_after_beacon_broken(struct ath_hal *ah)
565{
566    return AH_TRUE;
567}
568
569HAL_BOOL
570ar9300_set_slot_time(struct ath_hal *ah, u_int us)
571{
572    struct ath_hal_9300 *ahp = AH9300(ah);
573    if (us < HAL_SLOT_TIME_9 || us > ar9300_mac_to_usec(ah, 0xffff)) {
574        HALDEBUG(ah, HAL_DEBUG_RESET, "%s: bad slot time %u\n", __func__, us);
575        ahp->ah_slot_time = (u_int) -1;  /* restore default handling */
576        return AH_FALSE;
577    } else {
578        /* convert to system clocks */
579        OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ar9300_mac_to_clks(ah, us));
580        ahp->ah_slot_time = us;
581        return AH_TRUE;
582    }
583}
584
585HAL_BOOL
586ar9300_set_ack_timeout(struct ath_hal *ah, u_int us)
587{
588    struct ath_hal_9300 *ahp = AH9300(ah);
589
590    if (us > ar9300_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
591        HALDEBUG(ah, HAL_DEBUG_RESET, "%s: bad ack timeout %u\n", __func__, us);
592        ahp->ah_ack_timeout = (u_int) -1; /* restore default handling */
593        return AH_FALSE;
594    } else {
595        /* convert to system clocks */
596        OS_REG_RMW_FIELD(ah,
597            AR_TIME_OUT, AR_TIME_OUT_ACK, ar9300_mac_to_clks(ah, us));
598        ahp->ah_ack_timeout = us;
599        return AH_TRUE;
600    }
601}
602
603u_int
604ar9300_get_ack_timeout(struct ath_hal *ah)
605{
606    u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
607    return ar9300_mac_to_usec(ah, clks);      /* convert from system clocks */
608}
609
610HAL_STATUS
611ar9300_set_quiet(struct ath_hal *ah, u_int32_t period, u_int32_t duration,
612                 u_int32_t next_start, HAL_QUIET_FLAG flag)
613{
614#define	TU_TO_USEC(_tu)		((_tu) << 10)
615    HAL_STATUS status = HAL_EIO;
616    u_int32_t tsf = 0, j, next_start_us = 0;
617    if (flag & HAL_QUIET_ENABLE) {
618        for (j = 0; j < 2; j++) {
619            next_start_us = TU_TO_USEC(next_start);
620            tsf = OS_REG_READ(ah, AR_TSF_L32);
621            if ((!next_start) || (flag & HAL_QUIET_ADD_CURRENT_TSF)) {
622                next_start_us += tsf;
623            }
624            if (flag & HAL_QUIET_ADD_SWBA_RESP_TIME) {
625                next_start_us +=
626                    ah->ah_config.ah_sw_beacon_response_time;
627            }
628            OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
629            OS_REG_WRITE(ah, AR_QUIET2, SM(duration, AR_QUIET2_QUIET_DUR));
630            OS_REG_WRITE(ah, AR_QUIET_PERIOD, TU_TO_USEC(period));
631            OS_REG_WRITE(ah, AR_NEXT_QUIET_TIMER, next_start_us);
632            OS_REG_SET_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
633            if ((OS_REG_READ(ah, AR_TSF_L32) >> 10) == tsf >> 10) {
634                status = HAL_OK;
635                break;
636            }
637            HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: TSF have moved "
638                "while trying to set quiet time TSF: 0x%08x\n", __func__, tsf);
639            /* TSF shouldn't count twice or reg access is taking forever */
640            HALASSERT(j < 1);
641        }
642    } else {
643        OS_REG_CLR_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
644        status = HAL_OK;
645    }
646
647    return status;
648#undef	TU_TO_USEC
649}
650#ifdef ATH_SUPPORT_DFS
651void
652ar9300_cac_tx_quiet(struct ath_hal *ah, HAL_BOOL enable)
653{
654    u32 reg1, reg2;
655
656    reg1 = OS_REG_READ(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE));
657    reg2 = OS_REG_READ(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1));
658    AH9300(ah)->ah_cac_quiet_enabled = enable;
659
660    if (enable) {
661        OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE),
662                     reg1 | AR_PCU_FORCE_QUIET_COLL);
663        OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1),
664                     reg2 & ~AR_QUIET1_QUIET_ACK_CTS_ENABLE);
665    } else {
666        OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE),
667                     reg1 & ~AR_PCU_FORCE_QUIET_COLL);
668        OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1),
669                     reg2 | AR_QUIET1_QUIET_ACK_CTS_ENABLE);
670    }
671}
672#endif /* ATH_SUPPORT_DFS */
673
674void
675ar9300_set_pcu_config(struct ath_hal *ah)
676{
677    ar9300_set_operating_mode(ah, AH_PRIVATE(ah)->ah_opmode);
678}
679
680HAL_STATUS
681ar9300_get_capability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
682    u_int32_t capability, u_int32_t *result)
683{
684    struct ath_hal_9300 *ahp = AH9300(ah);
685    const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
686
687    switch (type) {
688    case HAL_CAP_CIPHER:            /* cipher handled in hardware */
689        switch (capability) {
690        case HAL_CIPHER_AES_CCM:
691        case HAL_CIPHER_AES_OCB:
692        case HAL_CIPHER_TKIP:
693        case HAL_CIPHER_WEP:
694        case HAL_CIPHER_MIC:
695        case HAL_CIPHER_CLR:
696            return HAL_OK;
697        default:
698            return HAL_ENOTSUPP;
699        }
700    case HAL_CAP_TKIP_MIC:          /* handle TKIP MIC in hardware */
701        switch (capability) {
702        case 0:         /* hardware capability */
703            return HAL_OK;
704        case 1:
705            return (ahp->ah_sta_id1_defaults &
706                    AR_STA_ID1_CRPT_MIC_ENABLE) ?  HAL_OK : HAL_ENXIO;
707        default:
708            return HAL_ENOTSUPP;
709        }
710    case HAL_CAP_TKIP_SPLIT:        /* hardware TKIP uses split keys */
711        switch (capability) {
712        case 0: /* hardware capability */
713            return p_cap->halTkipMicTxRxKeySupport ? HAL_ENXIO : HAL_OK;
714        case 1: /* current setting */
715            return (ahp->ah_misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
716                HAL_ENXIO : HAL_OK;
717        default:
718            return HAL_ENOTSUPP;
719        }
720    case HAL_CAP_WME_TKIPMIC:
721        /* hardware can do TKIP MIC when WMM is turned on */
722        return HAL_OK;
723    case HAL_CAP_PHYCOUNTERS:       /* hardware PHY error counters */
724        return HAL_OK;
725    case HAL_CAP_DIVERSITY:         /* hardware supports fast diversity */
726        switch (capability) {
727        case 0:                 /* hardware capability */
728            return HAL_OK;
729        case 1:                 /* current setting */
730            return (OS_REG_READ(ah, AR_PHY_CCK_DETECT) &
731                            AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
732                            HAL_OK : HAL_ENXIO;
733        }
734        return HAL_EINVAL;
735    case HAL_CAP_TPC:
736        switch (capability) {
737        case 0:                 /* hardware capability */
738            return HAL_OK;
739        case 1:
740            return ah->ah_config.ath_hal_desc_tpc ?
741                               HAL_OK : HAL_ENXIO;
742        }
743        return HAL_OK;
744    case HAL_CAP_PHYDIAG:           /* radar pulse detection capability */
745        return HAL_OK;
746    case HAL_CAP_MCAST_KEYSRCH:     /* multicast frame keycache search */
747        switch (capability) {
748        case 0:                 /* hardware capability */
749            return HAL_OK;
750        case 1:
751            if (OS_REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
752                /*
753                 * Owl and Merlin have problems in mcast key search.
754                 * Disable this cap. in Ad-hoc mode. see Bug 25776 and
755                 * 26802
756                 */
757                return HAL_ENXIO;
758            } else {
759                return (ahp->ah_sta_id1_defaults &
760                        AR_STA_ID1_MCAST_KSRCH) ? HAL_OK : HAL_ENXIO;
761            }
762        }
763        return HAL_EINVAL;
764    case HAL_CAP_TSF_ADJUST:        /* hardware has beacon tsf adjust */
765        switch (capability) {
766        case 0:                 /* hardware capability */
767            return p_cap->halTsfAddSupport ? HAL_OK : HAL_ENOTSUPP;
768        case 1:
769            return (ahp->ah_misc_mode & AR_PCU_TX_ADD_TSF) ?
770                HAL_OK : HAL_ENXIO;
771        }
772        return HAL_EINVAL;
773    case HAL_CAP_RFSILENT:      /* rfsilent support  */
774        if (capability == 3) {  /* rfkill interrupt */
775            /*
776             * XXX: Interrupt-based notification of RF Kill state
777             *      changes not working yet. Report that this feature
778             *      is not supported so that polling is used instead.
779             */
780            return (HAL_ENOTSUPP);
781        }
782        return ath_hal_getcapability(ah, type, capability, result);
783    case HAL_CAP_4ADDR_AGGR:
784        return HAL_OK;
785    case HAL_CAP_BB_RIFS_HANG:
786        return HAL_ENOTSUPP;
787    case HAL_CAP_BB_DFS_HANG:
788        return HAL_ENOTSUPP;
789    case HAL_CAP_BB_RX_CLEAR_STUCK_HANG:
790        /* Track chips that are known to have BB hangs related
791         * to rx_clear stuck low.
792         */
793        return HAL_ENOTSUPP;
794    case HAL_CAP_MAC_HANG:
795        /* Track chips that are known to have MAC hangs.
796         */
797        return HAL_OK;
798    case HAL_CAP_RIFS_RX_ENABLED:
799        /* Is RIFS RX currently enabled */
800        return (ahp->ah_rifs_enabled == AH_TRUE) ?  HAL_OK : HAL_ENOTSUPP;
801#if 0
802    case HAL_CAP_ANT_CFG_2GHZ:
803        *result = p_cap->halNumAntCfg2Ghz;
804        return HAL_OK;
805    case HAL_CAP_ANT_CFG_5GHZ:
806        *result = p_cap->halNumAntCfg5Ghz;
807        return HAL_OK;
808    case HAL_CAP_RX_STBC:
809        *result = p_cap->hal_rx_stbc_support;
810        return HAL_OK;
811    case HAL_CAP_TX_STBC:
812        *result = p_cap->hal_tx_stbc_support;
813        return HAL_OK;
814#endif
815    case HAL_CAP_LDPC:
816        *result = p_cap->halLDPCSupport;
817        return HAL_OK;
818    case HAL_CAP_DYNAMIC_SMPS:
819        return HAL_OK;
820    case HAL_CAP_DS:
821        return (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah) ||
822                (p_cap->halTxChainMask & 0x3) != 0x3 ||
823                (p_cap->halRxChainMask & 0x3) != 0x3) ?
824            HAL_ENOTSUPP : HAL_OK;
825    case HAL_CAP_TS:
826        return (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah) ||
827                (p_cap->halTxChainMask & 0x7) != 0x7 ||
828                (p_cap->halRxChainMask & 0x7) != 0x7) ?
829            HAL_ENOTSUPP : HAL_OK;
830    case HAL_CAP_OL_PWRCTRL:
831        return (ar9300_eeprom_get(ahp, EEP_OL_PWRCTRL)) ?
832            HAL_OK : HAL_ENOTSUPP;
833    case HAL_CAP_CRDC:
834#if ATH_SUPPORT_CRDC
835        return (AR_SREV_WASP(ah) &&
836                ah->ah_config.ath_hal_crdc_enable) ?
837                    HAL_OK : HAL_ENOTSUPP;
838#else
839        return HAL_ENOTSUPP;
840#endif
841#if 0
842    case HAL_CAP_MAX_WEP_TKIP_HT20_TX_RATEKBPS:
843        *result = (u_int32_t)(-1);
844        return HAL_OK;
845    case HAL_CAP_MAX_WEP_TKIP_HT40_TX_RATEKBPS:
846        *result = (u_int32_t)(-1);
847        return HAL_OK;
848#endif
849    case HAL_CAP_BB_PANIC_WATCHDOG:
850        return HAL_OK;
851    case HAL_CAP_PHYRESTART_CLR_WAR:
852        if ((AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_OSPREY) &&
853            (AH_PRIVATE((ah))->ah_macRev < AR_SREV_REVISION_AR9580_10))
854        {
855            return HAL_OK;
856        }
857        else
858        {
859            return HAL_ENOTSUPP;
860        }
861    case HAL_CAP_ENTERPRISE_MODE:
862        *result = ahp->ah_enterprise_mode >> 16;
863        /*
864         * WAR for EV 77658 - Add delimiters to first sub-frame when using
865         * RTS/CTS with aggregation and non-enterprise Osprey.
866         *
867         * Bug fixed in AR9580/Peacock, Wasp1.1 and later
868         */
869        if ((ahp->ah_enterprise_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE) &&
870                !AR_SREV_AR9580_10_OR_LATER(ah) && (!AR_SREV_WASP(ah) ||
871                AR_SREV_WASP_10(ah))) {
872            *result |= AH_ENT_RTSCTS_DELIM_WAR;
873        }
874        return HAL_OK;
875    case HAL_CAP_LDPCWAR:
876        /* WAR for RIFS+LDPC issue is required for all chips currently
877         * supported by ar9300 HAL.
878         */
879        return HAL_OK;
880    case HAL_CAP_ENABLE_APM:
881        *result = p_cap->halApmEnable;
882        return HAL_OK;
883    case HAL_CAP_PCIE_LCR_EXTSYNC_EN:
884        return (p_cap->hal_pcie_lcr_extsync_en == AH_TRUE) ? HAL_OK : HAL_ENOTSUPP;
885    case HAL_CAP_PCIE_LCR_OFFSET:
886        *result = p_cap->hal_pcie_lcr_offset;
887        return HAL_OK;
888    case HAL_CAP_SMARTANTENNA:
889        /* FIXME A request is pending with h/w team to add feature bit in
890         * caldata to detect if board has smart antenna or not, once added
891         * we need to fix his piece of code to read and return value without
892         * any compile flags
893         */
894#if UMAC_SUPPORT_SMARTANTENNA
895        /* enable smart antenna for  Peacock, Wasp and scorpion
896           for future chips need to modify */
897        if (AR_SREV_AR9580_10(ah) || (AR_SREV_WASP(ah)) || AR_SREV_SCORPION(ah)) {
898            return HAL_OK;
899        } else {
900            return HAL_ENOTSUPP;
901        }
902#else
903        return HAL_ENOTSUPP;
904#endif
905
906#ifdef ATH_TRAFFIC_FAST_RECOVER
907    case HAL_CAP_TRAFFIC_FAST_RECOVER:
908        if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_WASP_11(ah)) {
909            return HAL_OK;
910        } else {
911            return HAL_ENOTSUPP;
912        }
913#endif
914    default:
915        return ath_hal_getcapability(ah, type, capability, result);
916    }
917}
918
919HAL_BOOL
920ar9300_set_capability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
921        u_int32_t capability, u_int32_t setting, HAL_STATUS *status)
922{
923    struct ath_hal_9300 *ahp = AH9300(ah);
924    const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
925    u_int32_t v;
926
927    switch (type) {
928    case HAL_CAP_TKIP_SPLIT:        /* hardware TKIP uses split keys */
929        if (! p_cap->halTkipMicTxRxKeySupport)
930            return AH_FALSE;
931
932        if (setting)
933            ahp->ah_misc_mode &= ~AR_PCU_MIC_NEW_LOC_ENA;
934        else
935            ahp->ah_misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
936
937        OS_REG_WRITE(ah, AR_PCU_MISC, ahp->ah_misc_mode);
938        return AH_TRUE;
939
940    case HAL_CAP_TKIP_MIC:          /* handle TKIP MIC in hardware */
941        if (setting) {
942            ahp->ah_sta_id1_defaults |= AR_STA_ID1_CRPT_MIC_ENABLE;
943        } else {
944            ahp->ah_sta_id1_defaults &= ~AR_STA_ID1_CRPT_MIC_ENABLE;
945        }
946        return AH_TRUE;
947    case HAL_CAP_DIVERSITY:
948        v = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
949        if (setting) {
950            v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
951        } else {
952            v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
953        }
954        OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
955        return AH_TRUE;
956    case HAL_CAP_DIAG:              /* hardware diagnostic support */
957        /*
958         * NB: could split this up into virtual capabilities,
959         *     (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
960         *     seems worth the additional complexity.
961         */
962#ifdef AH_DEBUG
963        AH_PRIVATE(ah)->ah_diagreg = setting;
964#else
965        AH_PRIVATE(ah)->ah_diagreg = setting & 0x6;     /* ACK+CTS */
966#endif
967        OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
968        return AH_TRUE;
969    case HAL_CAP_TPC:
970        ah->ah_config.ath_hal_desc_tpc = (setting != 0);
971        return AH_TRUE;
972    case HAL_CAP_MCAST_KEYSRCH:     /* multicast frame keycache search */
973        if (setting) {
974            ahp->ah_sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
975        } else {
976            ahp->ah_sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
977        }
978        return AH_TRUE;
979    case HAL_CAP_TSF_ADJUST:        /* hardware has beacon tsf adjust */
980        if (p_cap->halTsfAddSupport) {
981            if (setting) {
982                ahp->ah_misc_mode |= AR_PCU_TX_ADD_TSF;
983            } else {
984                ahp->ah_misc_mode &= ~AR_PCU_TX_ADD_TSF;
985            }
986            return AH_TRUE;
987        }
988        return AH_FALSE;
989    case HAL_CAP_RXBUFSIZE:         /* set MAC receive buffer size */
990        ahp->rx_buf_size = setting & AR_DATABUF_MASK;
991        OS_REG_WRITE(ah, AR_DATABUF, ahp->rx_buf_size);
992        return AH_TRUE;
993
994        /* fall thru... */
995    default:
996        return ath_hal_setcapability(ah, type, capability, setting, status);
997    }
998}
999
1000#ifdef AH_DEBUG
1001static void
1002ar9300_print_reg(struct ath_hal *ah, u_int32_t args)
1003{
1004    u_int32_t i = 0;
1005
1006    /* Read 0x80d0 to trigger pcie analyzer */
1007    HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1008        "0x%04x 0x%08x\n", 0x80d0, OS_REG_READ(ah, 0x80d0));
1009
1010    if (args & HAL_DIAG_PRINT_REG_COUNTER) {
1011        struct ath_hal_9300 *ahp = AH9300(ah);
1012        u_int32_t tf, rf, rc, cc;
1013
1014        tf = OS_REG_READ(ah, AR_TFCNT);
1015        rf = OS_REG_READ(ah, AR_RFCNT);
1016        rc = OS_REG_READ(ah, AR_RCCNT);
1017        cc = OS_REG_READ(ah, AR_CCCNT);
1018
1019        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1020            "AR_TFCNT Diff= 0x%x\n", tf - ahp->last_tf);
1021        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1022            "AR_RFCNT Diff= 0x%x\n", rf - ahp->last_rf);
1023        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1024            "AR_RCCNT Diff= 0x%x\n", rc - ahp->last_rc);
1025        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1026            "AR_CCCNT Diff= 0x%x\n", cc - ahp->last_cc);
1027
1028        ahp->last_tf = tf;
1029        ahp->last_rf = rf;
1030        ahp->last_rc = rc;
1031        ahp->last_cc = cc;
1032
1033        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1034            "DMADBG0 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_0));
1035        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1036            "DMADBG1 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_1));
1037        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1038            "DMADBG2 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_2));
1039        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1040            "DMADBG3 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_3));
1041        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1042            "DMADBG4 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_4));
1043        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1044            "DMADBG5 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_5));
1045        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1046            "DMADBG6 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_6));
1047        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1048            "DMADBG7 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_7));
1049    }
1050
1051    if (args & HAL_DIAG_PRINT_REG_ALL) {
1052        for (i = 0x8; i <= 0xB8; i += sizeof(u_int32_t)) {
1053            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1054                i, OS_REG_READ(ah, i));
1055        }
1056
1057        for (i = 0x800; i <= (0x800 + (10 << 2)); i += sizeof(u_int32_t)) {
1058            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1059                i, OS_REG_READ(ah, i));
1060        }
1061
1062        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1063            "0x%04x 0x%08x\n", 0x840, OS_REG_READ(ah, i));
1064
1065        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1066            "0x%04x 0x%08x\n", 0x880, OS_REG_READ(ah, i));
1067
1068        for (i = 0x8C0; i <= (0x8C0 + (10 << 2)); i += sizeof(u_int32_t)) {
1069            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1070                i, OS_REG_READ(ah, i));
1071        }
1072
1073        for (i = 0x1F00; i <= 0x1F04; i += sizeof(u_int32_t)) {
1074            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1075                i, OS_REG_READ(ah, i));
1076        }
1077
1078        for (i = 0x4000; i <= 0x408C; i += sizeof(u_int32_t)) {
1079            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1080                i, OS_REG_READ(ah, i));
1081        }
1082
1083        for (i = 0x5000; i <= 0x503C; i += sizeof(u_int32_t)) {
1084            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1085                i, OS_REG_READ(ah, i));
1086        }
1087
1088        for (i = 0x7040; i <= 0x7058; i += sizeof(u_int32_t)) {
1089            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1090                i, OS_REG_READ(ah, i));
1091        }
1092
1093        for (i = 0x8000; i <= 0x8098; i += sizeof(u_int32_t)) {
1094            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1095                i, OS_REG_READ(ah, i));
1096        }
1097
1098        for (i = 0x80D4; i <= 0x8200; i += sizeof(u_int32_t)) {
1099            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1100                i, OS_REG_READ(ah, i));
1101        }
1102
1103        for (i = 0x8240; i <= 0x97FC; i += sizeof(u_int32_t)) {
1104            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1105                i, OS_REG_READ(ah, i));
1106        }
1107
1108        for (i = 0x9800; i <= 0x99f0; i += sizeof(u_int32_t)) {
1109            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1110                i, OS_REG_READ(ah, i));
1111        }
1112
1113        for (i = 0x9c10; i <= 0x9CFC; i += sizeof(u_int32_t)) {
1114            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1115                i, OS_REG_READ(ah, i));
1116        }
1117
1118        for (i = 0xA200; i <= 0xA26C; i += sizeof(u_int32_t)) {
1119            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1120                i, OS_REG_READ(ah, i));
1121        }
1122    }
1123}
1124#endif
1125
1126HAL_BOOL
1127ar9300_get_diag_state(struct ath_hal *ah, int request,
1128        const void *args, u_int32_t argsize,
1129        void **result, u_int32_t *resultsize)
1130{
1131    struct ath_hal_9300 *ahp = AH9300(ah);
1132
1133    (void) ahp;
1134    if (ath_hal_getdiagstate(ah, request, args, argsize, result, resultsize)) {
1135        return AH_TRUE;
1136    }
1137    switch (request) {
1138#ifdef AH_PRIVATE_DIAG
1139    case HAL_DIAG_EEPROM:
1140        *result = &ahp->ah_eeprom;
1141        *resultsize = sizeof(ar9300_eeprom_t);
1142        return AH_TRUE;
1143
1144#if 0   /* XXX - TODO */
1145    case HAL_DIAG_EEPROM_EXP_11A:
1146    case HAL_DIAG_EEPROM_EXP_11B:
1147    case HAL_DIAG_EEPROM_EXP_11G:
1148        pe = &ahp->ah_mode_power_array2133[request - HAL_DIAG_EEPROM_EXP_11A];
1149        *result = pe->p_channels;
1150        *resultsize = (*result == AH_NULL) ? 0 :
1151            roundup(sizeof(u_int16_t) * pe->num_channels,
1152            sizeof(u_int32_t)) +
1153                sizeof(EXPN_DATA_PER_CHANNEL_2133) * pe->num_channels;
1154        return AH_TRUE;
1155#endif
1156    case HAL_DIAG_RFGAIN:
1157        *result = &ahp->ah_gain_values;
1158        *resultsize = sizeof(GAIN_VALUES);
1159        return AH_TRUE;
1160    case HAL_DIAG_RFGAIN_CURSTEP:
1161        *result = (void *) ahp->ah_gain_values.curr_step;
1162        *resultsize = (*result == AH_NULL) ?
1163                0 : sizeof(GAIN_OPTIMIZATION_STEP);
1164        return AH_TRUE;
1165#if 0   /* XXX - TODO */
1166    case HAL_DIAG_PCDAC:
1167        *result = ahp->ah_pcdac_table;
1168        *resultsize = ahp->ah_pcdac_table_size;
1169        return AH_TRUE;
1170#endif
1171    case HAL_DIAG_ANI_CURRENT:
1172        *result = ar9300_ani_get_current_state(ah);
1173        *resultsize = (*result == AH_NULL) ?
1174            0 : sizeof(struct ar9300_ani_state);
1175        return AH_TRUE;
1176    case HAL_DIAG_ANI_STATS:
1177        *result = ar9300_ani_get_current_stats(ah);
1178        *resultsize = (*result == AH_NULL) ?
1179            0 : sizeof(struct ar9300_stats);
1180        return AH_TRUE;
1181    case HAL_DIAG_ANI_CMD:
1182        if (argsize != 2*sizeof(u_int32_t)) {
1183            return AH_FALSE;
1184        }
1185        ar9300_ani_control(
1186            ah, ((const u_int32_t *)args)[0], ((const u_int32_t *)args)[1]);
1187        return AH_TRUE;
1188#if 0
1189    case HAL_DIAG_TXCONT:
1190        /*AR9300_CONTTXMODE(ah, (struct ath_desc *)args, argsize );*/
1191        return AH_TRUE;
1192#endif /* 0 */
1193#endif /* AH_PRIVATE_DIAG */
1194    case HAL_DIAG_CHANNELS:
1195#if 0
1196        *result = &(ahp->ah_priv.ah_channels[0]);
1197        *resultsize =
1198            sizeof(ahp->ah_priv.ah_channels[0]) * ahp->ah_priv.priv.ah_nchan;
1199#endif
1200        return AH_TRUE;
1201#ifdef AH_DEBUG
1202    case HAL_DIAG_PRINT_REG:
1203        ar9300_print_reg(ah, *((const u_int32_t *)args));
1204        return AH_TRUE;
1205#endif
1206    default:
1207        break;
1208    }
1209
1210    return AH_FALSE;
1211}
1212
1213void
1214ar9300_dma_reg_dump(struct ath_hal *ah)
1215{
1216#ifdef AH_DEBUG
1217#define NUM_DMA_DEBUG_REGS  8
1218#define NUM_QUEUES          10
1219
1220    u_int32_t val[NUM_DMA_DEBUG_REGS];
1221    int       qcu_offset = 0, dcu_offset = 0;
1222    u_int32_t *qcu_base  = &val[0], *dcu_base = &val[4], reg;
1223    int       i, j, k;
1224    int16_t nfarray[HAL_NUM_NF_READINGS];
1225#ifdef	ATH_NF_PER_CHAN
1226    HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, AH_PRIVATE(ah)->ah_curchan);
1227#endif	/* ATH_NF_PER_CHAN */
1228    HAL_NFCAL_HIST_FULL *h = AH_HOME_CHAN_NFCAL_HIST(ah, ichan);
1229
1230     /* selecting DMA OBS 8 */
1231    OS_REG_WRITE(ah, AR_MACMISC,
1232        ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
1233         (AR_MACMISC_MISC_OBS_BUS_1 << AR_MACMISC_MISC_OBS_BUS_MSB_S)));
1234
1235    ath_hal_printf(ah, "Raw DMA Debug values:\n");
1236    for (i = 0; i < NUM_DMA_DEBUG_REGS; i++) {
1237        if (i % 4 == 0) {
1238            ath_hal_printf(ah, "\n");
1239        }
1240
1241        val[i] = OS_REG_READ(ah, AR_DMADBG_0 + (i * sizeof(u_int32_t)));
1242        ath_hal_printf(ah, "%d: %08x ", i, val[i]);
1243    }
1244
1245    ath_hal_printf(ah, "\n\n");
1246    ath_hal_printf(ah, "Num QCU: chain_st fsp_ok fsp_st DCU: chain_st\n");
1247
1248    for (i = 0; i < NUM_QUEUES; i++, qcu_offset += 4, dcu_offset += 5) {
1249        if (i == 8) {
1250            /* only 8 QCU entries in val[0] */
1251            qcu_offset = 0;
1252            qcu_base++;
1253        }
1254
1255        if (i == 6) {
1256            /* only 6 DCU entries in val[4] */
1257            dcu_offset = 0;
1258            dcu_base++;
1259        }
1260
1261        ath_hal_printf(ah,
1262            "%2d          %2x      %1x     %2x           %2x\n",
1263            i,
1264            (*qcu_base & (0x7 << qcu_offset)) >> qcu_offset,
1265            (*qcu_base & (0x8 << qcu_offset)) >> (qcu_offset + 3),
1266            val[2] & (0x7 << (i * 3)) >> (i * 3),
1267            (*dcu_base & (0x1f << dcu_offset)) >> dcu_offset);
1268    }
1269
1270    ath_hal_printf(ah, "\n");
1271    ath_hal_printf(ah,
1272        "qcu_stitch state:   %2x    qcu_fetch state:        %2x\n",
1273        (val[3] & 0x003c0000) >> 18, (val[3] & 0x03c00000) >> 22);
1274    ath_hal_printf(ah,
1275        "qcu_complete state: %2x    dcu_complete state:     %2x\n",
1276        (val[3] & 0x1c000000) >> 26, (val[6] & 0x3));
1277    ath_hal_printf(ah,
1278        "dcu_arb state:      %2x    dcu_fp state:           %2x\n",
1279        (val[5] & 0x06000000) >> 25, (val[5] & 0x38000000) >> 27);
1280    ath_hal_printf(ah,
1281        "chan_idle_dur:     %3d    chan_idle_dur_valid:     %1d\n",
1282        (val[6] & 0x000003fc) >> 2, (val[6] & 0x00000400) >> 10);
1283    ath_hal_printf(ah,
1284        "txfifo_valid_0:      %1d    txfifo_valid_1:          %1d\n",
1285        (val[6] & 0x00000800) >> 11, (val[6] & 0x00001000) >> 12);
1286    ath_hal_printf(ah,
1287        "txfifo_dcu_num_0:   %2d    txfifo_dcu_num_1:       %2d\n",
1288        (val[6] & 0x0001e000) >> 13, (val[6] & 0x001e0000) >> 17);
1289    ath_hal_printf(ah, "pcu observe 0x%x \n", OS_REG_READ(ah, AR_OBS_BUS_1));
1290    ath_hal_printf(ah, "AR_CR 0x%x \n", OS_REG_READ(ah, AR_CR));
1291
1292    ar9300_upload_noise_floor(ah, 1, nfarray);
1293    ath_hal_printf(ah, "2G:\n");
1294    ath_hal_printf(ah, "Min CCA Out:\n");
1295    ath_hal_printf(ah, "\t\tChain 0\t\tChain 1\t\tChain 2\n");
1296    ath_hal_printf(ah, "Control:\t%8d\t%8d\t%8d\n",
1297                   nfarray[0], nfarray[1], nfarray[2]);
1298    ath_hal_printf(ah, "Extension:\t%8d\t%8d\t%8d\n\n",
1299                   nfarray[3], nfarray[4], nfarray[5]);
1300
1301    ar9300_upload_noise_floor(ah, 0, nfarray);
1302    ath_hal_printf(ah, "5G:\n");
1303    ath_hal_printf(ah, "Min CCA Out:\n");
1304    ath_hal_printf(ah, "\t\tChain 0\t\tChain 1\t\tChain 2\n");
1305    ath_hal_printf(ah, "Control:\t%8d\t%8d\t%8d\n",
1306                   nfarray[0], nfarray[1], nfarray[2]);
1307    ath_hal_printf(ah, "Extension:\t%8d\t%8d\t%8d\n\n",
1308                   nfarray[3], nfarray[4], nfarray[5]);
1309
1310    for (i = 0; i < HAL_NUM_NF_READINGS; i++) {
1311        ath_hal_printf(ah, "%s Chain %d NF History:\n",
1312                       ((i < 3) ? "Control " : "Extension "), i%3);
1313        for (j = 0, k = h->base.curr_index;
1314             j < HAL_NF_CAL_HIST_LEN_FULL;
1315             j++, k++) {
1316            ath_hal_printf(ah, "Element %d: %d\n",
1317                j, h->nf_cal_buffer[k % HAL_NF_CAL_HIST_LEN_FULL][i]);
1318        }
1319        ath_hal_printf(ah, "Last Programmed NF: %d\n\n", h->base.priv_nf[i]);
1320    }
1321
1322    reg = OS_REG_READ(ah, AR_PHY_FIND_SIG_LOW);
1323    ath_hal_printf(ah, "FIRStep Low = 0x%x (%d)\n",
1324                   MS(reg, AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW),
1325                   MS(reg, AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW));
1326    reg = OS_REG_READ(ah, AR_PHY_DESIRED_SZ);
1327    ath_hal_printf(ah, "Total Desired = 0x%x (%d)\n",
1328                   MS(reg, AR_PHY_DESIRED_SZ_TOT_DES),
1329                   MS(reg, AR_PHY_DESIRED_SZ_TOT_DES));
1330    ath_hal_printf(ah, "ADC Desired = 0x%x (%d)\n",
1331                   MS(reg, AR_PHY_DESIRED_SZ_ADC),
1332                   MS(reg, AR_PHY_DESIRED_SZ_ADC));
1333    reg = OS_REG_READ(ah, AR_PHY_FIND_SIG);
1334    ath_hal_printf(ah, "FIRStep = 0x%x (%d)\n",
1335                   MS(reg, AR_PHY_FIND_SIG_FIRSTEP),
1336                   MS(reg, AR_PHY_FIND_SIG_FIRSTEP));
1337    reg = OS_REG_READ(ah, AR_PHY_AGC);
1338    ath_hal_printf(ah, "Coarse High = 0x%x (%d)\n",
1339                   MS(reg, AR_PHY_AGC_COARSE_HIGH),
1340                   MS(reg, AR_PHY_AGC_COARSE_HIGH));
1341    ath_hal_printf(ah, "Coarse Low = 0x%x (%d)\n",
1342                   MS(reg, AR_PHY_AGC_COARSE_LOW),
1343                   MS(reg, AR_PHY_AGC_COARSE_LOW));
1344    ath_hal_printf(ah, "Coarse Power Constant = 0x%x (%d)\n",
1345                   MS(reg, AR_PHY_AGC_COARSE_PWR_CONST),
1346                   MS(reg, AR_PHY_AGC_COARSE_PWR_CONST));
1347    reg = OS_REG_READ(ah, AR_PHY_TIMING5);
1348    ath_hal_printf(ah, "Enable Cyclic Power Thresh = %d\n",
1349                   MS(reg, AR_PHY_TIMING5_CYCPWR_THR1_ENABLE));
1350    ath_hal_printf(ah, "Cyclic Power Thresh = 0x%x (%d)\n",
1351                   MS(reg, AR_PHY_TIMING5_CYCPWR_THR1),
1352                   MS(reg, AR_PHY_TIMING5_CYCPWR_THR1));
1353    ath_hal_printf(ah, "Cyclic Power Thresh 1A= 0x%x (%d)\n",
1354                   MS(reg, AR_PHY_TIMING5_CYCPWR_THR1A),
1355                   MS(reg, AR_PHY_TIMING5_CYCPWR_THR1A));
1356    reg = OS_REG_READ(ah, AR_PHY_DAG_CTRLCCK);
1357    ath_hal_printf(ah, "Barker RSSI Thresh Enable = %d\n",
1358                   MS(reg, AR_PHY_DAG_CTRLCCK_EN_RSSI_THR));
1359    ath_hal_printf(ah, "Barker RSSI Thresh = 0x%x (%d)\n",
1360                   MS(reg, AR_PHY_DAG_CTRLCCK_RSSI_THR),
1361                   MS(reg, AR_PHY_DAG_CTRLCCK_RSSI_THR));
1362
1363
1364    /* Step 1a: Set bit 23 of register 0xa360 to 0 */
1365    reg = OS_REG_READ(ah, 0xa360);
1366    reg &= ~0x00800000;
1367    OS_REG_WRITE(ah, 0xa360, reg);
1368
1369    /* Step 2a: Set register 0xa364 to 0x1000 */
1370    reg = 0x1000;
1371    OS_REG_WRITE(ah, 0xa364, reg);
1372
1373    /* Step 3a: Read bits 17:0 of register 0x9c20 */
1374    reg = OS_REG_READ(ah, 0x9c20);
1375    reg &= 0x0003ffff;
1376    ath_hal_printf(ah,
1377        "%s: Test Control Status [0x1000] 0x9c20[17:0] = 0x%x\n",
1378        __func__, reg);
1379
1380    /* Step 1b: Set bit 23 of register 0xa360 to 0 */
1381    reg = OS_REG_READ(ah, 0xa360);
1382    reg &= ~0x00800000;
1383    OS_REG_WRITE(ah, 0xa360, reg);
1384
1385    /* Step 2b: Set register 0xa364 to 0x1400 */
1386    reg = 0x1400;
1387    OS_REG_WRITE(ah, 0xa364, reg);
1388
1389    /* Step 3b: Read bits 17:0 of register 0x9c20 */
1390    reg = OS_REG_READ(ah, 0x9c20);
1391    reg &= 0x0003ffff;
1392    ath_hal_printf(ah,
1393        "%s: Test Control Status [0x1400] 0x9c20[17:0] = 0x%x\n",
1394        __func__, reg);
1395
1396    /* Step 1c: Set bit 23 of register 0xa360 to 0 */
1397    reg = OS_REG_READ(ah, 0xa360);
1398    reg &= ~0x00800000;
1399    OS_REG_WRITE(ah, 0xa360, reg);
1400
1401    /* Step 2c: Set register 0xa364 to 0x3C00 */
1402    reg = 0x3c00;
1403    OS_REG_WRITE(ah, 0xa364, reg);
1404
1405    /* Step 3c: Read bits 17:0 of register 0x9c20 */
1406    reg = OS_REG_READ(ah, 0x9c20);
1407    reg &= 0x0003ffff;
1408    ath_hal_printf(ah,
1409        "%s: Test Control Status [0x3C00] 0x9c20[17:0] = 0x%x\n",
1410        __func__, reg);
1411
1412    /* Step 1d: Set bit 24 of register 0xa360 to 0 */
1413    reg = OS_REG_READ(ah, 0xa360);
1414    reg &= ~0x001040000;
1415    OS_REG_WRITE(ah, 0xa360, reg);
1416
1417    /* Step 2d: Set register 0xa364 to 0x5005D */
1418    reg = 0x5005D;
1419    OS_REG_WRITE(ah, 0xa364, reg);
1420
1421    /* Step 3d: Read bits 17:0 of register 0xa368 */
1422    reg = OS_REG_READ(ah, 0xa368);
1423    reg &= 0x0003ffff;
1424    ath_hal_printf(ah,
1425        "%s: Test Control Status [0x5005D] 0xa368[17:0] = 0x%x\n",
1426        __func__, reg);
1427
1428    /* Step 1e: Set bit 24 of register 0xa360 to 0 */
1429    reg = OS_REG_READ(ah, 0xa360);
1430    reg &= ~0x001040000;
1431    OS_REG_WRITE(ah, 0xa360, reg);
1432
1433    /* Step 2e: Set register 0xa364 to 0x7005D */
1434    reg = 0x7005D;
1435    OS_REG_WRITE(ah, 0xa364, reg);
1436
1437    /* Step 3e: Read bits 17:0 of register 0xa368 */
1438    reg = OS_REG_READ(ah, 0xa368);
1439    reg &= 0x0003ffff;
1440    ath_hal_printf(ah,
1441        "%s: Test Control Status [0x7005D] 0xa368[17:0] = 0x%x\n",
1442       __func__, reg);
1443
1444    /* Step 1f: Set bit 24 of register 0xa360 to 0 */
1445    reg = OS_REG_READ(ah, 0xa360);
1446    reg &= ~0x001000000;
1447    reg |= 0x40000;
1448    OS_REG_WRITE(ah, 0xa360, reg);
1449
1450    /* Step 2f: Set register 0xa364 to 0x3005D */
1451    reg = 0x3005D;
1452    OS_REG_WRITE(ah, 0xa364, reg);
1453
1454    /* Step 3f: Read bits 17:0 of register 0xa368 */
1455    reg = OS_REG_READ(ah, 0xa368);
1456    reg &= 0x0003ffff;
1457    ath_hal_printf(ah,
1458        "%s: Test Control Status [0x3005D] 0xa368[17:0] = 0x%x\n",
1459        __func__, reg);
1460
1461    /* Step 1g: Set bit 24 of register 0xa360 to 0 */
1462    reg = OS_REG_READ(ah, 0xa360);
1463    reg &= ~0x001000000;
1464    reg |= 0x40000;
1465    OS_REG_WRITE(ah, 0xa360, reg);
1466
1467    /* Step 2g: Set register 0xa364 to 0x6005D */
1468    reg = 0x6005D;
1469    OS_REG_WRITE(ah, 0xa364, reg);
1470
1471    /* Step 3g: Read bits 17:0 of register 0xa368 */
1472    reg = OS_REG_READ(ah, 0xa368);
1473    reg &= 0x0003ffff;
1474    ath_hal_printf(ah,
1475        "%s: Test Control Status [0x6005D] 0xa368[17:0] = 0x%x\n",
1476        __func__, reg);
1477#endif /* AH_DEBUG */
1478}
1479
1480/*
1481 * Return the busy for rx_frame, rx_clear, and tx_frame
1482 */
1483u_int32_t
1484ar9300_get_mib_cycle_counts_pct(struct ath_hal *ah, u_int32_t *rxc_pcnt,
1485    u_int32_t *rxf_pcnt, u_int32_t *txf_pcnt)
1486{
1487    struct ath_hal_9300 *ahp = AH9300(ah);
1488    u_int32_t good = 1;
1489
1490    u_int32_t rc = OS_REG_READ(ah, AR_RCCNT);
1491    u_int32_t rf = OS_REG_READ(ah, AR_RFCNT);
1492    u_int32_t tf = OS_REG_READ(ah, AR_TFCNT);
1493    u_int32_t cc = OS_REG_READ(ah, AR_CCCNT); /* read cycles last */
1494
1495    if (ahp->ah_cycles == 0 || ahp->ah_cycles > cc) {
1496        /*
1497         * Cycle counter wrap (or initial call); it's not possible
1498         * to accurately calculate a value because the registers
1499         * right shift rather than wrap--so punt and return 0.
1500         */
1501        HALDEBUG(ah, HAL_DEBUG_CHANNEL,
1502            "%s: cycle counter wrap. ExtBusy = 0\n", __func__);
1503        good = 0;
1504    } else {
1505        u_int32_t cc_d = cc - ahp->ah_cycles;
1506        u_int32_t rc_d = rc - ahp->ah_rx_clear;
1507        u_int32_t rf_d = rf - ahp->ah_rx_frame;
1508        u_int32_t tf_d = tf - ahp->ah_tx_frame;
1509
1510        if (cc_d != 0) {
1511            *rxc_pcnt = rc_d * 100 / cc_d;
1512            *rxf_pcnt = rf_d * 100 / cc_d;
1513            *txf_pcnt = tf_d * 100 / cc_d;
1514        } else {
1515            good = 0;
1516        }
1517    }
1518
1519    ahp->ah_cycles = cc;
1520    ahp->ah_rx_frame = rf;
1521    ahp->ah_rx_clear = rc;
1522    ahp->ah_tx_frame = tf;
1523
1524    return good;
1525}
1526
1527/*
1528 * Return approximation of extension channel busy over an time interval
1529 * 0% (clear) -> 100% (busy)
1530 * -1 for invalid estimate
1531 */
1532uint32_t
1533ar9300_get_11n_ext_busy(struct ath_hal *ah)
1534{
1535    /*
1536     * Overflow condition to check before multiplying to get %
1537     * (x * 100 > 0xFFFFFFFF ) => (x > 0x28F5C28)
1538     */
1539#define OVERFLOW_LIMIT  0x28F5C28
1540#define ERROR_CODE      -1
1541
1542    struct ath_hal_9300 *ahp = AH9300(ah);
1543    u_int32_t busy = 0; /* percentage */
1544    int8_t busyper = 0;
1545    u_int32_t cycle_count, ctl_busy, ext_busy;
1546
1547    /* cycle_count will always be the first to wrap; therefore, read it last
1548     * This sequence of reads is not atomic, and MIB counter wrap
1549     * could happen during it ?
1550     */
1551    ctl_busy = OS_REG_READ(ah, AR_RCCNT);
1552    ext_busy = OS_REG_READ(ah, AR_EXTRCCNT);
1553    cycle_count = OS_REG_READ(ah, AR_CCCNT);
1554
1555    if ((ahp->ah_cycle_count == 0) || (ahp->ah_cycle_count > cycle_count) ||
1556        (ahp->ah_ctl_busy > ctl_busy) || (ahp->ah_ext_busy > ext_busy))
1557    {
1558        /*
1559         * Cycle counter wrap (or initial call); it's not possible
1560         * to accurately calculate a value because the registers
1561         * right shift rather than wrap--so punt and return 0.
1562         */
1563        busyper = ERROR_CODE;
1564        HALDEBUG(ah, HAL_DEBUG_CHANNEL,
1565            "%s: cycle counter wrap. ExtBusy = 0\n", __func__);
1566    } else {
1567        u_int32_t cycle_delta = cycle_count - ahp->ah_cycle_count;
1568        u_int32_t ext_busy_delta = ext_busy - ahp->ah_ext_busy;
1569
1570        /*
1571         * Compute extension channel busy percentage
1572         * Overflow condition: 0xFFFFFFFF < ext_busy_delta * 100
1573         * Underflow condition/Divide-by-zero: check that cycle_delta >> 7 != 0
1574         * Will never happen, since (ext_busy_delta < cycle_delta) always,
1575         * and shift necessitated by large ext_busy_delta.
1576         * Due to timing difference to read the registers and counter overflow,
1577         * it may still happen that cycle_delta >> 7 = 0.
1578         *
1579         */
1580        if (cycle_delta) {
1581            if (ext_busy_delta > OVERFLOW_LIMIT) {
1582                if (cycle_delta >> 7) {
1583                    busy = ((ext_busy_delta >> 7) * 100) / (cycle_delta  >> 7);
1584                } else {
1585                    busyper = ERROR_CODE;
1586                }
1587            } else {
1588                busy = (ext_busy_delta * 100) / cycle_delta;
1589            }
1590        } else {
1591            busyper = ERROR_CODE;
1592        }
1593
1594        if (busy > 100) {
1595            busy = 100;
1596        }
1597        if ( busyper != ERROR_CODE ) {
1598            busyper = busy;
1599        }
1600    }
1601
1602    ahp->ah_cycle_count = cycle_count;
1603    ahp->ah_ctl_busy = ctl_busy;
1604    ahp->ah_ext_busy = ext_busy;
1605
1606    return busyper;
1607#undef OVERFLOW_LIMIT
1608#undef ERROR_CODE
1609}
1610
1611/* BB Panic Watchdog declarations */
1612#define HAL_BB_PANIC_WD_HT20_FACTOR         74  /* 0.74 */
1613#define HAL_BB_PANIC_WD_HT40_FACTOR         37  /* 0.37 */
1614
1615void
1616ar9300_config_bb_panic_watchdog(struct ath_hal *ah)
1617{
1618#define HAL_BB_PANIC_IDLE_TIME_OUT 0x0a8c0000
1619    const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
1620    u_int32_t idle_tmo_ms = AH9300(ah)->ah_bb_panic_timeout_ms;
1621    u_int32_t val, idle_count;
1622
1623    if (idle_tmo_ms != 0) {
1624        /* enable IRQ, disable chip-reset for BB panic */
1625        val = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2) &
1626            AR_PHY_BB_PANIC_CNTL2_MASK;
1627        OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_2,
1628            (val | AR_PHY_BB_PANIC_IRQ_ENABLE) & ~AR_PHY_BB_PANIC_RST_ENABLE);
1629        /* bound limit to 10 secs */
1630        if (idle_tmo_ms > 10000) {
1631            idle_tmo_ms = 10000;
1632        }
1633        if (chan != AH_NULL && IEEE80211_IS_CHAN_HT40(chan)) {
1634            idle_count = (100 * idle_tmo_ms) / HAL_BB_PANIC_WD_HT40_FACTOR;
1635        } else {
1636            idle_count = (100 * idle_tmo_ms) / HAL_BB_PANIC_WD_HT20_FACTOR;
1637        }
1638        /*
1639         * enable panic in non-IDLE mode,
1640         * disable in IDLE mode,
1641         * set idle time-out
1642         */
1643
1644        // EV92527 : Enable IDLE mode panic
1645
1646        OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_1,
1647                     AR_PHY_BB_PANIC_NON_IDLE_ENABLE |
1648                     AR_PHY_BB_PANIC_IDLE_ENABLE |
1649                     (AR_PHY_BB_PANIC_IDLE_MASK & HAL_BB_PANIC_IDLE_TIME_OUT) |
1650                     (AR_PHY_BB_PANIC_NON_IDLE_MASK & (idle_count << 2)));
1651    } else {
1652        /* disable IRQ, disable chip-reset for BB panic */
1653        OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_2,
1654            OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2) &
1655            ~(AR_PHY_BB_PANIC_RST_ENABLE | AR_PHY_BB_PANIC_IRQ_ENABLE));
1656        /* disable panic in non-IDLE mode, disable in IDLE mode */
1657        OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_1,
1658            OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_1) &
1659            ~(AR_PHY_BB_PANIC_NON_IDLE_ENABLE | AR_PHY_BB_PANIC_IDLE_ENABLE));
1660    }
1661
1662    HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: %s BB Panic Watchdog tmo=%ums\n",
1663             __func__, idle_tmo_ms ? "Enabled" : "Disabled", idle_tmo_ms);
1664#undef HAL_BB_PANIC_IDLE_TIME_OUT
1665}
1666
1667
1668void
1669ar9300_handle_bb_panic(struct ath_hal *ah)
1670{
1671    u_int32_t status;
1672    /*
1673     * we want to avoid printing in ISR context so we save
1674     * panic watchdog status to be printed later in DPC context
1675     */
1676    AH9300(ah)->ah_bb_panic_last_status = status =
1677        OS_REG_READ(ah, AR_PHY_PANIC_WD_STATUS);
1678    /*
1679     * panic watchdog timer should reset on status read
1680     * but to make sure we write 0 to the watchdog status bit
1681     */
1682    OS_REG_WRITE(ah, AR_PHY_PANIC_WD_STATUS, status & ~AR_PHY_BB_WD_STATUS_CLR);
1683}
1684
1685int
1686ar9300_get_bb_panic_info(struct ath_hal *ah, struct hal_bb_panic_info *bb_panic)
1687{
1688    bb_panic->status = AH9300(ah)->ah_bb_panic_last_status;
1689
1690    /*
1691     * For signature 04000539 do not print anything.
1692     * This is a very common occurence as a compromise between
1693     * BB Panic and AH_FALSE detects (EV71009). It indicates
1694     * radar hang, which can be cleared by reprogramming
1695     * radar related register and does not requre a chip reset
1696     */
1697
1698    /* Suppress BB Status mesg following signature */
1699    switch (bb_panic->status) {
1700		case 0x04000539:
1701		case 0x04008009:
1702		case 0x04000b09:
1703		case 0x1300000a:
1704        return -1;
1705    }
1706
1707    bb_panic->tsf = ar9300_get_tsf32(ah);
1708    bb_panic->wd = MS(bb_panic->status, AR_PHY_BB_WD_STATUS);
1709    bb_panic->det = MS(bb_panic->status, AR_PHY_BB_WD_DET_HANG);
1710    bb_panic->rdar = MS(bb_panic->status, AR_PHY_BB_WD_RADAR_SM);
1711    bb_panic->r_odfm = MS(bb_panic->status, AR_PHY_BB_WD_RX_OFDM_SM);
1712    bb_panic->r_cck = MS(bb_panic->status, AR_PHY_BB_WD_RX_CCK_SM);
1713    bb_panic->t_odfm = MS(bb_panic->status, AR_PHY_BB_WD_TX_OFDM_SM);
1714    bb_panic->t_cck = MS(bb_panic->status, AR_PHY_BB_WD_TX_CCK_SM);
1715    bb_panic->agc = MS(bb_panic->status, AR_PHY_BB_WD_AGC_SM);
1716    bb_panic->src = MS(bb_panic->status, AR_PHY_BB_WD_SRCH_SM);
1717    bb_panic->phy_panic_wd_ctl1 = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_1);
1718    bb_panic->phy_panic_wd_ctl2 = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2);
1719    bb_panic->phy_gen_ctrl = OS_REG_READ(ah, AR_PHY_GEN_CTRL);
1720    bb_panic->rxc_pcnt = bb_panic->rxf_pcnt = bb_panic->txf_pcnt = 0;
1721    bb_panic->cycles = ar9300_get_mib_cycle_counts_pct(ah,
1722                                        &bb_panic->rxc_pcnt,
1723                                        &bb_panic->rxf_pcnt,
1724                                        &bb_panic->txf_pcnt);
1725
1726    if (ah->ah_config.ath_hal_show_bb_panic) {
1727        ath_hal_printf(ah, "\n==== BB update: BB status=0x%08x, "
1728            "tsf=0x%08x ====\n", bb_panic->status, bb_panic->tsf);
1729        ath_hal_printf(ah, "** BB state: wd=%u det=%u rdar=%u rOFDM=%d "
1730            "rCCK=%u tOFDM=%u tCCK=%u agc=%u src=%u **\n",
1731            bb_panic->wd, bb_panic->det, bb_panic->rdar,
1732            bb_panic->r_odfm, bb_panic->r_cck, bb_panic->t_odfm,
1733            bb_panic->t_cck, bb_panic->agc, bb_panic->src);
1734        ath_hal_printf(ah, "** BB WD cntl: cntl1=0x%08x cntl2=0x%08x **\n",
1735            bb_panic->phy_panic_wd_ctl1, bb_panic->phy_panic_wd_ctl2);
1736        ath_hal_printf(ah, "** BB mode: BB_gen_controls=0x%08x **\n",
1737            bb_panic->phy_gen_ctrl);
1738        if (bb_panic->cycles) {
1739            ath_hal_printf(ah, "** BB busy times: rx_clear=%d%%, "
1740                "rx_frame=%d%%, tx_frame=%d%% **\n", bb_panic->rxc_pcnt,
1741                bb_panic->rxf_pcnt, bb_panic->txf_pcnt);
1742        }
1743        ath_hal_printf(ah, "==== BB update: done ====\n\n");
1744    }
1745
1746    return 0; //The returned data will be stored for athstats to retrieve it
1747}
1748
1749/* set the reason for HAL reset */
1750void
1751ar9300_set_hal_reset_reason(struct ath_hal *ah, u_int8_t resetreason)
1752{
1753    AH9300(ah)->ah_reset_reason = resetreason;
1754}
1755
1756/*
1757 * Configure 20/40 operation
1758 *
1759 * 20/40 = joint rx clear (control and extension)
1760 * 20    = rx clear (control)
1761 *
1762 * - NOTE: must stop MAC (tx) and requeue 40 MHz packets as 20 MHz
1763 *         when changing from 20/40 => 20 only
1764 */
1765void
1766ar9300_set_11n_mac2040(struct ath_hal *ah, HAL_HT_MACMODE mode)
1767{
1768    u_int32_t macmode;
1769
1770    /* Configure MAC for 20/40 operation */
1771    if (mode == HAL_HT_MACMODE_2040 &&
1772        !ah->ah_config.ath_hal_cwm_ignore_ext_cca) {
1773        macmode = AR_2040_JOINED_RX_CLEAR;
1774    } else {
1775        macmode = 0;
1776    }
1777    OS_REG_WRITE(ah, AR_2040_MODE, macmode);
1778}
1779
1780/*
1781 * Get Rx clear (control/extension channel)
1782 *
1783 * Returns active low (busy) for ctrl/ext channel
1784 * Owl 2.0
1785 */
1786HAL_HT_RXCLEAR
1787ar9300_get_11n_rx_clear(struct ath_hal *ah)
1788{
1789    HAL_HT_RXCLEAR rxclear = 0;
1790    u_int32_t val;
1791
1792    val = OS_REG_READ(ah, AR_DIAG_SW);
1793
1794    /* control channel */
1795    if (val & AR_DIAG_RX_CLEAR_CTL_LOW) {
1796        rxclear |= HAL_RX_CLEAR_CTL_LOW;
1797    }
1798    /* extension channel */
1799    if (val & AR_DIAG_RX_CLEAR_EXT_LOW) {
1800        rxclear |= HAL_RX_CLEAR_EXT_LOW;
1801    }
1802    return rxclear;
1803}
1804
1805/*
1806 * Set Rx clear (control/extension channel)
1807 *
1808 * Useful for forcing the channel to appear busy for
1809 * debugging/diagnostics
1810 * Owl 2.0
1811 */
1812void
1813ar9300_set_11n_rx_clear(struct ath_hal *ah, HAL_HT_RXCLEAR rxclear)
1814{
1815    /* control channel */
1816    if (rxclear & HAL_RX_CLEAR_CTL_LOW) {
1817        OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_CTL_LOW);
1818    } else {
1819        OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_CTL_LOW);
1820    }
1821    /* extension channel */
1822    if (rxclear & HAL_RX_CLEAR_EXT_LOW) {
1823        OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_EXT_LOW);
1824    } else {
1825        OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_EXT_LOW);
1826    }
1827}
1828
1829
1830/*
1831 * HAL support code for force ppm tracking workaround.
1832 */
1833
1834u_int32_t
1835ar9300_ppm_get_rssi_dump(struct ath_hal *ah)
1836{
1837    u_int32_t retval;
1838    u_int32_t off1;
1839    u_int32_t off2;
1840
1841    if (OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) & AR_PHY_SWAP_ALT_CHAIN) {
1842        off1 = 0x2000;
1843        off2 = 0x1000;
1844    } else {
1845        off1 = 0x1000;
1846        off2 = 0x2000;
1847    }
1848
1849    retval = ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0       )) << 0) |
1850             ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0 + off1)) << 8) |
1851             ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0 + off2)) << 16);
1852
1853    return retval;
1854}
1855
1856u_int32_t
1857ar9300_ppm_force(struct ath_hal *ah)
1858{
1859    u_int32_t data_fine;
1860    u_int32_t data4;
1861    //u_int32_t off1;
1862    //u_int32_t off2;
1863    HAL_BOOL signed_val = AH_FALSE;
1864
1865//    if (OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) & AR_PHY_SWAP_ALT_CHAIN) {
1866//        off1 = 0x2000;
1867//        off2 = 0x1000;
1868//    } else {
1869//        off1 = 0x1000;
1870//        off2 = 0x2000;
1871//    }
1872    data_fine =
1873        AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK &
1874        OS_REG_READ(ah, AR_PHY_CHNINFO_GAINDIFF);
1875
1876    /*
1877     * bit [11-0] is new ppm value. bit 11 is the signed bit.
1878     * So check value from bit[10:0].
1879     * Now get the abs val of the ppm value read in bit[0:11].
1880     * After that do bound check on abs value.
1881     * if value is off limit, CAP the value and and restore signed bit.
1882     */
1883    if (data_fine & AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_SIGNED_BIT)
1884    {
1885        /* get the positive value */
1886        data_fine = (~data_fine + 1) & AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK;
1887        signed_val = AH_TRUE;
1888    }
1889    if (data_fine > AR_PHY_CHAN_INFO_GAIN_DIFF_UPPER_LIMIT)
1890    {
1891        HALDEBUG(ah, HAL_DEBUG_REGIO,
1892            "%s Correcting ppm out of range %x\n",
1893            __func__, (data_fine & 0x7ff));
1894        data_fine = AR_PHY_CHAN_INFO_GAIN_DIFF_UPPER_LIMIT;
1895    }
1896    /*
1897     * Restore signed value if changed above.
1898     * Use typecast to avoid compilation errors
1899     */
1900    if (signed_val) {
1901        data_fine = (-(int32_t)data_fine) &
1902            AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK;
1903    }
1904
1905    /* write value */
1906    data4 = OS_REG_READ(ah, AR_PHY_TIMING2) &
1907        ~(AR_PHY_TIMING2_USE_FORCE_PPM | AR_PHY_TIMING2_FORCE_PPM_VAL);
1908    OS_REG_WRITE(ah, AR_PHY_TIMING2,
1909        data4 | data_fine | AR_PHY_TIMING2_USE_FORCE_PPM);
1910
1911    return data_fine;
1912}
1913
1914void
1915ar9300_ppm_un_force(struct ath_hal *ah)
1916{
1917    u_int32_t data4;
1918
1919    data4 = OS_REG_READ(ah, AR_PHY_TIMING2) & ~AR_PHY_TIMING2_USE_FORCE_PPM;
1920    OS_REG_WRITE(ah, AR_PHY_TIMING2, data4);
1921}
1922
1923u_int32_t
1924ar9300_ppm_arm_trigger(struct ath_hal *ah)
1925{
1926    u_int32_t val;
1927    u_int32_t ret;
1928
1929    val = OS_REG_READ(ah, AR_PHY_CHAN_INFO_MEMORY);
1930    ret = OS_REG_READ(ah, AR_TSF_L32);
1931    OS_REG_WRITE(ah, AR_PHY_CHAN_INFO_MEMORY,
1932        val | AR_PHY_CHAN_INFO_MEMORY_CAPTURE_MASK);
1933
1934    /* return low word of TSF at arm time */
1935    return ret;
1936}
1937
1938int
1939ar9300_ppm_get_trigger(struct ath_hal *ah)
1940{
1941    if (OS_REG_READ(ah, AR_PHY_CHAN_INFO_MEMORY) &
1942        AR_PHY_CHAN_INFO_MEMORY_CAPTURE_MASK)
1943    {
1944        /* has not triggered yet, return AH_FALSE */
1945        return 0;
1946    }
1947
1948    /* else triggered, return AH_TRUE */
1949    return 1;
1950}
1951
1952void
1953ar9300_mark_phy_inactive(struct ath_hal *ah)
1954{
1955    OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1956}
1957
1958/* DEBUG */
1959u_int32_t
1960ar9300_ppm_get_force_state(struct ath_hal *ah)
1961{
1962    return
1963        OS_REG_READ(ah, AR_PHY_TIMING2) &
1964        (AR_PHY_TIMING2_USE_FORCE_PPM | AR_PHY_TIMING2_FORCE_PPM_VAL);
1965}
1966
1967/*
1968 * Return the Cycle counts for rx_frame, rx_clear, and tx_frame
1969 */
1970HAL_BOOL
1971ar9300_get_mib_cycle_counts(struct ath_hal *ah, HAL_SURVEY_SAMPLE *hs)
1972{
1973    /*
1974     * XXX FreeBSD todo: reimplement this
1975     */
1976#if 0
1977    p_cnts->tx_frame_count = OS_REG_READ(ah, AR_TFCNT);
1978    p_cnts->rx_frame_count = OS_REG_READ(ah, AR_RFCNT);
1979    p_cnts->rx_clear_count = OS_REG_READ(ah, AR_RCCNT);
1980    p_cnts->cycle_count   = OS_REG_READ(ah, AR_CCCNT);
1981    p_cnts->is_tx_active   = (OS_REG_READ(ah, AR_TFCNT) ==
1982                           p_cnts->tx_frame_count) ? AH_FALSE : AH_TRUE;
1983    p_cnts->is_rx_active   = (OS_REG_READ(ah, AR_RFCNT) ==
1984                           p_cnts->rx_frame_count) ? AH_FALSE : AH_TRUE;
1985#endif
1986    return AH_FALSE;
1987}
1988
1989void
1990ar9300_clear_mib_counters(struct ath_hal *ah)
1991{
1992    u_int32_t reg_val;
1993
1994    reg_val = OS_REG_READ(ah, AR_MIBC);
1995    OS_REG_WRITE(ah, AR_MIBC, reg_val | AR_MIBC_CMC);
1996    OS_REG_WRITE(ah, AR_MIBC, reg_val & ~AR_MIBC_CMC);
1997}
1998
1999
2000/* Enable or Disable RIFS Rx capability as part of SW WAR for Bug 31602 */
2001HAL_BOOL
2002ar9300_set_rifs_delay(struct ath_hal *ah, HAL_BOOL enable)
2003{
2004    struct ath_hal_9300 *ahp = AH9300(ah);
2005    HAL_CHANNEL_INTERNAL *ichan =
2006      ath_hal_checkchannel(ah, AH_PRIVATE(ah)->ah_curchan);
2007    HAL_BOOL is_chan_2g = IS_CHAN_2GHZ(ichan);
2008    u_int32_t tmp = 0;
2009
2010    if (enable) {
2011        if (ahp->ah_rifs_enabled == AH_TRUE) {
2012            return AH_TRUE;
2013        }
2014
2015        OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, ahp->ah_rifs_reg[0]);
2016        OS_REG_WRITE(ah, AR_PHY_RIFS_SRCH,
2017                     ahp->ah_rifs_reg[1]);
2018
2019        ahp->ah_rifs_enabled = AH_TRUE;
2020        OS_MEMZERO(ahp->ah_rifs_reg, sizeof(ahp->ah_rifs_reg));
2021    } else {
2022        if (ahp->ah_rifs_enabled == AH_TRUE) {
2023            ahp->ah_rifs_reg[0] = OS_REG_READ(ah,
2024                                              AR_PHY_SEARCH_START_DELAY);
2025            ahp->ah_rifs_reg[1] = OS_REG_READ(ah, AR_PHY_RIFS_SRCH);
2026        }
2027        /* Change rifs init delay to 0 */
2028        OS_REG_WRITE(ah, AR_PHY_RIFS_SRCH,
2029                     (ahp->ah_rifs_reg[1] & ~(AR_PHY_RIFS_INIT_DELAY)));
2030        tmp = 0xfffff000 & OS_REG_READ(ah, AR_PHY_SEARCH_START_DELAY);
2031        if (is_chan_2g) {
2032            if (IEEE80211_IS_CHAN_HT40(AH_PRIVATE(ah)->ah_curchan)) {
2033                OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 500);
2034            } else { /* Sowl 2G HT-20 default is 0x134 for search start delay */
2035                OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 250);
2036            }
2037        } else {
2038            if (IEEE80211_IS_CHAN_HT40(AH_PRIVATE(ah)->ah_curchan)) {
2039                OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 0x370);
2040            } else { /* Sowl 5G HT-20 default is 0x1b8 for search start delay */
2041                OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 0x1b8);
2042            }
2043        }
2044
2045        ahp->ah_rifs_enabled = AH_FALSE;
2046    }
2047    return AH_TRUE;
2048
2049} /* ar9300_set_rifs_delay () */
2050
2051/* Set the current RIFS Rx setting */
2052HAL_BOOL
2053ar9300_set_11n_rx_rifs(struct ath_hal *ah, HAL_BOOL enable)
2054{
2055    /* Non-Owl 11n chips */
2056    if ((ath_hal_getcapability(ah, HAL_CAP_RIFS_RX, 0, AH_NULL) == HAL_OK)) {
2057        if (ar9300_get_capability(ah, HAL_CAP_LDPCWAR, 0, AH_NULL) == HAL_OK) {
2058            return ar9300_set_rifs_delay(ah, enable);
2059        }
2060        return AH_FALSE;
2061    }
2062
2063    return AH_TRUE;
2064} /* ar9300_set_11n_rx_rifs () */
2065
2066static hal_mac_hangs_t
2067ar9300_compare_dbg_hang(struct ath_hal *ah, mac_dbg_regs_t mac_dbg,
2068  hal_mac_hang_check_t hang_check, hal_mac_hangs_t hangs, u_int8_t *dcu_chain)
2069{
2070    int i = 0;
2071    hal_mac_hangs_t found_hangs = 0;
2072
2073    if (hangs & dcu_chain_state) {
2074        for (i = 0; i < 6; i++) {
2075            if (((mac_dbg.dma_dbg_4 >> (5 * i)) & 0x1f) ==
2076                 hang_check.dcu_chain_state)
2077            {
2078                found_hangs |= dcu_chain_state;
2079                *dcu_chain = i;
2080            }
2081        }
2082        for (i = 0; i < 4; i++) {
2083            if (((mac_dbg.dma_dbg_5 >> (5 * i)) & 0x1f) ==
2084                  hang_check.dcu_chain_state)
2085            {
2086                found_hangs |= dcu_chain_state;
2087                *dcu_chain = i + 6;
2088            }
2089        }
2090    }
2091
2092    if (hangs & dcu_complete_state) {
2093        if ((mac_dbg.dma_dbg_6 & 0x3) == hang_check.dcu_complete_state) {
2094            found_hangs |= dcu_complete_state;
2095        }
2096    }
2097
2098    return found_hangs;
2099
2100} /* end - ar9300_compare_dbg_hang */
2101
2102#define NUM_STATUS_READS 50
2103HAL_BOOL
2104ar9300_detect_mac_hang(struct ath_hal *ah)
2105{
2106    struct ath_hal_9300 *ahp = AH9300(ah);
2107    mac_dbg_regs_t mac_dbg;
2108    hal_mac_hang_check_t hang_sig1_val = {0x6, 0x1, 0, 0, 0, 0, 0, 0};
2109    hal_mac_hangs_t      hang_sig1 = (dcu_chain_state | dcu_complete_state);
2110    int i = 0;
2111    u_int8_t dcu_chain = 0, current_dcu_chain_state, shift_val;
2112
2113    if (!(ahp->ah_hang_wars & HAL_MAC_HANG_WAR)) {
2114        return AH_FALSE;
2115    }
2116
2117    OS_MEMZERO(&mac_dbg, sizeof(mac_dbg));
2118
2119    mac_dbg.dma_dbg_4 = OS_REG_READ(ah, AR_DMADBG_4);
2120    mac_dbg.dma_dbg_5 = OS_REG_READ(ah, AR_DMADBG_5);
2121    mac_dbg.dma_dbg_6 = OS_REG_READ(ah, AR_DMADBG_6);
2122
2123    HALDEBUG(ah, HAL_DEBUG_DFS, " dma regs: %X %X %X \n",
2124            mac_dbg.dma_dbg_4, mac_dbg.dma_dbg_5,
2125            mac_dbg.dma_dbg_6);
2126
2127    if (hang_sig1 !=
2128            ar9300_compare_dbg_hang(ah, mac_dbg,
2129                 hang_sig1_val, hang_sig1, &dcu_chain))
2130    {
2131        HALDEBUG(ah, HAL_DEBUG_DFS, " hang sig1 not found \n");
2132        return AH_FALSE;
2133    }
2134
2135    shift_val = (dcu_chain >= 6) ? (dcu_chain-6) : (dcu_chain);
2136    shift_val *= 5;
2137
2138    for (i = 1; i <= NUM_STATUS_READS; i++) {
2139        if (dcu_chain < 6) {
2140            mac_dbg.dma_dbg_4 = OS_REG_READ(ah, AR_DMADBG_4);
2141            current_dcu_chain_state =
2142                     ((mac_dbg.dma_dbg_4 >> shift_val) & 0x1f);
2143        } else {
2144            mac_dbg.dma_dbg_5 = OS_REG_READ(ah, AR_DMADBG_5);
2145            current_dcu_chain_state = ((mac_dbg.dma_dbg_5 >> shift_val) & 0x1f);
2146        }
2147        mac_dbg.dma_dbg_6 = OS_REG_READ(ah, AR_DMADBG_6);
2148
2149        if (((mac_dbg.dma_dbg_6 & 0x3) != hang_sig1_val.dcu_complete_state)
2150            || (current_dcu_chain_state != hang_sig1_val.dcu_chain_state)) {
2151            return AH_FALSE;
2152        }
2153    }
2154    HALDEBUG(ah, HAL_DEBUG_DFS, "%s sig5count=%d sig6count=%d ", __func__,
2155             ahp->ah_hang[MAC_HANG_SIG1], ahp->ah_hang[MAC_HANG_SIG2]);
2156    ahp->ah_hang[MAC_HANG_SIG1]++;
2157    return AH_TRUE;
2158
2159} /* end - ar9300_detect_mac_hang */
2160
2161/* Determine if the baseband is hung by reading the Observation Bus Register */
2162HAL_BOOL
2163ar9300_detect_bb_hang(struct ath_hal *ah)
2164{
2165#define N(a) (sizeof(a) / sizeof(a[0]))
2166    struct ath_hal_9300 *ahp = AH9300(ah);
2167    u_int32_t hang_sig = 0;
2168    int i = 0;
2169    /* Check the PCU Observation Bus 1 register (0x806c) NUM_STATUS_READS times
2170     *
2171     * 4 known BB hang signatures -
2172     * [1] bits 8,9,11 are 0. State machine state (bits 25-31) is 0x1E
2173     * [2] bits 8,9 are 1, bit 11 is 0. State machine state (bits 25-31) is 0x52
2174     * [3] bits 8,9 are 1, bit 11 is 0. State machine state (bits 25-31) is 0x18
2175     * [4] bit 10 is 1, bit 11 is 0. WEP state (bits 12-17) is 0x2,
2176     *     Rx State (bits 20-24) is 0x7.
2177     */
2178    hal_hw_hang_check_t hang_list [] =
2179    {
2180     /* Offset        Reg Value   Reg Mask    Hang Offset */
2181       {AR_OBS_BUS_1, 0x1E000000, 0x7E000B00, BB_HANG_SIG1},
2182       {AR_OBS_BUS_1, 0x52000B00, 0x7E000B00, BB_HANG_SIG2},
2183       {AR_OBS_BUS_1, 0x18000B00, 0x7E000B00, BB_HANG_SIG3},
2184       {AR_OBS_BUS_1, 0x00702400, 0x7E7FFFEF, BB_HANG_SIG4}
2185    };
2186
2187    if (!(ahp->ah_hang_wars & (HAL_RIFS_BB_HANG_WAR |
2188                               HAL_DFS_BB_HANG_WAR |
2189                               HAL_RX_STUCK_LOW_BB_HANG_WAR))) {
2190        return AH_FALSE;
2191    }
2192
2193    hang_sig = OS_REG_READ(ah, AR_OBS_BUS_1);
2194    for (i = 1; i <= NUM_STATUS_READS; i++) {
2195        if (hang_sig != OS_REG_READ(ah, AR_OBS_BUS_1)) {
2196            return AH_FALSE;
2197        }
2198    }
2199
2200    for (i = 0; i < N(hang_list); i++) {
2201        if ((hang_sig & hang_list[i].hang_mask) == hang_list[i].hang_val) {
2202            ahp->ah_hang[hang_list[i].hang_offset]++;
2203            HALDEBUG(ah, HAL_DEBUG_DFS, "%s sig1count=%d sig2count=%d "
2204                     "sig3count=%d sig4count=%d\n", __func__,
2205                     ahp->ah_hang[BB_HANG_SIG1], ahp->ah_hang[BB_HANG_SIG2],
2206                     ahp->ah_hang[BB_HANG_SIG3], ahp->ah_hang[BB_HANG_SIG4]);
2207            return AH_TRUE;
2208        }
2209    }
2210
2211    HALDEBUG(ah, HAL_DEBUG_DFS, "%s Found an unknown BB hang signature! "
2212                              "<0x806c>=0x%x\n", __func__, hang_sig);
2213
2214    return AH_FALSE;
2215
2216#undef N
2217} /* end - ar9300_detect_bb_hang () */
2218
2219#undef NUM_STATUS_READS
2220
2221HAL_STATUS
2222ar9300_select_ant_config(struct ath_hal *ah, u_int32_t cfg)
2223{
2224    struct ath_hal_9300     *ahp = AH9300(ah);
2225    const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
2226    HAL_CHANNEL_INTERNAL    *ichan = ath_hal_checkchannel(ah, chan);
2227    const HAL_CAPABILITIES  *p_cap = &AH_PRIVATE(ah)->ah_caps;
2228    u_int16_t               ant_config;
2229    u_int32_t               hal_num_ant_config;
2230
2231    hal_num_ant_config = IS_CHAN_2GHZ(ichan) ?
2232        p_cap->halNumAntCfg2GHz: p_cap->halNumAntCfg5GHz;
2233
2234    if (cfg < hal_num_ant_config) {
2235        if (HAL_OK == ar9300_eeprom_get_ant_cfg(ahp, chan, cfg, &ant_config)) {
2236            OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config);
2237            return HAL_OK;
2238        }
2239    }
2240
2241    return HAL_EINVAL;
2242}
2243
2244/*
2245 * Functions to get/set DCS mode
2246 */
2247void
2248ar9300_set_dcs_mode(struct ath_hal *ah, u_int32_t mode)
2249{
2250    AH9300(ah)->ah_dcs_enable = mode;
2251}
2252
2253u_int32_t
2254ar9300_get_dcs_mode(struct ath_hal *ah)
2255{
2256    return AH9300(ah)->ah_dcs_enable;
2257}
2258
2259#if ATH_BT_COEX
2260void
2261ar9300_set_bt_coex_info(struct ath_hal *ah, HAL_BT_COEX_INFO *btinfo)
2262{
2263    struct ath_hal_9300 *ahp = AH9300(ah);
2264
2265    ahp->ah_bt_module = btinfo->bt_module;
2266    ahp->ah_bt_coex_config_type = btinfo->bt_coex_config;
2267    ahp->ah_bt_active_gpio_select = btinfo->bt_gpio_bt_active;
2268    ahp->ah_bt_priority_gpio_select = btinfo->bt_gpio_bt_priority;
2269    ahp->ah_wlan_active_gpio_select = btinfo->bt_gpio_wlan_active;
2270    ahp->ah_bt_active_polarity = btinfo->bt_active_polarity;
2271    ahp->ah_bt_coex_single_ant = btinfo->bt_single_ant;
2272    ahp->ah_bt_wlan_isolation = btinfo->bt_isolation;
2273}
2274
2275void
2276ar9300_bt_coex_config(struct ath_hal *ah, HAL_BT_COEX_CONFIG *btconf)
2277{
2278    struct ath_hal_9300 *ahp = AH9300(ah);
2279    HAL_BOOL rx_clear_polarity;
2280
2281    /*
2282     * For Kiwi and Osprey, the polarity of rx_clear is active high.
2283     * The bt_rxclear_polarity flag from ath_dev needs to be inverted.
2284     */
2285    rx_clear_polarity = !btconf->bt_rxclear_polarity;
2286
2287    ahp->ah_bt_coex_mode = (ahp->ah_bt_coex_mode & AR_BT_QCU_THRESH) |
2288        SM(btconf->bt_time_extend, AR_BT_TIME_EXTEND) |
2289        SM(btconf->bt_txstate_extend, AR_BT_TXSTATE_EXTEND) |
2290        SM(btconf->bt_txframe_extend, AR_BT_TX_FRAME_EXTEND) |
2291        SM(btconf->bt_mode, AR_BT_MODE) |
2292        SM(btconf->bt_quiet_collision, AR_BT_QUIET) |
2293        SM(rx_clear_polarity, AR_BT_RX_CLEAR_POLARITY) |
2294        SM(btconf->bt_priority_time, AR_BT_PRIORITY_TIME) |
2295        SM(btconf->bt_first_slot_time, AR_BT_FIRST_SLOT_TIME);
2296
2297    ahp->ah_bt_coex_mode2 |= SM(btconf->bt_hold_rxclear, AR_BT_HOLD_RX_CLEAR);
2298
2299    if (ahp->ah_bt_coex_single_ant == AH_FALSE) {
2300        /* Enable ACK to go out even though BT has higher priority. */
2301        ahp->ah_bt_coex_mode2 |= AR_BT_DISABLE_BT_ANT;
2302    }
2303}
2304
2305void
2306ar9300_bt_coex_set_qcu_thresh(struct ath_hal *ah, int qnum)
2307{
2308    struct ath_hal_9300 *ahp = AH9300(ah);
2309
2310    /* clear the old value, then set the new value */
2311    ahp->ah_bt_coex_mode &= ~AR_BT_QCU_THRESH;
2312    ahp->ah_bt_coex_mode |= SM(qnum, AR_BT_QCU_THRESH);
2313}
2314
2315void
2316ar9300_bt_coex_set_weights(struct ath_hal *ah, u_int32_t stomp_type)
2317{
2318    struct ath_hal_9300 *ahp = AH9300(ah);
2319
2320    ahp->ah_bt_coex_bt_weight[0] = AR9300_BT_WGHT;
2321    ahp->ah_bt_coex_bt_weight[1] = AR9300_BT_WGHT;
2322    ahp->ah_bt_coex_bt_weight[2] = AR9300_BT_WGHT;
2323    ahp->ah_bt_coex_bt_weight[3] = AR9300_BT_WGHT;
2324
2325    switch (stomp_type) {
2326    case HAL_BT_COEX_STOMP_ALL:
2327        ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_ALL_WLAN_WGHT0;
2328        ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_ALL_WLAN_WGHT1;
2329        break;
2330    case HAL_BT_COEX_STOMP_LOW:
2331        ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_LOW_WLAN_WGHT0;
2332        ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_LOW_WLAN_WGHT1;
2333        break;
2334    case HAL_BT_COEX_STOMP_ALL_FORCE:
2335        ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_ALL_FORCE_WLAN_WGHT0;
2336        ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_ALL_FORCE_WLAN_WGHT1;
2337        break;
2338    case HAL_BT_COEX_STOMP_LOW_FORCE:
2339        ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_LOW_FORCE_WLAN_WGHT0;
2340        ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_LOW_FORCE_WLAN_WGHT1;
2341        break;
2342    case HAL_BT_COEX_STOMP_NONE:
2343    case HAL_BT_COEX_NO_STOMP:
2344        ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_NONE_WLAN_WGHT0;
2345        ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_NONE_WLAN_WGHT1;
2346        break;
2347    default:
2348        /* There is a force_weight from registry */
2349        ahp->ah_bt_coex_wlan_weight[0] = stomp_type;
2350        ahp->ah_bt_coex_wlan_weight[1] = stomp_type;
2351        break;
2352    }
2353}
2354
2355void
2356ar9300_bt_coex_setup_bmiss_thresh(struct ath_hal *ah, u_int32_t thresh)
2357{
2358    struct ath_hal_9300 *ahp = AH9300(ah);
2359
2360    /* clear the old value, then set the new value */
2361    ahp->ah_bt_coex_mode2 &= ~AR_BT_BCN_MISS_THRESH;
2362    ahp->ah_bt_coex_mode2 |= SM(thresh, AR_BT_BCN_MISS_THRESH);
2363}
2364
2365static void
2366ar9300_bt_coex_antenna_diversity(struct ath_hal *ah, u_int32_t value)
2367{
2368    struct ath_hal_9300 *ahp = AH9300(ah);
2369#if ATH_ANT_DIV_COMB
2370    //struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
2371    const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
2372#endif
2373
2374    if (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_ANT_DIV_ALLOW)
2375    {
2376        if (ahp->ah_diversity_control == HAL_ANT_VARIABLE)
2377        {
2378            /* Config antenna diversity */
2379#if ATH_ANT_DIV_COMB
2380            ar9300_ant_ctrl_set_lna_div_use_bt_ant(ah, value, chan);
2381#endif
2382        }
2383    }
2384}
2385
2386
2387void
2388ar9300_bt_coex_set_parameter(struct ath_hal *ah, u_int32_t type,
2389    u_int32_t value)
2390{
2391    struct ath_hal_9300 *ahp = AH9300(ah);
2392    struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
2393
2394    switch (type) {
2395        case HAL_BT_COEX_SET_ACK_PWR:
2396            if (value) {
2397                ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_LOW_ACK_PWR;
2398            } else {
2399                ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_LOW_ACK_PWR;
2400            }
2401            ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2402                ahpriv->ah_extraTxPow, 0);
2403            break;
2404
2405        case HAL_BT_COEX_ANTENNA_DIVERSITY:
2406            if (AR_SREV_POSEIDON(ah)) {
2407                ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_ANT_DIV_ALLOW;
2408                if (value) {
2409                    ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_ANT_DIV_ENABLE;
2410                }
2411                else {
2412                    ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_ANT_DIV_ENABLE;
2413                }
2414                ar9300_bt_coex_antenna_diversity(ah, value);
2415            }
2416            break;
2417        case HAL_BT_COEX_LOWER_TX_PWR:
2418            if (value) {
2419                ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_LOWER_TX_PWR;
2420            }
2421            else {
2422                ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_LOWER_TX_PWR;
2423            }
2424            ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2425                                      ahpriv->ah_extraTxPow, 0);
2426            break;
2427#if ATH_SUPPORT_MCI
2428        case HAL_BT_COEX_MCI_MAX_TX_PWR:
2429            if ((ah->ah_config.ath_hal_mci_config &
2430                 ATH_MCI_CONFIG_CONCUR_TX) == ATH_MCI_CONCUR_TX_SHARED_CHN)
2431            {
2432                if (value) {
2433                    ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR;
2434                    ahp->ah_mci_concur_tx_en = AH_TRUE;
2435                }
2436                else {
2437                    ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR;
2438                    ahp->ah_mci_concur_tx_en = AH_FALSE;
2439                }
2440                ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2441                                          ahpriv->ah_extraTxPow, 0);
2442            }
2443            HALDEBUG(ah, HAL_DEBUG_BT_COEX, "(MCI) concur_tx_en = %d\n",
2444                     ahp->ah_mci_concur_tx_en);
2445            break;
2446        case HAL_BT_COEX_MCI_FTP_STOMP_RX:
2447            if (value) {
2448                ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_MCI_FTP_STOMP_RX;
2449            }
2450            else {
2451                ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_MCI_FTP_STOMP_RX;
2452            }
2453            break;
2454#endif
2455        default:
2456            break;
2457    }
2458}
2459
2460void
2461ar9300_bt_coex_disable(struct ath_hal *ah)
2462{
2463    struct ath_hal_9300 *ahp = AH9300(ah);
2464
2465    /* Always drive rx_clear_external output as 0 */
2466    ath_hal_gpioCfgOutput(ah, ahp->ah_wlan_active_gpio_select,
2467        HAL_GPIO_OUTPUT_MUX_AS_OUTPUT);
2468
2469    if (ahp->ah_bt_coex_single_ant == AH_TRUE) {
2470        OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
2471        OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0);
2472    }
2473
2474    OS_REG_WRITE(ah, AR_BT_COEX_MODE, AR_BT_QUIET | AR_BT_MODE);
2475    OS_REG_WRITE(ah, AR_BT_COEX_MODE2, 0);
2476    OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS0, 0);
2477    OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS1, 0);
2478    OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS0, 0);
2479    OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS1, 0);
2480    OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS2, 0);
2481    OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS3, 0);
2482
2483    ahp->ah_bt_coex_enabled = AH_FALSE;
2484}
2485
2486int
2487ar9300_bt_coex_enable(struct ath_hal *ah)
2488{
2489    struct ath_hal_9300 *ahp = AH9300(ah);
2490
2491    /* Program coex mode and weight registers to actually enable coex */
2492    OS_REG_WRITE(ah, AR_BT_COEX_MODE, ahp->ah_bt_coex_mode);
2493    OS_REG_WRITE(ah, AR_BT_COEX_MODE2, ahp->ah_bt_coex_mode2);
2494    OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS0, ahp->ah_bt_coex_wlan_weight[0]);
2495    OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS1, ahp->ah_bt_coex_wlan_weight[1]);
2496    OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS0, ahp->ah_bt_coex_bt_weight[0]);
2497    OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS1, ahp->ah_bt_coex_bt_weight[1]);
2498    OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS2, ahp->ah_bt_coex_bt_weight[2]);
2499    OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS3, ahp->ah_bt_coex_bt_weight[3]);
2500
2501    if (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_LOW_ACK_PWR) {
2502        OS_REG_WRITE(ah, AR_TPC, HAL_BT_COEX_LOW_ACK_POWER);
2503    } else {
2504        OS_REG_WRITE(ah, AR_TPC, HAL_BT_COEX_HIGH_ACK_POWER);
2505    }
2506
2507    OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
2508    if (ahp->ah_bt_coex_single_ant == AH_TRUE) {
2509        OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 1);
2510    } else {
2511        OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0);
2512    }
2513
2514    if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) {
2515        /* For 3-wire, configure the desired GPIO port for rx_clear */
2516        ath_hal_gpioCfgOutput(ah,
2517            ahp->ah_wlan_active_gpio_select,
2518            HAL_GPIO_OUTPUT_MUX_AS_WLAN_ACTIVE);
2519    }
2520    else if ((ahp->ah_bt_coex_config_type >= HAL_BT_COEX_CFG_2WIRE_2CH) &&
2521        (ahp->ah_bt_coex_config_type <= HAL_BT_COEX_CFG_2WIRE_CH0))
2522    {
2523        /* For 2-wire, configure the desired GPIO port for TX_FRAME output */
2524        ath_hal_gpioCfgOutput(ah,
2525            ahp->ah_wlan_active_gpio_select,
2526            HAL_GPIO_OUTPUT_MUX_AS_TX_FRAME);
2527    }
2528
2529    /*
2530     * Enable a weak pull down on BT_ACTIVE.
2531     * When BT device is disabled, BT_ACTIVE might be floating.
2532     */
2533    OS_REG_RMW(ah, AR_HOSTIF_REG(ah, AR_GPIO_PDPU),
2534        (AR_GPIO_PULL_DOWN << (ahp->ah_bt_active_gpio_select * 2)),
2535        (AR_GPIO_PDPU_OPTION << (ahp->ah_bt_active_gpio_select * 2)));
2536
2537    ahp->ah_bt_coex_enabled = AH_TRUE;
2538
2539    return 0;
2540}
2541
2542u_int32_t ar9300_get_bt_active_gpio(struct ath_hal *ah, u_int32_t reg)
2543{
2544    return 0;
2545}
2546
2547u_int32_t ar9300_get_wlan_active_gpio(struct ath_hal *ah, u_int32_t reg,u_int32_t bOn)
2548{
2549    return bOn;
2550}
2551
2552void
2553ar9300_init_bt_coex(struct ath_hal *ah)
2554{
2555    struct ath_hal_9300 *ahp = AH9300(ah);
2556
2557    if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) {
2558        OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2559                   (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_BB |
2560                    AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB));
2561
2562        /*
2563         * Set input mux for bt_prority_async and
2564         * bt_active_async to GPIO pins
2565         */
2566        OS_REG_RMW_FIELD(ah,
2567            AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2568            AR_GPIO_INPUT_MUX1_BT_ACTIVE,
2569            ahp->ah_bt_active_gpio_select);
2570        OS_REG_RMW_FIELD(ah,
2571            AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2572            AR_GPIO_INPUT_MUX1_BT_PRIORITY,
2573            ahp->ah_bt_priority_gpio_select);
2574
2575        /* Configure the desired GPIO ports for input */
2576        ath_hal_gpioCfgInput(ah, ahp->ah_bt_active_gpio_select);
2577        ath_hal_gpioCfgInput(ah, ahp->ah_bt_priority_gpio_select);
2578
2579        if (ahp->ah_bt_coex_enabled) {
2580            ar9300_bt_coex_enable(ah);
2581        } else {
2582            ar9300_bt_coex_disable(ah);
2583        }
2584    }
2585    else if ((ahp->ah_bt_coex_config_type >= HAL_BT_COEX_CFG_2WIRE_2CH) &&
2586        (ahp->ah_bt_coex_config_type <= HAL_BT_COEX_CFG_2WIRE_CH0))
2587    {
2588        /* 2-wire */
2589        if (ahp->ah_bt_coex_enabled) {
2590            /* Connect bt_active_async to baseband */
2591            OS_REG_CLR_BIT(ah,
2592                AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2593                (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
2594                 AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF));
2595            OS_REG_SET_BIT(ah,
2596                AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2597                AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
2598
2599            /*
2600             * Set input mux for bt_prority_async and
2601             * bt_active_async to GPIO pins
2602             */
2603            OS_REG_RMW_FIELD(ah,
2604                AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2605                AR_GPIO_INPUT_MUX1_BT_ACTIVE,
2606                ahp->ah_bt_active_gpio_select);
2607
2608            /* Configure the desired GPIO ports for input */
2609            ath_hal_gpioCfgInput(ah, ahp->ah_bt_active_gpio_select);
2610
2611            /* Enable coexistence on initialization */
2612            ar9300_bt_coex_enable(ah);
2613        }
2614    }
2615#if ATH_SUPPORT_MCI
2616    else if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI) {
2617        if (ahp->ah_bt_coex_enabled) {
2618            ar9300_mci_bt_coex_enable(ah);
2619        }
2620        else {
2621            ar9300_mci_bt_coex_disable(ah);
2622        }
2623    }
2624#endif /* ATH_SUPPORT_MCI */
2625}
2626
2627#endif /* ATH_BT_COEX */
2628
2629HAL_STATUS ar9300_set_proxy_sta(struct ath_hal *ah, HAL_BOOL enable)
2630{
2631    u_int32_t val;
2632    int wasp_mm_rev;
2633
2634#define AR_SOC_RST_REVISION_ID      0xB8060090
2635#define REG_READ(_reg)              *((volatile u_int32_t *)(_reg))
2636    wasp_mm_rev = (REG_READ(AR_SOC_RST_REVISION_ID) &
2637            AR_SREV_REVISION_WASP_MINOR_MINOR_MASK) >>
2638            AR_SREV_REVISION_WASP_MINOR_MINOR_SHIFT;
2639#undef AR_SOC_RST_REVISION_ID
2640#undef REG_READ
2641
2642    /*
2643     * Azimuth (ProxySTA) Mode is only supported correctly by
2644     * Peacock or WASP 1.3.0.1 or later (hopefully) chips.
2645     *
2646     * Enable this feature for Scorpion at this time. The silicon
2647     * still needs to be validated.
2648     */
2649    if (!(AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_AR9580) &&
2650        !(AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_SCORPION) &&
2651        !((AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_WASP) &&
2652          ((AH_PRIVATE((ah))->ah_macRev > AR_SREV_REVISION_WASP_13) ||
2653           (AH_PRIVATE((ah))->ah_macRev == AR_SREV_REVISION_WASP_13 &&
2654            wasp_mm_rev >= 0 /* 1 */))))
2655    {
2656        HALDEBUG(ah, HAL_DEBUG_UNMASKABLE, "%s error: current chip (ver 0x%x, "
2657                "rev 0x%x, minor minor rev 0x%x) cannot support Azimuth Mode\n",
2658                __func__, AH_PRIVATE((ah))->ah_macVersion,
2659                AH_PRIVATE((ah))->ah_macRev, wasp_mm_rev);
2660        return HAL_ENOTSUPP;
2661    }
2662
2663    OS_REG_WRITE(ah,
2664        AR_MAC_PCU_LOGIC_ANALYZER, AR_MAC_PCU_LOGIC_ANALYZER_PSTABUG75996);
2665
2666    /* turn on mode bit[24] for proxy sta */
2667    OS_REG_WRITE(ah, AR_PCU_MISC_MODE2,
2668        OS_REG_READ(ah, AR_PCU_MISC_MODE2) | AR_PCU_MISC_MODE2_PROXY_STA);
2669
2670    val = OS_REG_READ(ah, AR_AZIMUTH_MODE);
2671    if (enable) {
2672        val |= AR_AZIMUTH_KEY_SEARCH_AD1 |
2673               AR_AZIMUTH_CTS_MATCH_TX_AD2 |
2674               AR_AZIMUTH_BA_USES_AD1;
2675        /* turn off filter pass hold (bit 9) */
2676        val &= ~AR_AZIMUTH_FILTER_PASS_HOLD;
2677    } else {
2678        val &= ~(AR_AZIMUTH_KEY_SEARCH_AD1 |
2679                 AR_AZIMUTH_CTS_MATCH_TX_AD2 |
2680                 AR_AZIMUTH_BA_USES_AD1);
2681    }
2682    OS_REG_WRITE(ah, AR_AZIMUTH_MODE, val);
2683
2684    /* enable promiscous mode */
2685    OS_REG_WRITE(ah, AR_RX_FILTER,
2686        OS_REG_READ(ah, AR_RX_FILTER) | HAL_RX_FILTER_PROM);
2687    /* enable promiscous in azimuth mode */
2688    OS_REG_WRITE(ah, AR_PCU_MISC_MODE2, AR_PCU_MISC_MODE2_PROM_VC_MODE);
2689    OS_REG_WRITE(ah, AR_MAC_PCU_LOGIC_ANALYZER, AR_MAC_PCU_LOGIC_ANALYZER_VC_MODE);
2690
2691    /* turn on filter pass hold (bit 9) */
2692    OS_REG_WRITE(ah, AR_AZIMUTH_MODE,
2693        OS_REG_READ(ah, AR_AZIMUTH_MODE) | AR_AZIMUTH_FILTER_PASS_HOLD);
2694
2695    return HAL_OK;
2696}
2697
2698#if 0
2699void ar9300_mat_enable(struct ath_hal *ah, int enable)
2700{
2701    /*
2702     * MAT (s/w ProxySTA) implementation requires to turn off interrupt
2703     * mitigation and turn on key search always for better performance.
2704     */
2705    struct ath_hal_9300 *ahp = AH9300(ah);
2706    struct ath_hal_private *ap = AH_PRIVATE(ah);
2707
2708    ahp->ah_intr_mitigation_rx = !enable;
2709    if (ahp->ah_intr_mitigation_rx) {
2710        /*
2711         * Enable Interrupt Mitigation for Rx.
2712         * If no build-specific limits for the rx interrupt mitigation
2713         * timer have been specified, use conservative defaults.
2714         */
2715        #ifndef AH_RIMT_VAL_LAST
2716            #define AH_RIMT_LAST_MICROSEC 500
2717        #endif
2718        #ifndef AH_RIMT_VAL_FIRST
2719            #define AH_RIMT_FIRST_MICROSEC 2000
2720        #endif
2721        OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, AH_RIMT_LAST_MICROSEC);
2722        OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, AH_RIMT_FIRST_MICROSEC);
2723    } else {
2724        OS_REG_WRITE(ah, AR_RIMT, 0);
2725    }
2726
2727    ahp->ah_enable_keysearch_always = !!enable;
2728    ar9300_enable_keysearch_always(ah, ahp->ah_enable_keysearch_always);
2729}
2730#endif
2731
2732void ar9300_enable_tpc(struct ath_hal *ah)
2733{
2734    u_int32_t val = 0;
2735
2736    ah->ah_config.ath_hal_desc_tpc = 1;
2737
2738    /* Enable TPC */
2739    OS_REG_RMW_FIELD(ah, AR_PHY_PWRTX_MAX, AR_PHY_PER_PACKET_POWERTX_MAX, 1);
2740
2741    /*
2742     * Disable per chain power reduction since we are already
2743     * accounting for this in our calculations
2744     */
2745    val = OS_REG_READ(ah, AR_PHY_POWER_TX_SUB);
2746    if (AR_SREV_WASP(ah)) {
2747        OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
2748                         val & AR_PHY_POWER_TX_SUB_2_DISABLE);
2749    } else {
2750        OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
2751                         val & AR_PHY_POWER_TX_SUB_3_DISABLE);
2752    }
2753}
2754
2755
2756/*
2757 * ar9300_force_tsf_sync
2758 * This function forces the TSF sync to the given bssid, this is implemented
2759 * as a temp hack to get the AoW demo, and is primarily used in the WDS client
2760 * mode of operation, where we sync the TSF to RootAP TSF values
2761 */
2762void
2763ar9300_force_tsf_sync(struct ath_hal *ah, const u_int8_t *bssid,
2764    u_int16_t assoc_id)
2765{
2766    ar9300_set_operating_mode(ah, HAL_M_STA);
2767    ar9300_write_associd(ah, bssid, assoc_id);
2768}
2769
2770void ar9300_chk_rssi_update_tx_pwr(struct ath_hal *ah, int rssi)
2771{
2772    struct ath_hal_9300 *ahp = AH9300(ah);
2773    u_int32_t           temp_obdb_reg_val = 0, temp_tcp_reg_val;
2774    u_int32_t           temp_powertx_rate9_reg_val;
2775    int8_t              olpc_power_offset = 0;
2776    int8_t              tmp_olpc_val = 0;
2777    HAL_RSSI_TX_POWER   old_greentx_status;
2778    u_int8_t            target_power_val_t[ar9300_rate_size];
2779    int8_t              tmp_rss1_thr1, tmp_rss1_thr2;
2780
2781    if ((AH_PRIVATE(ah)->ah_opmode != HAL_M_STA) ||
2782        !ah->ah_config.ath_hal_sta_update_tx_pwr_enable) {
2783        return;
2784    }
2785
2786    old_greentx_status = AH9300(ah)->green_tx_status;
2787    if (ahp->ah_hw_green_tx_enable) {
2788        tmp_rss1_thr1 = AR9485_HW_GREEN_TX_THRES1_DB;
2789        tmp_rss1_thr2 = AR9485_HW_GREEN_TX_THRES2_DB;
2790    } else {
2791        tmp_rss1_thr1 = WB225_SW_GREEN_TX_THRES1_DB;
2792        tmp_rss1_thr2 = WB225_SW_GREEN_TX_THRES2_DB;
2793    }
2794
2795    if ((ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S1)
2796        && (rssi > tmp_rss1_thr1))
2797    {
2798        if (old_greentx_status != HAL_RSSI_TX_POWER_SHORT) {
2799            AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_SHORT;
2800        }
2801    } else if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S2
2802        && (rssi > tmp_rss1_thr2))
2803    {
2804        if (old_greentx_status != HAL_RSSI_TX_POWER_MIDDLE) {
2805            AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_MIDDLE;
2806        }
2807    } else if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S3) {
2808        if (old_greentx_status != HAL_RSSI_TX_POWER_LONG) {
2809            AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_LONG;
2810        }
2811    }
2812
2813    /* If status is not change, don't do anything */
2814    if (old_greentx_status == AH9300(ah)->green_tx_status) {
2815        return;
2816    }
2817
2818    /* for Poseidon which ath_hal_sta_update_tx_pwr_enable is enabled */
2819    if ((AH9300(ah)->green_tx_status != HAL_RSSI_TX_POWER_NONE)
2820        && AR_SREV_POSEIDON(ah))
2821    {
2822        if (ahp->ah_hw_green_tx_enable) {
2823            switch (AH9300(ah)->green_tx_status) {
2824            case HAL_RSSI_TX_POWER_SHORT:
2825                /* 1. TxPower Config */
2826                OS_MEMCPY(target_power_val_t, ar9485_hw_gtx_tp_distance_short,
2827                    sizeof(target_power_val_t));
2828                /* 1.1 Store OLPC Delta Calibration Offset*/
2829                olpc_power_offset = 0;
2830                /* 2. Store OB/DB */
2831                /* 3. Store TPC settting */
2832                temp_tcp_reg_val = (SM(14, AR_TPC_ACK) |
2833                                    SM(14, AR_TPC_CTS) |
2834                                    SM(14, AR_TPC_CHIRP) |
2835                                    SM(14, AR_TPC_RPT));
2836                /* 4. Store BB_powertx_rate9 value */
2837                temp_powertx_rate9_reg_val =
2838                    AR9485_BBPWRTXRATE9_HW_GREEN_TX_SHORT_VALUE;
2839                break;
2840            case HAL_RSSI_TX_POWER_MIDDLE:
2841                /* 1. TxPower Config */
2842                OS_MEMCPY(target_power_val_t, ar9485_hw_gtx_tp_distance_middle,
2843                    sizeof(target_power_val_t));
2844                /* 1.1 Store OLPC Delta Calibration Offset*/
2845                olpc_power_offset = 0;
2846                /* 2. Store OB/DB */
2847                /* 3. Store TPC settting */
2848                temp_tcp_reg_val = (SM(18, AR_TPC_ACK) |
2849                                    SM(18, AR_TPC_CTS) |
2850                                    SM(18, AR_TPC_CHIRP) |
2851                                    SM(18, AR_TPC_RPT));
2852                /* 4. Store BB_powertx_rate9 value */
2853                temp_powertx_rate9_reg_val =
2854                    AR9485_BBPWRTXRATE9_HW_GREEN_TX_MIDDLE_VALUE;
2855                break;
2856            case HAL_RSSI_TX_POWER_LONG:
2857            default:
2858                /* 1. TxPower Config */
2859                OS_MEMCPY(target_power_val_t, ahp->ah_default_tx_power,
2860                    sizeof(target_power_val_t));
2861                /* 1.1 Store OLPC Delta Calibration Offset*/
2862                olpc_power_offset = 0;
2863                /* 2. Store OB/DB1/DB2 */
2864                /* 3. Store TPC settting */
2865                temp_tcp_reg_val =
2866                    AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_TPC];
2867                /* 4. Store BB_powertx_rate9 value */
2868                temp_powertx_rate9_reg_val =
2869                  AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9];
2870                break;
2871            }
2872        } else {
2873            switch (AH9300(ah)->green_tx_status) {
2874            case HAL_RSSI_TX_POWER_SHORT:
2875                /* 1. TxPower Config */
2876                OS_MEMCPY(target_power_val_t, wb225_sw_gtx_tp_distance_short,
2877                    sizeof(target_power_val_t));
2878                /* 1.1 Store OLPC Delta Calibration Offset*/
2879                olpc_power_offset =
2880                    wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_SHORT_VALUE] -
2881                    wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
2882                /* 2. Store OB/DB */
2883                temp_obdb_reg_val =
2884                    AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
2885                temp_obdb_reg_val &= ~(AR_PHY_65NM_CH0_TXRF2_DB2G |
2886                                       AR_PHY_65NM_CH0_TXRF2_OB2G_CCK |
2887                                       AR_PHY_65NM_CH0_TXRF2_OB2G_PSK |
2888                                       AR_PHY_65NM_CH0_TXRF2_OB2G_QAM);
2889                temp_obdb_reg_val |= (SM(5, AR_PHY_65NM_CH0_TXRF2_DB2G) |
2890                SM(WB225_OB_GREEN_TX_SHORT_VALUE,
2891                    AR_PHY_65NM_CH0_TXRF2_OB2G_CCK) |
2892                SM(WB225_OB_GREEN_TX_SHORT_VALUE,
2893                    AR_PHY_65NM_CH0_TXRF2_OB2G_PSK) |
2894                SM(WB225_OB_GREEN_TX_SHORT_VALUE,
2895                    AR_PHY_65NM_CH0_TXRF2_OB2G_QAM));
2896                /* 3. Store TPC settting */
2897                temp_tcp_reg_val = (SM(6, AR_TPC_ACK) |
2898                                    SM(6, AR_TPC_CTS) |
2899                                    SM(6, AR_TPC_CHIRP) |
2900                                    SM(6, AR_TPC_RPT));
2901                /* 4. Store BB_powertx_rate9 value */
2902                temp_powertx_rate9_reg_val =
2903                    WB225_BBPWRTXRATE9_SW_GREEN_TX_SHORT_VALUE;
2904                break;
2905            case HAL_RSSI_TX_POWER_MIDDLE:
2906                /* 1. TxPower Config */
2907                OS_MEMCPY(target_power_val_t, wb225_sw_gtx_tp_distance_middle,
2908                    sizeof(target_power_val_t));
2909                /* 1.1 Store OLPC Delta Calibration Offset*/
2910                olpc_power_offset =
2911                    wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_MIDDLE_VALUE] -
2912                    wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
2913                /* 2. Store OB/DB */
2914                temp_obdb_reg_val =
2915                    AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
2916                temp_obdb_reg_val &= ~(AR_PHY_65NM_CH0_TXRF2_DB2G |
2917                                       AR_PHY_65NM_CH0_TXRF2_OB2G_CCK |
2918                                       AR_PHY_65NM_CH0_TXRF2_OB2G_PSK |
2919                                       AR_PHY_65NM_CH0_TXRF2_OB2G_QAM);
2920                temp_obdb_reg_val |= (SM(5, AR_PHY_65NM_CH0_TXRF2_DB2G) |
2921                    SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
2922                        AR_PHY_65NM_CH0_TXRF2_OB2G_CCK) |
2923                    SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
2924                        AR_PHY_65NM_CH0_TXRF2_OB2G_PSK) |
2925                    SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
2926                        AR_PHY_65NM_CH0_TXRF2_OB2G_QAM));
2927                /* 3. Store TPC settting */
2928                temp_tcp_reg_val = (SM(14, AR_TPC_ACK) |
2929                                    SM(14, AR_TPC_CTS) |
2930                                    SM(14, AR_TPC_CHIRP) |
2931                                    SM(14, AR_TPC_RPT));
2932                /* 4. Store BB_powertx_rate9 value */
2933                temp_powertx_rate9_reg_val =
2934                    WB225_BBPWRTXRATE9_SW_GREEN_TX_MIDDLE_VALUE;
2935                break;
2936            case HAL_RSSI_TX_POWER_LONG:
2937            default:
2938                /* 1. TxPower Config */
2939                OS_MEMCPY(target_power_val_t, ahp->ah_default_tx_power,
2940                    sizeof(target_power_val_t));
2941                /* 1.1 Store OLPC Delta Calibration Offset*/
2942                olpc_power_offset =
2943                    wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_LONG_VALUE] -
2944                    wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
2945                /* 2. Store OB/DB1/DB2 */
2946                temp_obdb_reg_val =
2947                    AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
2948                /* 3. Store TPC settting */
2949                temp_tcp_reg_val =
2950                    AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_TPC];
2951                /* 4. Store BB_powertx_rate9 value */
2952                temp_powertx_rate9_reg_val =
2953                  AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9];
2954                break;
2955            }
2956        }
2957        /* 1.1 Do OLPC Delta Calibration Offset */
2958        tmp_olpc_val =
2959            (int8_t) AH9300(ah)->ah_db2[POSEIDON_STORED_REG_G2_OLPC_OFFSET];
2960        tmp_olpc_val += olpc_power_offset;
2961        OS_REG_RMW(ah, AR_PHY_TPC_11_B0,
2962            (tmp_olpc_val << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
2963            AR_PHY_TPC_OLPC_GAIN_DELTA);
2964
2965        /* 1.2 TxPower Config */
2966        ar9300_transmit_power_reg_write(ah, target_power_val_t);
2967        /* 2. Config OB/DB */
2968        if (!ahp->ah_hw_green_tx_enable) {
2969            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF2, temp_obdb_reg_val);
2970        }
2971        /* 3. config TPC settting */
2972        OS_REG_WRITE(ah, AR_TPC, temp_tcp_reg_val);
2973        /* 4. config BB_powertx_rate9 value */
2974        OS_REG_WRITE(ah, AR_PHY_BB_POWERTX_RATE9, temp_powertx_rate9_reg_val);
2975    }
2976}
2977
2978#if 0
2979void
2980ar9300_get_vow_stats(
2981    struct ath_hal *ah, HAL_VOWSTATS* p_stats, u_int8_t vow_reg_flags)
2982{
2983    if (vow_reg_flags & AR_REG_TX_FRM_CNT) {
2984        p_stats->tx_frame_count = OS_REG_READ(ah, AR_TFCNT);
2985    }
2986    if (vow_reg_flags & AR_REG_RX_FRM_CNT) {
2987        p_stats->rx_frame_count = OS_REG_READ(ah, AR_RFCNT);
2988    }
2989    if (vow_reg_flags & AR_REG_RX_CLR_CNT) {
2990        p_stats->rx_clear_count = OS_REG_READ(ah, AR_RCCNT);
2991    }
2992    if (vow_reg_flags & AR_REG_CYCLE_CNT) {
2993        p_stats->cycle_count   = OS_REG_READ(ah, AR_CCCNT);
2994    }
2995    if (vow_reg_flags & AR_REG_EXT_CYCLE_CNT) {
2996        p_stats->ext_cycle_count   = OS_REG_READ(ah, AR_EXTRCCNT);
2997    }
2998}
2999#endif
3000
3001/*
3002 * ar9300_is_skip_paprd_by_greentx
3003 *
3004 * This function check if we need to skip PAPRD tuning
3005 * when GreenTx in specific state.
3006 */
3007HAL_BOOL
3008ar9300_is_skip_paprd_by_greentx(struct ath_hal *ah)
3009{
3010    if (AR_SREV_POSEIDON(ah) &&
3011        ah->ah_config.ath_hal_sta_update_tx_pwr_enable &&
3012        ((AH9300(ah)->green_tx_status == HAL_RSSI_TX_POWER_SHORT) ||
3013         (AH9300(ah)->green_tx_status == HAL_RSSI_TX_POWER_MIDDLE)))
3014    {
3015        return AH_TRUE;
3016    }
3017    return AH_FALSE;
3018}
3019
3020void
3021ar9300_control_signals_for_green_tx_mode(struct ath_hal *ah)
3022{
3023    unsigned int valid_obdb_0_b0 = 0x2d; // 5,5 - dB[0:2],oB[5:3]
3024    unsigned int valid_obdb_1_b0 = 0x25; // 4,5 - dB[0:2],oB[5:3]
3025    unsigned int valid_obdb_2_b0 = 0x1d; // 3,5 - dB[0:2],oB[5:3]
3026    unsigned int valid_obdb_3_b0 = 0x15; // 2,5 - dB[0:2],oB[5:3]
3027    unsigned int valid_obdb_4_b0 = 0xd;  // 1,5 - dB[0:2],oB[5:3]
3028    struct ath_hal_9300 *ahp = AH9300(ah);
3029
3030    if (AR_SREV_POSEIDON(ah) && ahp->ah_hw_green_tx_enable) {
3031        OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3032                             AR_PHY_PAPRD_VALID_OBDB_0, valid_obdb_0_b0);
3033        OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3034                             AR_PHY_PAPRD_VALID_OBDB_1, valid_obdb_1_b0);
3035        OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3036                             AR_PHY_PAPRD_VALID_OBDB_2, valid_obdb_2_b0);
3037        OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3038                             AR_PHY_PAPRD_VALID_OBDB_3, valid_obdb_3_b0);
3039        OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3040                             AR_PHY_PAPRD_VALID_OBDB_4, valid_obdb_4_b0);
3041    }
3042}
3043
3044void ar9300_hwgreentx_set_pal_spare(struct ath_hal *ah, int value)
3045{
3046    struct ath_hal_9300 *ahp = AH9300(ah);
3047
3048    if (AR_SREV_POSEIDON(ah) && ahp->ah_hw_green_tx_enable) {
3049        if ((value == 0) || (value == 1)) {
3050            OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_TXRF3,
3051                             AR_PHY_65NM_CH0_TXRF3_OLD_PAL_SPARE, value);
3052        }
3053    }
3054}
3055
3056void ar9300_reset_hw_beacon_proc_crc(struct ath_hal *ah)
3057{
3058    OS_REG_SET_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_RESET_CRC);
3059}
3060
3061int32_t ar9300_get_hw_beacon_rssi(struct ath_hal *ah)
3062{
3063    int32_t val = OS_REG_READ_FIELD(ah, AR_BCN_RSSI_AVE, AR_BCN_RSSI_AVE_VAL);
3064
3065    /* RSSI format is 8.4.  Ignore lowest four bits */
3066    val = val >> 4;
3067    return val;
3068}
3069
3070void ar9300_set_hw_beacon_rssi_threshold(struct ath_hal *ah,
3071                                        u_int32_t rssi_threshold)
3072{
3073    struct ath_hal_9300 *ahp = AH9300(ah);
3074
3075    OS_REG_RMW_FIELD(ah, AR_RSSI_THR, AR_RSSI_THR_VAL, rssi_threshold);
3076
3077    /* save value for restoring after chip reset */
3078    ahp->ah_beacon_rssi_threshold = rssi_threshold;
3079}
3080
3081void ar9300_reset_hw_beacon_rssi(struct ath_hal *ah)
3082{
3083    OS_REG_SET_BIT(ah, AR_RSSI_THR, AR_RSSI_BCN_RSSI_RST);
3084}
3085
3086void ar9300_set_hw_beacon_proc(struct ath_hal *ah, HAL_BOOL on)
3087{
3088    if (on) {
3089        OS_REG_SET_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_CRC_ENABLE |
3090                       AR_HWBCNPROC1_EXCLUDE_TIM_ELM);
3091    }
3092    else {
3093        OS_REG_CLR_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_CRC_ENABLE |
3094                       AR_HWBCNPROC1_EXCLUDE_TIM_ELM);
3095    }
3096}
3097/*
3098 * Gets the contents of the specified key cache entry.
3099 */
3100HAL_BOOL
3101ar9300_print_keycache(struct ath_hal *ah)
3102{
3103
3104    const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
3105    u_int32_t key0, key1, key2, key3, key4;
3106    u_int32_t mac_hi, mac_lo;
3107    u_int16_t entry = 0;
3108    u_int32_t valid = 0;
3109    u_int32_t key_type;
3110
3111    ath_hal_printf(ah, "Slot   Key\t\t\t          Valid  Type  Mac  \n");
3112
3113    for (entry = 0 ; entry < p_cap->halKeyCacheSize; entry++) {
3114        key0 = OS_REG_READ(ah, AR_KEYTABLE_KEY0(entry));
3115        key1 = OS_REG_READ(ah, AR_KEYTABLE_KEY1(entry));
3116        key2 = OS_REG_READ(ah, AR_KEYTABLE_KEY2(entry));
3117        key3 = OS_REG_READ(ah, AR_KEYTABLE_KEY3(entry));
3118        key4 = OS_REG_READ(ah, AR_KEYTABLE_KEY4(entry));
3119
3120        key_type = OS_REG_READ(ah, AR_KEYTABLE_TYPE(entry));
3121
3122        mac_lo = OS_REG_READ(ah, AR_KEYTABLE_MAC0(entry));
3123        mac_hi = OS_REG_READ(ah, AR_KEYTABLE_MAC1(entry));
3124
3125        if (mac_hi & AR_KEYTABLE_VALID) {
3126            valid = 1;
3127        } else {
3128            valid = 0;
3129        }
3130
3131        if ((mac_hi != 0) && (mac_lo != 0)) {
3132            mac_hi &= ~0x8000;
3133            mac_hi <<= 1;
3134            mac_hi |= ((mac_lo & (1 << 31) )) >> 31;
3135            mac_lo <<= 1;
3136        }
3137
3138        ath_hal_printf(ah,
3139            "%03d    "
3140            "%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x"
3141            "   %02d     %02d    "
3142            "%02x:%02x:%02x:%02x:%02x:%02x \n",
3143            entry,
3144            (key0 << 24) >> 24, (key0 << 16) >> 24,
3145            (key0 << 8) >> 24, key0 >> 24,
3146            (key1 << 24) >> 24, (key1 << 16) >> 24,
3147            //(key1 << 8) >> 24, key1 >> 24,
3148            (key2 << 24) >> 24, (key2 << 16) >> 24,
3149            (key2 << 8) >> 24, key2 >> 24,
3150            (key3 << 24) >> 24, (key3 << 16) >> 24,
3151            //(key3 << 8) >> 24, key3 >> 24,
3152            (key4 << 24) >> 24, (key4 << 16) >> 24,
3153            (key4 << 8) >> 24, key4 >> 24,
3154            valid, key_type,
3155            (mac_lo << 24) >> 24, (mac_lo << 16) >> 24, (mac_lo << 8) >> 24,
3156            (mac_lo) >> 24, (mac_hi << 24) >> 24, (mac_hi << 16) >> 24 );
3157    }
3158
3159    return AH_TRUE;
3160}
3161
3162/* enable/disable smart antenna mode */
3163HAL_BOOL
3164ar9300_set_smart_antenna(struct ath_hal *ah, HAL_BOOL enable)
3165{
3166    struct ath_hal_9300 *ahp = AH9300(ah);
3167
3168    if (enable) {
3169        OS_REG_SET_BIT(ah, AR_XRTO, AR_ENABLE_SMARTANTENNA);
3170    } else {
3171        OS_REG_CLR_BIT(ah, AR_XRTO, AR_ENABLE_SMARTANTENNA);
3172    }
3173
3174    /* if scropion and smart antenna is enabled, write swcom1 with 0x440
3175     * and swcom2 with 0
3176     * FIXME Ideally these registers need to be made read from caldata.
3177     * Until the calibration team gets them, keep them along with board
3178     * configuration.
3179     */
3180    if (enable && AR_SREV_SCORPION(ah) &&
3181           (HAL_OK == ar9300_get_capability(ah, HAL_CAP_SMARTANTENNA, 0,0))) {
3182
3183       OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, 0x440);
3184       OS_REG_WRITE(ah, AR_PHY_SWITCH_COM_2, 0);
3185    }
3186
3187    ahp->ah_smartantenna_enable = enable;
3188    return 1;
3189}
3190
3191#ifdef ATH_TX99_DIAG
3192#ifndef ATH_SUPPORT_HTC
3193void
3194ar9300_tx99_channel_pwr_update(struct ath_hal *ah, HAL_CHANNEL *c,
3195    u_int32_t txpower)
3196{
3197#define PWR_MAS(_r, _s)     (((_r) & 0x3f) << (_s))
3198    static int16_t p_pwr_array[ar9300_rate_size] = { 0 };
3199    int32_t i;
3200
3201    /* The max power is limited to 63 */
3202    if (txpower <= AR9300_MAX_RATE_POWER) {
3203        for (i = 0; i < ar9300_rate_size; i++) {
3204            p_pwr_array[i] = txpower;
3205        }
3206    } else {
3207        for (i = 0; i < ar9300_rate_size; i++) {
3208            p_pwr_array[i] = AR9300_MAX_RATE_POWER;
3209        }
3210    }
3211
3212    OS_REG_WRITE(ah, 0xa458, 0);
3213
3214    /* Write the OFDM power per rate set */
3215    /* 6 (LSB), 9, 12, 18 (MSB) */
3216    OS_REG_WRITE(ah, 0xa3c0,
3217        PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 24)
3218          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 16)
3219          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  8)
3220          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  0)
3221    );
3222    /* 24 (LSB), 36, 48, 54 (MSB) */
3223    OS_REG_WRITE(ah, 0xa3c4,
3224        PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_54], 24)
3225          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_48], 16)
3226          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_36],  8)
3227          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  0)
3228    );
3229
3230    /* Write the CCK power per rate set */
3231    /* 1L (LSB), reserved, 2L, 2S (MSB) */
3232    OS_REG_WRITE(ah, 0xa3c8,
3233        PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 24)
3234          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],  16)
3235          /* | PWR_MAS(txPowerTimes2,  8) */ /* this is reserved for Osprey */
3236          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],   0)
3237    );
3238    /* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
3239    OS_REG_WRITE(ah, 0xa3cc,
3240        PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_11S], 24)
3241          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_11L], 16)
3242          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_5S],  8)
3243          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],  0)
3244    );
3245
3246    /* Write the HT20 power per rate set */
3247    /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
3248    OS_REG_WRITE(ah, 0xa3d0,
3249        PWR_MAS(p_pwr_array[ALL_TARGET_HT20_5], 24)
3250          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_4],  16)
3251          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_1_3_9_11_17_19],  8)
3252          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_0_8_16],   0)
3253    );
3254
3255    /* 6 (LSB), 7, 12, 13 (MSB) */
3256    OS_REG_WRITE(ah, 0xa3d4,
3257        PWR_MAS(p_pwr_array[ALL_TARGET_HT20_13], 24)
3258          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_12],  16)
3259          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_7],  8)
3260          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_6],   0)
3261    );
3262
3263    /* 14 (LSB), 15, 20, 21 */
3264    OS_REG_WRITE(ah, 0xa3e4,
3265        PWR_MAS(p_pwr_array[ALL_TARGET_HT20_21], 24)
3266          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_20],  16)
3267          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_15],  8)
3268          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_14],   0)
3269    );
3270
3271    /* Mixed HT20 and HT40 rates */
3272    /* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
3273    OS_REG_WRITE(ah, 0xa3e8,
3274        PWR_MAS(p_pwr_array[ALL_TARGET_HT40_23], 24)
3275          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_22],  16)
3276          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_23],  8)
3277          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_22],   0)
3278    );
3279
3280    /* Write the HT40 power per rate set */
3281    /* correct PAR difference between HT40 and HT20/LEGACY */
3282    /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
3283    OS_REG_WRITE(ah, 0xa3d8,
3284        PWR_MAS(p_pwr_array[ALL_TARGET_HT40_5], 24)
3285          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_4],  16)
3286          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_1_3_9_11_17_19],  8)
3287          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_0_8_16],   0)
3288    );
3289
3290    /* 6 (LSB), 7, 12, 13 (MSB) */
3291    OS_REG_WRITE(ah, 0xa3dc,
3292        PWR_MAS(p_pwr_array[ALL_TARGET_HT40_13], 24)
3293          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_12],  16)
3294          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_7], 8)
3295          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_6], 0)
3296    );
3297
3298    /* 14 (LSB), 15, 20, 21 */
3299    OS_REG_WRITE(ah, 0xa3ec,
3300        PWR_MAS(p_pwr_array[ALL_TARGET_HT40_21], 24)
3301          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_20],  16)
3302          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_15],  8)
3303          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_14],   0)
3304    );
3305#undef PWR_MAS
3306}
3307
3308void
3309ar9300_tx99_chainmsk_setup(struct ath_hal *ah, int tx_chainmask)
3310{
3311    if (tx_chainmask == 0x5) {
3312        OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
3313            OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | AR_PHY_SWAP_ALT_CHAIN);
3314    }
3315    OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, tx_chainmask);
3316    OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, tx_chainmask);
3317
3318    OS_REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
3319    if (tx_chainmask == 0x5) {
3320        OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
3321            OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | AR_PHY_SWAP_ALT_CHAIN);
3322    }
3323}
3324
3325void
3326ar9300_tx99_set_single_carrier(struct ath_hal *ah, int tx_chain_mask,
3327    int chtype)
3328{
3329    OS_REG_WRITE(ah, 0x98a4, OS_REG_READ(ah, 0x98a4) | (0x7ff << 11) | 0x7ff);
3330    OS_REG_WRITE(ah, 0xa364, OS_REG_READ(ah, 0xa364) | (1 << 7) | (1 << 1));
3331    OS_REG_WRITE(ah, 0xa350,
3332        (OS_REG_READ(ah, 0xa350) | (1 << 31) | (1 << 15)) & ~(1 << 13));
3333
3334    /* 11G mode */
3335    if (!chtype) {
3336        OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3337            OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2) | (0x1 << 3) | (0x1 << 2));
3338        if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3339            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3340                OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3341            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3342                (OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3343                        | (0x1 << 26)  | (0x7 << 24))
3344                        & ~(0x1 << 22));
3345        } else {
3346            OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3347                OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3348            OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3349                (OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3350                        | (0x1 << 26)  | (0x7 << 24))
3351                        & ~(0x1 << 22));
3352        }
3353
3354        /* chain zero */
3355        if ((tx_chain_mask & 0x01) == 0x01) {
3356            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX1,
3357                (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX1)
3358                      | (0x1 << 31) | (0x5 << 15)
3359                      | (0x3 << 9)) & ~(0x1 << 27)
3360                      & ~(0x1 << 12));
3361            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3362                (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3363                      | (0x1 << 12) | (0x1 << 10)
3364                      | (0x1 << 9)  | (0x1 << 8)
3365                      | (0x1 << 7)) & ~(0x1 << 11));
3366            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3367                (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3368                      | (0x1 << 29) | (0x1 << 25)
3369                      | (0x1 << 23) | (0x1 << 19)
3370                      | (0x1 << 10) | (0x1 << 9)
3371                      | (0x1 << 8)  | (0x1 << 3))
3372                      & ~(0x1 << 28)& ~(0x1 << 24)
3373                      & ~(0x1 << 22)& ~(0x1 << 7));
3374            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3375                (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1)
3376                      | (0x1 << 23))& ~(0x1 << 21));
3377            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB1,
3378                OS_REG_READ(ah, AR_PHY_65NM_CH0_BB1)
3379                      | (0x1 << 12) | (0x1 << 10)
3380                      | (0x1 << 9)  | (0x1 << 8)
3381                      | (0x1 << 6)  | (0x1 << 5)
3382                      | (0x1 << 4)  | (0x1 << 3)
3383                      | (0x1 << 2));
3384            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB2,
3385                OS_REG_READ(ah, AR_PHY_65NM_CH0_BB2) | (0x1 << 31));
3386        }
3387        if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3388            /* chain one */
3389            if ((tx_chain_mask & 0x02) == 0x02 ) {
3390                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX1,
3391                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX1)
3392                          | (0x1 << 31) | (0x5 << 15)
3393                          | (0x3 << 9)) & ~(0x1 << 27)
3394                          & ~(0x1 << 12));
3395                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3396                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3397                          | (0x1 << 12) | (0x1 << 10)
3398                          | (0x1 << 9)  | (0x1 << 8)
3399                          | (0x1 << 7)) & ~(0x1 << 11));
3400                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3401                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3402                          | (0x1 << 29) | (0x1 << 25)
3403                          | (0x1 << 23) | (0x1 << 19)
3404                          | (0x1 << 10) | (0x1 << 9)
3405                          | (0x1 << 8)  | (0x1 << 3))
3406                          & ~(0x1 << 28)& ~(0x1 << 24)
3407                          & ~(0x1 << 22)& ~(0x1 << 7));
3408                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3409                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1)
3410                          | (0x1 << 23))& ~(0x1 << 21));
3411                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB1,
3412                    OS_REG_READ(ah, AR_PHY_65NM_CH1_BB1)
3413                          | (0x1 << 12) | (0x1 << 10)
3414                          | (0x1 << 9)  | (0x1 << 8)
3415                          | (0x1 << 6)  | (0x1 << 5)
3416                          | (0x1 << 4)  | (0x1 << 3)
3417                          | (0x1 << 2));
3418                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB2,
3419                    OS_REG_READ(ah, AR_PHY_65NM_CH1_BB2) | (0x1 << 31));
3420            }
3421        }
3422        if (AR_SREV_OSPREY(ah)) {
3423            /* chain two */
3424            if ((tx_chain_mask & 0x04) == 0x04 ) {
3425                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX1,
3426                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX1)
3427                          | (0x1 << 31) | (0x5 << 15)
3428                          | (0x3 << 9)) & ~(0x1 << 27)
3429                          & ~(0x1 << 12));
3430                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3431                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3432                          | (0x1 << 12) | (0x1 << 10)
3433                          | (0x1 << 9)  | (0x1 << 8)
3434                          | (0x1 << 7)) & ~(0x1 << 11));
3435                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3436                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3437                          | (0x1 << 29) | (0x1 << 25)
3438                          | (0x1 << 23) | (0x1 << 19)
3439                          | (0x1 << 10) | (0x1 << 9)
3440                          | (0x1 << 8)  | (0x1 << 3))
3441                          & ~(0x1 << 28)& ~(0x1 << 24)
3442                          & ~(0x1 << 22)& ~(0x1 << 7));
3443                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3444                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1)
3445                          | (0x1 << 23))& ~(0x1 << 21));
3446                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB1,
3447                    OS_REG_READ(ah, AR_PHY_65NM_CH2_BB1)
3448                          | (0x1 << 12) | (0x1 << 10)
3449                          | (0x1 << 9)  | (0x1 << 8)
3450                          | (0x1 << 6)  | (0x1 << 5)
3451                          | (0x1 << 4)  | (0x1 << 3)
3452                          | (0x1 << 2));
3453                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB2,
3454                    OS_REG_READ(ah, AR_PHY_65NM_CH2_BB2) | (0x1 << 31));
3455            }
3456        }
3457
3458        OS_REG_WRITE(ah, 0xa28c, 0x11111);
3459        OS_REG_WRITE(ah, 0xa288, 0x111);
3460    } else {
3461        /* chain zero */
3462        if ((tx_chain_mask & 0x01) == 0x01) {
3463            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX1,
3464                (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX1)
3465                      | (0x1 << 31) | (0x1 << 27)
3466                      | (0x3 << 23) | (0x1 << 19)
3467                      | (0x1 << 15) | (0x3 << 9))
3468                      & ~(0x1 << 12));
3469            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3470                (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3471                      | (0x1 << 12) | (0x1 << 10)
3472                      | (0x1 << 9)  | (0x1 << 8)
3473                      | (0x1 << 7)  | (0x1 << 3)
3474                      | (0x1 << 2)  | (0x1 << 1))
3475                      & ~(0x1 << 11)& ~(0x1 << 0));
3476            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3477                (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3478                      | (0x1 << 29) | (0x1 << 25)
3479                      | (0x1 << 23) | (0x1 << 19)
3480                      | (0x1 << 10) | (0x1 << 9)
3481                      | (0x1 << 8)  | (0x1 << 3))
3482                      & ~(0x1 << 28)& ~(0x1 << 24)
3483                      & ~(0x1 << 22)& ~(0x1 << 7));
3484            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3485                (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1)
3486                      | (0x1 << 23))& ~(0x1 << 21));
3487            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF2,
3488                OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF2)
3489                      | (0x3 << 3)  | (0x3 << 0));
3490            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF3,
3491                (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF3)
3492                      | (0x3 << 29) | (0x3 << 26)
3493                      | (0x2 << 23) | (0x2 << 20)
3494                      | (0x2 << 17))& ~(0x1 << 14));
3495            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB1,
3496                OS_REG_READ(ah, AR_PHY_65NM_CH0_BB1)
3497                      | (0x1 << 12) | (0x1 << 10)
3498                      | (0x1 << 9)  | (0x1 << 8)
3499                      | (0x1 << 6)  | (0x1 << 5)
3500                      | (0x1 << 4)  | (0x1 << 3)
3501                      | (0x1 << 2));
3502            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB2,
3503                OS_REG_READ(ah, AR_PHY_65NM_CH0_BB2) | (0x1 << 31));
3504            if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3505                OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3506                    OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3507                OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3508                    OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3509                          | (0x1 << 26) | (0x7 << 24)
3510                          | (0x3 << 22));
3511            } else {
3512                OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3513                    OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3514                OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3515                    OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3516                          | (0x1 << 26) | (0x7 << 24)
3517                          | (0x3 << 22));
3518            }
3519
3520            if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3521                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3522                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3523                          | (0x1 << 3)  | (0x1 << 2)
3524                          | (0x1 << 1)) & ~(0x1 << 0));
3525                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3526                    OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3527                          | (0x1 << 19) | (0x1 << 3));
3528                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3529                    OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1) | (0x1 << 23));
3530            }
3531            if (AR_SREV_OSPREY(ah)) {
3532                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3533                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3534                          | (0x1 << 3)  | (0x1 << 2)
3535                          | (0x1 << 1)) & ~(0x1 << 0));
3536                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3537                    OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3538                          | (0x1 << 19) | (0x1 << 3));
3539                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3540                    OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1) | (0x1 << 23));
3541            }
3542        }
3543        if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3544            /* chain one */
3545            if ((tx_chain_mask & 0x02) == 0x02 ) {
3546                OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3547                    (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3548                          | (0x1 << 3)  | (0x1 << 2)
3549                          | (0x1 << 1)) & ~(0x1 << 0));
3550                OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3551                    OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3552                          | (0x1 << 19) | (0x1 << 3));
3553                OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3554                    OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1) | (0x1 << 23));
3555                if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3556                    OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3557                        OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3558                    OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3559                        OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3560                              | (0x1 << 26) | (0x7 << 24)
3561                              | (0x3 << 22));
3562                } else {
3563                    OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3564                        OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3565                    OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3566                        OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3567                              | (0x1 << 26) | (0x7 << 24)
3568                              | (0x3 << 22));
3569                }
3570
3571                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX1,
3572                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX1)
3573                          | (0x1 << 31) | (0x1 << 27)
3574                          | (0x3 << 23) | (0x1 << 19)
3575                          | (0x1 << 15) | (0x3 << 9))
3576                          & ~(0x1 << 12));
3577                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3578                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3579                          | (0x1 << 12) | (0x1 << 10)
3580                          | (0x1 << 9)  | (0x1 << 8)
3581                          | (0x1 << 7)  | (0x1 << 3)
3582                          | (0x1 << 2)  | (0x1 << 1))
3583                          & ~(0x1 << 11)& ~(0x1 << 0));
3584                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3585                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3586                          | (0x1 << 29) | (0x1 << 25)
3587                          | (0x1 << 23) | (0x1 << 19)
3588                          | (0x1 << 10) | (0x1 << 9)
3589                          | (0x1 << 8)  | (0x1 << 3))
3590                          & ~(0x1 << 28)& ~(0x1 << 24)
3591                          & ~(0x1 << 22)& ~(0x1 << 7));
3592                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3593                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1)
3594                          | (0x1 << 23))& ~(0x1 << 21));
3595                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF2,
3596                    OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF2)
3597                          | (0x3 << 3)  | (0x3 << 0));
3598                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF3,
3599                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF3)
3600                          | (0x3 << 29) | (0x3 << 26)
3601                          | (0x2 << 23) | (0x2 << 20)
3602                          | (0x2 << 17))& ~(0x1 << 14));
3603                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB1,
3604                    OS_REG_READ(ah, AR_PHY_65NM_CH1_BB1)
3605                          | (0x1 << 12) | (0x1 << 10)
3606                          | (0x1 << 9)  | (0x1 << 8)
3607                          | (0x1 << 6)  | (0x1 << 5)
3608                          | (0x1 << 4)  | (0x1 << 3)
3609                          | (0x1 << 2));
3610                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB2,
3611                    OS_REG_READ(ah, AR_PHY_65NM_CH1_BB2) | (0x1 << 31));
3612
3613                if (AR_SREV_OSPREY(ah)) {
3614                    OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3615                        (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3616                              | (0x1 << 3)  | (0x1 << 2)
3617                              | (0x1 << 1)) & ~(0x1 << 0));
3618                    OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3619                        OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3620                              | (0x1 << 19) | (0x1 << 3));
3621                    OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3622                        OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1) | (0x1 << 23));
3623                }
3624            }
3625        }
3626        if (AR_SREV_OSPREY(ah)) {
3627            /* chain two */
3628            if ((tx_chain_mask & 0x04) == 0x04 ) {
3629                OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3630                    (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3631                          | (0x1 << 3)  | (0x1 << 2)
3632                          | (0x1 << 1)) & ~(0x1 << 0));
3633                OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3634                    OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3635                          | (0x1 << 19) | (0x1 << 3));
3636                OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3637                    OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1) | (0x1 << 23));
3638                if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3639                    OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3640                        OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3641                    OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3642                        OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3643                              | (0x1 << 26) | (0x7 << 24)
3644                              | (0x3 << 22));
3645                } else {
3646                    OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3647                        OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3648                    OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3649                        OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3650                              | (0x1 << 26) | (0x7 << 24)
3651                              | (0x3 << 22));
3652                }
3653
3654                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3655                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3656                          | (0x1 << 3)  | (0x1 << 2)
3657                          | (0x1 << 1)) & ~(0x1 << 0));
3658                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3659                    OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3660                          | (0x1 << 19) | (0x1 << 3));
3661                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3662                    OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1) | (0x1 << 23));
3663
3664                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX1,
3665                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX1)
3666                          | (0x1 << 31) | (0x1 << 27)
3667                          | (0x3 << 23) | (0x1 << 19)
3668                          | (0x1 << 15) | (0x3 << 9))
3669                          & ~(0x1 << 12));
3670                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3671                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3672                          | (0x1 << 12) | (0x1 << 10)
3673                          | (0x1 << 9)  | (0x1 << 8)
3674                          | (0x1 << 7)  | (0x1 << 3)
3675                          | (0x1 << 2)  | (0x1 << 1))
3676                          & ~(0x1 << 11)& ~(0x1 << 0));
3677                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3678                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3679                          | (0x1 << 29) | (0x1 << 25)
3680                          | (0x1 << 23) | (0x1 << 19)
3681                          | (0x1 << 10) | (0x1 << 9)
3682                          | (0x1 << 8)  | (0x1 << 3))
3683                          & ~(0x1 << 28)& ~(0x1 << 24)
3684                          & ~(0x1 << 22)& ~(0x1 << 7));
3685                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3686                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1)
3687                          | (0x1 << 23))& ~(0x1 << 21));
3688                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF2,
3689                    OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF2)
3690                          | (0x3 << 3)  | (0x3 << 0));
3691                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF3,
3692                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF3)
3693                          | (0x3 << 29) | (0x3 << 26)
3694                          | (0x2 << 23) | (0x2 << 20)
3695                          | (0x2 << 17))& ~(0x1 << 14));
3696                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB1,
3697                    OS_REG_READ(ah, AR_PHY_65NM_CH2_BB1)
3698                          | (0x1 << 12) | (0x1 << 10)
3699                          | (0x1 << 9)  | (0x1 << 8)
3700                          | (0x1 << 6)  | (0x1 << 5)
3701                          | (0x1 << 4)  | (0x1 << 3)
3702                          | (0x1 << 2));
3703                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB2,
3704                    OS_REG_READ(ah, AR_PHY_65NM_CH2_BB2) | (0x1 << 31));
3705            }
3706        }
3707
3708        OS_REG_WRITE(ah, 0xa28c, 0x22222);
3709        OS_REG_WRITE(ah, 0xa288, 0x222);
3710    }
3711}
3712
3713void
3714ar9300_tx99_start(struct ath_hal *ah, u_int8_t *data)
3715{
3716    u_int32_t val;
3717    u_int32_t qnum = (u_int32_t)data;
3718
3719    /* Disable AGC to A2 */
3720    OS_REG_WRITE(ah, AR_PHY_TEST, (OS_REG_READ(ah, AR_PHY_TEST) | PHY_AGC_CLR));
3721    OS_REG_WRITE(ah, 0x9864, OS_REG_READ(ah, 0x9864) | 0x7f000);
3722    OS_REG_WRITE(ah, 0x9924, OS_REG_READ(ah, 0x9924) | 0x7f00fe);
3723    OS_REG_WRITE(ah, AR_DIAG_SW, OS_REG_READ(ah, AR_DIAG_SW) &~ AR_DIAG_RX_DIS);
3724
3725    OS_REG_WRITE(ah, AR_CR, AR_CR_RXD);     /* set receive disable */
3726    /* set CW_MIN and CW_MAX both to 0, AIFS=2 */
3727    OS_REG_WRITE(ah, AR_DLCL_IFS(qnum), 0);
3728    OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, 20); /* 50 OK */
3729    OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, 20);
3730    /* 200 ok for HT20, 400 ok for HT40 */
3731    OS_REG_WRITE(ah, AR_TIME_OUT, 0x00000400);
3732    OS_REG_WRITE(ah, AR_DRETRY_LIMIT(qnum), 0xffffffff);
3733
3734    /* set QCU modes to early termination */
3735    val = OS_REG_READ(ah, AR_QMISC(qnum));
3736    OS_REG_WRITE(ah, AR_QMISC(qnum), val | AR_Q_MISC_DCU_EARLY_TERM_REQ);
3737}
3738
3739void
3740ar9300_tx99_stop(struct ath_hal *ah)
3741{
3742    /* this should follow the setting of start */
3743    OS_REG_WRITE(ah, AR_PHY_TEST, OS_REG_READ(ah, AR_PHY_TEST) &~ PHY_AGC_CLR);
3744    OS_REG_WRITE(ah, AR_DIAG_SW, OS_REG_READ(ah, AR_DIAG_SW) | AR_DIAG_RX_DIS);
3745}
3746#endif /* ATH_TX99_DIAG */
3747#endif /* ATH_SUPPORT_HTC */
3748
3749HAL_BOOL
3750ar9300Get3StreamSignature(struct ath_hal *ah)
3751{
3752    return AH_FALSE;
3753}
3754
3755HAL_BOOL
3756ar9300ForceVCS(struct ath_hal *ah)
3757{
3758   return AH_FALSE;
3759}
3760
3761HAL_BOOL
3762ar9300SetDfs3StreamFix(struct ath_hal *ah, u_int32_t val)
3763{
3764   return AH_FALSE;
3765}
3766