1/*
2 * /src/NTP/REPOSITORY/ntp4-dev/parseutil/dcfd.c,v 4.18 2005/10/07 22:08:18 kardel RELEASE_20051008_A
3 *
4 * dcfd.c,v 4.18 2005/10/07 22:08:18 kardel RELEASE_20051008_A
5 *
6 * DCF77 100/200ms pulse synchronisation daemon program (via 50Baud serial line)
7 *
8 * Features:
9 *  DCF77 decoding
10 *  simple NTP loopfilter logic for local clock
11 *  interactive display for debugging
12 *
13 * Lacks:
14 *  Leap second handling (at that level you should switch to NTP Version 4 - really!)
15 *
16 * Copyright (c) 1995-2005 by Frank Kardel <kardel <AT> ntp.org>
17 * Copyright (c) 1989-1994 by Frank Kardel, Friedrich-Alexander Universit�t Erlangen-N�rnberg, Germany
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions
21 * are met:
22 * 1. Redistributions of source code must retain the above copyright
23 *    notice, this list of conditions and the following disclaimer.
24 * 2. Redistributions in binary form must reproduce the above copyright
25 *    notice, this list of conditions and the following disclaimer in the
26 *    documentation and/or other materials provided with the distribution.
27 * 3. Neither the name of the author nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 */
44
45#ifdef HAVE_CONFIG_H
46# include <config.h>
47#endif
48
49#include <sys/ioctl.h>
50#include <unistd.h>
51#include <stdio.h>
52#include <fcntl.h>
53#include <sys/types.h>
54#include <sys/time.h>
55#include <signal.h>
56#include <syslog.h>
57#include <time.h>
58
59/*
60 * NTP compilation environment
61 */
62#include "ntp_stdlib.h"
63#include "ntpd.h"   /* indirectly include ntp.h to get YEAR_PIVOT   Y2KFixes */
64
65/*
66 * select which terminal handling to use (currently only SysV variants)
67 */
68#if defined(HAVE_TERMIOS_H) || defined(STREAM)
69#include <termios.h>
70#define TTY_GETATTR(_FD_, _ARG_) tcgetattr((_FD_), (_ARG_))
71#define TTY_SETATTR(_FD_, _ARG_) tcsetattr((_FD_), TCSANOW, (_ARG_))
72#else  /* not HAVE_TERMIOS_H || STREAM */
73# if defined(HAVE_TERMIO_H) || defined(HAVE_SYSV_TTYS)
74#  include <termio.h>
75#  define TTY_GETATTR(_FD_, _ARG_) ioctl((_FD_), TCGETA, (_ARG_))
76#  define TTY_SETATTR(_FD_, _ARG_) ioctl((_FD_), TCSETAW, (_ARG_))
77# endif/* HAVE_TERMIO_H || HAVE_SYSV_TTYS */
78#endif /* not HAVE_TERMIOS_H || STREAM */
79
80
81#ifndef TTY_GETATTR
82#include "Bletch: MUST DEFINE ONE OF 'HAVE_TERMIOS_H' or 'HAVE_TERMIO_H'"
83#endif
84
85#ifndef days_per_year
86#define days_per_year(_x_) (((_x_) % 4) ? 365 : (((_x_) % 400) ? 365 : 366))
87#endif
88
89#define timernormalize(_a_) \
90	if ((_a_)->tv_usec >= 1000000) \
91	{ \
92		(_a_)->tv_sec  += (_a_)->tv_usec / 1000000; \
93		(_a_)->tv_usec  = (_a_)->tv_usec % 1000000; \
94	} \
95	if ((_a_)->tv_usec < 0) \
96	{ \
97		(_a_)->tv_sec  -= 1 + (-(_a_)->tv_usec / 1000000); \
98		(_a_)->tv_usec = 999999 - (-(_a_)->tv_usec - 1); \
99	}
100
101#ifdef timeradd
102#undef timeradd
103#endif
104#define timeradd(_a_, _b_) \
105	(_a_)->tv_sec  += (_b_)->tv_sec; \
106	(_a_)->tv_usec += (_b_)->tv_usec; \
107	timernormalize((_a_))
108
109#ifdef timersub
110#undef timersub
111#endif
112#define timersub(_a_, _b_) \
113	(_a_)->tv_sec  -= (_b_)->tv_sec; \
114	(_a_)->tv_usec -= (_b_)->tv_usec; \
115	timernormalize((_a_))
116
117/*
118 * debug macros
119 */
120#define PRINTF if (interactive) printf
121#define LPRINTF if (interactive && loop_filter_debug) printf
122
123#ifdef DEBUG
124#define dprintf(_x_) LPRINTF _x_
125#else
126#define dprintf(_x_)
127#endif
128
129#ifdef DECL_ERRNO
130     extern int errno;
131#endif
132
133static char *revision = "4.18";
134
135/*
136 * display received data (avoids also detaching from tty)
137 */
138static int interactive = 0;
139
140/*
141 * display loopfilter (clock control) variables
142 */
143static int loop_filter_debug = 0;
144
145/*
146 * do not set/adjust system time
147 */
148static int no_set = 0;
149
150/*
151 * time that passes between start of DCF impulse and time stamping (fine
152 * adjustment) in microseconds (receiver/OS dependent)
153 */
154#define DEFAULT_DELAY	230000	/* rough estimate */
155
156/*
157 * The two states we can be in - eithe we receive nothing
158 * usable or we have the correct time
159 */
160#define NO_SYNC		0x01
161#define SYNC		0x02
162
163static int    sync_state = NO_SYNC;
164static time_t last_sync;
165
166static unsigned long ticks = 0;
167
168static char pat[] = "-\\|/";
169
170#define LINES		(24-2)	/* error lines after which the two headlines are repeated */
171
172#define MAX_UNSYNC	(10*60)	/* allow synchronisation loss for 10 minutes */
173#define NOTICE_INTERVAL (20*60)	/* mention missing synchronisation every 20 minutes */
174
175/*
176 * clock adjustment PLL - see NTP protocol spec (RFC1305) for details
177 */
178
179#define USECSCALE	10
180#define TIMECONSTANT	2
181#define ADJINTERVAL	0
182#define FREQ_WEIGHT	18
183#define PHASE_WEIGHT	7
184#define MAX_DRIFT	0x3FFFFFFF
185
186#define R_SHIFT(_X_, _Y_) (((_X_) < 0) ? -(-(_X_) >> (_Y_)) : ((_X_) >> (_Y_)))
187
188static struct timeval max_adj_offset = { 0, 128000 };
189
190static long clock_adjust = 0;	/* current adjustment value (usec * 2^USECSCALE) */
191static long accum_drift   = 0;	/* accumulated drift value  (usec / ADJINTERVAL) */
192static long adjustments  = 0;
193static char skip_adjust  = 1;	/* discard first adjustment (bad samples) */
194
195/*
196 * DCF77 state flags
197 */
198#define DCFB_ANNOUNCE           0x0001 /* switch time zone warning (DST switch) */
199#define DCFB_DST                0x0002 /* DST in effect */
200#define DCFB_LEAP		0x0004 /* LEAP warning (1 hour prior to occurrence) */
201#define DCFB_ALTERNATE		0x0008 /* alternate antenna used */
202
203struct clocktime		/* clock time broken up from time code */
204{
205	long wday;		/* Day of week: 1: Monday - 7: Sunday */
206	long day;
207	long month;
208	long year;
209	long hour;
210	long minute;
211	long second;
212	long usecond;
213	long utcoffset;	/* in minutes */
214	long flags;		/* current clock status  (DCF77 state flags) */
215};
216
217typedef struct clocktime clocktime_t;
218
219/*
220 * (usually) quick constant multiplications
221 */
222#define TIMES10(_X_) (((_X_) << 3) + ((_X_) << 1))	/* *8 + *2 */
223#define TIMES24(_X_) (((_X_) << 4) + ((_X_) << 3))      /* *16 + *8 */
224#define TIMES60(_X_) ((((_X_) << 4)  - (_X_)) << 2)     /* *(16 - 1) *4 */
225/*
226 * generic l_abs() function
227 */
228#define l_abs(_x_)     (((_x_) < 0) ? -(_x_) : (_x_))
229
230/*
231 * conversion related return/error codes
232 */
233#define CVT_MASK	0x0000000F /* conversion exit code */
234#define   CVT_NONE	0x00000001 /* format not applicable */
235#define   CVT_FAIL	0x00000002 /* conversion failed - error code returned */
236#define   CVT_OK	0x00000004 /* conversion succeeded */
237#define CVT_BADFMT	0x00000010 /* general format error - (unparsable) */
238#define CVT_BADDATE	0x00000020 /* invalid date */
239#define CVT_BADTIME	0x00000040 /* invalid time */
240
241/*
242 * DCF77 raw time code
243 *
244 * From "Zur Zeit", Physikalisch-Technische Bundesanstalt (PTB), Braunschweig
245 * und Berlin, Maerz 1989
246 *
247 * Timecode transmission:
248 * AM:
249 *	time marks are send every second except for the second before the
250 *	next minute mark
251 *	time marks consist of a reduction of transmitter power to 25%
252 *	of the nominal level
253 *	the falling edge is the time indication (on time)
254 *	time marks of a 100ms duration constitute a logical 0
255 *	time marks of a 200ms duration constitute a logical 1
256 * FM:
257 *	see the spec. (basically a (non-)inverted psuedo random phase shift)
258 *
259 * Encoding:
260 * Second	Contents
261 * 0  - 10	AM: free, FM: 0
262 * 11 - 14	free
263 * 15		R     - alternate antenna
264 * 16		A1    - expect zone change (1 hour before)
265 * 17 - 18	Z1,Z2 - time zone
266 *		 0  0 illegal
267 *		 0  1 MEZ  (MET)
268 *		 1  0 MESZ (MED, MET DST)
269 *		 1  1 illegal
270 * 19		A2    - expect leap insertion/deletion (1 hour before)
271 * 20		S     - start of time code (1)
272 * 21 - 24	M1    - BCD (lsb first) Minutes
273 * 25 - 27	M10   - BCD (lsb first) 10 Minutes
274 * 28		P1    - Minute Parity (even)
275 * 29 - 32	H1    - BCD (lsb first) Hours
276 * 33 - 34      H10   - BCD (lsb first) 10 Hours
277 * 35		P2    - Hour Parity (even)
278 * 36 - 39	D1    - BCD (lsb first) Days
279 * 40 - 41	D10   - BCD (lsb first) 10 Days
280 * 42 - 44	DW    - BCD (lsb first) day of week (1: Monday -> 7: Sunday)
281 * 45 - 49	MO    - BCD (lsb first) Month
282 * 50           MO0   - 10 Months
283 * 51 - 53	Y1    - BCD (lsb first) Years
284 * 54 - 57	Y10   - BCD (lsb first) 10 Years
285 * 58 		P3    - Date Parity (even)
286 * 59		      - usually missing (minute indication), except for leap insertion
287 */
288
289/*-----------------------------------------------------------------------
290 * conversion table to map DCF77 bit stream into data fields.
291 * Encoding:
292 *   Each field of the DCF77 code is described with two adjacent entries in
293 *   this table. The first entry specifies the offset into the DCF77 data stream
294 *   while the length is given as the difference between the start index and
295 *   the start index of the following field.
296 */
297static struct rawdcfcode
298{
299	char offset;			/* start bit */
300} rawdcfcode[] =
301{
302	{  0 }, { 15 }, { 16 }, { 17 }, { 19 }, { 20 }, { 21 }, { 25 }, { 28 }, { 29 },
303	{ 33 }, { 35 }, { 36 }, { 40 }, { 42 }, { 45 }, { 49 }, { 50 }, { 54 }, { 58 }, { 59 }
304};
305
306/*-----------------------------------------------------------------------
307 * symbolic names for the fields of DCF77 describes in "rawdcfcode".
308 * see comment above for the structure of the DCF77 data
309 */
310#define DCF_M	0
311#define DCF_R	1
312#define DCF_A1	2
313#define DCF_Z	3
314#define DCF_A2	4
315#define DCF_S	5
316#define DCF_M1	6
317#define DCF_M10	7
318#define DCF_P1	8
319#define DCF_H1	9
320#define DCF_H10	10
321#define DCF_P2	11
322#define DCF_D1	12
323#define DCF_D10	13
324#define DCF_DW	14
325#define DCF_MO	15
326#define DCF_MO0	16
327#define DCF_Y1	17
328#define DCF_Y10	18
329#define DCF_P3	19
330
331/*-----------------------------------------------------------------------
332 * parity field table (same encoding as rawdcfcode)
333 * This table describes the sections of the DCF77 code that are
334 * parity protected
335 */
336static struct partab
337{
338	char offset;			/* start bit of parity field */
339} partab[] =
340{
341	{ 21 }, { 29 }, { 36 }, { 59 }
342};
343
344/*-----------------------------------------------------------------------
345 * offsets for parity field descriptions
346 */
347#define DCF_P_P1	0
348#define DCF_P_P2	1
349#define DCF_P_P3	2
350
351/*-----------------------------------------------------------------------
352 * legal values for time zone information
353 */
354#define DCF_Z_MET 0x2
355#define DCF_Z_MED 0x1
356
357/*-----------------------------------------------------------------------
358 * symbolic representation if the DCF77 data stream
359 */
360static struct dcfparam
361{
362	unsigned char onebits[60];
363	unsigned char zerobits[60];
364} dcfparam =
365{
366	"###############RADMLS1248124P124812P1248121241248112481248P", /* 'ONE' representation */
367	"--------------------s-------p------p----------------------p"  /* 'ZERO' representation */
368};
369
370/*-----------------------------------------------------------------------
371 * extract a bitfield from DCF77 datastream
372 * All numeric fields are LSB first.
373 * buf holds a pointer to a DCF77 data buffer in symbolic
374 *     representation
375 * idx holds the index to the field description in rawdcfcode
376 */
377static unsigned long
378ext_bf(
379	register unsigned char *buf,
380	register int   idx
381	)
382{
383	register unsigned long sum = 0;
384	register int i, first;
385
386	first = rawdcfcode[idx].offset;
387
388	for (i = rawdcfcode[idx+1].offset - 1; i >= first; i--)
389	{
390		sum <<= 1;
391		sum |= (buf[i] != dcfparam.zerobits[i]);
392	}
393	return sum;
394}
395
396/*-----------------------------------------------------------------------
397 * check even parity integrity for a bitfield
398 *
399 * buf holds a pointer to a DCF77 data buffer in symbolic
400 *     representation
401 * idx holds the index to the field description in partab
402 */
403static unsigned
404pcheck(
405	register unsigned char *buf,
406	register int   idx
407	)
408{
409	register int i,last;
410	register unsigned psum = 1;
411
412	last = partab[idx+1].offset;
413
414	for (i = partab[idx].offset; i < last; i++)
415	    psum ^= (buf[i] != dcfparam.zerobits[i]);
416
417	return psum;
418}
419
420/*-----------------------------------------------------------------------
421 * convert a DCF77 data buffer into wall clock time + flags
422 *
423 * buffer holds a pointer to a DCF77 data buffer in symbolic
424 *        representation
425 * size   describes the length of DCF77 information in bits (represented
426 *        as chars in symbolic notation
427 * clock  points to a wall clock time description of the DCF77 data (result)
428 */
429static unsigned long
430convert_rawdcf(
431	       unsigned char   *buffer,
432	       int              size,
433	       clocktime_t     *clock_time
434	       )
435{
436	if (size < 57)
437	{
438		PRINTF("%-30s", "*** INCOMPLETE");
439		return CVT_NONE;
440	}
441
442	/*
443	 * check Start and Parity bits
444	 */
445	if ((ext_bf(buffer, DCF_S) == 1) &&
446	    pcheck(buffer, DCF_P_P1) &&
447	    pcheck(buffer, DCF_P_P2) &&
448	    pcheck(buffer, DCF_P_P3))
449	{
450		/*
451		 * buffer OK - extract all fields and build wall clock time from them
452		 */
453
454		clock_time->flags  = 0;
455		clock_time->usecond= 0;
456		clock_time->second = 0;
457		clock_time->minute = ext_bf(buffer, DCF_M10);
458		clock_time->minute = TIMES10(clock_time->minute) + ext_bf(buffer, DCF_M1);
459		clock_time->hour   = ext_bf(buffer, DCF_H10);
460		clock_time->hour   = TIMES10(clock_time->hour)   + ext_bf(buffer, DCF_H1);
461		clock_time->day    = ext_bf(buffer, DCF_D10);
462		clock_time->day    = TIMES10(clock_time->day)    + ext_bf(buffer, DCF_D1);
463		clock_time->month  = ext_bf(buffer, DCF_MO0);
464		clock_time->month  = TIMES10(clock_time->month)  + ext_bf(buffer, DCF_MO);
465		clock_time->year   = ext_bf(buffer, DCF_Y10);
466		clock_time->year   = TIMES10(clock_time->year)   + ext_bf(buffer, DCF_Y1);
467		clock_time->wday   = ext_bf(buffer, DCF_DW);
468
469		/*
470		 * determine offset to UTC by examining the time zone
471		 */
472		switch (ext_bf(buffer, DCF_Z))
473		{
474		    case DCF_Z_MET:
475			clock_time->utcoffset = -60;
476			break;
477
478		    case DCF_Z_MED:
479			clock_time->flags     |= DCFB_DST;
480			clock_time->utcoffset  = -120;
481			break;
482
483		    default:
484			PRINTF("%-30s", "*** BAD TIME ZONE");
485			return CVT_FAIL|CVT_BADFMT;
486		}
487
488		/*
489		 * extract various warnings from DCF77
490		 */
491		if (ext_bf(buffer, DCF_A1))
492		    clock_time->flags |= DCFB_ANNOUNCE;
493
494		if (ext_bf(buffer, DCF_A2))
495		    clock_time->flags |= DCFB_LEAP;
496
497		if (ext_bf(buffer, DCF_R))
498		    clock_time->flags |= DCFB_ALTERNATE;
499
500		return CVT_OK;
501	}
502	else
503	{
504		/*
505		 * bad format - not for us
506		 */
507		PRINTF("%-30s", "*** BAD FORMAT (invalid/parity)");
508		return CVT_FAIL|CVT_BADFMT;
509	}
510}
511
512/*-----------------------------------------------------------------------
513 * raw dcf input routine - fix up 50 baud
514 * characters for 1/0 decision
515 */
516static unsigned long
517cvt_rawdcf(
518	   unsigned char   *buffer,
519	   int              size,
520	   clocktime_t     *clock_time
521	   )
522{
523	register unsigned char *s = buffer;
524	register unsigned char *e = buffer + size;
525	register unsigned char *b = dcfparam.onebits;
526	register unsigned char *c = dcfparam.zerobits;
527	register unsigned rtc = CVT_NONE;
528	register unsigned int i, lowmax, highmax, cutoff, span;
529#define BITS 9
530	unsigned char     histbuf[BITS];
531	/*
532	 * the input buffer contains characters with runs of consecutive
533	 * bits set. These set bits are an indication of the DCF77 pulse
534	 * length. We assume that we receive the pulse at 50 Baud. Thus
535	 * a 100ms pulse would generate a 4 bit train (20ms per bit and
536	 * start bit)
537	 * a 200ms pulse would create all zeroes (and probably a frame error)
538	 *
539	 * The basic idea is that on corret reception we must have two
540	 * maxima in the pulse length distribution histogram. (one for
541	 * the zero representing pulses and one for the one representing
542	 * pulses)
543	 * There will always be ones in the datastream, thus we have to see
544	 * two maxima.
545	 * The best point to cut for a 1/0 decision is the minimum between those
546	 * between the maxima. The following code tries to find this cutoff point.
547	 */
548
549	/*
550	 * clear histogram buffer
551	 */
552	for (i = 0; i < BITS; i++)
553	{
554		histbuf[i] = 0;
555	}
556
557	cutoff = 0;
558	lowmax = 0;
559
560	/*
561	 * convert sequences of set bits into bits counts updating
562	 * the histogram alongway
563	 */
564	while (s < e)
565	{
566		register unsigned int ch = *s ^ 0xFF;
567		/*
568		 * check integrity and update histogramm
569		 */
570		if (!((ch+1) & ch) || !*s)
571		{
572			/*
573			 * character ok
574			 */
575			for (i = 0; ch; i++)
576			{
577				ch >>= 1;
578			}
579
580			*s = i;
581			histbuf[i]++;
582			cutoff += i;
583			lowmax++;
584		}
585		else
586		{
587			/*
588			 * invalid character (no consecutive bit sequence)
589			 */
590			dprintf(("parse: cvt_rawdcf: character check for 0x%x@%d FAILED\n", *s, s - buffer));
591			*s = (unsigned char)~0;
592			rtc = CVT_FAIL|CVT_BADFMT;
593		}
594		s++;
595	}
596
597	/*
598	 * first cutoff estimate (average bit count - must be between both
599	 * maxima)
600	 */
601	if (lowmax)
602	{
603		cutoff /= lowmax;
604	}
605	else
606	{
607		cutoff = 4;	/* doesn't really matter - it'll fail anyway, but gives error output */
608	}
609
610	dprintf(("parse: cvt_rawdcf: average bit count: %d\n", cutoff));
611
612	lowmax = 0;  /* weighted sum */
613	highmax = 0; /* bitcount */
614
615	/*
616	 * collect weighted sum of lower bits (left of initial guess)
617	 */
618	dprintf(("parse: cvt_rawdcf: histogram:"));
619	for (i = 0; i <= cutoff; i++)
620	{
621		lowmax  += histbuf[i] * i;
622		highmax += histbuf[i];
623		dprintf((" %d", histbuf[i]));
624	}
625	dprintf((" <M>"));
626
627	/*
628	 * round up
629	 */
630	lowmax += highmax / 2;
631
632	/*
633	 * calculate lower bit maximum (weighted sum / bit count)
634	 *
635	 * avoid divide by zero
636	 */
637	if (highmax)
638	{
639		lowmax /= highmax;
640	}
641	else
642	{
643		lowmax = 0;
644	}
645
646	highmax = 0; /* weighted sum of upper bits counts */
647	cutoff = 0;  /* bitcount */
648
649	/*
650	 * collect weighted sum of lower bits (right of initial guess)
651	 */
652	for (; i < BITS; i++)
653	{
654		highmax+=histbuf[i] * i;
655		cutoff +=histbuf[i];
656		dprintf((" %d", histbuf[i]));
657	}
658	dprintf(("\n"));
659
660	/*
661	 * determine upper maximum (weighted sum / bit count)
662	 */
663	if (cutoff)
664	{
665		highmax /= cutoff;
666	}
667	else
668	{
669		highmax = BITS-1;
670	}
671
672	/*
673	 * following now holds:
674	 * lowmax <= cutoff(initial guess) <= highmax
675	 * best cutoff is the minimum nearest to higher bits
676	 */
677
678	/*
679	 * find the minimum between lowmax and highmax (detecting
680	 * possibly a minimum span)
681	 */
682	span = cutoff = lowmax;
683	for (i = lowmax; i <= highmax; i++)
684	{
685		if (histbuf[cutoff] > histbuf[i])
686		{
687			/*
688			 * got a new minimum move beginning of minimum (cutoff) and
689			 * end of minimum (span) there
690			 */
691			cutoff = span = i;
692		}
693		else
694		    if (histbuf[cutoff] == histbuf[i])
695		    {
696			    /*
697			     * minimum not better yet - but it spans more than
698			     * one bit value - follow it
699			     */
700			    span = i;
701		    }
702	}
703
704	/*
705	 * cutoff point for 1/0 decision is the middle of the minimum section
706	 * in the histogram
707	 */
708	cutoff = (cutoff + span) / 2;
709
710	dprintf(("parse: cvt_rawdcf: lower maximum %d, higher maximum %d, cutoff %d\n", lowmax, highmax, cutoff));
711
712	/*
713	 * convert the bit counts to symbolic 1/0 information for data conversion
714	 */
715	s = buffer;
716	while ((s < e) && *c && *b)
717	{
718		if (*s == (unsigned char)~0)
719		{
720			/*
721			 * invalid character
722			 */
723			*s = '?';
724		}
725		else
726		{
727			/*
728			 * symbolic 1/0 representation
729			 */
730			*s = (*s >= cutoff) ? *b : *c;
731		}
732		s++;
733		b++;
734		c++;
735	}
736
737	/*
738	 * if everything went well so far return the result of the symbolic
739	 * conversion routine else just the accumulated errors
740	 */
741	if (rtc != CVT_NONE)
742	{
743		PRINTF("%-30s", "*** BAD DATA");
744	}
745
746	return (rtc == CVT_NONE) ? convert_rawdcf(buffer, size, clock_time) : rtc;
747}
748
749/*-----------------------------------------------------------------------
750 * convert a wall clock time description of DCF77 to a Unix time (seconds
751 * since 1.1. 1970 UTC)
752 */
753static time_t
754dcf_to_unixtime(
755		clocktime_t   *clock_time,
756		unsigned *cvtrtc
757		)
758{
759#define SETRTC(_X_)	{ if (cvtrtc) *cvtrtc = (_X_); }
760	static int days_of_month[] =
761	{
762		0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
763	};
764	register int i;
765	time_t t;
766
767	/*
768	 * map 2 digit years to 19xx (DCF77 is a 20th century item)
769	 */
770	if ( clock_time->year < YEAR_PIVOT ) 	/* in case of	   Y2KFixes [ */
771		clock_time->year += 100;	/* *year%100, make tm_year */
772						/* *(do we need this?) */
773	if ( clock_time->year < YEAR_BREAK )	/* (failsafe if) */
774	    clock_time->year += 1900;				/* Y2KFixes ] */
775
776	/*
777	 * must have been a really bad year code - drop it
778	 */
779	if (clock_time->year < (YEAR_PIVOT + 1900) )		/* Y2KFixes */
780	{
781		SETRTC(CVT_FAIL|CVT_BADDATE);
782		return -1;
783	}
784	/*
785	 * sorry, slow section here - but it's not time critical anyway
786	 */
787
788	/*
789	 * calculate days since 1970 (watching leap years)
790	 */
791	t = julian0( clock_time->year ) - julian0( 1970 );
792
793  				/* month */
794	if (clock_time->month <= 0 || clock_time->month > 12)
795	{
796		SETRTC(CVT_FAIL|CVT_BADDATE);
797		return -1;		/* bad month */
798	}
799				/* adjust current leap year */
800#if 0
801	if (clock_time->month < 3 && days_per_year(clock_time->year) == 366)
802	    t--;
803#endif
804
805	/*
806	 * collect days from months excluding the current one
807	 */
808	for (i = 1; i < clock_time->month; i++)
809	{
810		t += days_of_month[i];
811	}
812				/* day */
813	if (clock_time->day < 1 || ((clock_time->month == 2 && days_per_year(clock_time->year) == 366) ?
814			       clock_time->day > 29 : clock_time->day > days_of_month[clock_time->month]))
815	{
816		SETRTC(CVT_FAIL|CVT_BADDATE);
817		return -1;		/* bad day */
818	}
819
820	/*
821	 * collect days from date excluding the current one
822	 */
823	t += clock_time->day - 1;
824
825				/* hour */
826	if (clock_time->hour < 0 || clock_time->hour >= 24)
827	{
828		SETRTC(CVT_FAIL|CVT_BADTIME);
829		return -1;		/* bad hour */
830	}
831
832	/*
833	 * calculate hours from 1. 1. 1970
834	 */
835	t = TIMES24(t) + clock_time->hour;
836
837  				/* min */
838	if (clock_time->minute < 0 || clock_time->minute > 59)
839	{
840		SETRTC(CVT_FAIL|CVT_BADTIME);
841		return -1;		/* bad min */
842	}
843
844	/*
845	 * calculate minutes from 1. 1. 1970
846	 */
847	t = TIMES60(t) + clock_time->minute;
848				/* sec */
849
850	/*
851	 * calculate UTC in minutes
852	 */
853	t += clock_time->utcoffset;
854
855	if (clock_time->second < 0 || clock_time->second > 60)	/* allow for LEAPs */
856	{
857		SETRTC(CVT_FAIL|CVT_BADTIME);
858		return -1;		/* bad sec */
859	}
860
861	/*
862	 * calculate UTC in seconds - phew !
863	 */
864	t  = TIMES60(t) + clock_time->second;
865				/* done */
866	return t;
867}
868
869/*-----------------------------------------------------------------------
870 * cheap half baked 1/0 decision - for interactive operation only
871 */
872static char
873type(
874     unsigned int c
875     )
876{
877	c ^= 0xFF;
878	return (c > 0xF);
879}
880
881/*-----------------------------------------------------------------------
882 * week day representation
883 */
884static const char *wday[8] =
885{
886	"??",
887	"Mo",
888	"Tu",
889	"We",
890	"Th",
891	"Fr",
892	"Sa",
893	"Su"
894};
895
896/*-----------------------------------------------------------------------
897 * generate a string representation for a timeval
898 */
899static char *
900pr_timeval(
901	   struct timeval *val
902	   )
903{
904	static char buf[20];
905
906	if (val->tv_sec == 0)
907	    sprintf(buf, "%c0.%06ld", (val->tv_usec < 0) ? '-' : '+', (long int)l_abs(val->tv_usec));
908	else
909	    sprintf(buf, "%ld.%06ld", (long int)val->tv_sec, (long int)l_abs(val->tv_usec));
910	return buf;
911}
912
913/*-----------------------------------------------------------------------
914 * correct the current time by an offset by setting the time rigorously
915 */
916static void
917set_time(
918	 struct timeval *offset
919	 )
920{
921	struct timeval the_time;
922
923	if (no_set)
924	    return;
925
926	LPRINTF("set_time: %s ", pr_timeval(offset));
927	syslog(LOG_NOTICE, "setting time (offset %s)", pr_timeval(offset));
928
929	if (gettimeofday(&the_time, 0L) == -1)
930	{
931		perror("gettimeofday()");
932	}
933	else
934	{
935		timeradd(&the_time, offset);
936		if (settimeofday(&the_time, 0L) == -1)
937		{
938			perror("settimeofday()");
939		}
940	}
941}
942
943/*-----------------------------------------------------------------------
944 * slew the time by a given offset
945 */
946static void
947adj_time(
948	 long offset
949	 )
950{
951	struct timeval time_offset;
952
953	if (no_set)
954	    return;
955
956	time_offset.tv_sec  = offset / 1000000;
957	time_offset.tv_usec = offset % 1000000;
958
959	LPRINTF("adj_time: %ld us ", (long int)offset);
960	if (adjtime(&time_offset, 0L) == -1)
961	    perror("adjtime()");
962}
963
964/*-----------------------------------------------------------------------
965 * read in a possibly previously written drift value
966 */
967static void
968read_drift(
969	   const char *drift_file
970	   )
971{
972	FILE *df;
973
974	df = fopen(drift_file, "r");
975	if (df != NULL)
976	{
977		int idrift = 0, fdrift = 0;
978
979		fscanf(df, "%4d.%03d", &idrift, &fdrift);
980		fclose(df);
981		LPRINTF("read_drift: %d.%03d ppm ", idrift, fdrift);
982
983		accum_drift = idrift << USECSCALE;
984		fdrift     = (fdrift << USECSCALE) / 1000;
985		accum_drift += fdrift & (1<<USECSCALE);
986		LPRINTF("read_drift: drift_comp %ld ", (long int)accum_drift);
987	}
988}
989
990/*-----------------------------------------------------------------------
991 * write out the current drift value
992 */
993static void
994update_drift(
995	     const char *drift_file,
996	     long offset,
997	     time_t reftime
998	     )
999{
1000	FILE *df;
1001
1002	df = fopen(drift_file, "w");
1003	if (df != NULL)
1004	{
1005		int idrift = R_SHIFT(accum_drift, USECSCALE);
1006		int fdrift = accum_drift & ((1<<USECSCALE)-1);
1007
1008		LPRINTF("update_drift: drift_comp %ld ", (long int)accum_drift);
1009		fdrift = (fdrift * 1000) / (1<<USECSCALE);
1010		fprintf(df, "%4d.%03d %c%ld.%06ld %.24s\n", idrift, fdrift,
1011			(offset < 0) ? '-' : '+', (long int)(l_abs(offset) / 1000000),
1012			(long int)(l_abs(offset) % 1000000), asctime(localtime(&reftime)));
1013		fclose(df);
1014		LPRINTF("update_drift: %d.%03d ppm ", idrift, fdrift);
1015	}
1016}
1017
1018/*-----------------------------------------------------------------------
1019 * process adjustments derived from the DCF77 observation
1020 * (controls clock PLL)
1021 */
1022static void
1023adjust_clock(
1024	     struct timeval *offset,
1025	     const char *drift_file,
1026	     time_t reftime
1027	     )
1028{
1029	struct timeval toffset;
1030	register long usecoffset;
1031	int tmp;
1032
1033	if (no_set)
1034	    return;
1035
1036	if (skip_adjust)
1037	{
1038		skip_adjust = 0;
1039		return;
1040	}
1041
1042	toffset = *offset;
1043	toffset.tv_sec  = l_abs(toffset.tv_sec);
1044	toffset.tv_usec = l_abs(toffset.tv_usec);
1045	if (timercmp(&toffset, &max_adj_offset, >))
1046	{
1047		/*
1048		 * hopeless - set the clock - and clear the timing
1049		 */
1050		set_time(offset);
1051		clock_adjust = 0;
1052		skip_adjust  = 1;
1053		return;
1054	}
1055
1056	usecoffset   = offset->tv_sec * 1000000 + offset->tv_usec;
1057
1058	clock_adjust = R_SHIFT(usecoffset, TIMECONSTANT);	/* adjustment to make for next period */
1059
1060	tmp = 0;
1061	while (adjustments > (1 << tmp))
1062	    tmp++;
1063	adjustments = 0;
1064	if (tmp > FREQ_WEIGHT)
1065	    tmp = FREQ_WEIGHT;
1066
1067	accum_drift  += R_SHIFT(usecoffset << USECSCALE, TIMECONSTANT+TIMECONSTANT+FREQ_WEIGHT-tmp);
1068
1069	if (accum_drift > MAX_DRIFT)		/* clamp into interval */
1070	    accum_drift = MAX_DRIFT;
1071	else
1072	    if (accum_drift < -MAX_DRIFT)
1073		accum_drift = -MAX_DRIFT;
1074
1075	update_drift(drift_file, usecoffset, reftime);
1076	LPRINTF("clock_adjust: %s, clock_adjust %ld, drift_comp %ld(%ld) ",
1077		pr_timeval(offset),(long int) R_SHIFT(clock_adjust, USECSCALE),
1078		(long int)R_SHIFT(accum_drift, USECSCALE), (long int)accum_drift);
1079}
1080
1081/*-----------------------------------------------------------------------
1082 * adjust the clock by a small mount to simulate frequency correction
1083 */
1084static void
1085periodic_adjust(
1086		void
1087		)
1088{
1089	register long adjustment;
1090
1091	adjustments++;
1092
1093	adjustment = R_SHIFT(clock_adjust, PHASE_WEIGHT);
1094
1095	clock_adjust -= adjustment;
1096
1097	adjustment += R_SHIFT(accum_drift, USECSCALE+ADJINTERVAL);
1098
1099	adj_time(adjustment);
1100}
1101
1102/*-----------------------------------------------------------------------
1103 * control synchronisation status (warnings) and do periodic adjusts
1104 * (frequency control simulation)
1105 */
1106static void
1107tick(
1108     int signum
1109     )
1110{
1111	static unsigned long last_notice = 0;
1112
1113#if !defined(HAVE_SIGACTION) && !defined(HAVE_SIGVEC)
1114	(void)signal(SIGALRM, tick);
1115#endif
1116
1117	periodic_adjust();
1118
1119	ticks += 1<<ADJINTERVAL;
1120
1121	if ((ticks - last_sync) > MAX_UNSYNC)
1122	{
1123		/*
1124		 * not getting time for a while
1125		 */
1126		if (sync_state == SYNC)
1127		{
1128			/*
1129			 * completely lost information
1130			 */
1131			sync_state = NO_SYNC;
1132			syslog(LOG_INFO, "DCF77 reception lost (timeout)");
1133			last_notice = ticks;
1134		}
1135		else
1136		    /*
1137		     * in NO_SYNC state - look whether its time to speak up again
1138		     */
1139		    if ((ticks - last_notice) > NOTICE_INTERVAL)
1140		    {
1141			    syslog(LOG_NOTICE, "still not synchronized to DCF77 - check receiver/signal");
1142			    last_notice = ticks;
1143		    }
1144	}
1145
1146#ifndef ITIMER_REAL
1147	(void) alarm(1<<ADJINTERVAL);
1148#endif
1149}
1150
1151/*-----------------------------------------------------------------------
1152 * break association from terminal to avoid catching terminal
1153 * or process group related signals (-> daemon operation)
1154 */
1155static void
1156detach(
1157       void
1158       )
1159{
1160#   ifdef HAVE_DAEMON
1161	daemon(0, 0);
1162#   else /* not HAVE_DAEMON */
1163	if (fork())
1164	    exit(0);
1165
1166	{
1167		u_long s;
1168		int max_fd;
1169
1170#if defined(HAVE_SYSCONF) && defined(_SC_OPEN_MAX)
1171		max_fd = sysconf(_SC_OPEN_MAX);
1172#else /* HAVE_SYSCONF && _SC_OPEN_MAX */
1173		max_fd = getdtablesize();
1174#endif /* HAVE_SYSCONF && _SC_OPEN_MAX */
1175		for (s = 0; s < max_fd; s++)
1176		    (void) close((int)s);
1177		(void) open("/", 0);
1178		(void) dup2(0, 1);
1179		(void) dup2(0, 2);
1180#ifdef SYS_DOMAINOS
1181		{
1182			uid_$t puid;
1183			status_$t st;
1184
1185			proc2_$who_am_i(&puid);
1186			proc2_$make_server(&puid, &st);
1187		}
1188#endif /* SYS_DOMAINOS */
1189#if defined(HAVE_SETPGID) || defined(HAVE_SETSID)
1190# ifdef HAVE_SETSID
1191		if (setsid() == (pid_t)-1)
1192		    syslog(LOG_ERR, "dcfd: setsid(): %m");
1193# else
1194		if (setpgid(0, 0) == -1)
1195		    syslog(LOG_ERR, "dcfd: setpgid(): %m");
1196# endif
1197#else /* HAVE_SETPGID || HAVE_SETSID */
1198		{
1199			int fid;
1200
1201			fid = open("/dev/tty", 2);
1202			if (fid >= 0)
1203			{
1204				(void) ioctl(fid, (u_long) TIOCNOTTY, (char *) 0);
1205				(void) close(fid);
1206			}
1207# ifdef HAVE_SETPGRP_0
1208			(void) setpgrp();
1209# else /* HAVE_SETPGRP_0 */
1210			(void) setpgrp(0, getpid());
1211# endif /* HAVE_SETPGRP_0 */
1212		}
1213#endif /* HAVE_SETPGID || HAVE_SETSID */
1214	}
1215#endif /* not HAVE_DAEMON */
1216}
1217
1218/*-----------------------------------------------------------------------
1219 * list possible arguments and options
1220 */
1221static void
1222usage(
1223      char *program
1224      )
1225{
1226  fprintf(stderr, "usage: %s [-n] [-f] [-l] [-t] [-i] [-o] [-d <drift_file>] [-D <input delay>] <device>\n", program);
1227	fprintf(stderr, "\t-n              do not change time\n");
1228	fprintf(stderr, "\t-i              interactive\n");
1229	fprintf(stderr, "\t-t              trace (print all datagrams)\n");
1230	fprintf(stderr, "\t-f              print all databits (includes PTB private data)\n");
1231	fprintf(stderr, "\t-l              print loop filter debug information\n");
1232	fprintf(stderr, "\t-o              print offet average for current minute\n");
1233	fprintf(stderr, "\t-Y              make internal Y2K checks then exit\n");	/* Y2KFixes */
1234	fprintf(stderr, "\t-d <drift_file> specify alternate drift file\n");
1235	fprintf(stderr, "\t-D <input delay>specify delay from input edge to processing in micro seconds\n");
1236}
1237
1238/*-----------------------------------------------------------------------
1239 * check_y2k() - internal check of Y2K logic
1240 *	(a lot of this logic lifted from ../ntpd/check_y2k.c)
1241 */
1242static int
1243check_y2k( void )
1244{
1245    int  year;			/* current working year */
1246    int  year0 = 1900;		/* sarting year for NTP time */
1247    int  yearend;		/* ending year we test for NTP time.
1248				    * 32-bit systems: through 2036, the
1249				      **year in which NTP time overflows.
1250				    * 64-bit systems: a reasonable upper
1251				      **limit (well, maybe somewhat beyond
1252				      **reasonable, but well before the
1253				      **max time, by which time the earth
1254				      **will be dead.) */
1255    time_t Time;
1256    struct tm LocalTime;
1257
1258    int Fatals, Warnings;
1259#define Error(year) if ( (year)>=2036 && LocalTime.tm_year < 110 ) \
1260	Warnings++; else Fatals++
1261
1262    Fatals = Warnings = 0;
1263
1264    Time = time( (time_t *)NULL );
1265    LocalTime = *localtime( &Time );
1266
1267    year = ( sizeof( u_long ) > 4 ) 	/* save max span using year as temp */
1268		? ( 400 * 3 ) 		/* three greater gregorian cycles */
1269		: ((int)(0x7FFFFFFF / 365.242 / 24/60/60)* 2 ); /*32-bit limit*/
1270			/* NOTE: will automacially expand test years on
1271			 * 64 bit machines.... this may cause some of the
1272			 * existing ntp logic to fail for years beyond
1273			 * 2036 (the current 32-bit limit). If all checks
1274			 * fail ONLY beyond year 2036 you may ignore such
1275			 * errors, at least for a decade or so. */
1276    yearend = year0 + year;
1277
1278    year = 1900+YEAR_PIVOT;
1279    printf( "  starting year %04d\n", (int) year );
1280    printf( "  ending year   %04d\n", (int) yearend );
1281
1282    for ( ; year < yearend; year++ )
1283    {
1284	clocktime_t  ct;
1285	time_t	     Observed;
1286	time_t	     Expected;
1287	unsigned     Flag;
1288	unsigned long t;
1289
1290	ct.day = 1;
1291	ct.month = 1;
1292	ct.year = year;
1293	ct.hour = ct.minute = ct.second = ct.usecond = 0;
1294	ct.utcoffset = 0;
1295	ct.flags = 0;
1296
1297	Flag = 0;
1298 	Observed = dcf_to_unixtime( &ct, &Flag );
1299		/* seems to be a clone of parse_to_unixtime() with
1300		 * *a minor difference to arg2 type */
1301	if ( ct.year != year )
1302	{
1303	    fprintf( stdout,
1304	       "%04d: dcf_to_unixtime(,%d) CORRUPTED ct.year: was %d\n",
1305	       (int)year, (int)Flag, (int)ct.year );
1306	    Error(year);
1307	    break;
1308	}
1309	t = julian0(year) - julian0(1970);	/* Julian day from 1970 */
1310	Expected = t * 24 * 60 * 60;
1311	if ( Observed != Expected  ||  Flag )
1312	{   /* time difference */
1313	    fprintf( stdout,
1314	       "%04d: dcf_to_unixtime(,%d) FAILURE: was=%lu s/b=%lu  (%ld)\n",
1315	       year, (int)Flag,
1316	       (unsigned long)Observed, (unsigned long)Expected,
1317	       ((long)Observed - (long)Expected) );
1318	    Error(year);
1319	    break;
1320	}
1321
1322	if ( year >= YEAR_PIVOT+1900 )
1323	{
1324	    /* check year % 100 code we put into dcf_to_unixtime() */
1325	    ct.year = year % 100;
1326	    Flag = 0;
1327
1328	    Observed = dcf_to_unixtime( &ct, &Flag );
1329
1330	    if ( Observed != Expected  ||  Flag )
1331	    {   /* time difference */
1332		fprintf( stdout,
1333"%04d: dcf_to_unixtime(%d,%d) FAILURE: was=%lu s/b=%lu  (%ld)\n",
1334		   year, (int)ct.year, (int)Flag,
1335		   (unsigned long)Observed, (unsigned long)Expected,
1336		   ((long)Observed - (long)Expected) );
1337		Error(year);
1338		break;
1339	    }
1340
1341	    /* check year - 1900 code we put into dcf_to_unixtime() */
1342	    ct.year = year - 1900;
1343	    Flag = 0;
1344
1345	    Observed = dcf_to_unixtime( &ct, &Flag );
1346
1347	    if ( Observed != Expected  ||  Flag ) {   /* time difference */
1348		    fprintf( stdout,
1349			     "%04d: dcf_to_unixtime(%d,%d) FAILURE: was=%lu s/b=%lu  (%ld)\n",
1350			     year, (int)ct.year, (int)Flag,
1351			     (unsigned long)Observed, (unsigned long)Expected,
1352			     ((long)Observed - (long)Expected) );
1353		    Error(year);
1354		break;
1355	    }
1356
1357
1358	}
1359    }
1360
1361    return ( Fatals );
1362}
1363
1364/*--------------------------------------------------
1365 * rawdcf_init - set up modem lines for RAWDCF receivers
1366 */
1367#if defined(TIOCMSET) && (defined(TIOCM_DTR) || defined(CIOCM_DTR))
1368static void
1369rawdcf_init(
1370	int fd
1371	)
1372{
1373	/*
1374	 * You can use the RS232 to supply the power for a DCF77 receiver.
1375	 * Here a voltage between the DTR and the RTS line is used. Unfortunately
1376	 * the name has changed from CIOCM_DTR to TIOCM_DTR recently.
1377	 */
1378
1379#ifdef TIOCM_DTR
1380	int sl232 = TIOCM_DTR;	/* turn on DTR for power supply */
1381#else
1382	int sl232 = CIOCM_DTR;	/* turn on DTR for power supply */
1383#endif
1384
1385	if (ioctl(fd, TIOCMSET, (caddr_t)&sl232) == -1)
1386	{
1387		syslog(LOG_NOTICE, "rawdcf_init: WARNING: ioctl(fd, TIOCMSET, [C|T]IOCM_DTR): %m");
1388	}
1389}
1390#else
1391static void
1392rawdcf_init(
1393	    int fd
1394	)
1395{
1396	syslog(LOG_NOTICE, "rawdcf_init: WARNING: OS interface incapable of setting DTR to power DCF modules");
1397}
1398#endif  /* DTR initialisation type */
1399
1400/*-----------------------------------------------------------------------
1401 * main loop - argument interpreter / setup / main loop
1402 */
1403int
1404main(
1405     int argc,
1406     char **argv
1407     )
1408{
1409	unsigned char c;
1410	char **a = argv;
1411	int  ac = argc;
1412	char *file = NULL;
1413	const char *drift_file = "/etc/dcfd.drift";
1414	int fd;
1415	int offset = 15;
1416	int offsets = 0;
1417	int delay = DEFAULT_DELAY;	/* average delay from input edge to time stamping */
1418	int trace = 0;
1419	int errs = 0;
1420
1421	/*
1422	 * process arguments
1423	 */
1424	while (--ac)
1425	{
1426		char *arg = *++a;
1427		if (*arg == '-')
1428		    while ((c = *++arg))
1429			switch (c)
1430			{
1431			    case 't':
1432				trace = 1;
1433				interactive = 1;
1434				break;
1435
1436			    case 'f':
1437				offset = 0;
1438				interactive = 1;
1439				break;
1440
1441			    case 'l':
1442				loop_filter_debug = 1;
1443				offsets = 1;
1444				interactive = 1;
1445				break;
1446
1447			    case 'n':
1448				no_set = 1;
1449				break;
1450
1451			    case 'o':
1452				offsets = 1;
1453				interactive = 1;
1454				break;
1455
1456			    case 'i':
1457				interactive = 1;
1458				break;
1459
1460			    case 'D':
1461				if (ac > 1)
1462				{
1463					delay = atoi(*++a);
1464					ac--;
1465				}
1466				else
1467				{
1468					fprintf(stderr, "%s: -D requires integer argument\n", argv[0]);
1469					errs=1;
1470				}
1471				break;
1472
1473			    case 'd':
1474				if (ac > 1)
1475				{
1476					drift_file = *++a;
1477					ac--;
1478				}
1479				else
1480				{
1481					fprintf(stderr, "%s: -d requires file name argument\n", argv[0]);
1482					errs=1;
1483				}
1484				break;
1485
1486			    case 'Y':
1487				errs=check_y2k();
1488				exit( errs ? 1 : 0 );
1489
1490			    default:
1491				fprintf(stderr, "%s: unknown option -%c\n", argv[0], c);
1492				errs=1;
1493				break;
1494			}
1495		else
1496		    if (file == NULL)
1497			file = arg;
1498		    else
1499		    {
1500			    fprintf(stderr, "%s: device specified twice\n", argv[0]);
1501			    errs=1;
1502		    }
1503	}
1504
1505	if (errs)
1506	{
1507		usage(argv[0]);
1508		exit(1);
1509	}
1510	else
1511	    if (file == NULL)
1512	    {
1513		    fprintf(stderr, "%s: device not specified\n", argv[0]);
1514		    usage(argv[0]);
1515		    exit(1);
1516	    }
1517
1518	errs = LINES+1;
1519
1520	/*
1521	 * get access to DCF77 tty port
1522	 */
1523	fd = open(file, O_RDONLY);
1524	if (fd == -1)
1525	{
1526		perror(file);
1527		exit(1);
1528	}
1529	else
1530	{
1531		int i, rrc;
1532		struct timeval t, tt, tlast;
1533		struct timeval timeout;
1534		struct timeval phase;
1535		struct timeval time_offset;
1536		char pbuf[61];		/* printable version */
1537		char buf[61];		/* raw data */
1538		clocktime_t clock_time;	/* wall clock time */
1539		time_t utc_time = 0;
1540		time_t last_utc_time = 0;
1541		long usecerror = 0;
1542		long lasterror = 0;
1543#if defined(HAVE_TERMIOS_H) || defined(STREAM)
1544		struct termios term;
1545#else  /* not HAVE_TERMIOS_H || STREAM */
1546# if defined(HAVE_TERMIO_H) || defined(HAVE_SYSV_TTYS)
1547		struct termio term;
1548# endif/* HAVE_TERMIO_H || HAVE_SYSV_TTYS */
1549#endif /* not HAVE_TERMIOS_H || STREAM */
1550		unsigned int rtc = CVT_NONE;
1551
1552		rawdcf_init(fd);
1553
1554		timeout.tv_sec  = 1;
1555		timeout.tv_usec = 500000;
1556
1557		phase.tv_sec    = 0;
1558		phase.tv_usec   = delay;
1559
1560		/*
1561		 * setup TTY (50 Baud, Read, 8Bit, No Hangup, 1 character IO)
1562		 */
1563		if (TTY_GETATTR(fd,  &term) == -1)
1564		{
1565			perror("tcgetattr");
1566			exit(1);
1567		}
1568
1569		memset(term.c_cc, 0, sizeof(term.c_cc));
1570		term.c_cc[VMIN] = 1;
1571#ifdef NO_PARENB_IGNPAR
1572		term.c_cflag = CS8|CREAD|CLOCAL;
1573#else
1574		term.c_cflag = CS8|CREAD|CLOCAL|PARENB;
1575#endif
1576		term.c_iflag = IGNPAR;
1577		term.c_oflag = 0;
1578		term.c_lflag = 0;
1579
1580		cfsetispeed(&term, B50);
1581		cfsetospeed(&term, B50);
1582
1583		if (TTY_SETATTR(fd, &term) == -1)
1584		{
1585			perror("tcsetattr");
1586			exit(1);
1587		}
1588
1589		/*
1590		 * lose terminal if in daemon operation
1591		 */
1592		if (!interactive)
1593		    detach();
1594
1595		/*
1596		 * get syslog() initialized
1597		 */
1598#ifdef LOG_DAEMON
1599		openlog("dcfd", LOG_PID, LOG_DAEMON);
1600#else
1601		openlog("dcfd", LOG_PID);
1602#endif
1603
1604		/*
1605		 * setup periodic operations (state control / frequency control)
1606		 */
1607#ifdef HAVE_SIGACTION
1608		{
1609			struct sigaction act;
1610
1611# ifdef HAVE_SA_SIGACTION_IN_STRUCT_SIGACTION
1612			act.sa_sigaction = (void (*) P((int, siginfo_t *, void *)))0;
1613# endif /* HAVE_SA_SIGACTION_IN_STRUCT_SIGACTION */
1614			act.sa_handler   = tick;
1615			sigemptyset(&act.sa_mask);
1616			act.sa_flags     = 0;
1617
1618			if (sigaction(SIGALRM, &act, (struct sigaction *)0) == -1)
1619			{
1620				syslog(LOG_ERR, "sigaction(SIGALRM): %m");
1621				exit(1);
1622			}
1623		}
1624#else
1625#ifdef HAVE_SIGVEC
1626		{
1627			struct sigvec vec;
1628
1629			vec.sv_handler   = tick;
1630			vec.sv_mask      = 0;
1631			vec.sv_flags     = 0;
1632
1633			if (sigvec(SIGALRM, &vec, (struct sigvec *)0) == -1)
1634			{
1635				syslog(LOG_ERR, "sigvec(SIGALRM): %m");
1636				exit(1);
1637			}
1638		}
1639#else
1640		(void) signal(SIGALRM, tick);
1641#endif
1642#endif
1643
1644#ifdef ITIMER_REAL
1645		{
1646			struct itimerval it;
1647
1648			it.it_interval.tv_sec  = 1<<ADJINTERVAL;
1649			it.it_interval.tv_usec = 0;
1650			it.it_value.tv_sec     = 1<<ADJINTERVAL;
1651			it.it_value.tv_usec    = 0;
1652
1653			if (setitimer(ITIMER_REAL, &it, (struct itimerval *)0) == -1)
1654			{
1655				syslog(LOG_ERR, "setitimer: %m");
1656				exit(1);
1657			}
1658		}
1659#else
1660		(void) alarm(1<<ADJINTERVAL);
1661#endif
1662
1663		PRINTF("  DCF77 monitor %s - Copyright (C) 1993-2005 by Frank Kardel\n\n", revision);
1664
1665		pbuf[60] = '\0';
1666		for ( i = 0; i < 60; i++)
1667		    pbuf[i] = '.';
1668
1669		read_drift(drift_file);
1670
1671		/*
1672		 * what time is it now (for interval measurement)
1673		 */
1674		gettimeofday(&tlast, 0L);
1675		i = 0;
1676		/*
1677		 * loop until input trouble ...
1678		 */
1679		do
1680		{
1681			/*
1682			 * get an impulse
1683			 */
1684			while ((rrc = read(fd, &c, 1)) == 1)
1685			{
1686				gettimeofday(&t, 0L);
1687				tt = t;
1688				timersub(&t, &tlast);
1689
1690				if (errs > LINES)
1691				{
1692					PRINTF("  %s", &"PTB private....RADMLSMin....PHour..PMDay..DayMonthYear....P\n"[offset]);
1693					PRINTF("  %s", &"---------------RADMLS1248124P124812P1248121241248112481248P\n"[offset]);
1694					errs = 0;
1695				}
1696
1697				/*
1698				 * timeout -> possible minute mark -> interpretation
1699				 */
1700				if (timercmp(&t, &timeout, >))
1701				{
1702					PRINTF("%c %.*s ", pat[i % (sizeof(pat)-1)], 59 - offset, &pbuf[offset]);
1703
1704					if ((rtc = cvt_rawdcf((unsigned char *)buf, i, &clock_time)) != CVT_OK)
1705					{
1706						/*
1707						 * this data was bad - well - forget synchronisation for now
1708						 */
1709						PRINTF("\n");
1710						if (sync_state == SYNC)
1711						{
1712							sync_state = NO_SYNC;
1713							syslog(LOG_INFO, "DCF77 reception lost (bad data)");
1714						}
1715						errs++;
1716					}
1717					else
1718					    if (trace)
1719					    {
1720						    PRINTF("\r  %.*s ", 59 - offset, &buf[offset]);
1721					    }
1722
1723
1724					buf[0] = c;
1725
1726					/*
1727					 * collect first character
1728					 */
1729					if (((c^0xFF)+1) & (c^0xFF))
1730					    pbuf[0] = '?';
1731					else
1732					    pbuf[0] = type(c) ? '#' : '-';
1733
1734					for ( i = 1; i < 60; i++)
1735					    pbuf[i] = '.';
1736
1737					i = 0;
1738				}
1739				else
1740				{
1741					/*
1742					 * collect character
1743					 */
1744					buf[i] = c;
1745
1746					/*
1747					 * initial guess (usually correct)
1748					 */
1749					if (((c^0xFF)+1) & (c^0xFF))
1750					    pbuf[i] = '?';
1751					else
1752					    pbuf[i] = type(c) ? '#' : '-';
1753
1754					PRINTF("%c %.*s ", pat[i % (sizeof(pat)-1)], 59 - offset, &pbuf[offset]);
1755				}
1756
1757				if (i == 0 && rtc == CVT_OK)
1758				{
1759					/*
1760					 * we got a good time code here - try to convert it to
1761					 * UTC
1762					 */
1763					if ((utc_time = dcf_to_unixtime(&clock_time, &rtc)) == -1)
1764					{
1765						PRINTF("*** BAD CONVERSION\n");
1766					}
1767
1768					if (utc_time != (last_utc_time + 60))
1769					{
1770						/*
1771						 * well, two successive sucessful telegrams are not 60 seconds
1772						 * apart
1773						 */
1774						PRINTF("*** NO MINUTE INC\n");
1775						if (sync_state == SYNC)
1776						{
1777							sync_state = NO_SYNC;
1778							syslog(LOG_INFO, "DCF77 reception lost (data mismatch)");
1779						}
1780						errs++;
1781						rtc = CVT_FAIL|CVT_BADTIME|CVT_BADDATE;
1782					}
1783					else
1784					    usecerror = 0;
1785
1786					last_utc_time = utc_time;
1787				}
1788
1789				if (rtc == CVT_OK)
1790				{
1791					if (i == 0)
1792					{
1793						/*
1794						 * valid time code - determine offset and
1795						 * note regained reception
1796						 */
1797						last_sync = ticks;
1798						if (sync_state == NO_SYNC)
1799						{
1800							syslog(LOG_INFO, "receiving DCF77");
1801						}
1802						else
1803						{
1804							/*
1805							 * we had at least one minute SYNC - thus
1806							 * last error is valid
1807							 */
1808							time_offset.tv_sec  = lasterror / 1000000;
1809							time_offset.tv_usec = lasterror % 1000000;
1810							adjust_clock(&time_offset, drift_file, utc_time);
1811						}
1812						sync_state = SYNC;
1813					}
1814
1815					time_offset.tv_sec  = utc_time + i;
1816					time_offset.tv_usec = 0;
1817
1818					timeradd(&time_offset, &phase);
1819
1820					usecerror += (time_offset.tv_sec - tt.tv_sec) * 1000000 + time_offset.tv_usec
1821						-tt.tv_usec;
1822
1823					/*
1824					 * output interpreted DCF77 data
1825					 */
1826					PRINTF(offsets ? "%s, %2ld:%02ld:%02d, %ld.%02ld.%02ld, <%s%s%s%s> (%c%ld.%06lds)" :
1827					       "%s, %2ld:%02ld:%02d, %ld.%02ld.%02ld, <%s%s%s%s>",
1828					       wday[clock_time.wday],
1829					       clock_time.hour, clock_time.minute, i, clock_time.day, clock_time.month,
1830					       clock_time.year,
1831					       (clock_time.flags & DCFB_ALTERNATE) ? "R" : "_",
1832					       (clock_time.flags & DCFB_ANNOUNCE) ? "A" : "_",
1833					       (clock_time.flags & DCFB_DST) ? "D" : "_",
1834					       (clock_time.flags & DCFB_LEAP) ? "L" : "_",
1835					       (lasterror < 0) ? '-' : '+', l_abs(lasterror) / 1000000, l_abs(lasterror) % 1000000
1836					       );
1837
1838					if (trace && (i == 0))
1839					{
1840						PRINTF("\n");
1841						errs++;
1842					}
1843					lasterror = usecerror / (i+1);
1844				}
1845				else
1846				{
1847					lasterror = 0; /* we cannot calculate phase errors on bad reception */
1848				}
1849
1850				PRINTF("\r");
1851
1852				if (i < 60)
1853				{
1854					i++;
1855				}
1856
1857				tlast = tt;
1858
1859				if (interactive)
1860				    fflush(stdout);
1861			}
1862		} while ((rrc == -1) && (errno == EINTR));
1863
1864		/*
1865		 * lost IO - sorry guys
1866		 */
1867		syslog(LOG_ERR, "TERMINATING - cannot read from device %s (%m)", file);
1868
1869		(void)close(fd);
1870	}
1871
1872	closelog();
1873
1874	return 0;
1875}
1876
1877/*
1878 * History:
1879 *
1880 * dcfd.c,v
1881 * Revision 4.18  2005/10/07 22:08:18  kardel
1882 * make dcfd.c compile on NetBSD 3.99.9 again (configure/sigvec compatibility fix)
1883 *
1884 * Revision 4.17.2.1  2005/10/03 19:15:16  kardel
1885 * work around configure not detecting a missing sigvec compatibility
1886 * interface on NetBSD 3.99.9 and above
1887 *
1888 * Revision 4.17  2005/08/10 10:09:44  kardel
1889 * output revision information
1890 *
1891 * Revision 4.16  2005/08/10 06:33:25  kardel
1892 * cleanup warnings
1893 *
1894 * Revision 4.15  2005/08/10 06:28:45  kardel
1895 * fix setting of baud rate
1896 *
1897 * Revision 4.14  2005/04/16 17:32:10  kardel
1898 * update copyright
1899 *
1900 * Revision 4.13  2004/11/14 15:29:41  kardel
1901 * support PPSAPI, upgrade Copyright to Berkeley style
1902 *
1903 */
1904