1///////////////////////////////////////////////////////////////////////////////
2//
3/// \file       block_buffer_encoder.c
4/// \brief      Single-call .xz Block encoder
5//
6//  Author:     Lasse Collin
7//
8//  This file has been put into the public domain.
9//  You can do whatever you want with this file.
10//
11///////////////////////////////////////////////////////////////////////////////
12
13#include "block_encoder.h"
14#include "filter_encoder.h"
15#include "lzma2_encoder.h"
16#include "check.h"
17
18
19/// Estimate the maximum size of the Block Header and Check fields for
20/// a Block that uses LZMA2 uncompressed chunks. We could use
21/// lzma_block_header_size() but this is simpler.
22///
23/// Block Header Size + Block Flags + Compressed Size
24/// + Uncompressed Size + Filter Flags for LZMA2 + CRC32 + Check
25/// and round up to the next multiple of four to take Header Padding
26/// into account.
27#define HEADERS_BOUND ((1 + 1 + 2 * LZMA_VLI_BYTES_MAX + 3 + 4 \
28		+ LZMA_CHECK_SIZE_MAX + 3) & ~3)
29
30
31static lzma_vli
32lzma2_bound(lzma_vli uncompressed_size)
33{
34	// Prevent integer overflow in overhead calculation.
35	if (uncompressed_size > COMPRESSED_SIZE_MAX)
36		return 0;
37
38	// Calculate the exact overhead of the LZMA2 headers: Round
39	// uncompressed_size up to the next multiple of LZMA2_CHUNK_MAX,
40	// multiply by the size of per-chunk header, and add one byte for
41	// the end marker.
42	const lzma_vli overhead = ((uncompressed_size + LZMA2_CHUNK_MAX - 1)
43				/ LZMA2_CHUNK_MAX)
44			* LZMA2_HEADER_UNCOMPRESSED + 1;
45
46	// Catch the possible integer overflow.
47	if (COMPRESSED_SIZE_MAX - overhead < uncompressed_size)
48		return 0;
49
50	return uncompressed_size + overhead;
51}
52
53
54extern LZMA_API(size_t)
55lzma_block_buffer_bound(size_t uncompressed_size)
56{
57	// For now, if the data doesn't compress, we always use uncompressed
58	// chunks of LZMA2. In future we may use Subblock filter too, but
59	// but for simplicity we probably will still use the same bound
60	// calculation even though Subblock filter would have slightly less
61	// overhead.
62	lzma_vli lzma2_size = lzma2_bound(uncompressed_size);
63	if (lzma2_size == 0)
64		return 0;
65
66	// Take Block Padding into account.
67	lzma2_size = (lzma2_size + 3) & ~LZMA_VLI_C(3);
68
69#if SIZE_MAX < LZMA_VLI_MAX
70	// Catch the possible integer overflow on 32-bit systems. There's no
71	// overflow on 64-bit systems, because lzma2_bound() already takes
72	// into account the size of the headers in the Block.
73	if (SIZE_MAX - HEADERS_BOUND < lzma2_size)
74		return 0;
75#endif
76
77	return HEADERS_BOUND + lzma2_size;
78}
79
80
81static lzma_ret
82block_encode_uncompressed(lzma_block *block, const uint8_t *in, size_t in_size,
83		uint8_t *out, size_t *out_pos, size_t out_size)
84{
85	// TODO: Figure out if the last filter is LZMA2 or Subblock and use
86	// that filter to encode the uncompressed chunks.
87
88	// Use LZMA2 uncompressed chunks. We wouldn't need a dictionary at
89	// all, but LZMA2 always requires a dictionary, so use the minimum
90	// value to minimize memory usage of the decoder.
91	lzma_options_lzma lzma2 = {
92		.dict_size = LZMA_DICT_SIZE_MIN,
93	};
94
95	lzma_filter filters[2];
96	filters[0].id = LZMA_FILTER_LZMA2;
97	filters[0].options = &lzma2;
98	filters[1].id = LZMA_VLI_UNKNOWN;
99
100	// Set the above filter options to *block temporarily so that we can
101	// encode the Block Header.
102	lzma_filter *filters_orig = block->filters;
103	block->filters = filters;
104
105	if (lzma_block_header_size(block) != LZMA_OK) {
106		block->filters = filters_orig;
107		return LZMA_PROG_ERROR;
108	}
109
110	// Check that there's enough output space. The caller has already
111	// set block->compressed_size to what lzma2_bound() has returned,
112	// so we can reuse that value. We know that compressed_size is a
113	// known valid VLI and header_size is a small value so their sum
114	// will never overflow.
115	assert(block->compressed_size == lzma2_bound(in_size));
116	if (out_size - *out_pos
117			< block->header_size + block->compressed_size) {
118		block->filters = filters_orig;
119		return LZMA_BUF_ERROR;
120	}
121
122	if (lzma_block_header_encode(block, out + *out_pos) != LZMA_OK) {
123		block->filters = filters_orig;
124		return LZMA_PROG_ERROR;
125	}
126
127	block->filters = filters_orig;
128	*out_pos += block->header_size;
129
130	// Encode the data using LZMA2 uncompressed chunks.
131	size_t in_pos = 0;
132	uint8_t control = 0x01; // Dictionary reset
133
134	while (in_pos < in_size) {
135		// Control byte: Indicate uncompressed chunk, of which
136		// the first resets the dictionary.
137		out[(*out_pos)++] = control;
138		control = 0x02; // No dictionary reset
139
140		// Size of the uncompressed chunk
141		const size_t copy_size
142				= my_min(in_size - in_pos, LZMA2_CHUNK_MAX);
143		out[(*out_pos)++] = (copy_size - 1) >> 8;
144		out[(*out_pos)++] = (copy_size - 1) & 0xFF;
145
146		// The actual data
147		assert(*out_pos + copy_size <= out_size);
148		memcpy(out + *out_pos, in + in_pos, copy_size);
149
150		in_pos += copy_size;
151		*out_pos += copy_size;
152	}
153
154	// End marker
155	out[(*out_pos)++] = 0x00;
156	assert(*out_pos <= out_size);
157
158	return LZMA_OK;
159}
160
161
162static lzma_ret
163block_encode_normal(lzma_block *block, lzma_allocator *allocator,
164		const uint8_t *in, size_t in_size,
165		uint8_t *out, size_t *out_pos, size_t out_size)
166{
167	// Find out the size of the Block Header.
168	block->compressed_size = lzma2_bound(in_size);
169	if (block->compressed_size == 0)
170		return LZMA_DATA_ERROR;
171
172	block->uncompressed_size = in_size;
173	return_if_error(lzma_block_header_size(block));
174
175	// Reserve space for the Block Header and skip it for now.
176	if (out_size - *out_pos <= block->header_size)
177		return LZMA_BUF_ERROR;
178
179	const size_t out_start = *out_pos;
180	*out_pos += block->header_size;
181
182	// Limit out_size so that we stop encoding if the output would grow
183	// bigger than what uncompressed Block would be.
184	if (out_size - *out_pos > block->compressed_size)
185		out_size = *out_pos + block->compressed_size;
186
187	// TODO: In many common cases this could be optimized to use
188	// significantly less memory.
189	lzma_next_coder raw_encoder = LZMA_NEXT_CODER_INIT;
190	lzma_ret ret = lzma_raw_encoder_init(
191			&raw_encoder, allocator, block->filters);
192
193	if (ret == LZMA_OK) {
194		size_t in_pos = 0;
195		ret = raw_encoder.code(raw_encoder.coder, allocator,
196				in, &in_pos, in_size, out, out_pos, out_size,
197				LZMA_FINISH);
198	}
199
200	// NOTE: This needs to be run even if lzma_raw_encoder_init() failed.
201	lzma_next_end(&raw_encoder, allocator);
202
203	if (ret == LZMA_STREAM_END) {
204		// Compression was successful. Write the Block Header.
205		block->compressed_size
206				= *out_pos - (out_start + block->header_size);
207		ret = lzma_block_header_encode(block, out + out_start);
208		if (ret != LZMA_OK)
209			ret = LZMA_PROG_ERROR;
210
211	} else if (ret == LZMA_OK) {
212		// Output buffer became full.
213		ret = LZMA_BUF_ERROR;
214	}
215
216	// Reset *out_pos if something went wrong.
217	if (ret != LZMA_OK)
218		*out_pos = out_start;
219
220	return ret;
221}
222
223
224extern LZMA_API(lzma_ret)
225lzma_block_buffer_encode(lzma_block *block, lzma_allocator *allocator,
226		const uint8_t *in, size_t in_size,
227		uint8_t *out, size_t *out_pos, size_t out_size)
228{
229	// Validate the arguments.
230	if (block == NULL || (in == NULL && in_size != 0) || out == NULL
231			|| out_pos == NULL || *out_pos > out_size)
232		return LZMA_PROG_ERROR;
233
234	// The contents of the structure may depend on the version so
235	// check the version before validating the contents of *block.
236	if (block->version != 0)
237		return LZMA_OPTIONS_ERROR;
238
239	if ((unsigned int)(block->check) > LZMA_CHECK_ID_MAX
240			|| block->filters == NULL)
241		return LZMA_PROG_ERROR;
242
243	if (!lzma_check_is_supported(block->check))
244		return LZMA_UNSUPPORTED_CHECK;
245
246	// Size of a Block has to be a multiple of four, so limit the size
247	// here already. This way we don't need to check it again when adding
248	// Block Padding.
249	out_size -= (out_size - *out_pos) & 3;
250
251	// Get the size of the Check field.
252	const size_t check_size = lzma_check_size(block->check);
253	assert(check_size != UINT32_MAX);
254
255	// Reserve space for the Check field.
256	if (out_size - *out_pos <= check_size)
257		return LZMA_BUF_ERROR;
258
259	out_size -= check_size;
260
261	// Do the actual compression.
262	const lzma_ret ret = block_encode_normal(block, allocator,
263			in, in_size, out, out_pos, out_size);
264	if (ret != LZMA_OK) {
265		// If the error was something else than output buffer
266		// becoming full, return the error now.
267		if (ret != LZMA_BUF_ERROR)
268			return ret;
269
270		// The data was uncompressible (at least with the options
271		// given to us) or the output buffer was too small. Use the
272		// uncompressed chunks of LZMA2 to wrap the data into a valid
273		// Block. If we haven't been given enough output space, even
274		// this may fail.
275		return_if_error(block_encode_uncompressed(block, in, in_size,
276				out, out_pos, out_size));
277	}
278
279	assert(*out_pos <= out_size);
280
281	// Block Padding. No buffer overflow here, because we already adjusted
282	// out_size so that (out_size - out_start) is a multiple of four.
283	// Thus, if the buffer is full, the loop body can never run.
284	for (size_t i = (size_t)(block->compressed_size); i & 3; ++i) {
285		assert(*out_pos < out_size);
286		out[(*out_pos)++] = 0x00;
287	}
288
289	// If there's no Check field, we are done now.
290	if (check_size > 0) {
291		// Calculate the integrity check. We reserved space for
292		// the Check field earlier so we don't need to check for
293		// available output space here.
294		lzma_check_state check;
295		lzma_check_init(&check, block->check);
296		lzma_check_update(&check, block->check, in, in_size);
297		lzma_check_finish(&check, block->check);
298
299		memcpy(block->raw_check, check.buffer.u8, check_size);
300		memcpy(out + *out_pos, check.buffer.u8, check_size);
301		*out_pos += check_size;
302	}
303
304	return LZMA_OK;
305}
306