1/* $OpenBSD: key.c,v 1.104 2013/05/19 02:42:42 djm Exp $ */
2/*
3 * read_bignum():
4 * Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland
5 *
6 * As far as I am concerned, the code I have written for this software
7 * can be used freely for any purpose.  Any derived versions of this
8 * software must be clearly marked as such, and if the derived work is
9 * incompatible with the protocol description in the RFC file, it must be
10 * called by a name other than "ssh" or "Secure Shell".
11 *
12 *
13 * Copyright (c) 2000, 2001 Markus Friedl.  All rights reserved.
14 * Copyright (c) 2008 Alexander von Gernler.  All rights reserved.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 *    notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 *    notice, this list of conditions and the following disclaimer in the
23 *    documentation and/or other materials provided with the distribution.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
26 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
27 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
28 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
29 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
30 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
31 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
32 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
33 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
34 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 */
36
37#include "includes.h"
38
39#include <sys/param.h>
40#include <sys/types.h>
41
42#include <openssl/evp.h>
43#include <openbsd-compat/openssl-compat.h>
44
45#include <stdarg.h>
46#include <stdio.h>
47#include <string.h>
48
49#include "xmalloc.h"
50#include "key.h"
51#include "rsa.h"
52#include "uuencode.h"
53#include "buffer.h"
54#include "log.h"
55#include "misc.h"
56#include "ssh2.h"
57
58static int to_blob(const Key *, u_char **, u_int *, int);
59
60static struct KeyCert *
61cert_new(void)
62{
63	struct KeyCert *cert;
64
65	cert = xcalloc(1, sizeof(*cert));
66	buffer_init(&cert->certblob);
67	buffer_init(&cert->critical);
68	buffer_init(&cert->extensions);
69	cert->key_id = NULL;
70	cert->principals = NULL;
71	cert->signature_key = NULL;
72	return cert;
73}
74
75Key *
76key_new(int type)
77{
78	Key *k;
79	RSA *rsa;
80	DSA *dsa;
81	k = xcalloc(1, sizeof(*k));
82	k->type = type;
83	k->ecdsa = NULL;
84	k->ecdsa_nid = -1;
85	k->dsa = NULL;
86	k->rsa = NULL;
87	k->cert = NULL;
88	switch (k->type) {
89	case KEY_RSA1:
90	case KEY_RSA:
91	case KEY_RSA_CERT_V00:
92	case KEY_RSA_CERT:
93		if ((rsa = RSA_new()) == NULL)
94			fatal("key_new: RSA_new failed");
95		if ((rsa->n = BN_new()) == NULL)
96			fatal("key_new: BN_new failed");
97		if ((rsa->e = BN_new()) == NULL)
98			fatal("key_new: BN_new failed");
99		k->rsa = rsa;
100		break;
101	case KEY_DSA:
102	case KEY_DSA_CERT_V00:
103	case KEY_DSA_CERT:
104		if ((dsa = DSA_new()) == NULL)
105			fatal("key_new: DSA_new failed");
106		if ((dsa->p = BN_new()) == NULL)
107			fatal("key_new: BN_new failed");
108		if ((dsa->q = BN_new()) == NULL)
109			fatal("key_new: BN_new failed");
110		if ((dsa->g = BN_new()) == NULL)
111			fatal("key_new: BN_new failed");
112		if ((dsa->pub_key = BN_new()) == NULL)
113			fatal("key_new: BN_new failed");
114		k->dsa = dsa;
115		break;
116#ifdef OPENSSL_HAS_ECC
117	case KEY_ECDSA:
118	case KEY_ECDSA_CERT:
119		/* Cannot do anything until we know the group */
120		break;
121#endif
122	case KEY_UNSPEC:
123		break;
124	default:
125		fatal("key_new: bad key type %d", k->type);
126		break;
127	}
128
129	if (key_is_cert(k))
130		k->cert = cert_new();
131
132	return k;
133}
134
135void
136key_add_private(Key *k)
137{
138	switch (k->type) {
139	case KEY_RSA1:
140	case KEY_RSA:
141	case KEY_RSA_CERT_V00:
142	case KEY_RSA_CERT:
143		if ((k->rsa->d = BN_new()) == NULL)
144			fatal("key_new_private: BN_new failed");
145		if ((k->rsa->iqmp = BN_new()) == NULL)
146			fatal("key_new_private: BN_new failed");
147		if ((k->rsa->q = BN_new()) == NULL)
148			fatal("key_new_private: BN_new failed");
149		if ((k->rsa->p = BN_new()) == NULL)
150			fatal("key_new_private: BN_new failed");
151		if ((k->rsa->dmq1 = BN_new()) == NULL)
152			fatal("key_new_private: BN_new failed");
153		if ((k->rsa->dmp1 = BN_new()) == NULL)
154			fatal("key_new_private: BN_new failed");
155		break;
156	case KEY_DSA:
157	case KEY_DSA_CERT_V00:
158	case KEY_DSA_CERT:
159		if ((k->dsa->priv_key = BN_new()) == NULL)
160			fatal("key_new_private: BN_new failed");
161		break;
162	case KEY_ECDSA:
163	case KEY_ECDSA_CERT:
164		/* Cannot do anything until we know the group */
165		break;
166	case KEY_UNSPEC:
167		break;
168	default:
169		break;
170	}
171}
172
173Key *
174key_new_private(int type)
175{
176	Key *k = key_new(type);
177
178	key_add_private(k);
179	return k;
180}
181
182static void
183cert_free(struct KeyCert *cert)
184{
185	u_int i;
186
187	buffer_free(&cert->certblob);
188	buffer_free(&cert->critical);
189	buffer_free(&cert->extensions);
190	free(cert->key_id);
191	for (i = 0; i < cert->nprincipals; i++)
192		free(cert->principals[i]);
193	free(cert->principals);
194	if (cert->signature_key != NULL)
195		key_free(cert->signature_key);
196	free(cert);
197}
198
199void
200key_free(Key *k)
201{
202	if (k == NULL)
203		fatal("key_free: key is NULL");
204	switch (k->type) {
205	case KEY_RSA1:
206	case KEY_RSA:
207	case KEY_RSA_CERT_V00:
208	case KEY_RSA_CERT:
209		if (k->rsa != NULL)
210			RSA_free(k->rsa);
211		k->rsa = NULL;
212		break;
213	case KEY_DSA:
214	case KEY_DSA_CERT_V00:
215	case KEY_DSA_CERT:
216		if (k->dsa != NULL)
217			DSA_free(k->dsa);
218		k->dsa = NULL;
219		break;
220#ifdef OPENSSL_HAS_ECC
221	case KEY_ECDSA:
222	case KEY_ECDSA_CERT:
223		if (k->ecdsa != NULL)
224			EC_KEY_free(k->ecdsa);
225		k->ecdsa = NULL;
226		break;
227#endif
228	case KEY_UNSPEC:
229		break;
230	default:
231		fatal("key_free: bad key type %d", k->type);
232		break;
233	}
234	if (key_is_cert(k)) {
235		if (k->cert != NULL)
236			cert_free(k->cert);
237		k->cert = NULL;
238	}
239
240	free(k);
241}
242
243static int
244cert_compare(struct KeyCert *a, struct KeyCert *b)
245{
246	if (a == NULL && b == NULL)
247		return 1;
248	if (a == NULL || b == NULL)
249		return 0;
250	if (buffer_len(&a->certblob) != buffer_len(&b->certblob))
251		return 0;
252	if (timingsafe_bcmp(buffer_ptr(&a->certblob), buffer_ptr(&b->certblob),
253	    buffer_len(&a->certblob)) != 0)
254		return 0;
255	return 1;
256}
257
258/*
259 * Compare public portions of key only, allowing comparisons between
260 * certificates and plain keys too.
261 */
262int
263key_equal_public(const Key *a, const Key *b)
264{
265#ifdef OPENSSL_HAS_ECC
266	BN_CTX *bnctx;
267#endif
268
269	if (a == NULL || b == NULL ||
270	    key_type_plain(a->type) != key_type_plain(b->type))
271		return 0;
272
273	switch (a->type) {
274	case KEY_RSA1:
275	case KEY_RSA_CERT_V00:
276	case KEY_RSA_CERT:
277	case KEY_RSA:
278		return a->rsa != NULL && b->rsa != NULL &&
279		    BN_cmp(a->rsa->e, b->rsa->e) == 0 &&
280		    BN_cmp(a->rsa->n, b->rsa->n) == 0;
281	case KEY_DSA_CERT_V00:
282	case KEY_DSA_CERT:
283	case KEY_DSA:
284		return a->dsa != NULL && b->dsa != NULL &&
285		    BN_cmp(a->dsa->p, b->dsa->p) == 0 &&
286		    BN_cmp(a->dsa->q, b->dsa->q) == 0 &&
287		    BN_cmp(a->dsa->g, b->dsa->g) == 0 &&
288		    BN_cmp(a->dsa->pub_key, b->dsa->pub_key) == 0;
289#ifdef OPENSSL_HAS_ECC
290	case KEY_ECDSA_CERT:
291	case KEY_ECDSA:
292		if (a->ecdsa == NULL || b->ecdsa == NULL ||
293		    EC_KEY_get0_public_key(a->ecdsa) == NULL ||
294		    EC_KEY_get0_public_key(b->ecdsa) == NULL)
295			return 0;
296		if ((bnctx = BN_CTX_new()) == NULL)
297			fatal("%s: BN_CTX_new failed", __func__);
298		if (EC_GROUP_cmp(EC_KEY_get0_group(a->ecdsa),
299		    EC_KEY_get0_group(b->ecdsa), bnctx) != 0 ||
300		    EC_POINT_cmp(EC_KEY_get0_group(a->ecdsa),
301		    EC_KEY_get0_public_key(a->ecdsa),
302		    EC_KEY_get0_public_key(b->ecdsa), bnctx) != 0) {
303			BN_CTX_free(bnctx);
304			return 0;
305		}
306		BN_CTX_free(bnctx);
307		return 1;
308#endif /* OPENSSL_HAS_ECC */
309	default:
310		fatal("key_equal: bad key type %d", a->type);
311	}
312	/* NOTREACHED */
313}
314
315int
316key_equal(const Key *a, const Key *b)
317{
318	if (a == NULL || b == NULL || a->type != b->type)
319		return 0;
320	if (key_is_cert(a)) {
321		if (!cert_compare(a->cert, b->cert))
322			return 0;
323	}
324	return key_equal_public(a, b);
325}
326
327u_char*
328key_fingerprint_raw(const Key *k, enum fp_type dgst_type,
329    u_int *dgst_raw_length)
330{
331	const EVP_MD *md = NULL;
332	EVP_MD_CTX ctx;
333	u_char *blob = NULL;
334	u_char *retval = NULL;
335	u_int len = 0;
336	int nlen, elen;
337
338	*dgst_raw_length = 0;
339
340	switch (dgst_type) {
341	case SSH_FP_MD5:
342		md = EVP_md5();
343		break;
344	case SSH_FP_SHA1:
345		md = EVP_sha1();
346		break;
347#ifdef HAVE_EVP_SHA256
348	case SSH_FP_SHA256:
349		md = EVP_sha256();
350		break;
351#endif
352	default:
353		fatal("key_fingerprint_raw: bad digest type %d",
354		    dgst_type);
355	}
356	switch (k->type) {
357	case KEY_RSA1:
358		nlen = BN_num_bytes(k->rsa->n);
359		elen = BN_num_bytes(k->rsa->e);
360		len = nlen + elen;
361		blob = xmalloc(len);
362		BN_bn2bin(k->rsa->n, blob);
363		BN_bn2bin(k->rsa->e, blob + nlen);
364		break;
365	case KEY_DSA:
366	case KEY_ECDSA:
367	case KEY_RSA:
368		key_to_blob(k, &blob, &len);
369		break;
370	case KEY_DSA_CERT_V00:
371	case KEY_RSA_CERT_V00:
372	case KEY_DSA_CERT:
373	case KEY_ECDSA_CERT:
374	case KEY_RSA_CERT:
375		/* We want a fingerprint of the _key_ not of the cert */
376		to_blob(k, &blob, &len, 1);
377		break;
378	case KEY_UNSPEC:
379		return retval;
380	default:
381		fatal("key_fingerprint_raw: bad key type %d", k->type);
382		break;
383	}
384	if (blob != NULL) {
385		retval = xmalloc(EVP_MAX_MD_SIZE);
386		EVP_DigestInit(&ctx, md);
387		EVP_DigestUpdate(&ctx, blob, len);
388		EVP_DigestFinal(&ctx, retval, dgst_raw_length);
389		memset(blob, 0, len);
390		free(blob);
391	} else {
392		fatal("key_fingerprint_raw: blob is null");
393	}
394	return retval;
395}
396
397static char *
398key_fingerprint_hex(u_char *dgst_raw, u_int dgst_raw_len)
399{
400	char *retval;
401	u_int i;
402
403	retval = xcalloc(1, dgst_raw_len * 3 + 1);
404	for (i = 0; i < dgst_raw_len; i++) {
405		char hex[4];
406		snprintf(hex, sizeof(hex), "%02x:", dgst_raw[i]);
407		strlcat(retval, hex, dgst_raw_len * 3 + 1);
408	}
409
410	/* Remove the trailing ':' character */
411	retval[(dgst_raw_len * 3) - 1] = '\0';
412	return retval;
413}
414
415static char *
416key_fingerprint_bubblebabble(u_char *dgst_raw, u_int dgst_raw_len)
417{
418	char vowels[] = { 'a', 'e', 'i', 'o', 'u', 'y' };
419	char consonants[] = { 'b', 'c', 'd', 'f', 'g', 'h', 'k', 'l', 'm',
420	    'n', 'p', 'r', 's', 't', 'v', 'z', 'x' };
421	u_int i, j = 0, rounds, seed = 1;
422	char *retval;
423
424	rounds = (dgst_raw_len / 2) + 1;
425	retval = xcalloc((rounds * 6), sizeof(char));
426	retval[j++] = 'x';
427	for (i = 0; i < rounds; i++) {
428		u_int idx0, idx1, idx2, idx3, idx4;
429		if ((i + 1 < rounds) || (dgst_raw_len % 2 != 0)) {
430			idx0 = (((((u_int)(dgst_raw[2 * i])) >> 6) & 3) +
431			    seed) % 6;
432			idx1 = (((u_int)(dgst_raw[2 * i])) >> 2) & 15;
433			idx2 = ((((u_int)(dgst_raw[2 * i])) & 3) +
434			    (seed / 6)) % 6;
435			retval[j++] = vowels[idx0];
436			retval[j++] = consonants[idx1];
437			retval[j++] = vowels[idx2];
438			if ((i + 1) < rounds) {
439				idx3 = (((u_int)(dgst_raw[(2 * i) + 1])) >> 4) & 15;
440				idx4 = (((u_int)(dgst_raw[(2 * i) + 1]))) & 15;
441				retval[j++] = consonants[idx3];
442				retval[j++] = '-';
443				retval[j++] = consonants[idx4];
444				seed = ((seed * 5) +
445				    ((((u_int)(dgst_raw[2 * i])) * 7) +
446				    ((u_int)(dgst_raw[(2 * i) + 1])))) % 36;
447			}
448		} else {
449			idx0 = seed % 6;
450			idx1 = 16;
451			idx2 = seed / 6;
452			retval[j++] = vowels[idx0];
453			retval[j++] = consonants[idx1];
454			retval[j++] = vowels[idx2];
455		}
456	}
457	retval[j++] = 'x';
458	retval[j++] = '\0';
459	return retval;
460}
461
462/*
463 * Draw an ASCII-Art representing the fingerprint so human brain can
464 * profit from its built-in pattern recognition ability.
465 * This technique is called "random art" and can be found in some
466 * scientific publications like this original paper:
467 *
468 * "Hash Visualization: a New Technique to improve Real-World Security",
469 * Perrig A. and Song D., 1999, International Workshop on Cryptographic
470 * Techniques and E-Commerce (CrypTEC '99)
471 * sparrow.ece.cmu.edu/~adrian/projects/validation/validation.pdf
472 *
473 * The subject came up in a talk by Dan Kaminsky, too.
474 *
475 * If you see the picture is different, the key is different.
476 * If the picture looks the same, you still know nothing.
477 *
478 * The algorithm used here is a worm crawling over a discrete plane,
479 * leaving a trace (augmenting the field) everywhere it goes.
480 * Movement is taken from dgst_raw 2bit-wise.  Bumping into walls
481 * makes the respective movement vector be ignored for this turn.
482 * Graphs are not unambiguous, because circles in graphs can be
483 * walked in either direction.
484 */
485
486/*
487 * Field sizes for the random art.  Have to be odd, so the starting point
488 * can be in the exact middle of the picture, and FLDBASE should be >=8 .
489 * Else pictures would be too dense, and drawing the frame would
490 * fail, too, because the key type would not fit in anymore.
491 */
492#define	FLDBASE		8
493#define	FLDSIZE_Y	(FLDBASE + 1)
494#define	FLDSIZE_X	(FLDBASE * 2 + 1)
495static char *
496key_fingerprint_randomart(u_char *dgst_raw, u_int dgst_raw_len, const Key *k)
497{
498	/*
499	 * Chars to be used after each other every time the worm
500	 * intersects with itself.  Matter of taste.
501	 */
502	char	*augmentation_string = " .o+=*BOX@%&#/^SE";
503	char	*retval, *p;
504	u_char	 field[FLDSIZE_X][FLDSIZE_Y];
505	u_int	 i, b;
506	int	 x, y;
507	size_t	 len = strlen(augmentation_string) - 1;
508
509	retval = xcalloc(1, (FLDSIZE_X + 3) * (FLDSIZE_Y + 2));
510
511	/* initialize field */
512	memset(field, 0, FLDSIZE_X * FLDSIZE_Y * sizeof(char));
513	x = FLDSIZE_X / 2;
514	y = FLDSIZE_Y / 2;
515
516	/* process raw key */
517	for (i = 0; i < dgst_raw_len; i++) {
518		int input;
519		/* each byte conveys four 2-bit move commands */
520		input = dgst_raw[i];
521		for (b = 0; b < 4; b++) {
522			/* evaluate 2 bit, rest is shifted later */
523			x += (input & 0x1) ? 1 : -1;
524			y += (input & 0x2) ? 1 : -1;
525
526			/* assure we are still in bounds */
527			x = MAX(x, 0);
528			y = MAX(y, 0);
529			x = MIN(x, FLDSIZE_X - 1);
530			y = MIN(y, FLDSIZE_Y - 1);
531
532			/* augment the field */
533			if (field[x][y] < len - 2)
534				field[x][y]++;
535			input = input >> 2;
536		}
537	}
538
539	/* mark starting point and end point*/
540	field[FLDSIZE_X / 2][FLDSIZE_Y / 2] = len - 1;
541	field[x][y] = len;
542
543	/* fill in retval */
544	snprintf(retval, FLDSIZE_X, "+--[%4s %4u]", key_type(k), key_size(k));
545	p = strchr(retval, '\0');
546
547	/* output upper border */
548	for (i = p - retval - 1; i < FLDSIZE_X; i++)
549		*p++ = '-';
550	*p++ = '+';
551	*p++ = '\n';
552
553	/* output content */
554	for (y = 0; y < FLDSIZE_Y; y++) {
555		*p++ = '|';
556		for (x = 0; x < FLDSIZE_X; x++)
557			*p++ = augmentation_string[MIN(field[x][y], len)];
558		*p++ = '|';
559		*p++ = '\n';
560	}
561
562	/* output lower border */
563	*p++ = '+';
564	for (i = 0; i < FLDSIZE_X; i++)
565		*p++ = '-';
566	*p++ = '+';
567
568	return retval;
569}
570
571char *
572key_fingerprint(const Key *k, enum fp_type dgst_type, enum fp_rep dgst_rep)
573{
574	char *retval = NULL;
575	u_char *dgst_raw;
576	u_int dgst_raw_len;
577
578	dgst_raw = key_fingerprint_raw(k, dgst_type, &dgst_raw_len);
579	if (!dgst_raw)
580		fatal("key_fingerprint: null from key_fingerprint_raw()");
581	switch (dgst_rep) {
582	case SSH_FP_HEX:
583		retval = key_fingerprint_hex(dgst_raw, dgst_raw_len);
584		break;
585	case SSH_FP_BUBBLEBABBLE:
586		retval = key_fingerprint_bubblebabble(dgst_raw, dgst_raw_len);
587		break;
588	case SSH_FP_RANDOMART:
589		retval = key_fingerprint_randomart(dgst_raw, dgst_raw_len, k);
590		break;
591	default:
592		fatal("key_fingerprint: bad digest representation %d",
593		    dgst_rep);
594		break;
595	}
596	memset(dgst_raw, 0, dgst_raw_len);
597	free(dgst_raw);
598	return retval;
599}
600
601/*
602 * Reads a multiple-precision integer in decimal from the buffer, and advances
603 * the pointer.  The integer must already be initialized.  This function is
604 * permitted to modify the buffer.  This leaves *cpp to point just beyond the
605 * last processed (and maybe modified) character.  Note that this may modify
606 * the buffer containing the number.
607 */
608static int
609read_bignum(char **cpp, BIGNUM * value)
610{
611	char *cp = *cpp;
612	int old;
613
614	/* Skip any leading whitespace. */
615	for (; *cp == ' ' || *cp == '\t'; cp++)
616		;
617
618	/* Check that it begins with a decimal digit. */
619	if (*cp < '0' || *cp > '9')
620		return 0;
621
622	/* Save starting position. */
623	*cpp = cp;
624
625	/* Move forward until all decimal digits skipped. */
626	for (; *cp >= '0' && *cp <= '9'; cp++)
627		;
628
629	/* Save the old terminating character, and replace it by \0. */
630	old = *cp;
631	*cp = 0;
632
633	/* Parse the number. */
634	if (BN_dec2bn(&value, *cpp) == 0)
635		return 0;
636
637	/* Restore old terminating character. */
638	*cp = old;
639
640	/* Move beyond the number and return success. */
641	*cpp = cp;
642	return 1;
643}
644
645static int
646write_bignum(FILE *f, BIGNUM *num)
647{
648	char *buf = BN_bn2dec(num);
649	if (buf == NULL) {
650		error("write_bignum: BN_bn2dec() failed");
651		return 0;
652	}
653	fprintf(f, " %s", buf);
654	OPENSSL_free(buf);
655	return 1;
656}
657
658/* returns 1 ok, -1 error */
659int
660key_read(Key *ret, char **cpp)
661{
662	Key *k;
663	int success = -1;
664	char *cp, *space;
665	int len, n, type;
666	u_int bits;
667	u_char *blob;
668#ifdef OPENSSL_HAS_ECC
669	int curve_nid = -1;
670#endif
671
672	cp = *cpp;
673
674	switch (ret->type) {
675	case KEY_RSA1:
676		/* Get number of bits. */
677		if (*cp < '0' || *cp > '9')
678			return -1;	/* Bad bit count... */
679		for (bits = 0; *cp >= '0' && *cp <= '9'; cp++)
680			bits = 10 * bits + *cp - '0';
681		if (bits == 0)
682			return -1;
683		*cpp = cp;
684		/* Get public exponent, public modulus. */
685		if (!read_bignum(cpp, ret->rsa->e))
686			return -1;
687		if (!read_bignum(cpp, ret->rsa->n))
688			return -1;
689		/* validate the claimed number of bits */
690		if ((u_int)BN_num_bits(ret->rsa->n) != bits) {
691			verbose("key_read: claimed key size %d does not match "
692			   "actual %d", bits, BN_num_bits(ret->rsa->n));
693			return -1;
694		}
695		success = 1;
696		break;
697	case KEY_UNSPEC:
698	case KEY_RSA:
699	case KEY_DSA:
700	case KEY_ECDSA:
701	case KEY_DSA_CERT_V00:
702	case KEY_RSA_CERT_V00:
703	case KEY_DSA_CERT:
704	case KEY_ECDSA_CERT:
705	case KEY_RSA_CERT:
706		space = strchr(cp, ' ');
707		if (space == NULL) {
708			debug3("key_read: missing whitespace");
709			return -1;
710		}
711		*space = '\0';
712		type = key_type_from_name(cp);
713#ifdef OPENSSL_HAS_ECC
714		if (key_type_plain(type) == KEY_ECDSA &&
715		    (curve_nid = key_ecdsa_nid_from_name(cp)) == -1) {
716			debug("key_read: invalid curve");
717			return -1;
718		}
719#endif
720		*space = ' ';
721		if (type == KEY_UNSPEC) {
722			debug3("key_read: missing keytype");
723			return -1;
724		}
725		cp = space+1;
726		if (*cp == '\0') {
727			debug3("key_read: short string");
728			return -1;
729		}
730		if (ret->type == KEY_UNSPEC) {
731			ret->type = type;
732		} else if (ret->type != type) {
733			/* is a key, but different type */
734			debug3("key_read: type mismatch");
735			return -1;
736		}
737		len = 2*strlen(cp);
738		blob = xmalloc(len);
739		n = uudecode(cp, blob, len);
740		if (n < 0) {
741			error("key_read: uudecode %s failed", cp);
742			free(blob);
743			return -1;
744		}
745		k = key_from_blob(blob, (u_int)n);
746		free(blob);
747		if (k == NULL) {
748			error("key_read: key_from_blob %s failed", cp);
749			return -1;
750		}
751		if (k->type != type) {
752			error("key_read: type mismatch: encoding error");
753			key_free(k);
754			return -1;
755		}
756#ifdef OPENSSL_HAS_ECC
757		if (key_type_plain(type) == KEY_ECDSA &&
758		    curve_nid != k->ecdsa_nid) {
759			error("key_read: type mismatch: EC curve mismatch");
760			key_free(k);
761			return -1;
762		}
763#endif
764/*XXXX*/
765		if (key_is_cert(ret)) {
766			if (!key_is_cert(k)) {
767				error("key_read: loaded key is not a cert");
768				key_free(k);
769				return -1;
770			}
771			if (ret->cert != NULL)
772				cert_free(ret->cert);
773			ret->cert = k->cert;
774			k->cert = NULL;
775		}
776		if (key_type_plain(ret->type) == KEY_RSA) {
777			if (ret->rsa != NULL)
778				RSA_free(ret->rsa);
779			ret->rsa = k->rsa;
780			k->rsa = NULL;
781#ifdef DEBUG_PK
782			RSA_print_fp(stderr, ret->rsa, 8);
783#endif
784		}
785		if (key_type_plain(ret->type) == KEY_DSA) {
786			if (ret->dsa != NULL)
787				DSA_free(ret->dsa);
788			ret->dsa = k->dsa;
789			k->dsa = NULL;
790#ifdef DEBUG_PK
791			DSA_print_fp(stderr, ret->dsa, 8);
792#endif
793		}
794#ifdef OPENSSL_HAS_ECC
795		if (key_type_plain(ret->type) == KEY_ECDSA) {
796			if (ret->ecdsa != NULL)
797				EC_KEY_free(ret->ecdsa);
798			ret->ecdsa = k->ecdsa;
799			ret->ecdsa_nid = k->ecdsa_nid;
800			k->ecdsa = NULL;
801			k->ecdsa_nid = -1;
802#ifdef DEBUG_PK
803			key_dump_ec_key(ret->ecdsa);
804#endif
805		}
806#endif
807		success = 1;
808/*XXXX*/
809		key_free(k);
810		if (success != 1)
811			break;
812		/* advance cp: skip whitespace and data */
813		while (*cp == ' ' || *cp == '\t')
814			cp++;
815		while (*cp != '\0' && *cp != ' ' && *cp != '\t')
816			cp++;
817		*cpp = cp;
818		break;
819	default:
820		fatal("key_read: bad key type: %d", ret->type);
821		break;
822	}
823	return success;
824}
825
826int
827key_write(const Key *key, FILE *f)
828{
829	int n, success = 0;
830	u_int len, bits = 0;
831	u_char *blob;
832	char *uu;
833
834	if (key_is_cert(key)) {
835		if (key->cert == NULL) {
836			error("%s: no cert data", __func__);
837			return 0;
838		}
839		if (buffer_len(&key->cert->certblob) == 0) {
840			error("%s: no signed certificate blob", __func__);
841			return 0;
842		}
843	}
844
845	switch (key->type) {
846	case KEY_RSA1:
847		if (key->rsa == NULL)
848			return 0;
849		/* size of modulus 'n' */
850		bits = BN_num_bits(key->rsa->n);
851		fprintf(f, "%u", bits);
852		if (write_bignum(f, key->rsa->e) &&
853		    write_bignum(f, key->rsa->n))
854			return 1;
855		error("key_write: failed for RSA key");
856		return 0;
857	case KEY_DSA:
858	case KEY_DSA_CERT_V00:
859	case KEY_DSA_CERT:
860		if (key->dsa == NULL)
861			return 0;
862		break;
863#ifdef OPENSSL_HAS_ECC
864	case KEY_ECDSA:
865	case KEY_ECDSA_CERT:
866		if (key->ecdsa == NULL)
867			return 0;
868		break;
869#endif
870	case KEY_RSA:
871	case KEY_RSA_CERT_V00:
872	case KEY_RSA_CERT:
873		if (key->rsa == NULL)
874			return 0;
875		break;
876	default:
877		return 0;
878	}
879
880	key_to_blob(key, &blob, &len);
881	uu = xmalloc(2*len);
882	n = uuencode(blob, len, uu, 2*len);
883	if (n > 0) {
884		fprintf(f, "%s %s", key_ssh_name(key), uu);
885		success = 1;
886	}
887	free(blob);
888	free(uu);
889
890	return success;
891}
892
893const char *
894key_cert_type(const Key *k)
895{
896	switch (k->cert->type) {
897	case SSH2_CERT_TYPE_USER:
898		return "user";
899	case SSH2_CERT_TYPE_HOST:
900		return "host";
901	default:
902		return "unknown";
903	}
904}
905
906struct keytype {
907	char *name;
908	char *shortname;
909	int type;
910	int nid;
911	int cert;
912};
913static const struct keytype keytypes[] = {
914	{ NULL, "RSA1", KEY_RSA1, 0, 0 },
915	{ "ssh-rsa", "RSA", KEY_RSA, 0, 0 },
916	{ "ssh-dss", "DSA", KEY_DSA, 0, 0 },
917#ifdef OPENSSL_HAS_ECC
918	{ "ecdsa-sha2-nistp256", "ECDSA", KEY_ECDSA, NID_X9_62_prime256v1, 0 },
919	{ "ecdsa-sha2-nistp384", "ECDSA", KEY_ECDSA, NID_secp384r1, 0 },
920	{ "ecdsa-sha2-nistp521", "ECDSA", KEY_ECDSA, NID_secp521r1, 0 },
921#endif /* OPENSSL_HAS_ECC */
922	{ "ssh-rsa-cert-v01@openssh.com", "RSA-CERT", KEY_RSA_CERT, 0, 1 },
923	{ "ssh-dss-cert-v01@openssh.com", "DSA-CERT", KEY_DSA_CERT, 0, 1 },
924#ifdef OPENSSL_HAS_ECC
925	{ "ecdsa-sha2-nistp256-cert-v01@openssh.com", "ECDSA-CERT",
926	    KEY_ECDSA_CERT, NID_X9_62_prime256v1, 1 },
927	{ "ecdsa-sha2-nistp384-cert-v01@openssh.com", "ECDSA-CERT",
928	    KEY_ECDSA_CERT, NID_secp384r1, 1 },
929	{ "ecdsa-sha2-nistp521-cert-v01@openssh.com", "ECDSA-CERT",
930	    KEY_ECDSA_CERT, NID_secp521r1, 1 },
931#endif /* OPENSSL_HAS_ECC */
932	{ "ssh-rsa-cert-v00@openssh.com", "RSA-CERT-V00",
933	    KEY_RSA_CERT_V00, 0, 1 },
934	{ "ssh-dss-cert-v00@openssh.com", "DSA-CERT-V00",
935	    KEY_DSA_CERT_V00, 0, 1 },
936	{ NULL, NULL, -1, -1, 0 }
937};
938
939const char *
940key_type(const Key *k)
941{
942	const struct keytype *kt;
943
944	for (kt = keytypes; kt->type != -1; kt++) {
945		if (kt->type == k->type)
946			return kt->shortname;
947	}
948	return "unknown";
949}
950
951static const char *
952key_ssh_name_from_type_nid(int type, int nid)
953{
954	const struct keytype *kt;
955
956	for (kt = keytypes; kt->type != -1; kt++) {
957		if (kt->type == type && (kt->nid == 0 || kt->nid == nid))
958			return kt->name;
959	}
960	return "ssh-unknown";
961}
962
963const char *
964key_ssh_name(const Key *k)
965{
966	return key_ssh_name_from_type_nid(k->type, k->ecdsa_nid);
967}
968
969const char *
970key_ssh_name_plain(const Key *k)
971{
972	return key_ssh_name_from_type_nid(key_type_plain(k->type),
973	    k->ecdsa_nid);
974}
975
976int
977key_type_from_name(char *name)
978{
979	const struct keytype *kt;
980
981	for (kt = keytypes; kt->type != -1; kt++) {
982		/* Only allow shortname matches for plain key types */
983		if ((kt->name != NULL && strcmp(name, kt->name) == 0) ||
984		    (!kt->cert && strcasecmp(kt->shortname, name) == 0))
985			return kt->type;
986	}
987	debug2("key_type_from_name: unknown key type '%s'", name);
988	return KEY_UNSPEC;
989}
990
991int
992key_ecdsa_nid_from_name(const char *name)
993{
994	const struct keytype *kt;
995
996	for (kt = keytypes; kt->type != -1; kt++) {
997		if (kt->type != KEY_ECDSA && kt->type != KEY_ECDSA_CERT)
998			continue;
999		if (kt->name != NULL && strcmp(name, kt->name) == 0)
1000			return kt->nid;
1001	}
1002	debug2("%s: unknown/non-ECDSA key type '%s'", __func__, name);
1003	return -1;
1004}
1005
1006char *
1007key_alg_list(void)
1008{
1009	char *ret = NULL;
1010	size_t nlen, rlen = 0;
1011	const struct keytype *kt;
1012
1013	for (kt = keytypes; kt->type != -1; kt++) {
1014		if (kt->name == NULL)
1015			continue;
1016		if (ret != NULL)
1017			ret[rlen++] = '\n';
1018		nlen = strlen(kt->name);
1019		ret = xrealloc(ret, 1, rlen + nlen + 2);
1020		memcpy(ret + rlen, kt->name, nlen + 1);
1021		rlen += nlen;
1022	}
1023	return ret;
1024}
1025
1026u_int
1027key_size(const Key *k)
1028{
1029	switch (k->type) {
1030	case KEY_RSA1:
1031	case KEY_RSA:
1032	case KEY_RSA_CERT_V00:
1033	case KEY_RSA_CERT:
1034		return BN_num_bits(k->rsa->n);
1035	case KEY_DSA:
1036	case KEY_DSA_CERT_V00:
1037	case KEY_DSA_CERT:
1038		return BN_num_bits(k->dsa->p);
1039#ifdef OPENSSL_HAS_ECC
1040	case KEY_ECDSA:
1041	case KEY_ECDSA_CERT:
1042		return key_curve_nid_to_bits(k->ecdsa_nid);
1043#endif
1044	}
1045	return 0;
1046}
1047
1048static RSA *
1049rsa_generate_private_key(u_int bits)
1050{
1051	RSA *private = RSA_new();
1052	BIGNUM *f4 = BN_new();
1053
1054	if (private == NULL)
1055		fatal("%s: RSA_new failed", __func__);
1056	if (f4 == NULL)
1057		fatal("%s: BN_new failed", __func__);
1058	if (!BN_set_word(f4, RSA_F4))
1059		fatal("%s: BN_new failed", __func__);
1060	if (!RSA_generate_key_ex(private, bits, f4, NULL))
1061		fatal("%s: key generation failed.", __func__);
1062	BN_free(f4);
1063	return private;
1064}
1065
1066static DSA*
1067dsa_generate_private_key(u_int bits)
1068{
1069	DSA *private = DSA_new();
1070
1071	if (private == NULL)
1072		fatal("%s: DSA_new failed", __func__);
1073	if (!DSA_generate_parameters_ex(private, bits, NULL, 0, NULL,
1074	    NULL, NULL))
1075		fatal("%s: DSA_generate_parameters failed", __func__);
1076	if (!DSA_generate_key(private))
1077		fatal("%s: DSA_generate_key failed.", __func__);
1078	return private;
1079}
1080
1081int
1082key_ecdsa_bits_to_nid(int bits)
1083{
1084	switch (bits) {
1085#ifdef OPENSSL_HAS_ECC
1086	case 256:
1087		return NID_X9_62_prime256v1;
1088	case 384:
1089		return NID_secp384r1;
1090	case 521:
1091		return NID_secp521r1;
1092#endif
1093	default:
1094		return -1;
1095	}
1096}
1097
1098#ifdef OPENSSL_HAS_ECC
1099int
1100key_ecdsa_key_to_nid(EC_KEY *k)
1101{
1102	EC_GROUP *eg;
1103	int nids[] = {
1104		NID_X9_62_prime256v1,
1105		NID_secp384r1,
1106		NID_secp521r1,
1107		-1
1108	};
1109	int nid;
1110	u_int i;
1111	BN_CTX *bnctx;
1112	const EC_GROUP *g = EC_KEY_get0_group(k);
1113
1114	/*
1115	 * The group may be stored in a ASN.1 encoded private key in one of two
1116	 * ways: as a "named group", which is reconstituted by ASN.1 object ID
1117	 * or explicit group parameters encoded into the key blob. Only the
1118	 * "named group" case sets the group NID for us, but we can figure
1119	 * it out for the other case by comparing against all the groups that
1120	 * are supported.
1121	 */
1122	if ((nid = EC_GROUP_get_curve_name(g)) > 0)
1123		return nid;
1124	if ((bnctx = BN_CTX_new()) == NULL)
1125		fatal("%s: BN_CTX_new() failed", __func__);
1126	for (i = 0; nids[i] != -1; i++) {
1127		if ((eg = EC_GROUP_new_by_curve_name(nids[i])) == NULL)
1128			fatal("%s: EC_GROUP_new_by_curve_name failed",
1129			    __func__);
1130		if (EC_GROUP_cmp(g, eg, bnctx) == 0)
1131			break;
1132		EC_GROUP_free(eg);
1133	}
1134	BN_CTX_free(bnctx);
1135	debug3("%s: nid = %d", __func__, nids[i]);
1136	if (nids[i] != -1) {
1137		/* Use the group with the NID attached */
1138		EC_GROUP_set_asn1_flag(eg, OPENSSL_EC_NAMED_CURVE);
1139		if (EC_KEY_set_group(k, eg) != 1)
1140			fatal("%s: EC_KEY_set_group", __func__);
1141	}
1142	return nids[i];
1143}
1144
1145static EC_KEY*
1146ecdsa_generate_private_key(u_int bits, int *nid)
1147{
1148	EC_KEY *private;
1149
1150	if ((*nid = key_ecdsa_bits_to_nid(bits)) == -1)
1151		fatal("%s: invalid key length", __func__);
1152	if ((private = EC_KEY_new_by_curve_name(*nid)) == NULL)
1153		fatal("%s: EC_KEY_new_by_curve_name failed", __func__);
1154	if (EC_KEY_generate_key(private) != 1)
1155		fatal("%s: EC_KEY_generate_key failed", __func__);
1156	EC_KEY_set_asn1_flag(private, OPENSSL_EC_NAMED_CURVE);
1157	return private;
1158}
1159#endif /* OPENSSL_HAS_ECC */
1160
1161Key *
1162key_generate(int type, u_int bits)
1163{
1164	Key *k = key_new(KEY_UNSPEC);
1165	switch (type) {
1166	case KEY_DSA:
1167		k->dsa = dsa_generate_private_key(bits);
1168		break;
1169#ifdef OPENSSL_HAS_ECC
1170	case KEY_ECDSA:
1171		k->ecdsa = ecdsa_generate_private_key(bits, &k->ecdsa_nid);
1172		break;
1173#endif
1174	case KEY_RSA:
1175	case KEY_RSA1:
1176		k->rsa = rsa_generate_private_key(bits);
1177		break;
1178	case KEY_RSA_CERT_V00:
1179	case KEY_DSA_CERT_V00:
1180	case KEY_RSA_CERT:
1181	case KEY_DSA_CERT:
1182		fatal("key_generate: cert keys cannot be generated directly");
1183	default:
1184		fatal("key_generate: unknown type %d", type);
1185	}
1186	k->type = type;
1187	return k;
1188}
1189
1190void
1191key_cert_copy(const Key *from_key, struct Key *to_key)
1192{
1193	u_int i;
1194	const struct KeyCert *from;
1195	struct KeyCert *to;
1196
1197	if (to_key->cert != NULL) {
1198		cert_free(to_key->cert);
1199		to_key->cert = NULL;
1200	}
1201
1202	if ((from = from_key->cert) == NULL)
1203		return;
1204
1205	to = to_key->cert = cert_new();
1206
1207	buffer_append(&to->certblob, buffer_ptr(&from->certblob),
1208	    buffer_len(&from->certblob));
1209
1210	buffer_append(&to->critical,
1211	    buffer_ptr(&from->critical), buffer_len(&from->critical));
1212	buffer_append(&to->extensions,
1213	    buffer_ptr(&from->extensions), buffer_len(&from->extensions));
1214
1215	to->serial = from->serial;
1216	to->type = from->type;
1217	to->key_id = from->key_id == NULL ? NULL : xstrdup(from->key_id);
1218	to->valid_after = from->valid_after;
1219	to->valid_before = from->valid_before;
1220	to->signature_key = from->signature_key == NULL ?
1221	    NULL : key_from_private(from->signature_key);
1222
1223	to->nprincipals = from->nprincipals;
1224	if (to->nprincipals > CERT_MAX_PRINCIPALS)
1225		fatal("%s: nprincipals (%u) > CERT_MAX_PRINCIPALS (%u)",
1226		    __func__, to->nprincipals, CERT_MAX_PRINCIPALS);
1227	if (to->nprincipals > 0) {
1228		to->principals = xcalloc(from->nprincipals,
1229		    sizeof(*to->principals));
1230		for (i = 0; i < to->nprincipals; i++)
1231			to->principals[i] = xstrdup(from->principals[i]);
1232	}
1233}
1234
1235Key *
1236key_from_private(const Key *k)
1237{
1238	Key *n = NULL;
1239	switch (k->type) {
1240	case KEY_DSA:
1241	case KEY_DSA_CERT_V00:
1242	case KEY_DSA_CERT:
1243		n = key_new(k->type);
1244		if ((BN_copy(n->dsa->p, k->dsa->p) == NULL) ||
1245		    (BN_copy(n->dsa->q, k->dsa->q) == NULL) ||
1246		    (BN_copy(n->dsa->g, k->dsa->g) == NULL) ||
1247		    (BN_copy(n->dsa->pub_key, k->dsa->pub_key) == NULL))
1248			fatal("key_from_private: BN_copy failed");
1249		break;
1250#ifdef OPENSSL_HAS_ECC
1251	case KEY_ECDSA:
1252	case KEY_ECDSA_CERT:
1253		n = key_new(k->type);
1254		n->ecdsa_nid = k->ecdsa_nid;
1255		if ((n->ecdsa = EC_KEY_new_by_curve_name(k->ecdsa_nid)) == NULL)
1256			fatal("%s: EC_KEY_new_by_curve_name failed", __func__);
1257		if (EC_KEY_set_public_key(n->ecdsa,
1258		    EC_KEY_get0_public_key(k->ecdsa)) != 1)
1259			fatal("%s: EC_KEY_set_public_key failed", __func__);
1260		break;
1261#endif
1262	case KEY_RSA:
1263	case KEY_RSA1:
1264	case KEY_RSA_CERT_V00:
1265	case KEY_RSA_CERT:
1266		n = key_new(k->type);
1267		if ((BN_copy(n->rsa->n, k->rsa->n) == NULL) ||
1268		    (BN_copy(n->rsa->e, k->rsa->e) == NULL))
1269			fatal("key_from_private: BN_copy failed");
1270		break;
1271	default:
1272		fatal("key_from_private: unknown type %d", k->type);
1273		break;
1274	}
1275	if (key_is_cert(k))
1276		key_cert_copy(k, n);
1277	return n;
1278}
1279
1280int
1281key_names_valid2(const char *names)
1282{
1283	char *s, *cp, *p;
1284
1285	if (names == NULL || strcmp(names, "") == 0)
1286		return 0;
1287	s = cp = xstrdup(names);
1288	for ((p = strsep(&cp, ",")); p && *p != '\0';
1289	    (p = strsep(&cp, ","))) {
1290		switch (key_type_from_name(p)) {
1291		case KEY_RSA1:
1292		case KEY_UNSPEC:
1293			free(s);
1294			return 0;
1295		}
1296	}
1297	debug3("key names ok: [%s]", names);
1298	free(s);
1299	return 1;
1300}
1301
1302static int
1303cert_parse(Buffer *b, Key *key, const u_char *blob, u_int blen)
1304{
1305	u_char *principals, *critical, *exts, *sig_key, *sig;
1306	u_int signed_len, plen, clen, sklen, slen, kidlen, elen;
1307	Buffer tmp;
1308	char *principal;
1309	int ret = -1;
1310	int v00 = key->type == KEY_DSA_CERT_V00 ||
1311	    key->type == KEY_RSA_CERT_V00;
1312
1313	buffer_init(&tmp);
1314
1315	/* Copy the entire key blob for verification and later serialisation */
1316	buffer_append(&key->cert->certblob, blob, blen);
1317
1318	elen = 0; /* Not touched for v00 certs */
1319	principals = exts = critical = sig_key = sig = NULL;
1320	if ((!v00 && buffer_get_int64_ret(&key->cert->serial, b) != 0) ||
1321	    buffer_get_int_ret(&key->cert->type, b) != 0 ||
1322	    (key->cert->key_id = buffer_get_cstring_ret(b, &kidlen)) == NULL ||
1323	    (principals = buffer_get_string_ret(b, &plen)) == NULL ||
1324	    buffer_get_int64_ret(&key->cert->valid_after, b) != 0 ||
1325	    buffer_get_int64_ret(&key->cert->valid_before, b) != 0 ||
1326	    (critical = buffer_get_string_ret(b, &clen)) == NULL ||
1327	    (!v00 && (exts = buffer_get_string_ret(b, &elen)) == NULL) ||
1328	    (v00 && buffer_get_string_ptr_ret(b, NULL) == NULL) || /* nonce */
1329	    buffer_get_string_ptr_ret(b, NULL) == NULL || /* reserved */
1330	    (sig_key = buffer_get_string_ret(b, &sklen)) == NULL) {
1331		error("%s: parse error", __func__);
1332		goto out;
1333	}
1334
1335	/* Signature is left in the buffer so we can calculate this length */
1336	signed_len = buffer_len(&key->cert->certblob) - buffer_len(b);
1337
1338	if ((sig = buffer_get_string_ret(b, &slen)) == NULL) {
1339		error("%s: parse error", __func__);
1340		goto out;
1341	}
1342
1343	if (key->cert->type != SSH2_CERT_TYPE_USER &&
1344	    key->cert->type != SSH2_CERT_TYPE_HOST) {
1345		error("Unknown certificate type %u", key->cert->type);
1346		goto out;
1347	}
1348
1349	buffer_append(&tmp, principals, plen);
1350	while (buffer_len(&tmp) > 0) {
1351		if (key->cert->nprincipals >= CERT_MAX_PRINCIPALS) {
1352			error("%s: Too many principals", __func__);
1353			goto out;
1354		}
1355		if ((principal = buffer_get_cstring_ret(&tmp, &plen)) == NULL) {
1356			error("%s: Principals data invalid", __func__);
1357			goto out;
1358		}
1359		key->cert->principals = xrealloc(key->cert->principals,
1360		    key->cert->nprincipals + 1, sizeof(*key->cert->principals));
1361		key->cert->principals[key->cert->nprincipals++] = principal;
1362	}
1363
1364	buffer_clear(&tmp);
1365
1366	buffer_append(&key->cert->critical, critical, clen);
1367	buffer_append(&tmp, critical, clen);
1368	/* validate structure */
1369	while (buffer_len(&tmp) != 0) {
1370		if (buffer_get_string_ptr_ret(&tmp, NULL) == NULL ||
1371		    buffer_get_string_ptr_ret(&tmp, NULL) == NULL) {
1372			error("%s: critical option data invalid", __func__);
1373			goto out;
1374		}
1375	}
1376	buffer_clear(&tmp);
1377
1378	buffer_append(&key->cert->extensions, exts, elen);
1379	buffer_append(&tmp, exts, elen);
1380	/* validate structure */
1381	while (buffer_len(&tmp) != 0) {
1382		if (buffer_get_string_ptr_ret(&tmp, NULL) == NULL ||
1383		    buffer_get_string_ptr_ret(&tmp, NULL) == NULL) {
1384			error("%s: extension data invalid", __func__);
1385			goto out;
1386		}
1387	}
1388	buffer_clear(&tmp);
1389
1390	if ((key->cert->signature_key = key_from_blob(sig_key,
1391	    sklen)) == NULL) {
1392		error("%s: Signature key invalid", __func__);
1393		goto out;
1394	}
1395	if (key->cert->signature_key->type != KEY_RSA &&
1396	    key->cert->signature_key->type != KEY_DSA &&
1397	    key->cert->signature_key->type != KEY_ECDSA) {
1398		error("%s: Invalid signature key type %s (%d)", __func__,
1399		    key_type(key->cert->signature_key),
1400		    key->cert->signature_key->type);
1401		goto out;
1402	}
1403
1404	switch (key_verify(key->cert->signature_key, sig, slen,
1405	    buffer_ptr(&key->cert->certblob), signed_len)) {
1406	case 1:
1407		ret = 0;
1408		break; /* Good signature */
1409	case 0:
1410		error("%s: Invalid signature on certificate", __func__);
1411		goto out;
1412	case -1:
1413		error("%s: Certificate signature verification failed",
1414		    __func__);
1415		goto out;
1416	}
1417
1418 out:
1419	buffer_free(&tmp);
1420	free(principals);
1421	free(critical);
1422	free(exts);
1423	free(sig_key);
1424	free(sig);
1425	return ret;
1426}
1427
1428Key *
1429key_from_blob(const u_char *blob, u_int blen)
1430{
1431	Buffer b;
1432	int rlen, type;
1433	char *ktype = NULL, *curve = NULL;
1434	Key *key = NULL;
1435#ifdef OPENSSL_HAS_ECC
1436	EC_POINT *q = NULL;
1437	int nid = -1;
1438#endif
1439
1440#ifdef DEBUG_PK
1441	dump_base64(stderr, blob, blen);
1442#endif
1443	buffer_init(&b);
1444	buffer_append(&b, blob, blen);
1445	if ((ktype = buffer_get_cstring_ret(&b, NULL)) == NULL) {
1446		error("key_from_blob: can't read key type");
1447		goto out;
1448	}
1449
1450	type = key_type_from_name(ktype);
1451#ifdef OPENSSL_HAS_ECC
1452	if (key_type_plain(type) == KEY_ECDSA)
1453		nid = key_ecdsa_nid_from_name(ktype);
1454#endif
1455
1456	switch (type) {
1457	case KEY_RSA_CERT:
1458		(void)buffer_get_string_ptr_ret(&b, NULL); /* Skip nonce */
1459		/* FALLTHROUGH */
1460	case KEY_RSA:
1461	case KEY_RSA_CERT_V00:
1462		key = key_new(type);
1463		if (buffer_get_bignum2_ret(&b, key->rsa->e) == -1 ||
1464		    buffer_get_bignum2_ret(&b, key->rsa->n) == -1) {
1465			error("key_from_blob: can't read rsa key");
1466 badkey:
1467			key_free(key);
1468			key = NULL;
1469			goto out;
1470		}
1471#ifdef DEBUG_PK
1472		RSA_print_fp(stderr, key->rsa, 8);
1473#endif
1474		break;
1475	case KEY_DSA_CERT:
1476		(void)buffer_get_string_ptr_ret(&b, NULL); /* Skip nonce */
1477		/* FALLTHROUGH */
1478	case KEY_DSA:
1479	case KEY_DSA_CERT_V00:
1480		key = key_new(type);
1481		if (buffer_get_bignum2_ret(&b, key->dsa->p) == -1 ||
1482		    buffer_get_bignum2_ret(&b, key->dsa->q) == -1 ||
1483		    buffer_get_bignum2_ret(&b, key->dsa->g) == -1 ||
1484		    buffer_get_bignum2_ret(&b, key->dsa->pub_key) == -1) {
1485			error("key_from_blob: can't read dsa key");
1486			goto badkey;
1487		}
1488#ifdef DEBUG_PK
1489		DSA_print_fp(stderr, key->dsa, 8);
1490#endif
1491		break;
1492#ifdef OPENSSL_HAS_ECC
1493	case KEY_ECDSA_CERT:
1494		(void)buffer_get_string_ptr_ret(&b, NULL); /* Skip nonce */
1495		/* FALLTHROUGH */
1496	case KEY_ECDSA:
1497		key = key_new(type);
1498		key->ecdsa_nid = nid;
1499		if ((curve = buffer_get_string_ret(&b, NULL)) == NULL) {
1500			error("key_from_blob: can't read ecdsa curve");
1501			goto badkey;
1502		}
1503		if (key->ecdsa_nid != key_curve_name_to_nid(curve)) {
1504			error("key_from_blob: ecdsa curve doesn't match type");
1505			goto badkey;
1506		}
1507		if (key->ecdsa != NULL)
1508			EC_KEY_free(key->ecdsa);
1509		if ((key->ecdsa = EC_KEY_new_by_curve_name(key->ecdsa_nid))
1510		    == NULL)
1511			fatal("key_from_blob: EC_KEY_new_by_curve_name failed");
1512		if ((q = EC_POINT_new(EC_KEY_get0_group(key->ecdsa))) == NULL)
1513			fatal("key_from_blob: EC_POINT_new failed");
1514		if (buffer_get_ecpoint_ret(&b, EC_KEY_get0_group(key->ecdsa),
1515		    q) == -1) {
1516			error("key_from_blob: can't read ecdsa key point");
1517			goto badkey;
1518		}
1519		if (key_ec_validate_public(EC_KEY_get0_group(key->ecdsa),
1520		    q) != 0)
1521			goto badkey;
1522		if (EC_KEY_set_public_key(key->ecdsa, q) != 1)
1523			fatal("key_from_blob: EC_KEY_set_public_key failed");
1524#ifdef DEBUG_PK
1525		key_dump_ec_point(EC_KEY_get0_group(key->ecdsa), q);
1526#endif
1527		break;
1528#endif /* OPENSSL_HAS_ECC */
1529	case KEY_UNSPEC:
1530		key = key_new(type);
1531		break;
1532	default:
1533		error("key_from_blob: cannot handle type %s", ktype);
1534		goto out;
1535	}
1536	if (key_is_cert(key) && cert_parse(&b, key, blob, blen) == -1) {
1537		error("key_from_blob: can't parse cert data");
1538		goto badkey;
1539	}
1540	rlen = buffer_len(&b);
1541	if (key != NULL && rlen != 0)
1542		error("key_from_blob: remaining bytes in key blob %d", rlen);
1543 out:
1544	free(ktype);
1545	free(curve);
1546#ifdef OPENSSL_HAS_ECC
1547	if (q != NULL)
1548		EC_POINT_free(q);
1549#endif
1550	buffer_free(&b);
1551	return key;
1552}
1553
1554static int
1555to_blob(const Key *key, u_char **blobp, u_int *lenp, int force_plain)
1556{
1557	Buffer b;
1558	int len, type;
1559
1560	if (key == NULL) {
1561		error("key_to_blob: key == NULL");
1562		return 0;
1563	}
1564	buffer_init(&b);
1565	type = force_plain ? key_type_plain(key->type) : key->type;
1566	switch (type) {
1567	case KEY_DSA_CERT_V00:
1568	case KEY_RSA_CERT_V00:
1569	case KEY_DSA_CERT:
1570	case KEY_ECDSA_CERT:
1571	case KEY_RSA_CERT:
1572		/* Use the existing blob */
1573		buffer_append(&b, buffer_ptr(&key->cert->certblob),
1574		    buffer_len(&key->cert->certblob));
1575		break;
1576	case KEY_DSA:
1577		buffer_put_cstring(&b,
1578		    key_ssh_name_from_type_nid(type, key->ecdsa_nid));
1579		buffer_put_bignum2(&b, key->dsa->p);
1580		buffer_put_bignum2(&b, key->dsa->q);
1581		buffer_put_bignum2(&b, key->dsa->g);
1582		buffer_put_bignum2(&b, key->dsa->pub_key);
1583		break;
1584#ifdef OPENSSL_HAS_ECC
1585	case KEY_ECDSA:
1586		buffer_put_cstring(&b,
1587		    key_ssh_name_from_type_nid(type, key->ecdsa_nid));
1588		buffer_put_cstring(&b, key_curve_nid_to_name(key->ecdsa_nid));
1589		buffer_put_ecpoint(&b, EC_KEY_get0_group(key->ecdsa),
1590		    EC_KEY_get0_public_key(key->ecdsa));
1591		break;
1592#endif
1593	case KEY_RSA:
1594		buffer_put_cstring(&b,
1595		    key_ssh_name_from_type_nid(type, key->ecdsa_nid));
1596		buffer_put_bignum2(&b, key->rsa->e);
1597		buffer_put_bignum2(&b, key->rsa->n);
1598		break;
1599	default:
1600		error("key_to_blob: unsupported key type %d", key->type);
1601		buffer_free(&b);
1602		return 0;
1603	}
1604	len = buffer_len(&b);
1605	if (lenp != NULL)
1606		*lenp = len;
1607	if (blobp != NULL) {
1608		*blobp = xmalloc(len);
1609		memcpy(*blobp, buffer_ptr(&b), len);
1610	}
1611	memset(buffer_ptr(&b), 0, len);
1612	buffer_free(&b);
1613	return len;
1614}
1615
1616int
1617key_to_blob(const Key *key, u_char **blobp, u_int *lenp)
1618{
1619	return to_blob(key, blobp, lenp, 0);
1620}
1621
1622int
1623key_sign(
1624    const Key *key,
1625    u_char **sigp, u_int *lenp,
1626    const u_char *data, u_int datalen)
1627{
1628	switch (key->type) {
1629	case KEY_DSA_CERT_V00:
1630	case KEY_DSA_CERT:
1631	case KEY_DSA:
1632		return ssh_dss_sign(key, sigp, lenp, data, datalen);
1633#ifdef OPENSSL_HAS_ECC
1634	case KEY_ECDSA_CERT:
1635	case KEY_ECDSA:
1636		return ssh_ecdsa_sign(key, sigp, lenp, data, datalen);
1637#endif
1638	case KEY_RSA_CERT_V00:
1639	case KEY_RSA_CERT:
1640	case KEY_RSA:
1641		return ssh_rsa_sign(key, sigp, lenp, data, datalen);
1642	default:
1643		error("key_sign: invalid key type %d", key->type);
1644		return -1;
1645	}
1646}
1647
1648/*
1649 * key_verify returns 1 for a correct signature, 0 for an incorrect signature
1650 * and -1 on error.
1651 */
1652int
1653key_verify(
1654    const Key *key,
1655    const u_char *signature, u_int signaturelen,
1656    const u_char *data, u_int datalen)
1657{
1658	if (signaturelen == 0)
1659		return -1;
1660
1661	switch (key->type) {
1662	case KEY_DSA_CERT_V00:
1663	case KEY_DSA_CERT:
1664	case KEY_DSA:
1665		return ssh_dss_verify(key, signature, signaturelen, data, datalen);
1666#ifdef OPENSSL_HAS_ECC
1667	case KEY_ECDSA_CERT:
1668	case KEY_ECDSA:
1669		return ssh_ecdsa_verify(key, signature, signaturelen, data, datalen);
1670#endif
1671	case KEY_RSA_CERT_V00:
1672	case KEY_RSA_CERT:
1673	case KEY_RSA:
1674		return ssh_rsa_verify(key, signature, signaturelen, data, datalen);
1675	default:
1676		error("key_verify: invalid key type %d", key->type);
1677		return -1;
1678	}
1679}
1680
1681/* Converts a private to a public key */
1682Key *
1683key_demote(const Key *k)
1684{
1685	Key *pk;
1686
1687	pk = xcalloc(1, sizeof(*pk));
1688	pk->type = k->type;
1689	pk->flags = k->flags;
1690	pk->ecdsa_nid = k->ecdsa_nid;
1691	pk->dsa = NULL;
1692	pk->ecdsa = NULL;
1693	pk->rsa = NULL;
1694
1695	switch (k->type) {
1696	case KEY_RSA_CERT_V00:
1697	case KEY_RSA_CERT:
1698		key_cert_copy(k, pk);
1699		/* FALLTHROUGH */
1700	case KEY_RSA1:
1701	case KEY_RSA:
1702		if ((pk->rsa = RSA_new()) == NULL)
1703			fatal("key_demote: RSA_new failed");
1704		if ((pk->rsa->e = BN_dup(k->rsa->e)) == NULL)
1705			fatal("key_demote: BN_dup failed");
1706		if ((pk->rsa->n = BN_dup(k->rsa->n)) == NULL)
1707			fatal("key_demote: BN_dup failed");
1708		break;
1709	case KEY_DSA_CERT_V00:
1710	case KEY_DSA_CERT:
1711		key_cert_copy(k, pk);
1712		/* FALLTHROUGH */
1713	case KEY_DSA:
1714		if ((pk->dsa = DSA_new()) == NULL)
1715			fatal("key_demote: DSA_new failed");
1716		if ((pk->dsa->p = BN_dup(k->dsa->p)) == NULL)
1717			fatal("key_demote: BN_dup failed");
1718		if ((pk->dsa->q = BN_dup(k->dsa->q)) == NULL)
1719			fatal("key_demote: BN_dup failed");
1720		if ((pk->dsa->g = BN_dup(k->dsa->g)) == NULL)
1721			fatal("key_demote: BN_dup failed");
1722		if ((pk->dsa->pub_key = BN_dup(k->dsa->pub_key)) == NULL)
1723			fatal("key_demote: BN_dup failed");
1724		break;
1725#ifdef OPENSSL_HAS_ECC
1726	case KEY_ECDSA_CERT:
1727		key_cert_copy(k, pk);
1728		/* FALLTHROUGH */
1729	case KEY_ECDSA:
1730		if ((pk->ecdsa = EC_KEY_new_by_curve_name(pk->ecdsa_nid)) == NULL)
1731			fatal("key_demote: EC_KEY_new_by_curve_name failed");
1732		if (EC_KEY_set_public_key(pk->ecdsa,
1733		    EC_KEY_get0_public_key(k->ecdsa)) != 1)
1734			fatal("key_demote: EC_KEY_set_public_key failed");
1735		break;
1736#endif
1737	default:
1738		fatal("key_free: bad key type %d", k->type);
1739		break;
1740	}
1741
1742	return (pk);
1743}
1744
1745int
1746key_is_cert(const Key *k)
1747{
1748	if (k == NULL)
1749		return 0;
1750	switch (k->type) {
1751	case KEY_RSA_CERT_V00:
1752	case KEY_DSA_CERT_V00:
1753	case KEY_RSA_CERT:
1754	case KEY_DSA_CERT:
1755	case KEY_ECDSA_CERT:
1756		return 1;
1757	default:
1758		return 0;
1759	}
1760}
1761
1762/* Return the cert-less equivalent to a certified key type */
1763int
1764key_type_plain(int type)
1765{
1766	switch (type) {
1767	case KEY_RSA_CERT_V00:
1768	case KEY_RSA_CERT:
1769		return KEY_RSA;
1770	case KEY_DSA_CERT_V00:
1771	case KEY_DSA_CERT:
1772		return KEY_DSA;
1773	case KEY_ECDSA_CERT:
1774		return KEY_ECDSA;
1775	default:
1776		return type;
1777	}
1778}
1779
1780/* Convert a KEY_RSA or KEY_DSA to their _CERT equivalent */
1781int
1782key_to_certified(Key *k, int legacy)
1783{
1784	switch (k->type) {
1785	case KEY_RSA:
1786		k->cert = cert_new();
1787		k->type = legacy ? KEY_RSA_CERT_V00 : KEY_RSA_CERT;
1788		return 0;
1789	case KEY_DSA:
1790		k->cert = cert_new();
1791		k->type = legacy ? KEY_DSA_CERT_V00 : KEY_DSA_CERT;
1792		return 0;
1793	case KEY_ECDSA:
1794		if (legacy)
1795			fatal("%s: legacy ECDSA certificates are not supported",
1796			    __func__);
1797		k->cert = cert_new();
1798		k->type = KEY_ECDSA_CERT;
1799		return 0;
1800	default:
1801		error("%s: key has incorrect type %s", __func__, key_type(k));
1802		return -1;
1803	}
1804}
1805
1806/* Convert a KEY_RSA_CERT or KEY_DSA_CERT to their raw key equivalent */
1807int
1808key_drop_cert(Key *k)
1809{
1810	switch (k->type) {
1811	case KEY_RSA_CERT_V00:
1812	case KEY_RSA_CERT:
1813		cert_free(k->cert);
1814		k->type = KEY_RSA;
1815		return 0;
1816	case KEY_DSA_CERT_V00:
1817	case KEY_DSA_CERT:
1818		cert_free(k->cert);
1819		k->type = KEY_DSA;
1820		return 0;
1821	case KEY_ECDSA_CERT:
1822		cert_free(k->cert);
1823		k->type = KEY_ECDSA;
1824		return 0;
1825	default:
1826		error("%s: key has incorrect type %s", __func__, key_type(k));
1827		return -1;
1828	}
1829}
1830
1831/*
1832 * Sign a KEY_RSA_CERT, KEY_DSA_CERT or KEY_ECDSA_CERT, (re-)generating
1833 * the signed certblob
1834 */
1835int
1836key_certify(Key *k, Key *ca)
1837{
1838	Buffer principals;
1839	u_char *ca_blob, *sig_blob, nonce[32];
1840	u_int i, ca_len, sig_len;
1841
1842	if (k->cert == NULL) {
1843		error("%s: key lacks cert info", __func__);
1844		return -1;
1845	}
1846
1847	if (!key_is_cert(k)) {
1848		error("%s: certificate has unknown type %d", __func__,
1849		    k->cert->type);
1850		return -1;
1851	}
1852
1853	if (ca->type != KEY_RSA && ca->type != KEY_DSA &&
1854	    ca->type != KEY_ECDSA) {
1855		error("%s: CA key has unsupported type %s", __func__,
1856		    key_type(ca));
1857		return -1;
1858	}
1859
1860	key_to_blob(ca, &ca_blob, &ca_len);
1861
1862	buffer_clear(&k->cert->certblob);
1863	buffer_put_cstring(&k->cert->certblob, key_ssh_name(k));
1864
1865	/* -v01 certs put nonce first */
1866	arc4random_buf(&nonce, sizeof(nonce));
1867	if (!key_cert_is_legacy(k))
1868		buffer_put_string(&k->cert->certblob, nonce, sizeof(nonce));
1869
1870	switch (k->type) {
1871	case KEY_DSA_CERT_V00:
1872	case KEY_DSA_CERT:
1873		buffer_put_bignum2(&k->cert->certblob, k->dsa->p);
1874		buffer_put_bignum2(&k->cert->certblob, k->dsa->q);
1875		buffer_put_bignum2(&k->cert->certblob, k->dsa->g);
1876		buffer_put_bignum2(&k->cert->certblob, k->dsa->pub_key);
1877		break;
1878#ifdef OPENSSL_HAS_ECC
1879	case KEY_ECDSA_CERT:
1880		buffer_put_cstring(&k->cert->certblob,
1881		    key_curve_nid_to_name(k->ecdsa_nid));
1882		buffer_put_ecpoint(&k->cert->certblob,
1883		    EC_KEY_get0_group(k->ecdsa),
1884		    EC_KEY_get0_public_key(k->ecdsa));
1885		break;
1886#endif
1887	case KEY_RSA_CERT_V00:
1888	case KEY_RSA_CERT:
1889		buffer_put_bignum2(&k->cert->certblob, k->rsa->e);
1890		buffer_put_bignum2(&k->cert->certblob, k->rsa->n);
1891		break;
1892	default:
1893		error("%s: key has incorrect type %s", __func__, key_type(k));
1894		buffer_clear(&k->cert->certblob);
1895		free(ca_blob);
1896		return -1;
1897	}
1898
1899	/* -v01 certs have a serial number next */
1900	if (!key_cert_is_legacy(k))
1901		buffer_put_int64(&k->cert->certblob, k->cert->serial);
1902
1903	buffer_put_int(&k->cert->certblob, k->cert->type);
1904	buffer_put_cstring(&k->cert->certblob, k->cert->key_id);
1905
1906	buffer_init(&principals);
1907	for (i = 0; i < k->cert->nprincipals; i++)
1908		buffer_put_cstring(&principals, k->cert->principals[i]);
1909	buffer_put_string(&k->cert->certblob, buffer_ptr(&principals),
1910	    buffer_len(&principals));
1911	buffer_free(&principals);
1912
1913	buffer_put_int64(&k->cert->certblob, k->cert->valid_after);
1914	buffer_put_int64(&k->cert->certblob, k->cert->valid_before);
1915	buffer_put_string(&k->cert->certblob,
1916	    buffer_ptr(&k->cert->critical), buffer_len(&k->cert->critical));
1917
1918	/* -v01 certs have non-critical options here */
1919	if (!key_cert_is_legacy(k)) {
1920		buffer_put_string(&k->cert->certblob,
1921		    buffer_ptr(&k->cert->extensions),
1922		    buffer_len(&k->cert->extensions));
1923	}
1924
1925	/* -v00 certs put the nonce at the end */
1926	if (key_cert_is_legacy(k))
1927		buffer_put_string(&k->cert->certblob, nonce, sizeof(nonce));
1928
1929	buffer_put_string(&k->cert->certblob, NULL, 0); /* reserved */
1930	buffer_put_string(&k->cert->certblob, ca_blob, ca_len);
1931	free(ca_blob);
1932
1933	/* Sign the whole mess */
1934	if (key_sign(ca, &sig_blob, &sig_len, buffer_ptr(&k->cert->certblob),
1935	    buffer_len(&k->cert->certblob)) != 0) {
1936		error("%s: signature operation failed", __func__);
1937		buffer_clear(&k->cert->certblob);
1938		return -1;
1939	}
1940	/* Append signature and we are done */
1941	buffer_put_string(&k->cert->certblob, sig_blob, sig_len);
1942	free(sig_blob);
1943
1944	return 0;
1945}
1946
1947int
1948key_cert_check_authority(const Key *k, int want_host, int require_principal,
1949    const char *name, const char **reason)
1950{
1951	u_int i, principal_matches;
1952	time_t now = time(NULL);
1953
1954	if (want_host) {
1955		if (k->cert->type != SSH2_CERT_TYPE_HOST) {
1956			*reason = "Certificate invalid: not a host certificate";
1957			return -1;
1958		}
1959	} else {
1960		if (k->cert->type != SSH2_CERT_TYPE_USER) {
1961			*reason = "Certificate invalid: not a user certificate";
1962			return -1;
1963		}
1964	}
1965	if (now < 0) {
1966		error("%s: system clock lies before epoch", __func__);
1967		*reason = "Certificate invalid: not yet valid";
1968		return -1;
1969	}
1970	if ((u_int64_t)now < k->cert->valid_after) {
1971		*reason = "Certificate invalid: not yet valid";
1972		return -1;
1973	}
1974	if ((u_int64_t)now >= k->cert->valid_before) {
1975		*reason = "Certificate invalid: expired";
1976		return -1;
1977	}
1978	if (k->cert->nprincipals == 0) {
1979		if (require_principal) {
1980			*reason = "Certificate lacks principal list";
1981			return -1;
1982		}
1983	} else if (name != NULL) {
1984		principal_matches = 0;
1985		for (i = 0; i < k->cert->nprincipals; i++) {
1986			if (strcmp(name, k->cert->principals[i]) == 0) {
1987				principal_matches = 1;
1988				break;
1989			}
1990		}
1991		if (!principal_matches) {
1992			*reason = "Certificate invalid: name is not a listed "
1993			    "principal";
1994			return -1;
1995		}
1996	}
1997	return 0;
1998}
1999
2000int
2001key_cert_is_legacy(const Key *k)
2002{
2003	switch (k->type) {
2004	case KEY_DSA_CERT_V00:
2005	case KEY_RSA_CERT_V00:
2006		return 1;
2007	default:
2008		return 0;
2009	}
2010}
2011
2012/* XXX: these are really begging for a table-driven approach */
2013int
2014key_curve_name_to_nid(const char *name)
2015{
2016#ifdef OPENSSL_HAS_ECC
2017	if (strcmp(name, "nistp256") == 0)
2018		return NID_X9_62_prime256v1;
2019	else if (strcmp(name, "nistp384") == 0)
2020		return NID_secp384r1;
2021	else if (strcmp(name, "nistp521") == 0)
2022		return NID_secp521r1;
2023#endif
2024
2025	debug("%s: unsupported EC curve name \"%.100s\"", __func__, name);
2026	return -1;
2027}
2028
2029u_int
2030key_curve_nid_to_bits(int nid)
2031{
2032	switch (nid) {
2033#ifdef OPENSSL_HAS_ECC
2034	case NID_X9_62_prime256v1:
2035		return 256;
2036	case NID_secp384r1:
2037		return 384;
2038	case NID_secp521r1:
2039		return 521;
2040#endif
2041	default:
2042		error("%s: unsupported EC curve nid %d", __func__, nid);
2043		return 0;
2044	}
2045}
2046
2047const char *
2048key_curve_nid_to_name(int nid)
2049{
2050#ifdef OPENSSL_HAS_ECC
2051	if (nid == NID_X9_62_prime256v1)
2052		return "nistp256";
2053	else if (nid == NID_secp384r1)
2054		return "nistp384";
2055	else if (nid == NID_secp521r1)
2056		return "nistp521";
2057#endif
2058	error("%s: unsupported EC curve nid %d", __func__, nid);
2059	return NULL;
2060}
2061
2062#ifdef OPENSSL_HAS_ECC
2063const EVP_MD *
2064key_ec_nid_to_evpmd(int nid)
2065{
2066	int kbits = key_curve_nid_to_bits(nid);
2067
2068	if (kbits == 0)
2069		fatal("%s: invalid nid %d", __func__, nid);
2070	/* RFC5656 section 6.2.1 */
2071	if (kbits <= 256)
2072		return EVP_sha256();
2073	else if (kbits <= 384)
2074		return EVP_sha384();
2075	else
2076		return EVP_sha512();
2077}
2078
2079int
2080key_ec_validate_public(const EC_GROUP *group, const EC_POINT *public)
2081{
2082	BN_CTX *bnctx;
2083	EC_POINT *nq = NULL;
2084	BIGNUM *order, *x, *y, *tmp;
2085	int ret = -1;
2086
2087	if ((bnctx = BN_CTX_new()) == NULL)
2088		fatal("%s: BN_CTX_new failed", __func__);
2089	BN_CTX_start(bnctx);
2090
2091	/*
2092	 * We shouldn't ever hit this case because bignum_get_ecpoint()
2093	 * refuses to load GF2m points.
2094	 */
2095	if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) !=
2096	    NID_X9_62_prime_field) {
2097		error("%s: group is not a prime field", __func__);
2098		goto out;
2099	}
2100
2101	/* Q != infinity */
2102	if (EC_POINT_is_at_infinity(group, public)) {
2103		error("%s: received degenerate public key (infinity)",
2104		    __func__);
2105		goto out;
2106	}
2107
2108	if ((x = BN_CTX_get(bnctx)) == NULL ||
2109	    (y = BN_CTX_get(bnctx)) == NULL ||
2110	    (order = BN_CTX_get(bnctx)) == NULL ||
2111	    (tmp = BN_CTX_get(bnctx)) == NULL)
2112		fatal("%s: BN_CTX_get failed", __func__);
2113
2114	/* log2(x) > log2(order)/2, log2(y) > log2(order)/2 */
2115	if (EC_GROUP_get_order(group, order, bnctx) != 1)
2116		fatal("%s: EC_GROUP_get_order failed", __func__);
2117	if (EC_POINT_get_affine_coordinates_GFp(group, public,
2118	    x, y, bnctx) != 1)
2119		fatal("%s: EC_POINT_get_affine_coordinates_GFp", __func__);
2120	if (BN_num_bits(x) <= BN_num_bits(order) / 2) {
2121		error("%s: public key x coordinate too small: "
2122		    "bits(x) = %d, bits(order)/2 = %d", __func__,
2123		    BN_num_bits(x), BN_num_bits(order) / 2);
2124		goto out;
2125	}
2126	if (BN_num_bits(y) <= BN_num_bits(order) / 2) {
2127		error("%s: public key y coordinate too small: "
2128		    "bits(y) = %d, bits(order)/2 = %d", __func__,
2129		    BN_num_bits(x), BN_num_bits(order) / 2);
2130		goto out;
2131	}
2132
2133	/* nQ == infinity (n == order of subgroup) */
2134	if ((nq = EC_POINT_new(group)) == NULL)
2135		fatal("%s: BN_CTX_tmp failed", __func__);
2136	if (EC_POINT_mul(group, nq, NULL, public, order, bnctx) != 1)
2137		fatal("%s: EC_GROUP_mul failed", __func__);
2138	if (EC_POINT_is_at_infinity(group, nq) != 1) {
2139		error("%s: received degenerate public key (nQ != infinity)",
2140		    __func__);
2141		goto out;
2142	}
2143
2144	/* x < order - 1, y < order - 1 */
2145	if (!BN_sub(tmp, order, BN_value_one()))
2146		fatal("%s: BN_sub failed", __func__);
2147	if (BN_cmp(x, tmp) >= 0) {
2148		error("%s: public key x coordinate >= group order - 1",
2149		    __func__);
2150		goto out;
2151	}
2152	if (BN_cmp(y, tmp) >= 0) {
2153		error("%s: public key y coordinate >= group order - 1",
2154		    __func__);
2155		goto out;
2156	}
2157	ret = 0;
2158 out:
2159	BN_CTX_free(bnctx);
2160	EC_POINT_free(nq);
2161	return ret;
2162}
2163
2164int
2165key_ec_validate_private(const EC_KEY *key)
2166{
2167	BN_CTX *bnctx;
2168	BIGNUM *order, *tmp;
2169	int ret = -1;
2170
2171	if ((bnctx = BN_CTX_new()) == NULL)
2172		fatal("%s: BN_CTX_new failed", __func__);
2173	BN_CTX_start(bnctx);
2174
2175	if ((order = BN_CTX_get(bnctx)) == NULL ||
2176	    (tmp = BN_CTX_get(bnctx)) == NULL)
2177		fatal("%s: BN_CTX_get failed", __func__);
2178
2179	/* log2(private) > log2(order)/2 */
2180	if (EC_GROUP_get_order(EC_KEY_get0_group(key), order, bnctx) != 1)
2181		fatal("%s: EC_GROUP_get_order failed", __func__);
2182	if (BN_num_bits(EC_KEY_get0_private_key(key)) <=
2183	    BN_num_bits(order) / 2) {
2184		error("%s: private key too small: "
2185		    "bits(y) = %d, bits(order)/2 = %d", __func__,
2186		    BN_num_bits(EC_KEY_get0_private_key(key)),
2187		    BN_num_bits(order) / 2);
2188		goto out;
2189	}
2190
2191	/* private < order - 1 */
2192	if (!BN_sub(tmp, order, BN_value_one()))
2193		fatal("%s: BN_sub failed", __func__);
2194	if (BN_cmp(EC_KEY_get0_private_key(key), tmp) >= 0) {
2195		error("%s: private key >= group order - 1", __func__);
2196		goto out;
2197	}
2198	ret = 0;
2199 out:
2200	BN_CTX_free(bnctx);
2201	return ret;
2202}
2203
2204#if defined(DEBUG_KEXECDH) || defined(DEBUG_PK)
2205void
2206key_dump_ec_point(const EC_GROUP *group, const EC_POINT *point)
2207{
2208	BIGNUM *x, *y;
2209	BN_CTX *bnctx;
2210
2211	if (point == NULL) {
2212		fputs("point=(NULL)\n", stderr);
2213		return;
2214	}
2215	if ((bnctx = BN_CTX_new()) == NULL)
2216		fatal("%s: BN_CTX_new failed", __func__);
2217	BN_CTX_start(bnctx);
2218	if ((x = BN_CTX_get(bnctx)) == NULL || (y = BN_CTX_get(bnctx)) == NULL)
2219		fatal("%s: BN_CTX_get failed", __func__);
2220	if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) !=
2221	    NID_X9_62_prime_field)
2222		fatal("%s: group is not a prime field", __func__);
2223	if (EC_POINT_get_affine_coordinates_GFp(group, point, x, y, bnctx) != 1)
2224		fatal("%s: EC_POINT_get_affine_coordinates_GFp", __func__);
2225	fputs("x=", stderr);
2226	BN_print_fp(stderr, x);
2227	fputs("\ny=", stderr);
2228	BN_print_fp(stderr, y);
2229	fputs("\n", stderr);
2230	BN_CTX_free(bnctx);
2231}
2232
2233void
2234key_dump_ec_key(const EC_KEY *key)
2235{
2236	const BIGNUM *exponent;
2237
2238	key_dump_ec_point(EC_KEY_get0_group(key), EC_KEY_get0_public_key(key));
2239	fputs("exponent=", stderr);
2240	if ((exponent = EC_KEY_get0_private_key(key)) == NULL)
2241		fputs("(NULL)", stderr);
2242	else
2243		BN_print_fp(stderr, EC_KEY_get0_private_key(key));
2244	fputs("\n", stderr);
2245}
2246#endif /* defined(DEBUG_KEXECDH) || defined(DEBUG_PK) */
2247#endif /* OPENSSL_HAS_ECC */
2248