1207753Smm///////////////////////////////////////////////////////////////////////////////
2207753Smm//
3207753Smm/// \file       block_buffer_encoder.c
4207753Smm/// \brief      Single-call .xz Block encoder
5207753Smm//
6207753Smm//  Author:     Lasse Collin
7207753Smm//
8207753Smm//  This file has been put into the public domain.
9207753Smm//  You can do whatever you want with this file.
10207753Smm//
11207753Smm///////////////////////////////////////////////////////////////////////////////
12207753Smm
13207753Smm#include "block_encoder.h"
14207753Smm#include "filter_encoder.h"
15207753Smm#include "lzma2_encoder.h"
16207753Smm#include "check.h"
17207753Smm
18207753Smm
19207753Smm/// Estimate the maximum size of the Block Header and Check fields for
20207753Smm/// a Block that uses LZMA2 uncompressed chunks. We could use
21207753Smm/// lzma_block_header_size() but this is simpler.
22207753Smm///
23207753Smm/// Block Header Size + Block Flags + Compressed Size
24207753Smm/// + Uncompressed Size + Filter Flags for LZMA2 + CRC32 + Check
25207753Smm/// and round up to the next multiple of four to take Header Padding
26207753Smm/// into account.
27207753Smm#define HEADERS_BOUND ((1 + 1 + 2 * LZMA_VLI_BYTES_MAX + 3 + 4 \
28207753Smm		+ LZMA_CHECK_SIZE_MAX + 3) & ~3)
29207753Smm
30207753Smm
31207753Smmstatic lzma_vli
32207753Smmlzma2_bound(lzma_vli uncompressed_size)
33207753Smm{
34207753Smm	// Prevent integer overflow in overhead calculation.
35207753Smm	if (uncompressed_size > COMPRESSED_SIZE_MAX)
36207753Smm		return 0;
37207753Smm
38207753Smm	// Calculate the exact overhead of the LZMA2 headers: Round
39207753Smm	// uncompressed_size up to the next multiple of LZMA2_CHUNK_MAX,
40207753Smm	// multiply by the size of per-chunk header, and add one byte for
41207753Smm	// the end marker.
42207753Smm	const lzma_vli overhead = ((uncompressed_size + LZMA2_CHUNK_MAX - 1)
43207753Smm				/ LZMA2_CHUNK_MAX)
44207753Smm			* LZMA2_HEADER_UNCOMPRESSED + 1;
45207753Smm
46207753Smm	// Catch the possible integer overflow.
47207753Smm	if (COMPRESSED_SIZE_MAX - overhead < uncompressed_size)
48207753Smm		return 0;
49207753Smm
50207753Smm	return uncompressed_size + overhead;
51207753Smm}
52207753Smm
53207753Smm
54207753Smmextern LZMA_API(size_t)
55207753Smmlzma_block_buffer_bound(size_t uncompressed_size)
56207753Smm{
57207753Smm	// For now, if the data doesn't compress, we always use uncompressed
58207753Smm	// chunks of LZMA2. In future we may use Subblock filter too, but
59207753Smm	// but for simplicity we probably will still use the same bound
60207753Smm	// calculation even though Subblock filter would have slightly less
61207753Smm	// overhead.
62207753Smm	lzma_vli lzma2_size = lzma2_bound(uncompressed_size);
63207753Smm	if (lzma2_size == 0)
64207753Smm		return 0;
65207753Smm
66207753Smm	// Take Block Padding into account.
67207753Smm	lzma2_size = (lzma2_size + 3) & ~LZMA_VLI_C(3);
68207753Smm
69207753Smm#if SIZE_MAX < LZMA_VLI_MAX
70207753Smm	// Catch the possible integer overflow on 32-bit systems. There's no
71207753Smm	// overflow on 64-bit systems, because lzma2_bound() already takes
72207753Smm	// into account the size of the headers in the Block.
73207753Smm	if (SIZE_MAX - HEADERS_BOUND < lzma2_size)
74207753Smm		return 0;
75207753Smm#endif
76207753Smm
77207753Smm	return HEADERS_BOUND + lzma2_size;
78207753Smm}
79207753Smm
80207753Smm
81207753Smmstatic lzma_ret
82207753Smmblock_encode_uncompressed(lzma_block *block, const uint8_t *in, size_t in_size,
83207753Smm		uint8_t *out, size_t *out_pos, size_t out_size)
84207753Smm{
85207753Smm	// TODO: Figure out if the last filter is LZMA2 or Subblock and use
86207753Smm	// that filter to encode the uncompressed chunks.
87207753Smm
88207753Smm	// Use LZMA2 uncompressed chunks. We wouldn't need a dictionary at
89207753Smm	// all, but LZMA2 always requires a dictionary, so use the minimum
90207753Smm	// value to minimize memory usage of the decoder.
91207753Smm	lzma_options_lzma lzma2 = {
92207753Smm		.dict_size = LZMA_DICT_SIZE_MIN,
93207753Smm	};
94207753Smm
95207753Smm	lzma_filter filters[2];
96207753Smm	filters[0].id = LZMA_FILTER_LZMA2;
97207753Smm	filters[0].options = &lzma2;
98207753Smm	filters[1].id = LZMA_VLI_UNKNOWN;
99207753Smm
100207753Smm	// Set the above filter options to *block temporarily so that we can
101207753Smm	// encode the Block Header.
102207753Smm	lzma_filter *filters_orig = block->filters;
103207753Smm	block->filters = filters;
104207753Smm
105207753Smm	if (lzma_block_header_size(block) != LZMA_OK) {
106207753Smm		block->filters = filters_orig;
107207753Smm		return LZMA_PROG_ERROR;
108207753Smm	}
109207753Smm
110207753Smm	// Check that there's enough output space. The caller has already
111207753Smm	// set block->compressed_size to what lzma2_bound() has returned,
112207753Smm	// so we can reuse that value. We know that compressed_size is a
113207753Smm	// known valid VLI and header_size is a small value so their sum
114207753Smm	// will never overflow.
115207753Smm	assert(block->compressed_size == lzma2_bound(in_size));
116207753Smm	if (out_size - *out_pos
117207753Smm			< block->header_size + block->compressed_size) {
118207753Smm		block->filters = filters_orig;
119207753Smm		return LZMA_BUF_ERROR;
120207753Smm	}
121207753Smm
122207753Smm	if (lzma_block_header_encode(block, out + *out_pos) != LZMA_OK) {
123207753Smm		block->filters = filters_orig;
124207753Smm		return LZMA_PROG_ERROR;
125207753Smm	}
126207753Smm
127207753Smm	block->filters = filters_orig;
128207753Smm	*out_pos += block->header_size;
129207753Smm
130207753Smm	// Encode the data using LZMA2 uncompressed chunks.
131207753Smm	size_t in_pos = 0;
132207753Smm	uint8_t control = 0x01; // Dictionary reset
133207753Smm
134207753Smm	while (in_pos < in_size) {
135207753Smm		// Control byte: Indicate uncompressed chunk, of which
136207753Smm		// the first resets the dictionary.
137207753Smm		out[(*out_pos)++] = control;
138207753Smm		control = 0x02; // No dictionary reset
139207753Smm
140207753Smm		// Size of the uncompressed chunk
141207753Smm		const size_t copy_size
142213700Smm				= my_min(in_size - in_pos, LZMA2_CHUNK_MAX);
143207753Smm		out[(*out_pos)++] = (copy_size - 1) >> 8;
144207753Smm		out[(*out_pos)++] = (copy_size - 1) & 0xFF;
145207753Smm
146207753Smm		// The actual data
147207753Smm		assert(*out_pos + copy_size <= out_size);
148207753Smm		memcpy(out + *out_pos, in + in_pos, copy_size);
149207753Smm
150207753Smm		in_pos += copy_size;
151207753Smm		*out_pos += copy_size;
152207753Smm	}
153207753Smm
154207753Smm	// End marker
155207753Smm	out[(*out_pos)++] = 0x00;
156207753Smm	assert(*out_pos <= out_size);
157207753Smm
158207753Smm	return LZMA_OK;
159207753Smm}
160207753Smm
161207753Smm
162207753Smmstatic lzma_ret
163207753Smmblock_encode_normal(lzma_block *block, lzma_allocator *allocator,
164207753Smm		const uint8_t *in, size_t in_size,
165207753Smm		uint8_t *out, size_t *out_pos, size_t out_size)
166207753Smm{
167207753Smm	// Find out the size of the Block Header.
168207753Smm	block->compressed_size = lzma2_bound(in_size);
169207753Smm	if (block->compressed_size == 0)
170207753Smm		return LZMA_DATA_ERROR;
171207753Smm
172207753Smm	block->uncompressed_size = in_size;
173207753Smm	return_if_error(lzma_block_header_size(block));
174207753Smm
175207753Smm	// Reserve space for the Block Header and skip it for now.
176207753Smm	if (out_size - *out_pos <= block->header_size)
177207753Smm		return LZMA_BUF_ERROR;
178207753Smm
179207753Smm	const size_t out_start = *out_pos;
180207753Smm	*out_pos += block->header_size;
181207753Smm
182207753Smm	// Limit out_size so that we stop encoding if the output would grow
183207753Smm	// bigger than what uncompressed Block would be.
184207753Smm	if (out_size - *out_pos > block->compressed_size)
185207753Smm		out_size = *out_pos + block->compressed_size;
186207753Smm
187207753Smm	// TODO: In many common cases this could be optimized to use
188207753Smm	// significantly less memory.
189207753Smm	lzma_next_coder raw_encoder = LZMA_NEXT_CODER_INIT;
190207753Smm	lzma_ret ret = lzma_raw_encoder_init(
191207753Smm			&raw_encoder, allocator, block->filters);
192207753Smm
193207753Smm	if (ret == LZMA_OK) {
194207753Smm		size_t in_pos = 0;
195207753Smm		ret = raw_encoder.code(raw_encoder.coder, allocator,
196207753Smm				in, &in_pos, in_size, out, out_pos, out_size,
197207753Smm				LZMA_FINISH);
198207753Smm	}
199207753Smm
200207753Smm	// NOTE: This needs to be run even if lzma_raw_encoder_init() failed.
201207753Smm	lzma_next_end(&raw_encoder, allocator);
202207753Smm
203207753Smm	if (ret == LZMA_STREAM_END) {
204207753Smm		// Compression was successful. Write the Block Header.
205207753Smm		block->compressed_size
206207753Smm				= *out_pos - (out_start + block->header_size);
207207753Smm		ret = lzma_block_header_encode(block, out + out_start);
208207753Smm		if (ret != LZMA_OK)
209207753Smm			ret = LZMA_PROG_ERROR;
210207753Smm
211207753Smm	} else if (ret == LZMA_OK) {
212207753Smm		// Output buffer became full.
213207753Smm		ret = LZMA_BUF_ERROR;
214207753Smm	}
215207753Smm
216207753Smm	// Reset *out_pos if something went wrong.
217207753Smm	if (ret != LZMA_OK)
218207753Smm		*out_pos = out_start;
219207753Smm
220207753Smm	return ret;
221207753Smm}
222207753Smm
223207753Smm
224207753Smmextern LZMA_API(lzma_ret)
225207753Smmlzma_block_buffer_encode(lzma_block *block, lzma_allocator *allocator,
226207753Smm		const uint8_t *in, size_t in_size,
227207753Smm		uint8_t *out, size_t *out_pos, size_t out_size)
228207753Smm{
229223935Smm	// Validate the arguments.
230223935Smm	if (block == NULL || (in == NULL && in_size != 0) || out == NULL
231207753Smm			|| out_pos == NULL || *out_pos > out_size)
232207753Smm		return LZMA_PROG_ERROR;
233207753Smm
234223935Smm	// The contents of the structure may depend on the version so
235223935Smm	// check the version before validating the contents of *block.
236207753Smm	if (block->version != 0)
237207753Smm		return LZMA_OPTIONS_ERROR;
238207753Smm
239223935Smm	if ((unsigned int)(block->check) > LZMA_CHECK_ID_MAX
240223935Smm			|| block->filters == NULL)
241223935Smm		return LZMA_PROG_ERROR;
242223935Smm
243223935Smm	if (!lzma_check_is_supported(block->check))
244223935Smm		return LZMA_UNSUPPORTED_CHECK;
245223935Smm
246207753Smm	// Size of a Block has to be a multiple of four, so limit the size
247207753Smm	// here already. This way we don't need to check it again when adding
248207753Smm	// Block Padding.
249207753Smm	out_size -= (out_size - *out_pos) & 3;
250207753Smm
251207753Smm	// Get the size of the Check field.
252207753Smm	const size_t check_size = lzma_check_size(block->check);
253223935Smm	assert(check_size != UINT32_MAX);
254207753Smm
255207753Smm	// Reserve space for the Check field.
256207753Smm	if (out_size - *out_pos <= check_size)
257207753Smm		return LZMA_BUF_ERROR;
258207753Smm
259207753Smm	out_size -= check_size;
260207753Smm
261207753Smm	// Do the actual compression.
262207753Smm	const lzma_ret ret = block_encode_normal(block, allocator,
263207753Smm			in, in_size, out, out_pos, out_size);
264207753Smm	if (ret != LZMA_OK) {
265207753Smm		// If the error was something else than output buffer
266207753Smm		// becoming full, return the error now.
267207753Smm		if (ret != LZMA_BUF_ERROR)
268207753Smm			return ret;
269207753Smm
270207753Smm		// The data was uncompressible (at least with the options
271207753Smm		// given to us) or the output buffer was too small. Use the
272207753Smm		// uncompressed chunks of LZMA2 to wrap the data into a valid
273207753Smm		// Block. If we haven't been given enough output space, even
274207753Smm		// this may fail.
275207753Smm		return_if_error(block_encode_uncompressed(block, in, in_size,
276207753Smm				out, out_pos, out_size));
277207753Smm	}
278207753Smm
279207753Smm	assert(*out_pos <= out_size);
280207753Smm
281207753Smm	// Block Padding. No buffer overflow here, because we already adjusted
282207753Smm	// out_size so that (out_size - out_start) is a multiple of four.
283207753Smm	// Thus, if the buffer is full, the loop body can never run.
284207753Smm	for (size_t i = (size_t)(block->compressed_size); i & 3; ++i) {
285207753Smm		assert(*out_pos < out_size);
286207753Smm		out[(*out_pos)++] = 0x00;
287207753Smm	}
288207753Smm
289207753Smm	// If there's no Check field, we are done now.
290207753Smm	if (check_size > 0) {
291207753Smm		// Calculate the integrity check. We reserved space for
292207753Smm		// the Check field earlier so we don't need to check for
293207753Smm		// available output space here.
294207753Smm		lzma_check_state check;
295207753Smm		lzma_check_init(&check, block->check);
296207753Smm		lzma_check_update(&check, block->check, in, in_size);
297207753Smm		lzma_check_finish(&check, block->check);
298207753Smm
299207753Smm		memcpy(block->raw_check, check.buffer.u8, check_size);
300207753Smm		memcpy(out + *out_pos, check.buffer.u8, check_size);
301207753Smm		*out_pos += check_size;
302207753Smm	}
303207753Smm
304207753Smm	return LZMA_OK;
305207753Smm}
306