1/*-
2 * Copyright (c) 2009-2013 Steven G. Kargl
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 * Optimized by Bruce D. Evans.
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD$");
31
32/**
33 * Compute the exponential of x for Intel 80-bit format.  This is based on:
34 *
35 *   PTP Tang, "Table-driven implementation of the exponential function
36 *   in IEEE floating-point arithmetic," ACM Trans. Math. Soft., 15,
37 *   144-157 (1989).
38 *
39 * where the 32 table entries have been expanded to INTERVALS (see below).
40 */
41
42#include <float.h>
43
44#ifdef __i386__
45#include <ieeefp.h>
46#endif
47
48#include "fpmath.h"
49#include "math.h"
50#include "math_private.h"
51
52#define	INTERVALS	128
53#define	LOG2_INTERVALS	7
54#define	BIAS	(LDBL_MAX_EXP - 1)
55
56static const long double
57huge = 0x1p10000L,
58twom10000 = 0x1p-10000L;
59/* XXX Prevent gcc from erroneously constant folding this: */
60static volatile const long double tiny = 0x1p-10000L;
61
62static const union IEEEl2bits
63/* log(2**16384 - 0.5) rounded towards zero: */
64/* log(2**16384 - 0.5 + 1) rounded towards zero for expm1l() is the same: */
65o_thresholdu = LD80C(0xb17217f7d1cf79ab, 13,  11356.5234062941439488L),
66#define o_threshold	 (o_thresholdu.e)
67/* log(2**(-16381-64-1)) rounded towards zero: */
68u_thresholdu = LD80C(0xb21dfe7f09e2baa9, 13, -11399.4985314888605581L);
69#define u_threshold	 (u_thresholdu.e)
70
71static const double
72/*
73 * ln2/INTERVALS = L1+L2 (hi+lo decomposition for multiplication).  L1 must
74 * have at least 22 (= log2(|LDBL_MIN_EXP-extras|) + log2(INTERVALS)) lowest
75 * bits zero so that multiplication of it by n is exact.
76 */
77INV_L = 1.8466496523378731e+2,		/*  0x171547652b82fe.0p-45 */
78L1 =  5.4152123484527692e-3,		/*  0x162e42ff000000.0p-60 */
79L2 = -3.2819649005320973e-13,		/* -0x1718432a1b0e26.0p-94 */
80/*
81 * Domain [-0.002708, 0.002708], range ~[-5.7136e-24, 5.7110e-24]:
82 * |exp(x) - p(x)| < 2**-77.2
83 * (0.002708 is ln2/(2*INTERVALS) rounded up a little).
84 */
85A2 =  0.5,
86A3 =  1.6666666666666119e-1,		/*  0x15555555555490.0p-55 */
87A4 =  4.1666666666665887e-2,		/*  0x155555555554e5.0p-57 */
88A5 =  8.3333354987869413e-3,		/*  0x1111115b789919.0p-59 */
89A6 =  1.3888891738560272e-3;		/*  0x16c16c651633ae.0p-62 */
90
91/*
92 * 2^(i/INTERVALS) for i in [0,INTERVALS] is represented by two values where
93 * the first 53 bits of the significand are stored in hi and the next 53
94 * bits are in lo.  Tang's paper states that the trailing 6 bits of hi must
95 * be zero for his algorithm in both single and double precision, because
96 * the table is re-used in the implementation of expm1() where a floating
97 * point addition involving hi must be exact.  Here hi is double, so
98 * converting it to long double gives 11 trailing zero bits.
99 */
100static const struct {
101	double	hi;
102	double	lo;
103} tbl[INTERVALS] = {
104	0x1p+0, 0x0p+0,
105	0x1.0163da9fb3335p+0, 0x1.b61299ab8cdb7p-54,
106	0x1.02c9a3e778060p+0, 0x1.dcdef95949ef4p-53,
107	0x1.04315e86e7f84p+0, 0x1.7ae71f3441b49p-53,
108	0x1.059b0d3158574p+0, 0x1.d73e2a475b465p-55,
109	0x1.0706b29ddf6ddp+0, 0x1.8db880753b0f6p-53,
110	0x1.0874518759bc8p+0, 0x1.186be4bb284ffp-57,
111	0x1.09e3ecac6f383p+0, 0x1.1487818316136p-54,
112	0x1.0b5586cf9890fp+0, 0x1.8a62e4adc610bp-54,
113	0x1.0cc922b7247f7p+0, 0x1.01edc16e24f71p-54,
114	0x1.0e3ec32d3d1a2p+0, 0x1.03a1727c57b53p-59,
115	0x1.0fb66affed31ap+0, 0x1.e464123bb1428p-53,
116	0x1.11301d0125b50p+0, 0x1.49d77e35db263p-53,
117	0x1.12abdc06c31cbp+0, 0x1.f72575a649ad2p-53,
118	0x1.1429aaea92ddfp+0, 0x1.66820328764b1p-53,
119	0x1.15a98c8a58e51p+0, 0x1.2406ab9eeab0ap-55,
120	0x1.172b83c7d517ap+0, 0x1.b9bef918a1d63p-53,
121	0x1.18af9388c8de9p+0, 0x1.777ee1734784ap-53,
122	0x1.1a35beb6fcb75p+0, 0x1.e5b4c7b4968e4p-55,
123	0x1.1bbe084045cd3p+0, 0x1.3563ce56884fcp-53,
124	0x1.1d4873168b9aap+0, 0x1.e016e00a2643cp-54,
125	0x1.1ed5022fcd91cp+0, 0x1.71033fec2243ap-53,
126	0x1.2063b88628cd6p+0, 0x1.dc775814a8495p-55,
127	0x1.21f49917ddc96p+0, 0x1.2a97e9494a5eep-55,
128	0x1.2387a6e756238p+0, 0x1.9b07eb6c70573p-54,
129	0x1.251ce4fb2a63fp+0, 0x1.ac155bef4f4a4p-55,
130	0x1.26b4565e27cddp+0, 0x1.2bd339940e9d9p-55,
131	0x1.284dfe1f56380p+0, 0x1.2d9e2b9e07941p-53,
132	0x1.29e9df51fdee1p+0, 0x1.612e8afad1255p-55,
133	0x1.2b87fd0dad98fp+0, 0x1.fbbd48ca71f95p-53,
134	0x1.2d285a6e4030bp+0, 0x1.0024754db41d5p-54,
135	0x1.2ecafa93e2f56p+0, 0x1.1ca0f45d52383p-56,
136	0x1.306fe0a31b715p+0, 0x1.6f46ad23182e4p-55,
137	0x1.32170fc4cd831p+0, 0x1.a9ce78e18047cp-55,
138	0x1.33c08b26416ffp+0, 0x1.32721843659a6p-54,
139	0x1.356c55f929ff0p+0, 0x1.928c468ec6e76p-53,
140	0x1.371a7373aa9cap+0, 0x1.4e28aa05e8a8fp-53,
141	0x1.38cae6d05d865p+0, 0x1.0b53961b37da2p-53,
142	0x1.3a7db34e59ff6p+0, 0x1.d43792533c144p-53,
143	0x1.3c32dc313a8e4p+0, 0x1.08003e4516b1ep-53,
144	0x1.3dea64c123422p+0, 0x1.ada0911f09ebcp-55,
145	0x1.3fa4504ac801bp+0, 0x1.417ee03548306p-53,
146	0x1.4160a21f72e29p+0, 0x1.f0864b71e7b6cp-53,
147	0x1.431f5d950a896p+0, 0x1.b8e088728219ap-53,
148	0x1.44e086061892dp+0, 0x1.89b7a04ef80d0p-59,
149	0x1.46a41ed1d0057p+0, 0x1.c944bd1648a76p-54,
150	0x1.486a2b5c13cd0p+0, 0x1.3c1a3b69062f0p-56,
151	0x1.4a32af0d7d3dep+0, 0x1.9cb62f3d1be56p-54,
152	0x1.4bfdad5362a27p+0, 0x1.d4397afec42e2p-56,
153	0x1.4dcb299fddd0dp+0, 0x1.8ecdbbc6a7833p-54,
154	0x1.4f9b2769d2ca6p+0, 0x1.5a67b16d3540ep-53,
155	0x1.516daa2cf6641p+0, 0x1.8225ea5909b04p-53,
156	0x1.5342b569d4f81p+0, 0x1.be1507893b0d5p-53,
157	0x1.551a4ca5d920ep+0, 0x1.8a5d8c4048699p-53,
158	0x1.56f4736b527dap+0, 0x1.9bb2c011d93adp-54,
159	0x1.58d12d497c7fdp+0, 0x1.295e15b9a1de8p-55,
160	0x1.5ab07dd485429p+0, 0x1.6324c054647adp-54,
161	0x1.5c9268a5946b7p+0, 0x1.c4b1b816986a2p-60,
162	0x1.5e76f15ad2148p+0, 0x1.ba6f93080e65ep-54,
163	0x1.605e1b976dc08p+0, 0x1.60edeb25490dcp-53,
164	0x1.6247eb03a5584p+0, 0x1.63e1f40dfa5b5p-53,
165	0x1.6434634ccc31fp+0, 0x1.8edf0e2989db3p-53,
166	0x1.6623882552224p+0, 0x1.224fb3c5371e6p-53,
167	0x1.68155d44ca973p+0, 0x1.038ae44f73e65p-57,
168	0x1.6a09e667f3bccp+0, 0x1.21165f626cdd5p-53,
169	0x1.6c012750bdabep+0, 0x1.daed533001e9ep-53,
170	0x1.6dfb23c651a2ep+0, 0x1.e441c597c3775p-53,
171	0x1.6ff7df9519483p+0, 0x1.9f0fc369e7c42p-53,
172	0x1.71f75e8ec5f73p+0, 0x1.ba46e1e5de15ap-53,
173	0x1.73f9a48a58173p+0, 0x1.7ab9349cd1562p-53,
174	0x1.75feb564267c8p+0, 0x1.7edd354674916p-53,
175	0x1.780694fde5d3fp+0, 0x1.866b80a02162dp-54,
176	0x1.7a11473eb0186p+0, 0x1.afaa2047ed9b4p-53,
177	0x1.7c1ed0130c132p+0, 0x1.f124cd1164dd6p-54,
178	0x1.7e2f336cf4e62p+0, 0x1.05d02ba15797ep-56,
179	0x1.80427543e1a11p+0, 0x1.6c1bccec9346bp-53,
180	0x1.82589994cce12p+0, 0x1.159f115f56694p-53,
181	0x1.8471a4623c7acp+0, 0x1.9ca5ed72f8c81p-53,
182	0x1.868d99b4492ecp+0, 0x1.01c83b21584a3p-53,
183	0x1.88ac7d98a6699p+0, 0x1.994c2f37cb53ap-54,
184	0x1.8ace5422aa0dbp+0, 0x1.6e9f156864b27p-54,
185	0x1.8cf3216b5448bp+0, 0x1.de55439a2c38bp-53,
186	0x1.8f1ae99157736p+0, 0x1.5cc13a2e3976cp-55,
187	0x1.9145b0b91ffc5p+0, 0x1.114c368d3ed6ep-53,
188	0x1.93737b0cdc5e4p+0, 0x1.e8a0387e4a814p-53,
189	0x1.95a44cbc8520ep+0, 0x1.d36906d2b41f9p-53,
190	0x1.97d829fde4e4fp+0, 0x1.173d241f23d18p-53,
191	0x1.9a0f170ca07b9p+0, 0x1.7462137188ce7p-53,
192	0x1.9c49182a3f090p+0, 0x1.c7c46b071f2bep-56,
193	0x1.9e86319e32323p+0, 0x1.824ca78e64c6ep-56,
194	0x1.a0c667b5de564p+0, 0x1.6535b51719567p-53,
195	0x1.a309bec4a2d33p+0, 0x1.6305c7ddc36abp-54,
196	0x1.a5503b23e255cp+0, 0x1.1684892395f0fp-53,
197	0x1.a799e1330b358p+0, 0x1.bcb7ecac563c7p-54,
198	0x1.a9e6b5579fdbfp+0, 0x1.0fac90ef7fd31p-54,
199	0x1.ac36bbfd3f379p+0, 0x1.81b72cd4624ccp-53,
200	0x1.ae89f995ad3adp+0, 0x1.7a1cd345dcc81p-54,
201	0x1.b0e07298db665p+0, 0x1.2108559bf8deep-53,
202	0x1.b33a2b84f15fap+0, 0x1.ed7fa1cf7b290p-53,
203	0x1.b59728de55939p+0, 0x1.1c7102222c90ep-53,
204	0x1.b7f76f2fb5e46p+0, 0x1.d54f610356a79p-53,
205	0x1.ba5b030a10649p+0, 0x1.0819678d5eb69p-53,
206	0x1.bcc1e904bc1d2p+0, 0x1.23dd07a2d9e84p-55,
207	0x1.bf2c25bd71e08p+0, 0x1.0811ae04a31c7p-53,
208	0x1.c199bdd85529cp+0, 0x1.11065895048ddp-55,
209	0x1.c40ab5fffd07ap+0, 0x1.b4537e083c60ap-54,
210	0x1.c67f12e57d14bp+0, 0x1.2884dff483cadp-54,
211	0x1.c8f6d9406e7b5p+0, 0x1.1acbc48805c44p-56,
212	0x1.cb720dcef9069p+0, 0x1.503cbd1e949dbp-56,
213	0x1.cdf0b555dc3f9p+0, 0x1.889f12b1f58a3p-53,
214	0x1.d072d4a07897bp+0, 0x1.1a1e45e4342b2p-53,
215	0x1.d2f87080d89f1p+0, 0x1.15bc247313d44p-53,
216	0x1.d5818dcfba487p+0, 0x1.2ed02d75b3707p-55,
217	0x1.d80e316c98397p+0, 0x1.7709f3a09100cp-53,
218	0x1.da9e603db3285p+0, 0x1.c2300696db532p-54,
219	0x1.dd321f301b460p+0, 0x1.2da5778f018c3p-54,
220	0x1.dfc97337b9b5ep+0, 0x1.72d195873da52p-53,
221	0x1.e264614f5a128p+0, 0x1.424ec3f42f5b5p-53,
222	0x1.e502ee78b3ff6p+0, 0x1.39e8980a9cc8fp-55,
223	0x1.e7a51fbc74c83p+0, 0x1.2d522ca0c8de2p-54,
224	0x1.ea4afa2a490d9p+0, 0x1.0b1ee7431ebb6p-53,
225	0x1.ecf482d8e67f0p+0, 0x1.1b60625f7293ap-53,
226	0x1.efa1bee615a27p+0, 0x1.dc7f486a4b6b0p-54,
227	0x1.f252b376bba97p+0, 0x1.3a1a5bf0d8e43p-54,
228	0x1.f50765b6e4540p+0, 0x1.9d3e12dd8a18bp-54,
229	0x1.f7bfdad9cbe13p+0, 0x1.1227697fce57bp-53,
230	0x1.fa7c1819e90d8p+0, 0x1.74853f3a5931ep-55,
231	0x1.fd3c22b8f71f1p+0, 0x1.2eb74966579e7p-57
232};
233
234long double
235expl(long double x)
236{
237	union IEEEl2bits u, v;
238	long double fn, q, r, r1, r2, t, twopk, twopkp10000;
239	long double z;
240	int k, n, n2;
241	uint16_t hx, ix;
242
243	/* Filter out exceptional cases. */
244	u.e = x;
245	hx = u.xbits.expsign;
246	ix = hx & 0x7fff;
247	if (ix >= BIAS + 13) {		/* |x| >= 8192 or x is NaN */
248		if (ix == BIAS + LDBL_MAX_EXP) {
249			if (hx & 0x8000)  /* x is -Inf, -NaN or unsupported */
250				return (-1 / x);
251 			return (x + x);	/* x is +Inf, +NaN or unsupported */
252		}
253		if (x > o_threshold)
254			return (huge * huge);
255		if (x < u_threshold)
256			return (tiny * tiny);
257	} else if (ix < BIAS - 65) {	/* |x| < 0x1p-65 (includes pseudos) */
258		return (1 + x);		/* 1 with inexact iff x != 0 */
259	}
260
261	ENTERI();
262
263	/* Reduce x to (k*ln2 + endpoint[n2] + r1 + r2). */
264	/* Use a specialized rint() to get fn.  Assume round-to-nearest. */
265	fn = x * INV_L + 0x1.8p63 - 0x1.8p63;
266	r = x - fn * L1 - fn * L2;	/* r = r1 + r2 done independently. */
267#if defined(HAVE_EFFICIENT_IRINTL)
268	n = irintl(fn);
269#elif defined(HAVE_EFFICIENT_IRINT)
270	n = irint(fn);
271#else
272	n = (int)fn;
273#endif
274	n2 = (unsigned)n % INTERVALS;
275	/* Depend on the sign bit being propagated: */
276	k = n >> LOG2_INTERVALS;
277	r1 = x - fn * L1;
278	r2 = fn * -L2;
279
280	/* Prepare scale factors. */
281	v.e = 1;
282	if (k >= LDBL_MIN_EXP) {
283		v.xbits.expsign = BIAS + k;
284		twopk = v.e;
285	} else {
286		v.xbits.expsign = BIAS + k + 10000;
287		twopkp10000 = v.e;
288	}
289
290	/* Evaluate expl(endpoint[n2] + r1 + r2) = tbl[n2] * expl(r1 + r2). */
291	z = r * r;
292	q = r2 + z * (A2 + r * A3) + z * z * (A4 + r * A5) + z * z * z * A6;
293	t = (long double)tbl[n2].lo + tbl[n2].hi;
294	t = tbl[n2].lo + t * (q + r1) + tbl[n2].hi;
295
296	/* Scale by 2**k. */
297	if (k >= LDBL_MIN_EXP) {
298		if (k == LDBL_MAX_EXP)
299			RETURNI(t * 2 * 0x1p16383L);
300		RETURNI(t * twopk);
301	} else {
302		RETURNI(t * twopkp10000 * twom10000);
303	}
304}
305
306/**
307 * Compute expm1l(x) for Intel 80-bit format.  This is based on:
308 *
309 *   PTP Tang, "Table-driven implementation of the Expm1 function
310 *   in IEEE floating-point arithmetic," ACM Trans. Math. Soft., 18,
311 *   211-222 (1992).
312 */
313
314/*
315 * Our T1 and T2 are chosen to be approximately the points where method
316 * A and method B have the same accuracy.  Tang's T1 and T2 are the
317 * points where method A's accuracy changes by a full bit.  For Tang,
318 * this drop in accuracy makes method A immediately less accurate than
319 * method B, but our larger INTERVALS makes method A 2 bits more
320 * accurate so it remains the most accurate method significantly
321 * closer to the origin despite losing the full bit in our extended
322 * range for it.
323 */
324static const double
325T1 = -0.1659,				/* ~-30.625/128 * log(2) */
326T2 =  0.1659;				/* ~30.625/128 * log(2) */
327
328/*
329 * Domain [-0.1659, 0.1659], range ~[-1.2027e-22, 3.4417e-22]:
330 * |(exp(x)-1-x-x**2/2)/x - p(x)| < 2**-71.2
331 */
332static const union IEEEl2bits
333B3 = LD80C(0xaaaaaaaaaaaaaaab, -3,  1.66666666666666666671e-1L),
334B4 = LD80C(0xaaaaaaaaaaaaaaac, -5,  4.16666666666666666712e-2L);
335
336static const double
337B5  =  8.3333333333333245e-3,		/*  0x1.111111111110cp-7 */
338B6  =  1.3888888888888861e-3,		/*  0x1.6c16c16c16c0ap-10 */
339B7  =  1.9841269841532042e-4,		/*  0x1.a01a01a0319f9p-13 */
340B8  =  2.4801587302069236e-5,		/*  0x1.a01a01a03cbbcp-16 */
341B9  =  2.7557316558468562e-6,		/*  0x1.71de37fd33d67p-19 */
342B10 =  2.7557315829785151e-7,		/*  0x1.27e4f91418144p-22 */
343B11 =  2.5063168199779829e-8,		/*  0x1.ae94fabdc6b27p-26 */
344B12 =  2.0887164654459567e-9;		/*  0x1.1f122d6413fe1p-29 */
345
346long double
347expm1l(long double x)
348{
349	union IEEEl2bits u, v;
350	long double fn, hx2_hi, hx2_lo, q, r, r1, r2, t, twomk, twopk, x_hi;
351	long double x_lo, x2, z;
352	long double x4;
353	int k, n, n2;
354	uint16_t hx, ix;
355
356	/* Filter out exceptional cases. */
357	u.e = x;
358	hx = u.xbits.expsign;
359	ix = hx & 0x7fff;
360	if (ix >= BIAS + 6) {		/* |x| >= 64 or x is NaN */
361		if (ix == BIAS + LDBL_MAX_EXP) {
362			if (hx & 0x8000)  /* x is -Inf, -NaN or unsupported */
363				return (-1 / x - 1);
364			return (x + x);	/* x is +Inf, +NaN or unsupported */
365		}
366		if (x > o_threshold)
367			return (huge * huge);
368		/*
369		 * expm1l() never underflows, but it must avoid
370		 * unrepresentable large negative exponents.  We used a
371		 * much smaller threshold for large |x| above than in
372		 * expl() so as to handle not so large negative exponents
373		 * in the same way as large ones here.
374		 */
375		if (hx & 0x8000)	/* x <= -64 */
376			return (tiny - 1);	/* good for x < -65ln2 - eps */
377	}
378
379	ENTERI();
380
381	if (T1 < x && x < T2) {
382		if (ix < BIAS - 64) {	/* |x| < 0x1p-64 (includes pseudos) */
383			/* x (rounded) with inexact if x != 0: */
384			RETURNI(x == 0 ? x :
385			    (0x1p100 * x + fabsl(x)) * 0x1p-100);
386		}
387
388		x2 = x * x;
389		x4 = x2 * x2;
390		q = x4 * (x2 * (x4 *
391		    /*
392		     * XXX the number of terms is no longer good for
393		     * pairwise grouping of all except B3, and the
394		     * grouping is no longer from highest down.
395		     */
396		    (x2 *            B12  + (x * B11 + B10)) +
397		    (x2 * (x * B9 +  B8) +  (x * B7 +  B6))) +
398			  (x * B5 +  B4.e)) + x2 * x * B3.e;
399
400		x_hi = (float)x;
401		x_lo = x - x_hi;
402		hx2_hi = x_hi * x_hi / 2;
403		hx2_lo = x_lo * (x + x_hi) / 2;
404		if (ix >= BIAS - 7)
405			RETURNI(hx2_lo + x_lo + q + (hx2_hi + x_hi));
406		else
407			RETURNI(hx2_lo + q + hx2_hi + x);
408	}
409
410	/* Reduce x to (k*ln2 + endpoint[n2] + r1 + r2). */
411	/* Use a specialized rint() to get fn.  Assume round-to-nearest. */
412	fn = x * INV_L + 0x1.8p63 - 0x1.8p63;
413#if defined(HAVE_EFFICIENT_IRINTL)
414	n = irintl(fn);
415#elif defined(HAVE_EFFICIENT_IRINT)
416	n = irint(fn);
417#else
418	n = (int)fn;
419#endif
420	n2 = (unsigned)n % INTERVALS;
421	k = n >> LOG2_INTERVALS;
422	r1 = x - fn * L1;
423	r2 = fn * -L2;
424	r = r1 + r2;
425
426	/* Prepare scale factor. */
427	v.e = 1;
428	v.xbits.expsign = BIAS + k;
429	twopk = v.e;
430
431	/*
432	 * Evaluate lower terms of
433	 * expl(endpoint[n2] + r1 + r2) = tbl[n2] * expl(r1 + r2).
434	 */
435	z = r * r;
436	q = r2 + z * (A2 + r * A3) + z * z * (A4 + r * A5) + z * z * z * A6;
437
438	t = (long double)tbl[n2].lo + tbl[n2].hi;
439
440	if (k == 0) {
441		t = tbl[n2].lo * (r1 + 1) + t * q + tbl[n2].hi * r1 +
442		    (tbl[n2].hi - 1);
443		RETURNI(t);
444	}
445	if (k == -1) {
446		t = tbl[n2].lo * (r1 + 1) + t * q + tbl[n2].hi * r1 +
447		    (tbl[n2].hi - 2);
448		RETURNI(t / 2);
449	}
450	if (k < -7) {
451		t = tbl[n2].lo + t * (q + r1) + tbl[n2].hi;
452		RETURNI(t * twopk - 1);
453	}
454	if (k > 2 * LDBL_MANT_DIG - 1) {
455		t = tbl[n2].lo + t * (q + r1) + tbl[n2].hi;
456		if (k == LDBL_MAX_EXP)
457			RETURNI(t * 2 * 0x1p16383L - 1);
458		RETURNI(t * twopk - 1);
459	}
460
461	v.xbits.expsign = BIAS - k;
462	twomk = v.e;
463
464	if (k > LDBL_MANT_DIG - 1)
465		t = tbl[n2].lo - twomk + t * (q + r1) + tbl[n2].hi;
466	else
467		t = tbl[n2].lo + t * (q + r1) + (tbl[n2].hi - twomk);
468	RETURNI(t * twopk);
469}
470