1/*-
2 * Copyright (C) 1994, David Greenman
3 * Copyright (c) 1990, 1993
4 *	The Regents of the University of California.  All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * the University of Utah, and William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)trap.c	7.4 (Berkeley) 5/13/91
38 */
39
40#include <sys/cdefs.h>
41__FBSDID("$FreeBSD$");
42
43/*
44 * AMD64 Trap and System call handling
45 */
46
47#include "opt_clock.h"
48#include "opt_cpu.h"
49#include "opt_hwpmc_hooks.h"
50#include "opt_isa.h"
51#include "opt_kdb.h"
52#include "opt_kdtrace.h"
53
54#include <sys/param.h>
55#include <sys/bus.h>
56#include <sys/systm.h>
57#include <sys/proc.h>
58#include <sys/pioctl.h>
59#include <sys/ptrace.h>
60#include <sys/kdb.h>
61#include <sys/kernel.h>
62#include <sys/ktr.h>
63#include <sys/lock.h>
64#include <sys/mutex.h>
65#include <sys/resourcevar.h>
66#include <sys/signalvar.h>
67#include <sys/syscall.h>
68#include <sys/sysctl.h>
69#include <sys/sysent.h>
70#include <sys/uio.h>
71#include <sys/vmmeter.h>
72#ifdef HWPMC_HOOKS
73#include <sys/pmckern.h>
74PMC_SOFT_DEFINE( , , page_fault, all);
75PMC_SOFT_DEFINE( , , page_fault, read);
76PMC_SOFT_DEFINE( , , page_fault, write);
77#endif
78
79#include <vm/vm.h>
80#include <vm/vm_param.h>
81#include <vm/pmap.h>
82#include <vm/vm_kern.h>
83#include <vm/vm_map.h>
84#include <vm/vm_page.h>
85#include <vm/vm_extern.h>
86
87#include <machine/cpu.h>
88#include <machine/intr_machdep.h>
89#include <x86/mca.h>
90#include <machine/md_var.h>
91#include <machine/pcb.h>
92#ifdef SMP
93#include <machine/smp.h>
94#endif
95#include <machine/tss.h>
96
97#ifdef KDTRACE_HOOKS
98#include <sys/dtrace_bsd.h>
99
100/*
101 * This is a hook which is initialised by the dtrace module
102 * to handle traps which might occur during DTrace probe
103 * execution.
104 */
105dtrace_trap_func_t	dtrace_trap_func;
106
107dtrace_doubletrap_func_t	dtrace_doubletrap_func;
108
109/*
110 * This is a hook which is initialised by the systrace module
111 * when it is loaded. This keeps the DTrace syscall provider
112 * implementation opaque.
113 */
114systrace_probe_func_t	systrace_probe_func;
115
116/*
117 * These hooks are necessary for the pid, usdt and fasttrap providers.
118 */
119dtrace_fasttrap_probe_ptr_t	dtrace_fasttrap_probe_ptr;
120dtrace_pid_probe_ptr_t		dtrace_pid_probe_ptr;
121dtrace_return_probe_ptr_t	dtrace_return_probe_ptr;
122#endif
123
124extern void trap(struct trapframe *frame);
125extern void syscall(struct trapframe *frame);
126void dblfault_handler(struct trapframe *frame);
127
128static int trap_pfault(struct trapframe *, int);
129static void trap_fatal(struct trapframe *, vm_offset_t);
130
131#define MAX_TRAP_MSG		33
132static char *trap_msg[] = {
133	"",					/*  0 unused */
134	"privileged instruction fault",		/*  1 T_PRIVINFLT */
135	"",					/*  2 unused */
136	"breakpoint instruction fault",		/*  3 T_BPTFLT */
137	"",					/*  4 unused */
138	"",					/*  5 unused */
139	"arithmetic trap",			/*  6 T_ARITHTRAP */
140	"",					/*  7 unused */
141	"",					/*  8 unused */
142	"general protection fault",		/*  9 T_PROTFLT */
143	"trace trap",				/* 10 T_TRCTRAP */
144	"",					/* 11 unused */
145	"page fault",				/* 12 T_PAGEFLT */
146	"",					/* 13 unused */
147	"alignment fault",			/* 14 T_ALIGNFLT */
148	"",					/* 15 unused */
149	"",					/* 16 unused */
150	"",					/* 17 unused */
151	"integer divide fault",			/* 18 T_DIVIDE */
152	"non-maskable interrupt trap",		/* 19 T_NMI */
153	"overflow trap",			/* 20 T_OFLOW */
154	"FPU bounds check fault",		/* 21 T_BOUND */
155	"FPU device not available",		/* 22 T_DNA */
156	"double fault",				/* 23 T_DOUBLEFLT */
157	"FPU operand fetch fault",		/* 24 T_FPOPFLT */
158	"invalid TSS fault",			/* 25 T_TSSFLT */
159	"segment not present fault",		/* 26 T_SEGNPFLT */
160	"stack fault",				/* 27 T_STKFLT */
161	"machine check trap",			/* 28 T_MCHK */
162	"SIMD floating-point exception",	/* 29 T_XMMFLT */
163	"reserved (unknown) fault",		/* 30 T_RESERVED */
164	"",					/* 31 unused (reserved) */
165	"DTrace pid return trap",		/* 32 T_DTRACE_RET */
166	"DTrace fasttrap probe trap",		/* 33 T_DTRACE_PROBE */
167};
168
169#ifdef KDB
170static int kdb_on_nmi = 1;
171SYSCTL_INT(_machdep, OID_AUTO, kdb_on_nmi, CTLFLAG_RW,
172	&kdb_on_nmi, 0, "Go to KDB on NMI");
173TUNABLE_INT("machdep.kdb_on_nmi", &kdb_on_nmi);
174#endif
175static int panic_on_nmi = 1;
176SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RW,
177	&panic_on_nmi, 0, "Panic on NMI");
178TUNABLE_INT("machdep.panic_on_nmi", &panic_on_nmi);
179static int prot_fault_translation;
180SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RW,
181    &prot_fault_translation, 0,
182    "Select signal to deliver on protection fault");
183static int uprintf_signal;
184SYSCTL_INT(_machdep, OID_AUTO, uprintf_signal, CTLFLAG_RW,
185    &uprintf_signal, 0,
186    "Print debugging information on trap signal to ctty");
187
188/*
189 * Exception, fault, and trap interface to the FreeBSD kernel.
190 * This common code is called from assembly language IDT gate entry
191 * routines that prepare a suitable stack frame, and restore this
192 * frame after the exception has been processed.
193 */
194
195void
196trap(struct trapframe *frame)
197{
198	struct thread *td = curthread;
199	struct proc *p = td->td_proc;
200	int i = 0, ucode = 0, code;
201	u_int type;
202	register_t addr = 0;
203	ksiginfo_t ksi;
204
205	PCPU_INC(cnt.v_trap);
206	type = frame->tf_trapno;
207
208#ifdef SMP
209	/* Handler for NMI IPIs used for stopping CPUs. */
210	if (type == T_NMI) {
211	         if (ipi_nmi_handler() == 0)
212	                   goto out;
213	}
214#endif /* SMP */
215
216#ifdef KDB
217	if (kdb_active) {
218		kdb_reenter();
219		goto out;
220	}
221#endif
222
223	if (type == T_RESERVED) {
224		trap_fatal(frame, 0);
225		goto out;
226	}
227
228#ifdef	HWPMC_HOOKS
229	/*
230	 * CPU PMCs interrupt using an NMI.  If the PMC module is
231	 * active, pass the 'rip' value to the PMC module's interrupt
232	 * handler.  A return value of '1' from the handler means that
233	 * the NMI was handled by it and we can return immediately.
234	 */
235	if (type == T_NMI && pmc_intr &&
236	    (*pmc_intr)(PCPU_GET(cpuid), frame))
237		goto out;
238#endif
239
240	if (type == T_MCHK) {
241		mca_intr();
242		goto out;
243	}
244
245#ifdef KDTRACE_HOOKS
246	/*
247	 * A trap can occur while DTrace executes a probe. Before
248	 * executing the probe, DTrace blocks re-scheduling and sets
249	 * a flag in it's per-cpu flags to indicate that it doesn't
250	 * want to fault. On returning from the probe, the no-fault
251	 * flag is cleared and finally re-scheduling is enabled.
252	 *
253	 * If the DTrace kernel module has registered a trap handler,
254	 * call it and if it returns non-zero, assume that it has
255	 * handled the trap and modified the trap frame so that this
256	 * function can return normally.
257	 */
258	if (type == T_DTRACE_PROBE || type == T_DTRACE_RET ||
259	    type == T_BPTFLT) {
260		struct reg regs;
261
262		fill_frame_regs(frame, &regs);
263		if (type == T_DTRACE_PROBE &&
264		    dtrace_fasttrap_probe_ptr != NULL &&
265		    dtrace_fasttrap_probe_ptr(&regs) == 0)
266			goto out;
267		else if (type == T_BPTFLT &&
268		    dtrace_pid_probe_ptr != NULL &&
269		    dtrace_pid_probe_ptr(&regs) == 0)
270			goto out;
271		else if (type == T_DTRACE_RET &&
272		    dtrace_return_probe_ptr != NULL &&
273		    dtrace_return_probe_ptr(&regs) == 0)
274			goto out;
275	}
276	if (dtrace_trap_func != NULL && (*dtrace_trap_func)(frame, type))
277		goto out;
278#endif
279
280	if ((frame->tf_rflags & PSL_I) == 0) {
281		/*
282		 * Buggy application or kernel code has disabled
283		 * interrupts and then trapped.  Enabling interrupts
284		 * now is wrong, but it is better than running with
285		 * interrupts disabled until they are accidentally
286		 * enabled later.
287		 */
288		if (ISPL(frame->tf_cs) == SEL_UPL)
289			uprintf(
290			    "pid %ld (%s): trap %d with interrupts disabled\n",
291			    (long)curproc->p_pid, curthread->td_name, type);
292		else if (type != T_NMI && type != T_BPTFLT &&
293		    type != T_TRCTRAP) {
294			/*
295			 * XXX not quite right, since this may be for a
296			 * multiple fault in user mode.
297			 */
298			printf("kernel trap %d with interrupts disabled\n",
299			    type);
300
301			/*
302			 * We shouldn't enable interrupts while holding a
303			 * spin lock.
304			 */
305			if (td->td_md.md_spinlock_count == 0)
306				enable_intr();
307		}
308	}
309
310	code = frame->tf_err;
311
312        if (ISPL(frame->tf_cs) == SEL_UPL) {
313		/* user trap */
314
315		td->td_pticks = 0;
316		td->td_frame = frame;
317		addr = frame->tf_rip;
318		if (td->td_ucred != p->p_ucred)
319			cred_update_thread(td);
320
321		switch (type) {
322		case T_PRIVINFLT:	/* privileged instruction fault */
323			i = SIGILL;
324			ucode = ILL_PRVOPC;
325			break;
326
327		case T_BPTFLT:		/* bpt instruction fault */
328		case T_TRCTRAP:		/* trace trap */
329			enable_intr();
330			frame->tf_rflags &= ~PSL_T;
331			i = SIGTRAP;
332			ucode = (type == T_TRCTRAP ? TRAP_TRACE : TRAP_BRKPT);
333			break;
334
335		case T_ARITHTRAP:	/* arithmetic trap */
336			ucode = fputrap_x87();
337			if (ucode == -1)
338				goto userout;
339			i = SIGFPE;
340			break;
341
342		case T_PROTFLT:		/* general protection fault */
343			i = SIGBUS;
344			ucode = BUS_OBJERR;
345			break;
346		case T_STKFLT:		/* stack fault */
347		case T_SEGNPFLT:	/* segment not present fault */
348			i = SIGBUS;
349			ucode = BUS_ADRERR;
350			break;
351		case T_TSSFLT:		/* invalid TSS fault */
352			i = SIGBUS;
353			ucode = BUS_OBJERR;
354			break;
355		case T_DOUBLEFLT:	/* double fault */
356		default:
357			i = SIGBUS;
358			ucode = BUS_OBJERR;
359			break;
360
361		case T_PAGEFLT:		/* page fault */
362			addr = frame->tf_addr;
363			i = trap_pfault(frame, TRUE);
364			if (i == -1)
365				goto userout;
366			if (i == 0)
367				goto user;
368
369			if (i == SIGSEGV)
370				ucode = SEGV_MAPERR;
371			else {
372				if (prot_fault_translation == 0) {
373					/*
374					 * Autodetect.
375					 * This check also covers the images
376					 * without the ABI-tag ELF note.
377					 */
378					if (SV_CURPROC_ABI() == SV_ABI_FREEBSD
379					    && p->p_osrel >= P_OSREL_SIGSEGV) {
380						i = SIGSEGV;
381						ucode = SEGV_ACCERR;
382					} else {
383						i = SIGBUS;
384						ucode = BUS_PAGE_FAULT;
385					}
386				} else if (prot_fault_translation == 1) {
387					/*
388					 * Always compat mode.
389					 */
390					i = SIGBUS;
391					ucode = BUS_PAGE_FAULT;
392				} else {
393					/*
394					 * Always SIGSEGV mode.
395					 */
396					i = SIGSEGV;
397					ucode = SEGV_ACCERR;
398				}
399			}
400			break;
401
402		case T_DIVIDE:		/* integer divide fault */
403			ucode = FPE_INTDIV;
404			i = SIGFPE;
405			break;
406
407#ifdef DEV_ISA
408		case T_NMI:
409			/* machine/parity/power fail/"kitchen sink" faults */
410			if (isa_nmi(code) == 0) {
411#ifdef KDB
412				/*
413				 * NMI can be hooked up to a pushbutton
414				 * for debugging.
415				 */
416				if (kdb_on_nmi) {
417					printf ("NMI ... going to debugger\n");
418					kdb_trap(type, 0, frame);
419				}
420#endif /* KDB */
421				goto userout;
422			} else if (panic_on_nmi)
423				panic("NMI indicates hardware failure");
424			break;
425#endif /* DEV_ISA */
426
427		case T_OFLOW:		/* integer overflow fault */
428			ucode = FPE_INTOVF;
429			i = SIGFPE;
430			break;
431
432		case T_BOUND:		/* bounds check fault */
433			ucode = FPE_FLTSUB;
434			i = SIGFPE;
435			break;
436
437		case T_DNA:
438			/* transparent fault (due to context switch "late") */
439			KASSERT(PCB_USER_FPU(td->td_pcb),
440			    ("kernel FPU ctx has leaked"));
441			fpudna();
442			goto userout;
443
444		case T_FPOPFLT:		/* FPU operand fetch fault */
445			ucode = ILL_COPROC;
446			i = SIGILL;
447			break;
448
449		case T_XMMFLT:		/* SIMD floating-point exception */
450			ucode = fputrap_sse();
451			if (ucode == -1)
452				goto userout;
453			i = SIGFPE;
454			break;
455		}
456	} else {
457		/* kernel trap */
458
459		KASSERT(cold || td->td_ucred != NULL,
460		    ("kernel trap doesn't have ucred"));
461		switch (type) {
462		case T_PAGEFLT:			/* page fault */
463			(void) trap_pfault(frame, FALSE);
464			goto out;
465
466		case T_DNA:
467			KASSERT(!PCB_USER_FPU(td->td_pcb),
468			    ("Unregistered use of FPU in kernel"));
469			fpudna();
470			goto out;
471
472		case T_ARITHTRAP:	/* arithmetic trap */
473		case T_XMMFLT:		/* SIMD floating-point exception */
474		case T_FPOPFLT:		/* FPU operand fetch fault */
475			/*
476			 * XXXKIB for now disable any FPU traps in kernel
477			 * handler registration seems to be overkill
478			 */
479			trap_fatal(frame, 0);
480			goto out;
481
482		case T_STKFLT:		/* stack fault */
483			break;
484
485		case T_PROTFLT:		/* general protection fault */
486		case T_SEGNPFLT:	/* segment not present fault */
487			if (td->td_intr_nesting_level != 0)
488				break;
489
490			/*
491			 * Invalid segment selectors and out of bounds
492			 * %rip's and %rsp's can be set up in user mode.
493			 * This causes a fault in kernel mode when the
494			 * kernel tries to return to user mode.  We want
495			 * to get this fault so that we can fix the
496			 * problem here and not have to check all the
497			 * selectors and pointers when the user changes
498			 * them.
499			 */
500			if (frame->tf_rip == (long)doreti_iret) {
501				frame->tf_rip = (long)doreti_iret_fault;
502				goto out;
503			}
504			if (frame->tf_rip == (long)ld_ds) {
505				frame->tf_rip = (long)ds_load_fault;
506				goto out;
507			}
508			if (frame->tf_rip == (long)ld_es) {
509				frame->tf_rip = (long)es_load_fault;
510				goto out;
511			}
512			if (frame->tf_rip == (long)ld_fs) {
513				frame->tf_rip = (long)fs_load_fault;
514				goto out;
515			}
516			if (frame->tf_rip == (long)ld_gs) {
517				frame->tf_rip = (long)gs_load_fault;
518				goto out;
519			}
520			if (frame->tf_rip == (long)ld_gsbase) {
521				frame->tf_rip = (long)gsbase_load_fault;
522				goto out;
523			}
524			if (frame->tf_rip == (long)ld_fsbase) {
525				frame->tf_rip = (long)fsbase_load_fault;
526				goto out;
527			}
528			if (curpcb->pcb_onfault != NULL) {
529				frame->tf_rip = (long)curpcb->pcb_onfault;
530				goto out;
531			}
532			break;
533
534		case T_TSSFLT:
535			/*
536			 * PSL_NT can be set in user mode and isn't cleared
537			 * automatically when the kernel is entered.  This
538			 * causes a TSS fault when the kernel attempts to
539			 * `iret' because the TSS link is uninitialized.  We
540			 * want to get this fault so that we can fix the
541			 * problem here and not every time the kernel is
542			 * entered.
543			 */
544			if (frame->tf_rflags & PSL_NT) {
545				frame->tf_rflags &= ~PSL_NT;
546				goto out;
547			}
548			break;
549
550		case T_TRCTRAP:	 /* trace trap */
551			/*
552			 * Ignore debug register trace traps due to
553			 * accesses in the user's address space, which
554			 * can happen under several conditions such as
555			 * if a user sets a watchpoint on a buffer and
556			 * then passes that buffer to a system call.
557			 * We still want to get TRCTRAPS for addresses
558			 * in kernel space because that is useful when
559			 * debugging the kernel.
560			 */
561			if (user_dbreg_trap()) {
562				/*
563				 * Reset breakpoint bits because the
564				 * processor doesn't
565				 */
566				/* XXX check upper bits here */
567				load_dr6(rdr6() & 0xfffffff0);
568				goto out;
569			}
570			/*
571			 * FALLTHROUGH (TRCTRAP kernel mode, kernel address)
572			 */
573		case T_BPTFLT:
574			/*
575			 * If KDB is enabled, let it handle the debugger trap.
576			 * Otherwise, debugger traps "can't happen".
577			 */
578#ifdef KDB
579			if (kdb_trap(type, 0, frame))
580				goto out;
581#endif
582			break;
583
584#ifdef DEV_ISA
585		case T_NMI:
586			/* machine/parity/power fail/"kitchen sink" faults */
587			if (isa_nmi(code) == 0) {
588#ifdef KDB
589				/*
590				 * NMI can be hooked up to a pushbutton
591				 * for debugging.
592				 */
593				if (kdb_on_nmi) {
594					printf ("NMI ... going to debugger\n");
595					kdb_trap(type, 0, frame);
596				}
597#endif /* KDB */
598				goto out;
599			} else if (panic_on_nmi == 0)
600				goto out;
601			/* FALLTHROUGH */
602#endif /* DEV_ISA */
603		}
604
605		trap_fatal(frame, 0);
606		goto out;
607	}
608
609	/* Translate fault for emulators (e.g. Linux) */
610	if (*p->p_sysent->sv_transtrap)
611		i = (*p->p_sysent->sv_transtrap)(i, type);
612
613	ksiginfo_init_trap(&ksi);
614	ksi.ksi_signo = i;
615	ksi.ksi_code = ucode;
616	ksi.ksi_trapno = type;
617	ksi.ksi_addr = (void *)addr;
618	if (uprintf_signal) {
619		uprintf("pid %d comm %s: signal %d err %lx code %d type %d "
620		    "addr 0x%lx rsp 0x%lx rip 0x%lx "
621		    "<%02x %02x %02x %02x %02x %02x %02x %02x>\n",
622		    p->p_pid, p->p_comm, i, frame->tf_err, ucode, type, addr,
623		    frame->tf_rsp, frame->tf_rip,
624		    fubyte((void *)(frame->tf_rip + 0)),
625		    fubyte((void *)(frame->tf_rip + 1)),
626		    fubyte((void *)(frame->tf_rip + 2)),
627		    fubyte((void *)(frame->tf_rip + 3)),
628		    fubyte((void *)(frame->tf_rip + 4)),
629		    fubyte((void *)(frame->tf_rip + 5)),
630		    fubyte((void *)(frame->tf_rip + 6)),
631		    fubyte((void *)(frame->tf_rip + 7)));
632	}
633	KASSERT((read_rflags() & PSL_I) != 0, ("interrupts disabled"));
634	trapsignal(td, &ksi);
635
636user:
637	userret(td, frame);
638	KASSERT(PCB_USER_FPU(td->td_pcb),
639	    ("Return from trap with kernel FPU ctx leaked"));
640userout:
641out:
642	return;
643}
644
645static int
646trap_pfault(frame, usermode)
647	struct trapframe *frame;
648	int usermode;
649{
650	vm_offset_t va;
651	struct vmspace *vm;
652	vm_map_t map;
653	int rv = 0;
654	vm_prot_t ftype;
655	struct thread *td = curthread;
656	struct proc *p = td->td_proc;
657	vm_offset_t eva = frame->tf_addr;
658
659	if (__predict_false((td->td_pflags & TDP_NOFAULTING) != 0)) {
660		/*
661		 * Due to both processor errata and lazy TLB invalidation when
662		 * access restrictions are removed from virtual pages, memory
663		 * accesses that are allowed by the physical mapping layer may
664		 * nonetheless cause one spurious page fault per virtual page.
665		 * When the thread is executing a "no faulting" section that
666		 * is bracketed by vm_fault_{disable,enable}_pagefaults(),
667		 * every page fault is treated as a spurious page fault,
668		 * unless it accesses the same virtual address as the most
669		 * recent page fault within the same "no faulting" section.
670		 */
671		if (td->td_md.md_spurflt_addr != eva ||
672		    (td->td_pflags & TDP_RESETSPUR) != 0) {
673			/*
674			 * Do nothing to the TLB.  A stale TLB entry is
675			 * flushed automatically by a page fault.
676			 */
677			td->td_md.md_spurflt_addr = eva;
678			td->td_pflags &= ~TDP_RESETSPUR;
679			return (0);
680		}
681	} else {
682		/*
683		 * If we get a page fault while in a critical section, then
684		 * it is most likely a fatal kernel page fault.  The kernel
685		 * is already going to panic trying to get a sleep lock to
686		 * do the VM lookup, so just consider it a fatal trap so the
687		 * kernel can print out a useful trap message and even get
688		 * to the debugger.
689		 *
690		 * If we get a page fault while holding a non-sleepable
691		 * lock, then it is most likely a fatal kernel page fault.
692		 * If WITNESS is enabled, then it's going to whine about
693		 * bogus LORs with various VM locks, so just skip to the
694		 * fatal trap handling directly.
695		 */
696		if (td->td_critnest != 0 ||
697		    WITNESS_CHECK(WARN_SLEEPOK | WARN_GIANTOK, NULL,
698		    "Kernel page fault") != 0) {
699			trap_fatal(frame, eva);
700			return (-1);
701		}
702	}
703	va = trunc_page(eva);
704	if (va >= VM_MIN_KERNEL_ADDRESS) {
705		/*
706		 * Don't allow user-mode faults in kernel address space.
707		 */
708		if (usermode)
709			goto nogo;
710
711		map = kernel_map;
712	} else {
713		/*
714		 * This is a fault on non-kernel virtual memory.  If either
715		 * p or p->p_vmspace is NULL, then the fault is fatal.
716		 */
717		if (p == NULL || (vm = p->p_vmspace) == NULL)
718			goto nogo;
719
720		map = &vm->vm_map;
721
722		/*
723		 * When accessing a usermode address, kernel must be
724		 * ready to accept the page fault, and provide a
725		 * handling routine.  Since accessing the address
726		 * without the handler is a bug, do not try to handle
727		 * it normally, and panic immediately.
728		 */
729		if (!usermode && (td->td_intr_nesting_level != 0 ||
730		    curpcb->pcb_onfault == NULL)) {
731			trap_fatal(frame, eva);
732			return (-1);
733		}
734	}
735
736	/*
737	 * If the trap was caused by errant bits in the PTE then panic.
738	 */
739	if (frame->tf_err & PGEX_RSV) {
740		trap_fatal(frame, eva);
741		return (-1);
742	}
743
744	/*
745	 * PGEX_I is defined only if the execute disable bit capability is
746	 * supported and enabled.
747	 */
748	if (frame->tf_err & PGEX_W)
749		ftype = VM_PROT_WRITE;
750	else if ((frame->tf_err & PGEX_I) && pg_nx != 0)
751		ftype = VM_PROT_EXECUTE;
752	else
753		ftype = VM_PROT_READ;
754
755	if (map != kernel_map) {
756		/*
757		 * Keep swapout from messing with us during this
758		 *	critical time.
759		 */
760		PROC_LOCK(p);
761		++p->p_lock;
762		PROC_UNLOCK(p);
763
764		/* Fault in the user page: */
765		rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
766
767		PROC_LOCK(p);
768		--p->p_lock;
769		PROC_UNLOCK(p);
770	} else {
771		/*
772		 * Don't have to worry about process locking or stacks in the
773		 * kernel.
774		 */
775		rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
776	}
777	if (rv == KERN_SUCCESS) {
778#ifdef HWPMC_HOOKS
779		if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) {
780			PMC_SOFT_CALL_TF( , , page_fault, all, frame);
781			if (ftype == VM_PROT_READ)
782				PMC_SOFT_CALL_TF( , , page_fault, read,
783				    frame);
784			else
785				PMC_SOFT_CALL_TF( , , page_fault, write,
786				    frame);
787		}
788#endif
789		return (0);
790	}
791nogo:
792	if (!usermode) {
793		if (td->td_intr_nesting_level == 0 &&
794		    curpcb->pcb_onfault != NULL) {
795			frame->tf_rip = (long)curpcb->pcb_onfault;
796			return (0);
797		}
798		trap_fatal(frame, eva);
799		return (-1);
800	}
801	return ((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
802}
803
804static void
805trap_fatal(frame, eva)
806	struct trapframe *frame;
807	vm_offset_t eva;
808{
809	int code, ss;
810	u_int type;
811	long esp;
812	struct soft_segment_descriptor softseg;
813	char *msg;
814
815	code = frame->tf_err;
816	type = frame->tf_trapno;
817	sdtossd(&gdt[NGDT * PCPU_GET(cpuid) + IDXSEL(frame->tf_cs & 0xffff)],
818	    &softseg);
819
820	if (type <= MAX_TRAP_MSG)
821		msg = trap_msg[type];
822	else
823		msg = "UNKNOWN";
824	printf("\n\nFatal trap %d: %s while in %s mode\n", type, msg,
825	    ISPL(frame->tf_cs) == SEL_UPL ? "user" : "kernel");
826#ifdef SMP
827	/* two separate prints in case of a trap on an unmapped page */
828	printf("cpuid = %d; ", PCPU_GET(cpuid));
829	printf("apic id = %02x\n", PCPU_GET(apic_id));
830#endif
831	if (type == T_PAGEFLT) {
832		printf("fault virtual address	= 0x%lx\n", eva);
833		printf("fault code		= %s %s %s%s, %s\n",
834			code & PGEX_U ? "user" : "supervisor",
835			code & PGEX_W ? "write" : "read",
836			code & PGEX_I ? "instruction" : "data",
837			code & PGEX_RSV ? " rsv" : "",
838			code & PGEX_P ? "protection violation" : "page not present");
839	}
840	printf("instruction pointer	= 0x%lx:0x%lx\n",
841	       frame->tf_cs & 0xffff, frame->tf_rip);
842        if (ISPL(frame->tf_cs) == SEL_UPL) {
843		ss = frame->tf_ss & 0xffff;
844		esp = frame->tf_rsp;
845	} else {
846		ss = GSEL(GDATA_SEL, SEL_KPL);
847		esp = (long)&frame->tf_rsp;
848	}
849	printf("stack pointer	        = 0x%x:0x%lx\n", ss, esp);
850	printf("frame pointer	        = 0x%x:0x%lx\n", ss, frame->tf_rbp);
851	printf("code segment		= base 0x%lx, limit 0x%lx, type 0x%x\n",
852	       softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type);
853	printf("			= DPL %d, pres %d, long %d, def32 %d, gran %d\n",
854	       softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_long, softseg.ssd_def32,
855	       softseg.ssd_gran);
856	printf("processor eflags	= ");
857	if (frame->tf_rflags & PSL_T)
858		printf("trace trap, ");
859	if (frame->tf_rflags & PSL_I)
860		printf("interrupt enabled, ");
861	if (frame->tf_rflags & PSL_NT)
862		printf("nested task, ");
863	if (frame->tf_rflags & PSL_RF)
864		printf("resume, ");
865	printf("IOPL = %ld\n", (frame->tf_rflags & PSL_IOPL) >> 12);
866	printf("current process		= ");
867	if (curproc) {
868		printf("%lu (%s)\n",
869		    (u_long)curproc->p_pid, curthread->td_name ?
870		    curthread->td_name : "");
871	} else {
872		printf("Idle\n");
873	}
874
875#ifdef KDB
876	if (debugger_on_panic || kdb_active)
877		if (kdb_trap(type, 0, frame))
878			return;
879#endif
880	printf("trap number		= %d\n", type);
881	if (type <= MAX_TRAP_MSG)
882		panic("%s", trap_msg[type]);
883	else
884		panic("unknown/reserved trap");
885}
886
887/*
888 * Double fault handler. Called when a fault occurs while writing
889 * a frame for a trap/exception onto the stack. This usually occurs
890 * when the stack overflows (such is the case with infinite recursion,
891 * for example).
892 */
893void
894dblfault_handler(struct trapframe *frame)
895{
896#ifdef KDTRACE_HOOKS
897	if (dtrace_doubletrap_func != NULL)
898		(*dtrace_doubletrap_func)();
899#endif
900	printf("\nFatal double fault\n");
901	printf("rip = 0x%lx\n", frame->tf_rip);
902	printf("rsp = 0x%lx\n", frame->tf_rsp);
903	printf("rbp = 0x%lx\n", frame->tf_rbp);
904#ifdef SMP
905	/* two separate prints in case of a trap on an unmapped page */
906	printf("cpuid = %d; ", PCPU_GET(cpuid));
907	printf("apic id = %02x\n", PCPU_GET(apic_id));
908#endif
909	panic("double fault");
910}
911
912int
913cpu_fetch_syscall_args(struct thread *td, struct syscall_args *sa)
914{
915	struct proc *p;
916	struct trapframe *frame;
917	register_t *argp;
918	caddr_t params;
919	int reg, regcnt, error;
920
921	p = td->td_proc;
922	frame = td->td_frame;
923	reg = 0;
924	regcnt = 6;
925
926	params = (caddr_t)frame->tf_rsp + sizeof(register_t);
927	sa->code = frame->tf_rax;
928
929	if (sa->code == SYS_syscall || sa->code == SYS___syscall) {
930		sa->code = frame->tf_rdi;
931		reg++;
932		regcnt--;
933	}
934 	if (p->p_sysent->sv_mask)
935 		sa->code &= p->p_sysent->sv_mask;
936
937 	if (sa->code >= p->p_sysent->sv_size)
938 		sa->callp = &p->p_sysent->sv_table[0];
939  	else
940 		sa->callp = &p->p_sysent->sv_table[sa->code];
941
942	sa->narg = sa->callp->sy_narg;
943	KASSERT(sa->narg <= sizeof(sa->args) / sizeof(sa->args[0]),
944	    ("Too many syscall arguments!"));
945	error = 0;
946	argp = &frame->tf_rdi;
947	argp += reg;
948	bcopy(argp, sa->args, sizeof(sa->args[0]) * regcnt);
949	if (sa->narg > regcnt) {
950		KASSERT(params != NULL, ("copyin args with no params!"));
951		error = copyin(params, &sa->args[regcnt],
952	    	    (sa->narg - regcnt) * sizeof(sa->args[0]));
953	}
954
955	if (error == 0) {
956		td->td_retval[0] = 0;
957		td->td_retval[1] = frame->tf_rdx;
958	}
959
960	return (error);
961}
962
963#include "../../kern/subr_syscall.c"
964
965/*
966 * System call handler for native binaries.  The trap frame is already
967 * set up by the assembler trampoline and a pointer to it is saved in
968 * td_frame.
969 */
970void
971amd64_syscall(struct thread *td, int traced)
972{
973	struct syscall_args sa;
974	int error;
975	ksiginfo_t ksi;
976
977#ifdef DIAGNOSTIC
978	if (ISPL(td->td_frame->tf_cs) != SEL_UPL) {
979		panic("syscall");
980		/* NOT REACHED */
981	}
982#endif
983	error = syscallenter(td, &sa);
984
985	/*
986	 * Traced syscall.
987	 */
988	if (__predict_false(traced)) {
989		td->td_frame->tf_rflags &= ~PSL_T;
990		ksiginfo_init_trap(&ksi);
991		ksi.ksi_signo = SIGTRAP;
992		ksi.ksi_code = TRAP_TRACE;
993		ksi.ksi_addr = (void *)td->td_frame->tf_rip;
994		trapsignal(td, &ksi);
995	}
996
997	KASSERT(PCB_USER_FPU(td->td_pcb),
998	    ("System call %s returing with kernel FPU ctx leaked",
999	     syscallname(td->td_proc, sa.code)));
1000	KASSERT(td->td_pcb->pcb_save == get_pcb_user_save_td(td),
1001	    ("System call %s returning with mangled pcb_save",
1002	     syscallname(td->td_proc, sa.code)));
1003
1004	syscallret(td, error, &sa);
1005
1006	/*
1007	 * If the user-supplied value of %rip is not a canonical
1008	 * address, then some CPUs will trigger a ring 0 #GP during
1009	 * the sysret instruction.  However, the fault handler would
1010	 * execute in ring 0 with the user's %gs and %rsp which would
1011	 * not be safe.  Instead, use the full return path which
1012	 * catches the problem safely.
1013	 */
1014	if (td->td_frame->tf_rip >= VM_MAXUSER_ADDRESS)
1015		set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
1016}
1017