1/*
2 * refclock_wwv - clock driver for NIST WWV/H time/frequency station
3 */
4#ifdef HAVE_CONFIG_H
5#include <config.h>
6#endif
7
8#if defined(REFCLOCK) && defined(CLOCK_WWV)
9
10#include "ntpd.h"
11#include "ntp_io.h"
12#include "ntp_refclock.h"
13#include "ntp_calendar.h"
14#include "ntp_stdlib.h"
15#include "audio.h"
16
17#include <stdio.h>
18#include <ctype.h>
19#include <math.h>
20#ifdef HAVE_SYS_IOCTL_H
21# include <sys/ioctl.h>
22#endif /* HAVE_SYS_IOCTL_H */
23
24#define ICOM 1
25
26#ifdef ICOM
27#include "icom.h"
28#endif /* ICOM */
29
30/*
31 * Audio WWV/H demodulator/decoder
32 *
33 * This driver synchronizes the computer time using data encoded in
34 * radio transmissions from NIST time/frequency stations WWV in Boulder,
35 * CO, and WWVH in Kauai, HI. Transmissions are made continuously on
36 * 2.5, 5, 10 and 15 MHz from WWV and WWVH, and 20 MHz from WWV. An
37 * ordinary AM shortwave receiver can be tuned manually to one of these
38 * frequencies or, in the case of ICOM receivers, the receiver can be
39 * tuned automatically using this program as propagation conditions
40 * change throughout the weasons, both day and night.
41 *
42 * The driver receives, demodulates and decodes the radio signals when
43 * connected to the audio codec of a workstation running Solaris, SunOS
44 * FreeBSD or Linux, and with a little help, other workstations with
45 * similar codecs or sound cards. In this implementation, only one audio
46 * driver and codec can be supported on a single machine.
47 *
48 * The demodulation and decoding algorithms used in this driver are
49 * based on those developed for the TAPR DSP93 development board and the
50 * TI 320C25 digital signal processor described in: Mills, D.L. A
51 * precision radio clock for WWV transmissions. Electrical Engineering
52 * Report 97-8-1, University of Delaware, August 1997, 25 pp., available
53 * from www.eecis.udel.edu/~mills/reports.html. The algorithms described
54 * in this report have been modified somewhat to improve performance
55 * under weak signal conditions and to provide an automatic station
56 * identification feature.
57 *
58 * The ICOM code is normally compiled in the driver. It isn't used,
59 * unless the mode keyword on the server configuration command specifies
60 * a nonzero ICOM ID select code. The C-IV trace is turned on if the
61 * debug level is greater than one.
62 *
63 * Fudge factors
64 *
65 * Fudge flag4 causes the dubugging output described above to be
66 * recorded in the clockstats file. Fudge flag2 selects the audio input
67 * port, where 0 is the mike port (default) and 1 is the line-in port.
68 * It does not seem useful to select the compact disc player port. Fudge
69 * flag3 enables audio monitoring of the input signal. For this purpose,
70 * the monitor gain is set to a default value.
71 */
72/*
73 * General definitions. These ordinarily do not need to be changed.
74 */
75#define	DEVICE_AUDIO	"/dev/audio" /* audio device name */
76#define	AUDIO_BUFSIZ	320	/* audio buffer size (50 ms) */
77#define	PRECISION	(-10)	/* precision assumed (about 1 ms) */
78#define	DESCRIPTION	"WWV/H Audio Demodulator/Decoder" /* WRU */
79#define SECOND		8000	/* second epoch (sample rate) (Hz) */
80#define MINUTE		(SECOND * 60) /* minute epoch */
81#define OFFSET		128	/* companded sample offset */
82#define SIZE		256	/* decompanding table size */
83#define	MAXAMP		6000.	/* max signal level reference */
84#define	MAXCLP		100	/* max clips above reference per s */
85#define MAXSNR		40.	/* max SNR reference */
86#define MAXFREQ		1.5	/* max frequency tolerance (187 PPM) */
87#define DATCYC		170	/* data filter cycles */
88#define DATSIZ		(DATCYC * MS) /* data filter size */
89#define SYNCYC		800	/* minute filter cycles */
90#define SYNSIZ		(SYNCYC * MS) /* minute filter size */
91#define TCKCYC		5	/* tick filter cycles */
92#define TCKSIZ		(TCKCYC * MS) /* tick filter size */
93#define NCHAN		5	/* number of radio channels */
94#define	AUDIO_PHI	5e-6	/* dispersion growth factor */
95
96/*
97 * Tunable parameters. The DGAIN parameter can be changed to fit the
98 * audio response of the radio at 100 Hz. The WWV/WWVH data subcarrier
99 * is transmitted at about 20 percent percent modulation; the matched
100 * filter boosts it by a factor of 17 and the receiver response does
101 * what it does. The compromise value works for ICOM radios. If the
102 * radio is not tunable, the DCHAN parameter can be changed to fit the
103 * expected best propagation frequency: higher if further from the
104 * transmitter, lower if nearer. The compromise value works for the US
105 * right coast. The FREQ_OFFSET parameter can be used as a frequency
106 * vernier to correct codec requency if greater than MAXFREQ.
107 */
108#define DCHAN		3	/* default radio channel (15 Mhz) */
109#define DGAIN		5.	/* subcarrier gain */
110#define	FREQ_OFFSET	0.	/* codec frequency correction (PPM) */
111
112/*
113 * General purpose status bits (status)
114 *
115 * SELV and/or SELH are set when WWV or WWVH have been heard and cleared
116 * on signal loss. SSYNC is set when the second sync pulse has been
117 * acquired and cleared by signal loss. MSYNC is set when the minute
118 * sync pulse has been acquired. DSYNC is set when the units digit has
119 * has reached the threshold and INSYNC is set when all nine digits have
120 * reached the threshold. The MSYNC, DSYNC and INSYNC bits are cleared
121 * only by timeout, upon which the driver starts over from scratch.
122 *
123 * DGATE is lit if the data bit amplitude or SNR is below thresholds and
124 * BGATE is lit if the pulse width amplitude or SNR is below thresolds.
125 * LEPSEC is set during the last minute of the leap day. At the end of
126 * this minute the driver inserts second 60 in the seconds state machine
127 * and the minute sync slips a second.
128 */
129#define MSYNC		0x0001	/* minute epoch sync */
130#define SSYNC		0x0002	/* second epoch sync */
131#define DSYNC		0x0004	/* minute units sync */
132#define INSYNC		0x0008	/* clock synchronized */
133#define FGATE		0x0010	/* frequency gate */
134#define DGATE		0x0020	/* data pulse amplitude error */
135#define BGATE		0x0040	/* data pulse width error */
136#define LEPSEC		0x1000	/* leap minute */
137
138/*
139 * Station scoreboard bits
140 *
141 * These are used to establish the signal quality for each of the five
142 * frequencies and two stations.
143 */
144#define SELV		0x0100	/* WWV station select */
145#define SELH		0x0200	/* WWVH station select */
146
147/*
148 * Alarm status bits (alarm)
149 *
150 * These bits indicate various alarm conditions, which are decoded to
151 * form the quality character included in the timecode.
152 */
153#define CMPERR		1	/* digit or misc bit compare error */
154#define LOWERR		2	/* low bit or digit amplitude or SNR */
155#define NINERR		4	/* less than nine digits in minute */
156#define SYNERR		8	/* not tracking second sync */
157
158/*
159 * Watchcat timeouts (watch)
160 *
161 * If these timeouts expire, the status bits are mashed to zero and the
162 * driver starts from scratch. Suitably more refined procedures may be
163 * developed in future. All these are in minutes.
164 */
165#define ACQSN		6	/* station acquisition timeout */
166#define DATA		15	/* unit minutes timeout */
167#define SYNCH		40	/* station sync timeout */
168#define PANIC		(2 * 1440) /* panic timeout */
169
170/*
171 * Thresholds. These establish the minimum signal level, minimum SNR and
172 * maximum jitter thresholds which establish the error and false alarm
173 * rates of the driver. The values defined here may be on the
174 * adventurous side in the interest of the highest sensitivity.
175 */
176#define MTHR		13.	/* minute sync gate (percent) */
177#define TTHR		50.	/* minute sync threshold (percent) */
178#define AWND		20	/* minute sync jitter threshold (ms) */
179#define ATHR		2500.	/* QRZ minute sync threshold */
180#define ASNR		20.	/* QRZ minute sync SNR threshold (dB) */
181#define QTHR		2500.	/* QSY minute sync threshold */
182#define QSNR		20.	/* QSY minute sync SNR threshold (dB) */
183#define STHR		2500.	/* second sync threshold */
184#define	SSNR		15.	/* second sync SNR threshold (dB) */
185#define SCMP		10 	/* second sync compare threshold */
186#define DTHR		1000.	/* bit threshold */
187#define DSNR		10.	/* bit SNR threshold (dB) */
188#define AMIN		3	/* min bit count */
189#define AMAX		6	/* max bit count */
190#define BTHR		1000.	/* digit threshold */
191#define BSNR		3.	/* digit likelihood threshold (dB) */
192#define BCMP		3	/* digit compare threshold */
193#define	MAXERR		40	/* maximum error alarm */
194
195/*
196 * Tone frequency definitions. The increments are for 4.5-deg sine
197 * table.
198 */
199#define MS		(SECOND / 1000) /* samples per millisecond */
200#define IN100		((100 * 80) / SECOND) /* 100 Hz increment */
201#define IN1000		((1000 * 80) / SECOND) /* 1000 Hz increment */
202#define IN1200		((1200 * 80) / SECOND) /* 1200 Hz increment */
203
204/*
205 * Acquisition and tracking time constants
206 */
207#define MINAVG		8	/* min averaging time */
208#define MAXAVG		1024	/* max averaging time */
209#define FCONST		3	/* frequency time constant */
210#define TCONST		16	/* data bit/digit time constant */
211
212/*
213 * Miscellaneous status bits (misc)
214 *
215 * These bits correspond to designated bits in the WWV/H timecode. The
216 * bit probabilities are exponentially averaged over several minutes and
217 * processed by a integrator and threshold.
218 */
219#define DUT1		0x01	/* 56 DUT .1 */
220#define DUT2		0x02	/* 57 DUT .2 */
221#define DUT4		0x04	/* 58 DUT .4 */
222#define DUTS		0x08	/* 50 DUT sign */
223#define DST1		0x10	/* 55 DST1 leap warning */
224#define DST2		0x20	/* 2 DST2 DST1 delayed one day */
225#define SECWAR		0x40	/* 3 leap second warning */
226
227/*
228 * The on-time synchronization point for the driver is the second epoch
229 * sync pulse produced by the FIR matched filters. As the 5-ms delay of
230 * these filters is compensated, the program delay is 1.1 ms due to the
231 * 600-Hz IIR bandpass filter. The measured receiver delay is 4.7 ms and
232 * the codec delay less than 0.2 ms. The additional propagation delay
233 * specific to each receiver location can be programmed in the fudge
234 * time1 and time2 values for WWV and WWVH, respectively.
235 */
236#define PDELAY	(.0011 + .0047 + .0002)	/* net system delay (s) */
237
238/*
239 * Table of sine values at 4.5-degree increments. This is used by the
240 * synchronous matched filter demodulators.
241 */
242double sintab[] = {
243 0.000000e+00,  7.845910e-02,  1.564345e-01,  2.334454e-01, /* 0-3 */
244 3.090170e-01,  3.826834e-01,  4.539905e-01,  5.224986e-01, /* 4-7 */
245 5.877853e-01,  6.494480e-01,  7.071068e-01,  7.604060e-01, /* 8-11 */
246 8.090170e-01,  8.526402e-01,  8.910065e-01,  9.238795e-01, /* 12-15 */
247 9.510565e-01,  9.723699e-01,  9.876883e-01,  9.969173e-01, /* 16-19 */
248 1.000000e+00,  9.969173e-01,  9.876883e-01,  9.723699e-01, /* 20-23 */
249 9.510565e-01,  9.238795e-01,  8.910065e-01,  8.526402e-01, /* 24-27 */
250 8.090170e-01,  7.604060e-01,  7.071068e-01,  6.494480e-01, /* 28-31 */
251 5.877853e-01,  5.224986e-01,  4.539905e-01,  3.826834e-01, /* 32-35 */
252 3.090170e-01,  2.334454e-01,  1.564345e-01,  7.845910e-02, /* 36-39 */
253-0.000000e+00, -7.845910e-02, -1.564345e-01, -2.334454e-01, /* 40-43 */
254-3.090170e-01, -3.826834e-01, -4.539905e-01, -5.224986e-01, /* 44-47 */
255-5.877853e-01, -6.494480e-01, -7.071068e-01, -7.604060e-01, /* 48-51 */
256-8.090170e-01, -8.526402e-01, -8.910065e-01, -9.238795e-01, /* 52-55 */
257-9.510565e-01, -9.723699e-01, -9.876883e-01, -9.969173e-01, /* 56-59 */
258-1.000000e+00, -9.969173e-01, -9.876883e-01, -9.723699e-01, /* 60-63 */
259-9.510565e-01, -9.238795e-01, -8.910065e-01, -8.526402e-01, /* 64-67 */
260-8.090170e-01, -7.604060e-01, -7.071068e-01, -6.494480e-01, /* 68-71 */
261-5.877853e-01, -5.224986e-01, -4.539905e-01, -3.826834e-01, /* 72-75 */
262-3.090170e-01, -2.334454e-01, -1.564345e-01, -7.845910e-02, /* 76-79 */
263 0.000000e+00};						    /* 80 */
264
265/*
266 * Decoder operations at the end of each second are driven by a state
267 * machine. The transition matrix consists of a dispatch table indexed
268 * by second number. Each entry in the table contains a case switch
269 * number and argument.
270 */
271struct progx {
272	int sw;			/* case switch number */
273	int arg;		/* argument */
274};
275
276/*
277 * Case switch numbers
278 */
279#define IDLE		0	/* no operation */
280#define COEF		1	/* BCD bit */
281#define COEF1		2	/* BCD bit for minute unit */
282#define COEF2		3	/* BCD bit not used */
283#define DECIM9		4	/* BCD digit 0-9 */
284#define DECIM6		5	/* BCD digit 0-6 */
285#define DECIM3		6	/* BCD digit 0-3 */
286#define DECIM2		7	/* BCD digit 0-2 */
287#define MSCBIT		8	/* miscellaneous bit */
288#define MSC20		9	/* miscellaneous bit */
289#define MSC21		10	/* QSY probe channel */
290#define MIN1		11	/* latch time */
291#define MIN2		12	/* leap second */
292#define SYNC2		13	/* latch minute sync pulse */
293#define SYNC3		14	/* latch data pulse */
294
295/*
296 * Offsets in decoding matrix
297 */
298#define MN		0	/* minute digits (2) */
299#define HR		2	/* hour digits (2) */
300#define DA		4	/* day digits (3) */
301#define YR		7	/* year digits (2) */
302
303struct progx progx[] = {
304	{SYNC2,	0},		/* 0 latch minute sync pulse */
305	{SYNC3,	0},		/* 1 latch data pulse */
306	{MSCBIT, DST2},		/* 2 dst2 */
307	{MSCBIT, SECWAR},	/* 3 lw */
308	{COEF,	0},		/* 4 1 year units */
309	{COEF,	1},		/* 5 2 */
310	{COEF,	2},		/* 6 4 */
311	{COEF,	3},		/* 7 8 */
312	{DECIM9, YR},		/* 8 */
313	{IDLE,	0},		/* 9 p1 */
314	{COEF1,	0},		/* 10 1 minute units */
315	{COEF1,	1},		/* 11 2 */
316	{COEF1,	2},		/* 12 4 */
317	{COEF1,	3},		/* 13 8 */
318	{DECIM9, MN},		/* 14 */
319	{COEF,	0},		/* 15 10 minute tens */
320	{COEF,	1},		/* 16 20 */
321	{COEF,	2},		/* 17 40 */
322	{COEF2,	3},		/* 18 80 (not used) */
323	{DECIM6, MN + 1},	/* 19 p2 */
324	{COEF,	0},		/* 20 1 hour units */
325	{COEF,	1},		/* 21 2 */
326	{COEF,	2},		/* 22 4 */
327	{COEF,	3},		/* 23 8 */
328	{DECIM9, HR},		/* 24 */
329	{COEF,	0},		/* 25 10 hour tens */
330	{COEF,	1},		/* 26 20 */
331	{COEF2,	2},		/* 27 40 (not used) */
332	{COEF2,	3},		/* 28 80 (not used) */
333	{DECIM2, HR + 1},	/* 29 p3 */
334	{COEF,	0},		/* 30 1 day units */
335	{COEF,	1},		/* 31 2 */
336	{COEF,	2},		/* 32 4 */
337	{COEF,	3},		/* 33 8 */
338	{DECIM9, DA},		/* 34 */
339	{COEF,	0},		/* 35 10 day tens */
340	{COEF,	1},		/* 36 20 */
341	{COEF,	2},		/* 37 40 */
342	{COEF,	3},		/* 38 80 */
343	{DECIM9, DA + 1},	/* 39 p4 */
344	{COEF,	0},		/* 40 100 day hundreds */
345	{COEF,	1},		/* 41 200 */
346	{COEF2,	2},		/* 42 400 (not used) */
347	{COEF2,	3},		/* 43 800 (not used) */
348	{DECIM3, DA + 2},	/* 44 */
349	{IDLE,	0},		/* 45 */
350	{IDLE,	0},		/* 46 */
351	{IDLE,	0},		/* 47 */
352	{IDLE,	0},		/* 48 */
353	{IDLE,	0},		/* 49 p5 */
354	{MSCBIT, DUTS},		/* 50 dut+- */
355	{COEF,	0},		/* 51 10 year tens */
356	{COEF,	1},		/* 52 20 */
357	{COEF,	2},		/* 53 40 */
358	{COEF,	3},		/* 54 80 */
359	{MSC20, DST1},		/* 55 dst1 */
360	{MSCBIT, DUT1},		/* 56 0.1 dut */
361	{MSCBIT, DUT2},		/* 57 0.2 */
362	{MSC21, DUT4},		/* 58 0.4 QSY probe channel */
363	{MIN1,	0},		/* 59 p6 latch time */
364	{MIN2,	0}		/* 60 leap second */
365};
366
367/*
368 * BCD coefficients for maximum likelihood digit decode
369 */
370#define P15	1.		/* max positive number */
371#define N15	-1.		/* max negative number */
372
373/*
374 * Digits 0-9
375 */
376#define P9	(P15 / 4)	/* mark (+1) */
377#define N9	(N15 / 4)	/* space (-1) */
378
379double bcd9[][4] = {
380	{N9, N9, N9, N9}, 	/* 0 */
381	{P9, N9, N9, N9}, 	/* 1 */
382	{N9, P9, N9, N9}, 	/* 2 */
383	{P9, P9, N9, N9}, 	/* 3 */
384	{N9, N9, P9, N9}, 	/* 4 */
385	{P9, N9, P9, N9}, 	/* 5 */
386	{N9, P9, P9, N9}, 	/* 6 */
387	{P9, P9, P9, N9}, 	/* 7 */
388	{N9, N9, N9, P9}, 	/* 8 */
389	{P9, N9, N9, P9}, 	/* 9 */
390	{0, 0, 0, 0}		/* backstop */
391};
392
393/*
394 * Digits 0-6 (minute tens)
395 */
396#define P6	(P15 / 3)	/* mark (+1) */
397#define N6	(N15 / 3)	/* space (-1) */
398
399double bcd6[][4] = {
400	{N6, N6, N6, 0}, 	/* 0 */
401	{P6, N6, N6, 0}, 	/* 1 */
402	{N6, P6, N6, 0}, 	/* 2 */
403	{P6, P6, N6, 0}, 	/* 3 */
404	{N6, N6, P6, 0}, 	/* 4 */
405	{P6, N6, P6, 0}, 	/* 5 */
406	{N6, P6, P6, 0}, 	/* 6 */
407	{0, 0, 0, 0}		/* backstop */
408};
409
410/*
411 * Digits 0-3 (day hundreds)
412 */
413#define P3	(P15 / 2)	/* mark (+1) */
414#define N3	(N15 / 2)	/* space (-1) */
415
416double bcd3[][4] = {
417	{N3, N3, 0, 0}, 	/* 0 */
418	{P3, N3, 0, 0}, 	/* 1 */
419	{N3, P3, 0, 0}, 	/* 2 */
420	{P3, P3, 0, 0}, 	/* 3 */
421	{0, 0, 0, 0}		/* backstop */
422};
423
424/*
425 * Digits 0-2 (hour tens)
426 */
427#define P2	(P15 / 2)	/* mark (+1) */
428#define N2	(N15 / 2)	/* space (-1) */
429
430double bcd2[][4] = {
431	{N2, N2, 0, 0}, 	/* 0 */
432	{P2, N2, 0, 0}, 	/* 1 */
433	{N2, P2, 0, 0}, 	/* 2 */
434	{0, 0, 0, 0}		/* backstop */
435};
436
437/*
438 * DST decode (DST2 DST1) for prettyprint
439 */
440char dstcod[] = {
441	'S',			/* 00 standard time */
442	'I',			/* 01 set clock ahead at 0200 local */
443	'O',			/* 10 set clock back at 0200 local */
444	'D'			/* 11 daylight time */
445};
446
447/*
448 * The decoding matrix consists of nine row vectors, one for each digit
449 * of the timecode. The digits are stored from least to most significant
450 * order. The maximum likelihood timecode is formed from the digits
451 * corresponding to the maximum likelihood values reading in the
452 * opposite order: yy ddd hh:mm.
453 */
454struct decvec {
455	int radix;		/* radix (3, 4, 6, 10) */
456	int digit;		/* current clock digit */
457	int mldigit;		/* maximum likelihood digit */
458	int count;		/* match count */
459	double digprb;		/* max digit probability */
460	double digsnr;		/* likelihood function (dB) */
461	double like[10];	/* likelihood integrator 0-9 */
462};
463
464/*
465 * The station structure (sp) is used to acquire the minute pulse from
466 * WWV and/or WWVH. These stations are distinguished by the frequency
467 * used for the second and minute sync pulses, 1000 Hz for WWV and 1200
468 * Hz for WWVH. Other than frequency, the format is the same.
469 */
470struct sync {
471	double	epoch;		/* accumulated epoch differences */
472	double	maxeng;		/* sync max energy */
473	double	noieng;		/* sync noise energy */
474	long	pos;		/* max amplitude position */
475	long	lastpos;	/* last max position */
476	long	mepoch;		/* minute synch epoch */
477
478	double	amp;		/* sync signal */
479	double	syneng;		/* sync signal max */
480	double	synmax;		/* sync signal max latched at 0 s */
481	double	synsnr;		/* sync signal SNR */
482	double	metric;		/* signal quality metric */
483	int	reach;		/* reachability register */
484	int	count;		/* bit counter */
485	int	select;		/* select bits */
486	char	refid[5];	/* reference identifier */
487};
488
489/*
490 * The channel structure (cp) is used to mitigate between channels.
491 */
492struct chan {
493	int	gain;		/* audio gain */
494	struct sync wwv;	/* wwv station */
495	struct sync wwvh;	/* wwvh station */
496};
497
498/*
499 * WWV unit control structure (up)
500 */
501struct wwvunit {
502	l_fp	timestamp;	/* audio sample timestamp */
503	l_fp	tick;		/* audio sample increment */
504	double	phase, freq;	/* logical clock phase and frequency */
505	double	monitor;	/* audio monitor point */
506#ifdef ICOM
507	int	fd_icom;	/* ICOM file descriptor */
508#endif /* ICOM */
509	int	errflg;		/* error flags */
510	int	watch;		/* watchcat */
511
512	/*
513	 * Audio codec variables
514	 */
515	double	comp[SIZE];	/* decompanding table */
516	int	port;		/* codec port */
517	int	gain;		/* codec gain */
518	int	mongain;	/* codec monitor gain */
519	int	clipcnt;	/* sample clipped count */
520
521	/*
522	 * Variables used to establish basic system timing
523	 */
524	int	avgint;		/* master time constant */
525	int	yepoch;		/* sync epoch */
526	int	repoch;		/* buffered sync epoch */
527	double	epomax;		/* second sync amplitude */
528	double	eposnr;		/* second sync SNR */
529	double	irig;		/* data I channel amplitude */
530	double	qrig;		/* data Q channel amplitude */
531	int	datapt;		/* 100 Hz ramp */
532	double	datpha;		/* 100 Hz VFO control */
533	int	rphase;		/* second sample counter */
534	long	mphase;		/* minute sample counter */
535
536	/*
537	 * Variables used to mitigate which channel to use
538	 */
539	struct chan mitig[NCHAN]; /* channel data */
540	struct sync *sptr;	/* station pointer */
541	int	dchan;		/* data channel */
542	int	schan;		/* probe channel */
543	int	achan;		/* active channel */
544
545	/*
546	 * Variables used by the clock state machine
547	 */
548	struct decvec decvec[9]; /* decoding matrix */
549	int	rsec;		/* seconds counter */
550	int	digcnt;		/* count of digits synchronized */
551
552	/*
553	 * Variables used to estimate signal levels and bit/digit
554	 * probabilities
555	 */
556	double	datsig;		/* data signal max */
557	double	datsnr;		/* data signal SNR (dB) */
558
559	/*
560	 * Variables used to establish status and alarm conditions
561	 */
562	int	status;		/* status bits */
563	int	alarm;		/* alarm flashers */
564	int	misc;		/* miscellaneous timecode bits */
565	int	errcnt;		/* data bit error counter */
566};
567
568/*
569 * Function prototypes
570 */
571static	int	wwv_start	P((int, struct peer *));
572static	void	wwv_shutdown	P((int, struct peer *));
573static	void	wwv_receive	P((struct recvbuf *));
574static	void	wwv_poll	P((int, struct peer *));
575
576/*
577 * More function prototypes
578 */
579static	void	wwv_epoch	P((struct peer *));
580static	void	wwv_rf		P((struct peer *, double));
581static	void	wwv_endpoc	P((struct peer *, int));
582static	void	wwv_rsec	P((struct peer *, double));
583static	void	wwv_qrz		P((struct peer *, struct sync *, int));
584static	void	wwv_corr4	P((struct peer *, struct decvec *,
585				    double [], double [][4]));
586static	void	wwv_gain	P((struct peer *));
587static	void	wwv_tsec	P((struct peer *));
588static	int	timecode	P((struct wwvunit *, char *));
589static	double	wwv_snr		P((double, double));
590static	int	carry		P((struct decvec *));
591static	int	wwv_newchan	P((struct peer *));
592static	void	wwv_newgame	P((struct peer *));
593static	double	wwv_metric	P((struct sync *));
594static	void	wwv_clock	P((struct peer *));
595#ifdef ICOM
596static	int	wwv_qsy		P((struct peer *, int));
597#endif /* ICOM */
598
599static double qsy[NCHAN] = {2.5, 5, 10, 15, 20}; /* frequencies (MHz) */
600
601/*
602 * Transfer vector
603 */
604struct	refclock refclock_wwv = {
605	wwv_start,		/* start up driver */
606	wwv_shutdown,		/* shut down driver */
607	wwv_poll,		/* transmit poll message */
608	noentry,		/* not used (old wwv_control) */
609	noentry,		/* initialize driver (not used) */
610	noentry,		/* not used (old wwv_buginfo) */
611	NOFLAGS			/* not used */
612};
613
614
615/*
616 * wwv_start - open the devices and initialize data for processing
617 */
618static int
619wwv_start(
620	int	unit,		/* instance number (used by PCM) */
621	struct peer *peer	/* peer structure pointer */
622	)
623{
624	struct refclockproc *pp;
625	struct wwvunit *up;
626#ifdef ICOM
627	int	temp;
628#endif /* ICOM */
629
630	/*
631	 * Local variables
632	 */
633	int	fd;		/* file descriptor */
634	int	i;		/* index */
635	double	step;		/* codec adjustment */
636
637	/*
638	 * Open audio device
639	 */
640	fd = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit);
641	if (fd < 0)
642		return (0);
643#ifdef DEBUG
644	if (debug)
645		audio_show();
646#endif /* DEBUG */
647
648	/*
649	 * Allocate and initialize unit structure
650	 */
651	if (!(up = (struct wwvunit *)emalloc(sizeof(struct wwvunit)))) {
652		close(fd);
653		return (0);
654	}
655	memset(up, 0, sizeof(struct wwvunit));
656	pp = peer->procptr;
657	pp->unitptr = (caddr_t)up;
658	pp->io.clock_recv = wwv_receive;
659	pp->io.srcclock = (caddr_t)peer;
660	pp->io.datalen = 0;
661	pp->io.fd = fd;
662	if (!io_addclock(&pp->io)) {
663		close(fd);
664		free(up);
665		return (0);
666	}
667
668	/*
669	 * Initialize miscellaneous variables
670	 */
671	peer->precision = PRECISION;
672	pp->clockdesc = DESCRIPTION;
673
674	/*
675	 * The companded samples are encoded sign-magnitude. The table
676	 * contains all the 256 values in the interest of speed.
677	 */
678	up->comp[0] = up->comp[OFFSET] = 0.;
679	up->comp[1] = 1.; up->comp[OFFSET + 1] = -1.;
680	up->comp[2] = 3.; up->comp[OFFSET + 2] = -3.;
681	step = 2.;
682	for (i = 3; i < OFFSET; i++) {
683		up->comp[i] = up->comp[i - 1] + step;
684		up->comp[OFFSET + i] = -up->comp[i];
685                if (i % 16 == 0)
686		    step *= 2.;
687	}
688	DTOLFP(1. / SECOND, &up->tick);
689
690	/*
691	 * Initialize the decoding matrix with the radix for each digit
692	 * position.
693	 */
694	up->decvec[MN].radix = 10;	/* minutes */
695	up->decvec[MN + 1].radix = 6;
696	up->decvec[HR].radix = 10;	/* hours */
697	up->decvec[HR + 1].radix = 3;
698	up->decvec[DA].radix = 10;	/* days */
699	up->decvec[DA + 1].radix = 10;
700	up->decvec[DA + 2].radix = 4;
701	up->decvec[YR].radix = 10;	/* years */
702	up->decvec[YR + 1].radix = 10;
703
704#ifdef ICOM
705	/*
706	 * Initialize autotune if available. Note that the ICOM select
707	 * code must be less than 128, so the high order bit can be used
708	 * to select the line speed 0 (9600 bps) or 1 (1200 bps).
709	 */
710	temp = 0;
711#ifdef DEBUG
712	if (debug > 1)
713		temp = P_TRACE;
714#endif /* DEBUG */
715	if (peer->ttl != 0) {
716		if (peer->ttl & 0x80)
717			up->fd_icom = icom_init("/dev/icom", B1200,
718			    temp);
719		else
720			up->fd_icom = icom_init("/dev/icom", B9600,
721			    temp);
722		if (up->fd_icom < 0) {
723			NLOG(NLOG_SYNCEVENT | NLOG_SYSEVENT)
724			    msyslog(LOG_NOTICE,
725			    "icom: %m");
726			up->errflg = CEVNT_FAULT;
727		}
728	}
729	if (up->fd_icom > 0) {
730		if (wwv_qsy(peer, DCHAN) != 0) {
731			NLOG(NLOG_SYNCEVENT | NLOG_SYSEVENT)
732			    msyslog(LOG_NOTICE,
733			    "icom: radio not found");
734			up->errflg = CEVNT_FAULT;
735			close(up->fd_icom);
736			up->fd_icom = 0;
737		} else {
738			NLOG(NLOG_SYNCEVENT | NLOG_SYSEVENT)
739			    msyslog(LOG_NOTICE,
740			    "icom: autotune enabled");
741		}
742	}
743#endif /* ICOM */
744
745	/*
746	 * Let the games begin.
747	 */
748	wwv_newgame(peer);
749	return (1);
750}
751
752
753/*
754 * wwv_shutdown - shut down the clock
755 */
756static void
757wwv_shutdown(
758	int	unit,		/* instance number (not used) */
759	struct peer *peer	/* peer structure pointer */
760	)
761{
762	struct refclockproc *pp;
763	struct wwvunit *up;
764
765	pp = peer->procptr;
766	up = (struct wwvunit *)pp->unitptr;
767	if (up == NULL)
768		return;
769
770	io_closeclock(&pp->io);
771#ifdef ICOM
772	if (up->fd_icom > 0)
773		close(up->fd_icom);
774#endif /* ICOM */
775	free(up);
776}
777
778
779/*
780 * wwv_receive - receive data from the audio device
781 *
782 * This routine reads input samples and adjusts the logical clock to
783 * track the A/D sample clock by dropping or duplicating codec samples.
784 * It also controls the A/D signal level with an AGC loop to mimimize
785 * quantization noise and avoid overload.
786 */
787static void
788wwv_receive(
789	struct recvbuf *rbufp	/* receive buffer structure pointer */
790	)
791{
792	struct peer *peer;
793	struct refclockproc *pp;
794	struct wwvunit *up;
795
796	/*
797	 * Local variables
798	 */
799	double	sample;		/* codec sample */
800	u_char	*dpt;		/* buffer pointer */
801	int	bufcnt;		/* buffer counter */
802	l_fp	ltemp;
803
804	peer = (struct peer *)rbufp->recv_srcclock;
805	pp = peer->procptr;
806	up = (struct wwvunit *)pp->unitptr;
807
808	/*
809	 * Main loop - read until there ain't no more. Note codec
810	 * samples are bit-inverted.
811	 */
812	DTOLFP((double)rbufp->recv_length / SECOND, &ltemp);
813	L_SUB(&rbufp->recv_time, &ltemp);
814	up->timestamp = rbufp->recv_time;
815	dpt = rbufp->recv_buffer;
816	for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) {
817		sample = up->comp[~*dpt++ & 0xff];
818
819		/*
820		 * Clip noise spikes greater than MAXAMP (6000) and
821		 * record the number of clips to be used later by the
822		 * AGC.
823		 */
824		if (sample > MAXAMP) {
825			sample = MAXAMP;
826			up->clipcnt++;
827		} else if (sample < -MAXAMP) {
828			sample = -MAXAMP;
829			up->clipcnt++;
830		}
831
832		/*
833		 * Variable frequency oscillator. The codec oscillator
834		 * runs at the nominal rate of 8000 samples per second,
835		 * or 125 us per sample. A frequency change of one unit
836		 * results in either duplicating or deleting one sample
837		 * per second, which results in a frequency change of
838		 * 125 PPM.
839		 */
840		up->phase += up->freq / SECOND;
841		up->phase += FREQ_OFFSET / 1e6;
842		if (up->phase >= .5) {
843			up->phase -= 1.;
844		} else if (up->phase < -.5) {
845			up->phase += 1.;
846			wwv_rf(peer, sample);
847			wwv_rf(peer, sample);
848		} else {
849			wwv_rf(peer, sample);
850		}
851		L_ADD(&up->timestamp, &up->tick);
852	}
853
854	/*
855	 * Set the input port and monitor gain for the next buffer.
856	 */
857	if (pp->sloppyclockflag & CLK_FLAG2)
858		up->port = 2;
859	else
860		up->port = 1;
861	if (pp->sloppyclockflag & CLK_FLAG3)
862		up->mongain = MONGAIN;
863	else
864		up->mongain = 0;
865}
866
867
868/*
869 * wwv_poll - called by the transmit procedure
870 *
871 * This routine keeps track of status. If no offset samples have been
872 * processed during a poll interval, a timeout event is declared. If
873 * errors have have occurred during the interval, they are reported as
874 * well.
875 */
876static void
877wwv_poll(
878	int	unit,		/* instance number (not used) */
879	struct peer *peer	/* peer structure pointer */
880	)
881{
882	struct refclockproc *pp;
883	struct wwvunit *up;
884
885	pp = peer->procptr;
886	up = (struct wwvunit *)pp->unitptr;
887	if (pp->coderecv == pp->codeproc)
888		up->errflg = CEVNT_TIMEOUT;
889	if (up->errflg)
890		refclock_report(peer, up->errflg);
891	up->errflg = 0;
892	pp->polls++;
893}
894
895
896/*
897 * wwv_rf - process signals and demodulate to baseband
898 *
899 * This routine grooms and filters decompanded raw audio samples. The
900 * output signal is the 100-Hz filtered baseband data signal in
901 * quadrature phase. The routine also determines the minute synch epoch,
902 * as well as certain signal maxima, minima and related values.
903 *
904 * There are two 1-s ramps used by this program. Both count the 8000
905 * logical clock samples spanning exactly one second. The epoch ramp
906 * counts the samples starting at an arbitrary time. The rphase ramp
907 * counts the samples starting at the 5-ms second sync pulse found
908 * during the epoch ramp.
909 *
910 * There are two 1-m ramps used by this program. The mphase ramp counts
911 * the 480,000 logical clock samples spanning exactly one minute and
912 * starting at an arbitrary time. The rsec ramp counts the 60 seconds of
913 * the minute starting at the 800-ms minute sync pulse found during the
914 * mphase ramp. The rsec ramp drives the seconds state machine to
915 * determine the bits and digits of the timecode.
916 *
917 * Demodulation operations are based on three synthesized quadrature
918 * sinusoids: 100 Hz for the data signal, 1000 Hz for the WWV sync
919 * signal and 1200 Hz for the WWVH sync signal. These drive synchronous
920 * matched filters for the data signal (170 ms at 100 Hz), WWV minute
921 * sync signal (800 ms at 1000 Hz) and WWVH minute sync signal (800 ms
922 * at 1200 Hz). Two additional matched filters are switched in
923 * as required for the WWV second sync signal (5 cycles at 1000 Hz) and
924 * WWVH second sync signal (6 cycles at 1200 Hz).
925 */
926static void
927wwv_rf(
928	struct peer *peer,	/* peerstructure pointer */
929	double isig		/* input signal */
930	)
931{
932	struct refclockproc *pp;
933	struct wwvunit *up;
934	struct sync *sp, *rp;
935
936	static double lpf[5];	/* 150-Hz lpf delay line */
937	double data;		/* lpf output */
938	static double bpf[9];	/* 1000/1200-Hz bpf delay line */
939	double syncx;		/* bpf output */
940	static double mf[41];	/* 1000/1200-Hz mf delay line */
941	double mfsync;		/* mf output */
942
943	static int iptr;	/* data channel pointer */
944	static double ibuf[DATSIZ]; /* data I channel delay line */
945	static double qbuf[DATSIZ]; /* data Q channel delay line */
946
947	static int jptr;	/* sync channel pointer */
948	static int kptr;	/* tick channel pointer */
949
950	static int csinptr;	/* wwv channel phase */
951	static double cibuf[SYNSIZ]; /* wwv I channel delay line */
952	static double cqbuf[SYNSIZ]; /* wwv Q channel delay line */
953	static double ciamp;	/* wwv I channel amplitude */
954	static double cqamp;	/* wwv Q channel amplitude */
955
956	static double csibuf[TCKSIZ]; /* wwv I tick delay line */
957	static double csqbuf[TCKSIZ]; /* wwv Q tick delay line */
958	static double csiamp;	/* wwv I tick amplitude */
959	static double csqamp;	/* wwv Q tick amplitude */
960
961	static int hsinptr;	/* wwvh channel phase */
962	static double hibuf[SYNSIZ]; /* wwvh I channel delay line */
963	static double hqbuf[SYNSIZ]; /* wwvh Q channel delay line */
964	static double hiamp;	/* wwvh I channel amplitude */
965	static double hqamp;	/* wwvh Q channel amplitude */
966
967	static double hsibuf[TCKSIZ]; /* wwvh I tick delay line */
968	static double hsqbuf[TCKSIZ]; /* wwvh Q tick delay line */
969	static double hsiamp;	/* wwvh I tick amplitude */
970	static double hsqamp;	/* wwvh Q tick amplitude */
971
972	static double epobuf[SECOND]; /* second sync comb filter */
973	static double epomax, nxtmax; /* second sync amplitude buffer */
974	static int epopos;	/* epoch second sync position buffer */
975
976	static int iniflg;	/* initialization flag */
977	int	pdelay;		/* propagation delay (samples) */
978	int	epoch;		/* comb filter index */
979	double	dtemp;
980	int	i;
981
982	pp = peer->procptr;
983	up = (struct wwvunit *)pp->unitptr;
984
985	if (!iniflg) {
986		iniflg = 1;
987		memset((char *)lpf, 0, sizeof(lpf));
988		memset((char *)bpf, 0, sizeof(bpf));
989		memset((char *)mf, 0, sizeof(mf));
990		memset((char *)ibuf, 0, sizeof(ibuf));
991		memset((char *)qbuf, 0, sizeof(qbuf));
992		memset((char *)cibuf, 0, sizeof(cibuf));
993		memset((char *)cqbuf, 0, sizeof(cqbuf));
994		memset((char *)csibuf, 0, sizeof(csibuf));
995		memset((char *)csqbuf, 0, sizeof(csqbuf));
996		memset((char *)hibuf, 0, sizeof(hibuf));
997		memset((char *)hqbuf, 0, sizeof(hqbuf));
998		memset((char *)hsibuf, 0, sizeof(hsibuf));
999		memset((char *)hsqbuf, 0, sizeof(hsqbuf));
1000		memset((char *)epobuf, 0, sizeof(epobuf));
1001	}
1002
1003	/*
1004	 * Baseband data demodulation. The 100-Hz subcarrier is
1005	 * extracted using a 150-Hz IIR lowpass filter. This attenuates
1006	 * the 1000/1200-Hz sync signals, as well as the 440-Hz and
1007	 * 600-Hz tones and most of the noise and voice modulation
1008	 * components.
1009	 *
1010	 * The subcarrier is transmitted 10 dB down from the carrier.
1011	 * The DGAIN parameter can be adjusted for this and to
1012	 * compensate for the radio audio response at 100 Hz.
1013	 *
1014	 * Matlab IIR 4th-order IIR elliptic, 150 Hz lowpass, 0.2 dB
1015	 * passband ripple, -50 dB stopband ripple.
1016	 */
1017	data = (lpf[4] = lpf[3]) * 8.360961e-01;
1018	data += (lpf[3] = lpf[2]) * -3.481740e+00;
1019	data += (lpf[2] = lpf[1]) * 5.452988e+00;
1020	data += (lpf[1] = lpf[0]) * -3.807229e+00;
1021	lpf[0] = isig * DGAIN - data;
1022	data = lpf[0] * 3.281435e-03
1023	    + lpf[1] * -1.149947e-02
1024	    + lpf[2] * 1.654858e-02
1025	    + lpf[3] * -1.149947e-02
1026	    + lpf[4] * 3.281435e-03;
1027
1028	/*
1029	 * The 100-Hz data signal is demodulated using a pair of
1030	 * quadrature multipliers, matched filters and a phase lock
1031	 * loop. The I and Q quadrature data signals are produced by
1032	 * multiplying the filtered signal by 100-Hz sine and cosine
1033	 * signals, respectively. The signals are processed by 170-ms
1034	 * synchronous matched filters to produce the amplitude and
1035	 * phase signals used by the demodulator. The signals are scaled
1036	 * to produce unit energy at the maximum value.
1037	 */
1038	i = up->datapt;
1039	up->datapt = (up->datapt + IN100) % 80;
1040	dtemp = sintab[i] * data / (MS / 2. * DATCYC);
1041	up->irig -= ibuf[iptr];
1042	ibuf[iptr] = dtemp;
1043	up->irig += dtemp;
1044
1045	i = (i + 20) % 80;
1046	dtemp = sintab[i] * data / (MS / 2. * DATCYC);
1047	up->qrig -= qbuf[iptr];
1048	qbuf[iptr] = dtemp;
1049	up->qrig += dtemp;
1050	iptr = (iptr + 1) % DATSIZ;
1051
1052	/*
1053	 * Baseband sync demodulation. The 1000/1200 sync signals are
1054	 * extracted using a 600-Hz IIR bandpass filter. This removes
1055	 * the 100-Hz data subcarrier, as well as the 440-Hz and 600-Hz
1056	 * tones and most of the noise and voice modulation components.
1057	 *
1058	 * Matlab 4th-order IIR elliptic, 800-1400 Hz bandpass, 0.2 dB
1059	 * passband ripple, -50 dB stopband ripple.
1060	 */
1061	syncx = (bpf[8] = bpf[7]) * 4.897278e-01;
1062	syncx += (bpf[7] = bpf[6]) * -2.765914e+00;
1063	syncx += (bpf[6] = bpf[5]) * 8.110921e+00;
1064	syncx += (bpf[5] = bpf[4]) * -1.517732e+01;
1065	syncx += (bpf[4] = bpf[3]) * 1.975197e+01;
1066	syncx += (bpf[3] = bpf[2]) * -1.814365e+01;
1067	syncx += (bpf[2] = bpf[1]) * 1.159783e+01;
1068	syncx += (bpf[1] = bpf[0]) * -4.735040e+00;
1069	bpf[0] = isig - syncx;
1070	syncx = bpf[0] * 8.203628e-03
1071	    + bpf[1] * -2.375732e-02
1072	    + bpf[2] * 3.353214e-02
1073	    + bpf[3] * -4.080258e-02
1074	    + bpf[4] * 4.605479e-02
1075	    + bpf[5] * -4.080258e-02
1076	    + bpf[6] * 3.353214e-02
1077	    + bpf[7] * -2.375732e-02
1078	    + bpf[8] * 8.203628e-03;
1079
1080	/*
1081	 * The 1000/1200 sync signals are demodulated using a pair of
1082	 * quadrature multipliers and matched filters. However,
1083	 * synchronous demodulation at these frequencies is impractical,
1084	 * so only the signal amplitude is used. The I and Q quadrature
1085	 * sync signals are produced by multiplying the filtered signal
1086	 * by 1000-Hz (WWV) and 1200-Hz (WWVH) sine and cosine signals,
1087	 * respectively. The WWV and WWVH signals are processed by 800-
1088	 * ms synchronous matched filters and combined to produce the
1089	 * minute sync signal and detect which one (or both) the WWV or
1090	 * WWVH signal is present. The WWV and WWVH signals are also
1091	 * processed by 5-ms synchronous matched filters and combined to
1092	 * produce the second sync signal. The signals are scaled to
1093	 * produce unit energy at the maximum value.
1094	 *
1095	 * Note the master timing ramps, which run continuously. The
1096	 * minute counter (mphase) counts the samples in the minute,
1097	 * while the second counter (epoch) counts the samples in the
1098	 * second.
1099	 */
1100	up->mphase = (up->mphase + 1) % MINUTE;
1101	epoch = up->mphase % SECOND;
1102
1103	/*
1104	 * WWV
1105	 */
1106	i = csinptr;
1107	csinptr = (csinptr + IN1000) % 80;
1108
1109	dtemp = sintab[i] * syncx / (MS / 2.);
1110	ciamp -= cibuf[jptr];
1111	cibuf[jptr] = dtemp;
1112	ciamp += dtemp;
1113	csiamp -= csibuf[kptr];
1114	csibuf[kptr] = dtemp;
1115	csiamp += dtemp;
1116
1117	i = (i + 20) % 80;
1118	dtemp = sintab[i] * syncx / (MS / 2.);
1119	cqamp -= cqbuf[jptr];
1120	cqbuf[jptr] = dtemp;
1121	cqamp += dtemp;
1122	csqamp -= csqbuf[kptr];
1123	csqbuf[kptr] = dtemp;
1124	csqamp += dtemp;
1125
1126	sp = &up->mitig[up->achan].wwv;
1127	sp->amp = sqrt(ciamp * ciamp + cqamp * cqamp) / SYNCYC;
1128	if (!(up->status & MSYNC))
1129		wwv_qrz(peer, sp, (int)(pp->fudgetime1 * SECOND));
1130
1131	/*
1132	 * WWVH
1133	 */
1134	i = hsinptr;
1135	hsinptr = (hsinptr + IN1200) % 80;
1136
1137	dtemp = sintab[i] * syncx / (MS / 2.);
1138	hiamp -= hibuf[jptr];
1139	hibuf[jptr] = dtemp;
1140	hiamp += dtemp;
1141	hsiamp -= hsibuf[kptr];
1142	hsibuf[kptr] = dtemp;
1143	hsiamp += dtemp;
1144
1145	i = (i + 20) % 80;
1146	dtemp = sintab[i] * syncx / (MS / 2.);
1147	hqamp -= hqbuf[jptr];
1148	hqbuf[jptr] = dtemp;
1149	hqamp += dtemp;
1150	hsqamp -= hsqbuf[kptr];
1151	hsqbuf[kptr] = dtemp;
1152	hsqamp += dtemp;
1153
1154	rp = &up->mitig[up->achan].wwvh;
1155	rp->amp = sqrt(hiamp * hiamp + hqamp * hqamp) / SYNCYC;
1156	if (!(up->status & MSYNC))
1157		wwv_qrz(peer, rp, (int)(pp->fudgetime2 * SECOND));
1158	jptr = (jptr + 1) % SYNSIZ;
1159	kptr = (kptr + 1) % TCKSIZ;
1160
1161	/*
1162	 * The following section is called once per minute. It does
1163	 * housekeeping and timeout functions and empties the dustbins.
1164	 */
1165	if (up->mphase == 0) {
1166		up->watch++;
1167		if (!(up->status & MSYNC)) {
1168
1169			/*
1170			 * If minute sync has not been acquired before
1171			 * ACQSN timeout (6 min), or if no signal is
1172			 * heard, the program cycles to the next
1173			 * frequency and tries again.
1174			 */
1175			if (!wwv_newchan(peer))
1176				up->watch = 0;
1177#ifdef ICOM
1178			if (up->fd_icom > 0)
1179				wwv_qsy(peer, up->dchan);
1180#endif /* ICOM */
1181		} else {
1182
1183			/*
1184			 * If the leap bit is set, set the minute epoch
1185			 * back one second so the station processes
1186			 * don't miss a beat.
1187			 */
1188			if (up->status & LEPSEC) {
1189				up->mphase -= SECOND;
1190				if (up->mphase < 0)
1191					up->mphase += MINUTE;
1192			}
1193		}
1194	}
1195
1196	/*
1197	 * When the channel metric reaches threshold and the second
1198	 * counter matches the minute epoch within the second, the
1199	 * driver has synchronized to the station. The second number is
1200	 * the remaining seconds until the next minute epoch, while the
1201	 * sync epoch is zero. Watch out for the first second; if
1202	 * already synchronized to the second, the buffered sync epoch
1203	 * must be set.
1204	 *
1205	 * Note the guard interval is 200 ms; if for some reason the
1206	 * clock drifts more than that, it might wind up in the wrong
1207	 * second. If the maximum frequency error is not more than about
1208	 * 1 PPM, the clock can go as much as two days while still in
1209	 * the same second.
1210	 */
1211	if (up->status & MSYNC) {
1212		wwv_epoch(peer);
1213	} else if (up->sptr != NULL) {
1214		sp = up->sptr;
1215		if (sp->metric >= TTHR && epoch == sp->mepoch % SECOND) 		    {
1216			up->rsec = (60 - sp->mepoch / SECOND) % 60;
1217			up->rphase = 0;
1218			up->status |= MSYNC;
1219			up->watch = 0;
1220			if (!(up->status & SSYNC))
1221				up->repoch = up->yepoch = epoch;
1222			else
1223				up->repoch = up->yepoch;
1224
1225		}
1226	}
1227
1228	/*
1229	 * The second sync pulse is extracted using 5-ms (40 sample) FIR
1230	 * matched filters at 1000 Hz for WWV or 1200 Hz for WWVH. This
1231	 * pulse is used for the most precise synchronization, since if
1232	 * provides a resolution of one sample (125 us). The filters run
1233	 * only if the station has been reliably determined.
1234	 */
1235	if (up->status & SELV) {
1236		pdelay = (int)(pp->fudgetime1 * SECOND);
1237		mfsync = sqrt(csiamp * csiamp + csqamp * csqamp) /
1238		    TCKCYC;
1239	} else if (up->status & SELH) {
1240		pdelay = (int)(pp->fudgetime2 * SECOND);
1241		mfsync = sqrt(hsiamp * hsiamp + hsqamp * hsqamp) /
1242		    TCKCYC;
1243	} else {
1244		pdelay = 0;
1245		mfsync = 0;
1246	}
1247
1248	/*
1249	 * Enhance the seconds sync pulse using a 1-s (8000-sample) comb
1250	 * filter. Correct for the FIR matched filter delay, which is 5
1251	 * ms for both the WWV and WWVH filters, and also for the
1252	 * propagation delay. Once each second look for second sync. If
1253	 * not in minute sync, fiddle the codec gain. Note the SNR is
1254	 * computed from the maximum sample and the envelope of the
1255	 * sample 6 ms before it, so if we slip more than a cycle the
1256	 * SNR should plummet. The signal is scaled to produce unit
1257	 * energy at the maximum value.
1258	 */
1259	dtemp = (epobuf[epoch] += (mfsync - epobuf[epoch]) /
1260	    up->avgint);
1261	if (dtemp > epomax) {
1262		int	j;
1263
1264		epomax = dtemp;
1265		epopos = epoch;
1266		j = epoch - 6 * MS;
1267		if (j < 0)
1268			j += SECOND;
1269		nxtmax = fabs(epobuf[j]);
1270	}
1271	if (epoch == 0) {
1272		up->epomax = epomax;
1273		up->eposnr = wwv_snr(epomax, nxtmax);
1274		epopos -= pdelay + TCKCYC * MS;
1275		if (epopos < 0)
1276			epopos += SECOND;
1277		wwv_endpoc(peer, epopos);
1278		if (!(up->status & SSYNC))
1279			up->alarm |= SYNERR;
1280		epomax = 0;
1281		if (!(up->status & MSYNC))
1282			wwv_gain(peer);
1283	}
1284}
1285
1286
1287/*
1288 * wwv_qrz - identify and acquire WWV/WWVH minute sync pulse
1289 *
1290 * This routine implements a virtual station process used to acquire
1291 * minute sync and to mitigate among the ten frequency and station
1292 * combinations. During minute sync acquisition the process probes each
1293 * frequency and station in turn for the minute pulse, which
1294 * involves searching through the entire 480,000-sample minute. The
1295 * process finds the maximum signal and RMS noise plus signal. Then, the
1296 * actual noise is determined by subtracting the energy of the matched
1297 * filter.
1298 *
1299 * Students of radar receiver technology will discover this algorithm
1300 * amounts to a range-gate discriminator. A valid pulse must have peak
1301 * amplitude at least QTHR (2500) and SNR at least QSNR (20) dB and the
1302 * difference between the current and previous epoch must be less than
1303 * AWND (20 ms). Note that the discriminator peak occurs about 800 ms
1304 * into the second, so the timing is retarded to the previous second
1305 * epoch.
1306 */
1307static void
1308wwv_qrz(
1309	struct peer *peer,	/* peer structure pointer */
1310	struct sync *sp,	/* sync channel structure */
1311	int	pdelay		/* propagation delay (samples) */
1312	)
1313{
1314	struct refclockproc *pp;
1315	struct wwvunit *up;
1316	char	tbuf[80];	/* monitor buffer */
1317	long	epoch;
1318
1319	pp = peer->procptr;
1320	up = (struct wwvunit *)pp->unitptr;
1321
1322	/*
1323	 * Find the sample with peak amplitude, which defines the minute
1324	 * epoch. Accumulate all samples to determine the total noise
1325	 * energy.
1326	 */
1327	epoch = up->mphase - pdelay - SYNSIZ;
1328	if (epoch < 0)
1329		epoch += MINUTE;
1330	if (sp->amp > sp->maxeng) {
1331		sp->maxeng = sp->amp;
1332		sp->pos = epoch;
1333	}
1334	sp->noieng += sp->amp;
1335
1336	/*
1337	 * At the end of the minute, determine the epoch of the minute
1338	 * sync pulse, as well as the difference between the current and
1339	 * previous epoches due to the intrinsic frequency error plus
1340	 * jitter. When calculating the SNR, subtract the pulse energy
1341	 * from the total noise energy and then normalize.
1342	 */
1343	if (up->mphase == 0) {
1344		sp->synmax = sp->maxeng;
1345		sp->synsnr = wwv_snr(sp->synmax, (sp->noieng -
1346		    sp->synmax) / MINUTE);
1347		if (sp->count == 0)
1348			sp->lastpos = sp->pos;
1349		epoch = (sp->pos - sp->lastpos) % MINUTE;
1350		sp->reach <<= 1;
1351		if (sp->reach & (1 << AMAX))
1352			sp->count--;
1353		if (sp->synmax > ATHR && sp->synsnr > ASNR) {
1354			if (abs(epoch) < AWND * MS) {
1355				sp->reach |= 1;
1356				sp->count++;
1357				sp->mepoch = sp->lastpos = sp->pos;
1358			} else if (sp->count == 1) {
1359				sp->lastpos = sp->pos;
1360			}
1361		}
1362		if (up->watch > ACQSN)
1363			sp->metric = 0;
1364		else
1365			sp->metric = wwv_metric(sp);
1366		if (pp->sloppyclockflag & CLK_FLAG4) {
1367			sprintf(tbuf,
1368			    "wwv8 %04x %3d %s %04x %.0f %.0f/%.1f %4ld %4ld",
1369			    up->status, up->gain, sp->refid,
1370			    sp->reach & 0xffff, sp->metric, sp->synmax,
1371			    sp->synsnr, sp->pos % SECOND, epoch);
1372			record_clock_stats(&peer->srcadr, tbuf);
1373#ifdef DEBUG
1374			if (debug)
1375				printf("%s\n", tbuf);
1376#endif /* DEBUG */
1377		}
1378		sp->maxeng = sp->noieng = 0;
1379	}
1380}
1381
1382
1383/*
1384 * wwv_endpoc - identify and acquire second sync pulse
1385 *
1386 * This routine is called at the end of the second sync interval. It
1387 * determines the second sync epoch position within the second and
1388 * disciplines the sample clock using a frequency-lock loop (FLL).
1389 *
1390 * Second sync is determined in the RF input routine as the maximum
1391 * over all 8000 samples in the second comb filter. To assure accurate
1392 * and reliable time and frequency discipline, this routine performs a
1393 * great deal of heavy-handed heuristic data filtering and grooming.
1394 */
1395static void
1396wwv_endpoc(
1397	struct peer *peer,	/* peer structure pointer */
1398	int epopos		/* epoch max position */
1399	)
1400{
1401	struct refclockproc *pp;
1402	struct wwvunit *up;
1403	static int epoch_mf[3]; /* epoch median filter */
1404	static int tepoch;	/* current second epoch */
1405 	static int xepoch;	/* last second epoch */
1406 	static int zepoch;	/* last run epoch */
1407	static int zcount;	/* last run end time */
1408	static int scount;	/* seconds counter */
1409	static int syncnt;	/* run length counter */
1410	static int maxrun;	/* longest run length */
1411	static int mepoch;	/* longest run end epoch */
1412	static int mcount;	/* longest run end time */
1413	static int avgcnt;	/* averaging interval counter */
1414	static int avginc;	/* averaging ratchet */
1415	static int iniflg;	/* initialization flag */
1416	char tbuf[80];		/* monitor buffer */
1417	double dtemp;
1418	int tmp2;
1419
1420	pp = peer->procptr;
1421	up = (struct wwvunit *)pp->unitptr;
1422	if (!iniflg) {
1423		iniflg = 1;
1424		memset((char *)epoch_mf, 0, sizeof(epoch_mf));
1425	}
1426
1427	/*
1428	 * If the signal amplitude or SNR fall below thresholds, dim the
1429	 * second sync lamp and wait for hotter ions. If no stations are
1430	 * heard, we are either in a probe cycle or the ions are really
1431	 * cold.
1432	 */
1433	scount++;
1434	if (up->epomax < STHR || up->eposnr < SSNR) {
1435		up->status &= ~(SSYNC | FGATE);
1436		avgcnt = syncnt = maxrun = 0;
1437		return;
1438	}
1439	if (!(up->status & (SELV | SELH)))
1440		return;
1441
1442	/*
1443	 * A three-stage median filter is used to help denoise the
1444	 * second sync pulse. The median sample becomes the candidate
1445	 * epoch.
1446	 */
1447	epoch_mf[2] = epoch_mf[1];
1448	epoch_mf[1] = epoch_mf[0];
1449	epoch_mf[0] = epopos;
1450	if (epoch_mf[0] > epoch_mf[1]) {
1451		if (epoch_mf[1] > epoch_mf[2])
1452			tepoch = epoch_mf[1];	/* 0 1 2 */
1453		else if (epoch_mf[2] > epoch_mf[0])
1454			tepoch = epoch_mf[0];	/* 2 0 1 */
1455		else
1456			tepoch = epoch_mf[2];	/* 0 2 1 */
1457	} else {
1458		if (epoch_mf[1] < epoch_mf[2])
1459			tepoch = epoch_mf[1];	/* 2 1 0 */
1460		else if (epoch_mf[2] < epoch_mf[0])
1461			tepoch = epoch_mf[0];	/* 1 0 2 */
1462		else
1463			tepoch = epoch_mf[2];	/* 1 2 0 */
1464	}
1465
1466
1467	/*
1468	 * If the epoch candidate is the same as the last one, increment
1469	 * the run counter. If not, save the length, epoch and end
1470	 * time of the current run for use later and reset the counter.
1471	 * The epoch is considered valid if the run is at least SCMP
1472	 * (10) s, the minute is synchronized and the interval since the
1473	 * last epoch  is not greater than the averaging interval. Thus,
1474	 * after a long absence, the program will wait a full averaging
1475	 * interval while the comb filter charges up and noise
1476	 * dissapates..
1477	 */
1478	tmp2 = (tepoch - xepoch) % SECOND;
1479	if (tmp2 == 0) {
1480		syncnt++;
1481		if (syncnt > SCMP && up->status & MSYNC && (up->status &
1482		    FGATE || scount - zcount <= up->avgint)) {
1483			up->status |= SSYNC;
1484			up->yepoch = tepoch;
1485		}
1486	} else if (syncnt >= maxrun) {
1487		maxrun = syncnt;
1488		mcount = scount;
1489		mepoch = xepoch;
1490		syncnt = 0;
1491	}
1492	if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status & MSYNC))
1493	    {
1494		sprintf(tbuf,
1495		    "wwv1 %04x %3d %4d %5.0f %5.1f %5d %4d %4d %4d",
1496		    up->status, up->gain, tepoch, up->epomax,
1497		    up->eposnr, tmp2, avgcnt, syncnt,
1498		    maxrun);
1499		record_clock_stats(&peer->srcadr, tbuf);
1500#ifdef DEBUG
1501		if (debug)
1502			printf("%s\n", tbuf);
1503#endif /* DEBUG */
1504	}
1505	avgcnt++;
1506	if (avgcnt < up->avgint) {
1507		xepoch = tepoch;
1508		return;
1509	}
1510
1511	/*
1512	 * The sample clock frequency is disciplined using a first-order
1513	 * feedback loop with time constant consistent with the Allan
1514	 * intercept of typical computer clocks. During each averaging
1515	 * interval the candidate epoch at the end of the longest run is
1516	 * determined. If the longest run is zero, all epoches in the
1517	 * interval are different, so the candidate epoch is the current
1518	 * epoch. The frequency update is computed from the candidate
1519	 * epoch difference (125-us units) and time difference (seconds)
1520	 * between updates.
1521	 */
1522	if (syncnt >= maxrun) {
1523		maxrun = syncnt;
1524		mcount = scount;
1525		mepoch = xepoch;
1526	}
1527	xepoch = tepoch;
1528	if (maxrun == 0) {
1529		mepoch = tepoch;
1530		mcount = scount;
1531	}
1532
1533	/*
1534	 * The master clock runs at the codec sample frequency of 8000
1535	 * Hz, so the intrinsic time resolution is 125 us. The frequency
1536	 * resolution ranges from 18 PPM at the minimum averaging
1537	 * interval of 8 s to 0.12 PPM at the maximum interval of 1024
1538	 * s. An offset update is determined at the end of the longest
1539	 * run in each averaging interval. The frequency adjustment is
1540	 * computed from the difference between offset updates and the
1541	 * interval between them.
1542	 *
1543	 * The maximum frequency adjustment ranges from 187 PPM at the
1544	 * minimum interval to 1.5 PPM at the maximum. If the adjustment
1545	 * exceeds the maximum, the update is discarded and the
1546	 * hysteresis counter is decremented. Otherwise, the frequency
1547	 * is incremented by the adjustment, but clamped to the maximum
1548	 * 187.5 PPM. If the update is less than half the maximum, the
1549	 * hysteresis counter is incremented. If the counter increments
1550	 * to +3, the averaging interval is doubled and the counter set
1551	 * to zero; if it decrements to -3, the interval is halved and
1552	 * the counter set to zero.
1553	 */
1554	dtemp = (mepoch - zepoch) % SECOND;
1555	if (up->status & FGATE) {
1556		if (abs(dtemp) < MAXFREQ * MINAVG) {
1557			up->freq += (dtemp / 2.) / ((mcount - zcount) *
1558			    FCONST);
1559			if (up->freq > MAXFREQ)
1560				up->freq = MAXFREQ;
1561			else if (up->freq < -MAXFREQ)
1562				up->freq = -MAXFREQ;
1563			if (abs(dtemp) < MAXFREQ * MINAVG / 2.) {
1564				if (avginc < 3) {
1565					avginc++;
1566				} else {
1567					if (up->avgint < MAXAVG) {
1568						up->avgint <<= 1;
1569						avginc = 0;
1570					}
1571				}
1572			}
1573		} else {
1574			if (avginc > -3) {
1575				avginc--;
1576			} else {
1577				if (up->avgint > MINAVG) {
1578					up->avgint >>= 1;
1579					avginc = 0;
1580				}
1581			}
1582		}
1583	}
1584	if (pp->sloppyclockflag & CLK_FLAG4) {
1585		sprintf(tbuf,
1586		    "wwv2 %04x %5.0f %5.1f %5d %4d %4d %4d %4.0f %7.2f",
1587		    up->status, up->epomax, up->eposnr, mepoch,
1588		    up->avgint, maxrun, mcount - zcount, dtemp,
1589		    up->freq * 1e6 / SECOND);
1590		record_clock_stats(&peer->srcadr, tbuf);
1591#ifdef DEBUG
1592		if (debug)
1593			printf("%s\n", tbuf);
1594#endif /* DEBUG */
1595	}
1596
1597	/*
1598	 * This is a valid update; set up for the next interval.
1599	 */
1600	up->status |= FGATE;
1601	zepoch = mepoch;
1602	zcount = mcount;
1603	avgcnt = syncnt = maxrun = 0;
1604}
1605
1606
1607/*
1608 * wwv_epoch - epoch scanner
1609 *
1610 * This routine extracts data signals from the 100-Hz subcarrier. It
1611 * scans the receiver second epoch to determine the signal amplitudes
1612 * and pulse timings. Receiver synchronization is determined by the
1613 * minute sync pulse detected in the wwv_rf() routine and the second
1614 * sync pulse detected in the wwv_epoch() routine. The transmitted
1615 * signals are delayed by the propagation delay, receiver delay and
1616 * filter delay of this program. Delay corrections are introduced
1617 * separately for WWV and WWVH.
1618 *
1619 * Most communications radios use a highpass filter in the audio stages,
1620 * which can do nasty things to the subcarrier phase relative to the
1621 * sync pulses. Therefore, the data subcarrier reference phase is
1622 * disciplined using the hardlimited quadrature-phase signal sampled at
1623 * the same time as the in-phase signal. The phase tracking loop uses
1624 * phase adjustments of plus-minus one sample (125 us).
1625 */
1626static void
1627wwv_epoch(
1628	struct peer *peer	/* peer structure pointer */
1629	)
1630{
1631	struct refclockproc *pp;
1632	struct wwvunit *up;
1633	struct chan *cp;
1634	static double sigmin, sigzer, sigone, engmax, engmin;
1635
1636	pp = peer->procptr;
1637	up = (struct wwvunit *)pp->unitptr;
1638
1639	/*
1640	 * Find the maximum minute sync pulse energy for both the
1641	 * WWV and WWVH stations. This will be used later for channel
1642	 * and station mitigation. Also set the seconds epoch at 800 ms
1643	 * well before the end of the second to make sure we never set
1644	 * the epoch backwards.
1645	 */
1646	cp = &up->mitig[up->achan];
1647	if (cp->wwv.amp > cp->wwv.syneng)
1648		cp->wwv.syneng = cp->wwv.amp;
1649	if (cp->wwvh.amp > cp->wwvh.syneng)
1650		cp->wwvh.syneng = cp->wwvh.amp;
1651	if (up->rphase == 800 * MS)
1652		up->repoch = up->yepoch;
1653
1654	/*
1655	 * Use the signal amplitude at epoch 15 ms as the noise floor.
1656	 * This gives a guard time of +-15 ms from the beginning of the
1657	 * second until the second pulse rises at 30 ms. There is a
1658	 * compromise here; we want to delay the sample as long as
1659	 * possible to give the radio time to change frequency and the
1660	 * AGC to stabilize, but as early as possible if the second
1661	 * epoch is not exact.
1662	 */
1663	if (up->rphase == 15 * MS)
1664		sigmin = sigzer = sigone = up->irig;
1665
1666	/*
1667	 * Latch the data signal at 200 ms. Keep this around until the
1668	 * end of the second. Use the signal energy as the peak to
1669	 * compute the SNR. Use the Q sample to adjust the 100-Hz
1670	 * reference oscillator phase.
1671	 */
1672	if (up->rphase == 200 * MS) {
1673		sigzer = up->irig;
1674		engmax = sqrt(up->irig * up->irig + up->qrig *
1675		    up->qrig);
1676		up->datpha = up->qrig / up->avgint;
1677		if (up->datpha >= 0) {
1678			up->datapt++;
1679			if (up->datapt >= 80)
1680				up->datapt -= 80;
1681		} else {
1682			up->datapt--;
1683			if (up->datapt < 0)
1684				up->datapt += 80;
1685		}
1686	}
1687
1688
1689	/*
1690	 * Latch the data signal at 500 ms. Keep this around until the
1691	 * end of the second.
1692	 */
1693	else if (up->rphase == 500 * MS)
1694		sigone = up->irig;
1695
1696	/*
1697	 * At the end of the second crank the clock state machine and
1698	 * adjust the codec gain. Note the epoch is buffered from the
1699	 * center of the second in order to avoid jitter while the
1700	 * seconds synch is diddling the epoch. Then, determine the true
1701	 * offset and update the median filter in the driver interface.
1702	 *
1703	 * Use the energy at the end of the second as the noise to
1704	 * compute the SNR for the data pulse. This gives a better
1705	 * measurement than the beginning of the second, especially when
1706	 * returning from the probe channel. This gives a guard time of
1707	 * 30 ms from the decay of the longest pulse to the rise of the
1708	 * next pulse.
1709	 */
1710	up->rphase++;
1711	if (up->mphase % SECOND == up->repoch) {
1712		up->status &= ~(DGATE | BGATE);
1713		engmin = sqrt(up->irig * up->irig + up->qrig *
1714		    up->qrig);
1715		up->datsig = engmax;
1716		up->datsnr = wwv_snr(engmax, engmin);
1717
1718		/*
1719		 * If the amplitude or SNR is below threshold, average a
1720		 * 0 in the the integrators; otherwise, average the
1721		 * bipolar signal. This is done to avoid noise polution.
1722		 */
1723		if (engmax < DTHR || up->datsnr < DSNR) {
1724			up->status |= DGATE;
1725			wwv_rsec(peer, 0);
1726		} else {
1727			sigzer -= sigone;
1728			sigone -= sigmin;
1729			wwv_rsec(peer, sigone - sigzer);
1730		}
1731		if (up->status & (DGATE | BGATE))
1732			up->errcnt++;
1733		if (up->errcnt > MAXERR)
1734			up->alarm |= LOWERR;
1735		wwv_gain(peer);
1736		cp = &up->mitig[up->achan];
1737		cp->wwv.syneng = 0;
1738		cp->wwvh.syneng = 0;
1739		up->rphase = 0;
1740	}
1741}
1742
1743
1744/*
1745 * wwv_rsec - process receiver second
1746 *
1747 * This routine is called at the end of each receiver second to
1748 * implement the per-second state machine. The machine assembles BCD
1749 * digit bits, decodes miscellaneous bits and dances the leap seconds.
1750 *
1751 * Normally, the minute has 60 seconds numbered 0-59. If the leap
1752 * warning bit is set, the last minute (1439) of 30 June (day 181 or 182
1753 * for leap years) or 31 December (day 365 or 366 for leap years) is
1754 * augmented by one second numbered 60. This is accomplished by
1755 * extending the minute interval by one second and teaching the state
1756 * machine to ignore it.
1757 */
1758static void
1759wwv_rsec(
1760	struct peer *peer,	/* peer structure pointer */
1761	double bit
1762	)
1763{
1764	static int iniflg;	/* initialization flag */
1765	static double bcddld[4]; /* BCD data bits */
1766	static double bitvec[61]; /* bit integrator for misc bits */
1767	struct refclockproc *pp;
1768	struct wwvunit *up;
1769	struct chan *cp;
1770	struct sync *sp, *rp;
1771	char	tbuf[80];	/* monitor buffer */
1772	int	sw, arg, nsec;
1773
1774	pp = peer->procptr;
1775	up = (struct wwvunit *)pp->unitptr;
1776	if (!iniflg) {
1777		iniflg = 1;
1778		memset((char *)bitvec, 0, sizeof(bitvec));
1779	}
1780
1781	/*
1782	 * The bit represents the probability of a hit on zero (negative
1783	 * values), a hit on one (positive values) or a miss (zero
1784	 * value). The likelihood vector is the exponential average of
1785	 * these probabilities. Only the bits of this vector
1786	 * corresponding to the miscellaneous bits of the timecode are
1787	 * used, but it's easier to do them all. After that, crank the
1788	 * seconds state machine.
1789	 */
1790	nsec = up->rsec;
1791	up->rsec++;
1792	bitvec[nsec] += (bit - bitvec[nsec]) / TCONST;
1793	sw = progx[nsec].sw;
1794	arg = progx[nsec].arg;
1795
1796	/*
1797	 * The minute state machine. Fly off to a particular section as
1798	 * directed by the transition matrix and second number.
1799	 */
1800	switch (sw) {
1801
1802	/*
1803	 * Ignore this second.
1804	 */
1805	case IDLE:			/* 9, 45-49 */
1806		break;
1807
1808	/*
1809	 * Probe channel stuff
1810	 *
1811	 * The WWV/H format contains data pulses in second 59 (position
1812	 * identifier) and second 1, but not in second 0. The minute
1813	 * sync pulse is contained in second 0. At the end of second 58
1814	 * QSY to the probe channel, which rotates in turn over all
1815	 * WWV/H frequencies. At the end of second 0 measure the minute
1816	 * sync pulse. At the end of second 1 measure the data pulse and
1817	 * QSY back to the data channel. Note that the actions commented
1818	 * here happen at the end of the second numbered as shown.
1819	 *
1820	 * At the end of second 0 save the minute sync amplitude latched
1821	 * at 800 ms as the signal later used to calculate the SNR.
1822	 */
1823	case SYNC2:			/* 0 */
1824		cp = &up->mitig[up->achan];
1825		cp->wwv.synmax = cp->wwv.syneng;
1826		cp->wwvh.synmax = cp->wwvh.syneng;
1827		break;
1828
1829	/*
1830	 * At the end of second 1 use the minute sync amplitude latched
1831	 * at 800 ms as the noise to calculate the SNR. If the minute
1832	 * sync pulse and SNR are above thresholds and the data pulse
1833	 * amplitude and SNR are above thresolds, shift a 1 into the
1834	 * station reachability register; otherwise, shift a 0. The
1835	 * number of 1 bits in the last six intervals is a component of
1836	 * the channel metric computed by the wwv_metric() routine.
1837	 * Finally, QSY back to the data channel.
1838	 */
1839	case SYNC3:			/* 1 */
1840		cp = &up->mitig[up->achan];
1841
1842		/*
1843		 * WWV station
1844		 */
1845		sp = &cp->wwv;
1846		sp->synsnr = wwv_snr(sp->synmax, sp->amp);
1847		sp->reach <<= 1;
1848		if (sp->reach & (1 << AMAX))
1849			sp->count--;
1850		if (sp->synmax >= QTHR && sp->synsnr >= QSNR &&
1851		    !(up->status & (DGATE | BGATE))) {
1852			sp->reach |= 1;
1853			sp->count++;
1854		}
1855		sp->metric = wwv_metric(sp);
1856
1857		/*
1858		 * WWVH station
1859		 */
1860		rp = &cp->wwvh;
1861		rp->synsnr = wwv_snr(rp->synmax, rp->amp);
1862		rp->reach <<= 1;
1863		if (rp->reach & (1 << AMAX))
1864			rp->count--;
1865		if (rp->synmax >= QTHR && rp->synsnr >= QSNR &&
1866		    !(up->status & (DGATE | BGATE))) {
1867			rp->reach |= 1;
1868			rp->count++;
1869		}
1870		rp->metric = wwv_metric(rp);
1871		if (pp->sloppyclockflag & CLK_FLAG4) {
1872			sprintf(tbuf,
1873			    "wwv5 %04x %3d %4d %.0f/%.1f %.0f/%.1f %s %04x %.0f %.0f/%.1f %s %04x %.0f %.0f/%.1f",
1874			    up->status, up->gain, up->yepoch,
1875			    up->epomax, up->eposnr, up->datsig,
1876			    up->datsnr,
1877			    sp->refid, sp->reach & 0xffff,
1878			    sp->metric, sp->synmax, sp->synsnr,
1879			    rp->refid, rp->reach & 0xffff,
1880			    rp->metric, rp->synmax, rp->synsnr);
1881			record_clock_stats(&peer->srcadr, tbuf);
1882#ifdef DEBUG
1883			if (debug)
1884				printf("%s\n", tbuf);
1885#endif /* DEBUG */
1886		}
1887		up->errcnt = up->digcnt = up->alarm = 0;
1888
1889		/*
1890		 * We now begin the minute scan. If not yet synchronized
1891		 * to a station, restart if the units digit has not been
1892		 * found within the DATA timeout (15 m) or if not
1893		 * synchronized within the SYNCH timeout (40 m). After
1894		 * synchronizing to a station, restart if no stations
1895		 * are found within the PANIC timeout (2 days).
1896		 */
1897		if (up->status & INSYNC) {
1898			if (up->watch > PANIC) {
1899				wwv_newgame(peer);
1900				return;
1901			}
1902		} else {
1903			if (!(up->status & DSYNC)) {
1904				if (up->watch > DATA) {
1905					wwv_newgame(peer);
1906					return;
1907				}
1908			}
1909			if (up->watch > SYNCH) {
1910				wwv_newgame(peer);
1911				return;
1912			}
1913		}
1914		wwv_newchan(peer);
1915#ifdef ICOM
1916		if (up->fd_icom > 0)
1917			wwv_qsy(peer, up->dchan);
1918#endif /* ICOM */
1919		break;
1920
1921	/*
1922	 * Save the bit probability in the BCD data vector at the index
1923	 * given by the argument. Bits not used in the digit are forced
1924	 * to zero.
1925	 */
1926	case COEF1:			/* 4-7 */
1927		bcddld[arg] = bit;
1928		break;
1929
1930	case COEF:			/* 10-13, 15-17, 20-23, 25-26,
1931					   30-33, 35-38, 40-41, 51-54 */
1932		if (up->status & DSYNC)
1933			bcddld[arg] = bit;
1934		else
1935			bcddld[arg] = 0;
1936		break;
1937
1938	case COEF2:			/* 18, 27-28, 42-43 */
1939		bcddld[arg] = 0;
1940		break;
1941
1942	/*
1943	 * Correlate coefficient vector with each valid digit vector and
1944	 * save in decoding matrix. We step through the decoding matrix
1945	 * digits correlating each with the coefficients and saving the
1946	 * greatest and the next lower for later SNR calculation.
1947	 */
1948	case DECIM2:			/* 29 */
1949		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd2);
1950		break;
1951
1952	case DECIM3:			/* 44 */
1953		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd3);
1954		break;
1955
1956	case DECIM6:			/* 19 */
1957		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd6);
1958		break;
1959
1960	case DECIM9:			/* 8, 14, 24, 34, 39 */
1961		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd9);
1962		break;
1963
1964	/*
1965	 * Miscellaneous bits. If above the positive threshold, declare
1966	 * 1; if below the negative threshold, declare 0; otherwise
1967	 * raise the BGATE bit. The design is intended to avoid
1968	 * integrating noise under low SNR conditions.
1969	 */
1970	case MSC20:			/* 55 */
1971		wwv_corr4(peer, &up->decvec[YR + 1], bcddld, bcd9);
1972		/* fall through */
1973
1974	case MSCBIT:			/* 2-3, 50, 56-57 */
1975		if (bitvec[nsec] > BTHR) {
1976			if (!(up->misc & arg))
1977				up->alarm |= CMPERR;
1978			up->misc |= arg;
1979		} else if (bitvec[nsec] < -BTHR) {
1980			if (up->misc & arg)
1981				up->alarm |= CMPERR;
1982			up->misc &= ~arg;
1983		} else {
1984			up->status |= BGATE;
1985		}
1986		break;
1987
1988	/*
1989	 * Save the data channel gain, then QSY to the probe channel and
1990	 * dim the seconds comb filters. The newchan() routine will
1991	 * light them back up.
1992	 */
1993	case MSC21:			/* 58 */
1994		if (bitvec[nsec] > BTHR) {
1995			if (!(up->misc & arg))
1996				up->alarm |= CMPERR;
1997			up->misc |= arg;
1998		} else if (bitvec[nsec] < -BTHR) {
1999			if (up->misc & arg)
2000				up->alarm |= CMPERR;
2001			up->misc &= ~arg;
2002		} else {
2003			up->status |= BGATE;
2004		}
2005		up->status &= ~(SELV | SELH);
2006#ifdef ICOM
2007		if (up->fd_icom > 0) {
2008			up->schan = (up->schan + 1) % NCHAN;
2009			wwv_qsy(peer, up->schan);
2010		} else {
2011			up->mitig[up->achan].gain = up->gain;
2012		}
2013#else
2014		up->mitig[up->achan].gain = up->gain;
2015#endif /* ICOM */
2016		break;
2017
2018	/*
2019	 * The endgames
2020	 *
2021	 * During second 59 the receiver and codec AGC are settling
2022	 * down, so the data pulse is unusable as quality metric. If
2023	 * LEPSEC is set on the last minute of 30 June or 31 December,
2024	 * the transmitter and receiver insert an extra second (60) in
2025	 * the timescale and the minute sync repeats the second. Once
2026	 * leaps occurred at intervals of about 18 months, but the last
2027	 * leap before the most recent leap in 1995 was in  1998.
2028	 */
2029	case MIN1:			/* 59 */
2030		if (up->status & LEPSEC)
2031			break;
2032
2033		/* fall through */
2034
2035	case MIN2:			/* 60 */
2036		up->status &= ~LEPSEC;
2037		wwv_tsec(peer);
2038		up->rsec = 0;
2039		wwv_clock(peer);
2040		break;
2041	}
2042	if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status &
2043	    DSYNC)) {
2044		sprintf(tbuf,
2045		    "wwv3 %2d %04x %3d %4d %5.0f %5.1f %5.0f %5.1f %5.0f",
2046		    nsec, up->status, up->gain, up->yepoch, up->epomax,
2047		    up->eposnr, up->datsig, up->datsnr, bit);
2048		record_clock_stats(&peer->srcadr, tbuf);
2049#ifdef DEBUG
2050		if (debug)
2051			printf("%s\n", tbuf);
2052#endif /* DEBUG */
2053	}
2054	pp->disp += AUDIO_PHI;
2055}
2056
2057/*
2058 * The radio clock is set if the alarm bits are all zero. After that,
2059 * the time is considered valid if the second sync bit is lit. It should
2060 * not be a surprise, especially if the radio is not tunable, that
2061 * sometimes no stations are above the noise and the integrators
2062 * discharge below the thresholds. We assume that, after a day of signal
2063 * loss, the minute sync epoch will be in the same second. This requires
2064 * the codec frequency be accurate within 6 PPM. Practical experience
2065 * shows the frequency typically within 0.1 PPM, so after a day of
2066 * signal loss, the time should be within 8.6 ms..
2067 */
2068static void
2069wwv_clock(
2070	struct peer *peer	/* peer unit pointer */
2071	)
2072{
2073	struct refclockproc *pp;
2074	struct wwvunit *up;
2075	l_fp	offset;		/* offset in NTP seconds */
2076
2077	pp = peer->procptr;
2078	up = (struct wwvunit *)pp->unitptr;
2079	if (!(up->status & SSYNC))
2080		up->alarm |= SYNERR;
2081	if (up->digcnt < 9)
2082		up->alarm |= NINERR;
2083	if (!(up->alarm))
2084		up->status |= INSYNC;
2085	if (up->status & INSYNC && up->status & SSYNC) {
2086		if (up->misc & SECWAR)
2087			pp->leap = LEAP_ADDSECOND;
2088		else
2089			pp->leap = LEAP_NOWARNING;
2090		pp->second = up->rsec;
2091		pp->minute = up->decvec[MN].digit + up->decvec[MN +
2092		    1].digit * 10;
2093		pp->hour = up->decvec[HR].digit + up->decvec[HR +
2094		    1].digit * 10;
2095		pp->day = up->decvec[DA].digit + up->decvec[DA +
2096		    1].digit * 10 + up->decvec[DA + 2].digit * 100;
2097		pp->year = up->decvec[YR].digit + up->decvec[YR +
2098		    1].digit * 10;
2099		pp->year += 2000;
2100		L_CLR(&offset);
2101		if (!clocktime(pp->day, pp->hour, pp->minute,
2102		    pp->second, GMT, up->timestamp.l_ui,
2103		    &pp->yearstart, &offset.l_ui)) {
2104			up->errflg = CEVNT_BADTIME;
2105		} else {
2106			up->watch = 0;
2107			pp->disp = 0;
2108			pp->lastref = up->timestamp;
2109			refclock_process_offset(pp, offset,
2110			    up->timestamp, PDELAY);
2111			refclock_receive(peer);
2112		}
2113	}
2114	pp->lencode = timecode(up, pp->a_lastcode);
2115	record_clock_stats(&peer->srcadr, pp->a_lastcode);
2116#ifdef DEBUG
2117	if (debug)
2118		printf("wwv: timecode %d %s\n", pp->lencode,
2119		    pp->a_lastcode);
2120#endif /* DEBUG */
2121}
2122
2123
2124/*
2125 * wwv_corr4 - determine maximum likelihood digit
2126 *
2127 * This routine correlates the received digit vector with the BCD
2128 * coefficient vectors corresponding to all valid digits at the given
2129 * position in the decoding matrix. The maximum value corresponds to the
2130 * maximum likelihood digit, while the ratio of this value to the next
2131 * lower value determines the likelihood function. Note that, if the
2132 * digit is invalid, the likelihood vector is averaged toward a miss.
2133 */
2134static void
2135wwv_corr4(
2136	struct peer *peer,	/* peer unit pointer */
2137	struct decvec *vp,	/* decoding table pointer */
2138	double	data[],		/* received data vector */
2139	double	tab[][4]	/* correlation vector array */
2140	)
2141{
2142	struct refclockproc *pp;
2143	struct wwvunit *up;
2144	double	topmax, nxtmax;	/* metrics */
2145	double	acc;		/* accumulator */
2146	char	tbuf[80];	/* monitor buffer */
2147	int	mldigit;	/* max likelihood digit */
2148	int	i, j;
2149
2150	pp = peer->procptr;
2151	up = (struct wwvunit *)pp->unitptr;
2152
2153	/*
2154	 * Correlate digit vector with each BCD coefficient vector. If
2155	 * any BCD digit bit is bad, consider all bits a miss. Until the
2156	 * minute units digit has been resolved, don't to anything else.
2157	 * Note the SNR is calculated as the ratio of the largest
2158	 * likelihood value to the next largest likelihood value.
2159 	 */
2160	mldigit = 0;
2161	topmax = nxtmax = -MAXAMP;
2162	for (i = 0; tab[i][0] != 0; i++) {
2163		acc = 0;
2164		for (j = 0; j < 4; j++)
2165			acc += data[j] * tab[i][j];
2166		acc = (vp->like[i] += (acc - vp->like[i]) / TCONST);
2167		if (acc > topmax) {
2168			nxtmax = topmax;
2169			topmax = acc;
2170			mldigit = i;
2171		} else if (acc > nxtmax) {
2172			nxtmax = acc;
2173		}
2174	}
2175	vp->digprb = topmax;
2176	vp->digsnr = wwv_snr(topmax, nxtmax);
2177
2178	/*
2179	 * The current maximum likelihood digit is compared to the last
2180	 * maximum likelihood digit. If different, the compare counter
2181	 * and maximum likelihood digit are reset.  When the compare
2182	 * counter reaches the BCMP threshold (3), the digit is assumed
2183	 * correct. When the compare counter of all nine digits have
2184	 * reached threshold, the clock is assumed correct.
2185	 *
2186	 * Note that the clock display digit is set before the compare
2187	 * counter has reached threshold; however, the clock display is
2188	 * not considered correct until all nine clock digits have
2189	 * reached threshold. This is intended as eye candy, but avoids
2190	 * mistakes when the signal is low and the SNR is very marginal.
2191	 * once correctly set, the maximum likelihood digit is ignored
2192	 * on the assumption the clock will always be correct unless for
2193	 * some reason it drifts to a different second.
2194	 */
2195	vp->mldigit = mldigit;
2196	if (vp->digprb < BTHR || vp->digsnr < BSNR) {
2197		vp->count = 0;
2198		up->status |= BGATE;
2199	} else {
2200		up->status |= DSYNC;
2201		if (vp->digit != mldigit) {
2202			vp->count = 0;
2203			up->alarm |= CMPERR;
2204			if (!(up->status & INSYNC))
2205				vp->digit = mldigit;
2206		} else {
2207			if (vp->count < BCMP)
2208				vp->count++;
2209			else
2210				up->digcnt++;
2211		}
2212	}
2213	if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status &
2214	    INSYNC)) {
2215		sprintf(tbuf,
2216		    "wwv4 %2d %04x %3d %4d %5.0f %2d %d %d %d %5.0f %5.1f",
2217		    up->rsec - 1, up->status, up->gain, up->yepoch,
2218		    up->epomax, vp->radix, vp->digit, vp->mldigit,
2219		    vp->count, vp->digprb, vp->digsnr);
2220		record_clock_stats(&peer->srcadr, tbuf);
2221#ifdef DEBUG
2222		if (debug)
2223			printf("%s\n", tbuf);
2224#endif /* DEBUG */
2225	}
2226}
2227
2228
2229/*
2230 * wwv_tsec - transmitter minute processing
2231 *
2232 * This routine is called at the end of the transmitter minute. It
2233 * implements a state machine that advances the logical clock subject to
2234 * the funny rules that govern the conventional clock and calendar.
2235 */
2236static void
2237wwv_tsec(
2238	struct peer *peer	/* driver structure pointer */
2239	)
2240{
2241	struct refclockproc *pp;
2242	struct wwvunit *up;
2243	int minute, day, isleap;
2244	int temp;
2245
2246	pp = peer->procptr;
2247	up = (struct wwvunit *)pp->unitptr;
2248
2249	/*
2250	 * Advance minute unit of the day. Don't propagate carries until
2251	 * the unit minute digit has been found.
2252	 */
2253	temp = carry(&up->decvec[MN]);	/* minute units */
2254	if (!(up->status & DSYNC))
2255		return;
2256
2257	/*
2258	 * Propagate carries through the day.
2259	 */
2260	if (temp == 0)			/* carry minutes */
2261		temp = carry(&up->decvec[MN + 1]);
2262	if (temp == 0)			/* carry hours */
2263		temp = carry(&up->decvec[HR]);
2264	if (temp == 0)
2265		temp = carry(&up->decvec[HR + 1]);
2266
2267	/*
2268	 * Decode the current minute and day. Set leap day if the
2269	 * timecode leap bit is set on 30 June or 31 December. Set leap
2270	 * minute if the last minute on leap day, but only if the clock
2271	 * is syncrhronized. This code fails in 2400 AD.
2272	 */
2273	minute = up->decvec[MN].digit + up->decvec[MN + 1].digit *
2274	    10 + up->decvec[HR].digit * 60 + up->decvec[HR +
2275	    1].digit * 600;
2276	day = up->decvec[DA].digit + up->decvec[DA + 1].digit * 10 +
2277	    up->decvec[DA + 2].digit * 100;
2278
2279	/*
2280	 * Set the leap bit on the last minute of the leap day.
2281	 */
2282	isleap = up->decvec[YR].digit & 0x3;
2283	if (up->misc & SECWAR && up->status & INSYNC) {
2284		if ((day == (isleap ? 182 : 183) || day == (isleap ?
2285		    365 : 366)) && minute == 1439)
2286			up->status |= LEPSEC;
2287	}
2288
2289	/*
2290	 * Roll the day if this the first minute and propagate carries
2291	 * through the year.
2292	 */
2293	if (minute != 1440)
2294		return;
2295
2296	minute = 0;
2297	while (carry(&up->decvec[HR]) != 0); /* advance to minute 0 */
2298	while (carry(&up->decvec[HR + 1]) != 0);
2299	day++;
2300	temp = carry(&up->decvec[DA]);	/* carry days */
2301	if (temp == 0)
2302		temp = carry(&up->decvec[DA + 1]);
2303	if (temp == 0)
2304		temp = carry(&up->decvec[DA + 2]);
2305
2306	/*
2307	 * Roll the year if this the first day and propagate carries
2308	 * through the century.
2309	 */
2310	if (day != (isleap ? 365 : 366))
2311		return;
2312
2313	day = 1;
2314	while (carry(&up->decvec[DA]) != 1); /* advance to day 1 */
2315	while (carry(&up->decvec[DA + 1]) != 0);
2316	while (carry(&up->decvec[DA + 2]) != 0);
2317	temp = carry(&up->decvec[YR]);	/* carry years */
2318	if (temp == 0)
2319		carry(&up->decvec[YR + 1]);
2320}
2321
2322
2323/*
2324 * carry - process digit
2325 *
2326 * This routine rotates a likelihood vector one position and increments
2327 * the clock digit modulo the radix. It returns the new clock digit or
2328 * zero if a carry occurred. Once synchronized, the clock digit will
2329 * match the maximum likelihood digit corresponding to that position.
2330 */
2331static int
2332carry(
2333	struct decvec *dp	/* decoding table pointer */
2334	)
2335{
2336	int temp;
2337	int j;
2338
2339	dp->digit++;
2340	if (dp->digit == dp->radix)
2341		dp->digit = 0;
2342	temp = dp->like[dp->radix - 1];
2343	for (j = dp->radix - 1; j > 0; j--)
2344		dp->like[j] = dp->like[j - 1];
2345	dp->like[0] = temp;
2346	return (dp->digit);
2347}
2348
2349
2350/*
2351 * wwv_snr - compute SNR or likelihood function
2352 */
2353static double
2354wwv_snr(
2355	double signal,		/* signal */
2356	double noise		/* noise */
2357	)
2358{
2359	double rval;
2360
2361	/*
2362	 * This is a little tricky. Due to the way things are measured,
2363	 * either or both the signal or noise amplitude can be negative
2364	 * or zero. The intent is that, if the signal is negative or
2365	 * zero, the SNR must always be zero. This can happen with the
2366	 * subcarrier SNR before the phase has been aligned. On the
2367	 * other hand, in the likelihood function the "noise" is the
2368	 * next maximum down from the peak and this could be negative.
2369	 * However, in this case the SNR is truly stupendous, so we
2370	 * simply cap at MAXSNR dB (40).
2371	 */
2372	if (signal <= 0) {
2373		rval = 0;
2374	} else if (noise <= 0) {
2375		rval = MAXSNR;
2376	} else {
2377		rval = 20. * log10(signal / noise);
2378		if (rval > MAXSNR)
2379			rval = MAXSNR;
2380	}
2381	return (rval);
2382}
2383
2384
2385/*
2386 * wwv_newchan - change to new data channel
2387 *
2388 * The radio actually appears to have ten channels, one channel for each
2389 * of five frequencies and each of two stations (WWV and WWVH), although
2390 * if not tunable only the DCHAN channel appears live. While the radio
2391 * is tuned to the working data channel frequency and station for most
2392 * of the minute, during seconds 59, 0 and 1 the radio is tuned to a
2393 * probe frequency in order to search for minute sync pulse and data
2394 * subcarrier from other transmitters.
2395 *
2396 * The search for WWV and WWVH operates simultaneously, with WWV minute
2397 * sync pulse at 1000 Hz and WWVH at 1200 Hz. The probe frequency
2398 * rotates each minute over 2.5, 5, 10, 15 and 20 MHz in order and yes,
2399 * we all know WWVH is dark on 20 MHz, but few remember when WWV was lit
2400 * on 25 MHz.
2401 *
2402 * This routine selects the best channel using a metric computed from
2403 * the reachability register and minute pulse amplitude. Normally, the
2404 * award goes to the the channel with the highest metric; but, in case
2405 * of ties, the award goes to the channel with the highest minute sync
2406 * pulse amplitude and then to the highest frequency.
2407 *
2408 * The routine performs an important squelch function to keep dirty data
2409 * from polluting the integrators. In order to consider a station valid,
2410 * the metric must be at least MTHR (13); otherwise, the station select
2411 * bits are cleared so the second sync is disabled and the data bit
2412 * integrators averaged to a miss.
2413 */
2414static int
2415wwv_newchan(
2416	struct peer *peer	/* peer structure pointer */
2417	)
2418{
2419	struct refclockproc *pp;
2420	struct wwvunit *up;
2421	struct sync *sp, *rp;
2422	double rank, dtemp;
2423	int i, j;
2424
2425	pp = peer->procptr;
2426	up = (struct wwvunit *)pp->unitptr;
2427
2428	/*
2429	 * Search all five station pairs looking for the channel with
2430	 * maximum metric. If no station is found above thresholds, tune
2431	 * to WWV on 15 MHz, set the reference ID to NONE and wait for
2432	 * hotter ions.
2433	 */
2434	sp = NULL;
2435	j = 0;
2436	rank = 0;
2437	for (i = 0; i < NCHAN; i++) {
2438		rp = &up->mitig[i].wwvh;
2439		dtemp = rp->metric;
2440		if (dtemp >= rank) {
2441			rank = dtemp;
2442			sp = rp;
2443			j = i;
2444		}
2445		rp = &up->mitig[i].wwv;
2446		dtemp = rp->metric;
2447		if (dtemp >= rank) {
2448			rank = dtemp;
2449			sp = rp;
2450			j = i;
2451		}
2452	}
2453
2454	/*
2455	 * If the strongest signal is less than the MTHR threshold (13),
2456	 * we are beneath the waves, so squelch the second sync. If the
2457	 * strongest signal is greater than the threshold, tune to that
2458	 * frequency and transmitter QTH.
2459	 */
2460	if (rank < MTHR) {
2461		up->dchan = (up->dchan + 1) % NCHAN;
2462		up->status &= ~(SELV | SELH);
2463		return (FALSE);
2464	}
2465	up->dchan = j;
2466	up->status |= SELV | SELH;
2467	up->sptr = sp;
2468	memcpy(&pp->refid, sp->refid, 4);
2469	peer->refid = pp->refid;
2470	return (TRUE);
2471}
2472
2473
2474/*
2475 * wwv_newgame - reset and start over
2476 *
2477 * There are four conditions resulting in a new game:
2478 *
2479 * 1	During initial acquisition (MSYNC dark) going 6 minutes (ACQSN)
2480 *	without reliably finding the minute pulse (MSYNC lit).
2481 *
2482 * 2	After finding the minute pulse (MSYNC lit), going 15 minutes
2483 *	(DATA) without finding the unit seconds digit.
2484 *
2485 * 3	After finding good data (DATA lit), going more than 40 minutes
2486 *	(SYNCH) without finding station sync (INSYNC lit).
2487 *
2488 * 4	After finding station sync (INSYNC lit), going more than 2 days
2489 *	(PANIC) without finding any station.
2490 */
2491static void
2492wwv_newgame(
2493	struct peer *peer	/* peer structure pointer */
2494	)
2495{
2496	struct refclockproc *pp;
2497	struct wwvunit *up;
2498	struct chan *cp;
2499	int i;
2500
2501	pp = peer->procptr;
2502	up = (struct wwvunit *)pp->unitptr;
2503
2504	/*
2505	 * Initialize strategic values. Note we set the leap bits
2506	 * NOTINSYNC and the refid "NONE".
2507	 */
2508	peer->leap = LEAP_NOTINSYNC;
2509	up->watch = up->status = up->alarm = 0;
2510	up->avgint = MINAVG;
2511	up->freq = 0;
2512	up->gain = MAXGAIN / 2;
2513
2514	/*
2515	 * Initialize the station processes for audio gain, select bit,
2516	 * station/frequency identifier and reference identifier. Start
2517	 * probing at the next channel after the data channel.
2518	 */
2519	memset(up->mitig, 0, sizeof(up->mitig));
2520	for (i = 0; i < NCHAN; i++) {
2521		cp = &up->mitig[i];
2522		cp->gain = up->gain;
2523		cp->wwv.select = SELV;
2524		sprintf(cp->wwv.refid, "WV%.0f", floor(qsy[i]));
2525		cp->wwvh.select = SELH;
2526		sprintf(cp->wwvh.refid, "WH%.0f", floor(qsy[i]));
2527	}
2528	up->dchan = (DCHAN + NCHAN - 1) % NCHAN;;
2529	wwv_newchan(peer);
2530	up->achan = up->schan = up->dchan;
2531#ifdef ICOM
2532	if (up->fd_icom > 0)
2533		wwv_qsy(peer, up->dchan);
2534#endif /* ICOM */
2535}
2536
2537/*
2538 * wwv_metric - compute station metric
2539 *
2540 * The most significant bits represent the number of ones in the
2541 * station reachability register. The least significant bits represent
2542 * the minute sync pulse amplitude. The combined value is scaled 0-100.
2543 */
2544double
2545wwv_metric(
2546	struct sync *sp		/* station pointer */
2547	)
2548{
2549	double	dtemp;
2550
2551	dtemp = sp->count * MAXAMP;
2552	if (sp->synmax < MAXAMP)
2553		dtemp += sp->synmax;
2554	else
2555		dtemp += MAXAMP - 1;
2556	dtemp /= (AMAX + 1) * MAXAMP;
2557	return (dtemp * 100.);
2558}
2559
2560
2561#ifdef ICOM
2562/*
2563 * wwv_qsy - Tune ICOM receiver
2564 *
2565 * This routine saves the AGC for the current channel, switches to a new
2566 * channel and restores the AGC for that channel. If a tunable receiver
2567 * is not available, just fake it.
2568 */
2569static int
2570wwv_qsy(
2571	struct peer *peer,	/* peer structure pointer */
2572	int	chan		/* channel */
2573	)
2574{
2575	int rval = 0;
2576	struct refclockproc *pp;
2577	struct wwvunit *up;
2578
2579	pp = peer->procptr;
2580	up = (struct wwvunit *)pp->unitptr;
2581	if (up->fd_icom > 0) {
2582		up->mitig[up->achan].gain = up->gain;
2583		rval = icom_freq(up->fd_icom, peer->ttl & 0x7f,
2584		    qsy[chan]);
2585		up->achan = chan;
2586		up->gain = up->mitig[up->achan].gain;
2587	}
2588	return (rval);
2589}
2590#endif /* ICOM */
2591
2592
2593/*
2594 * timecode - assemble timecode string and length
2595 *
2596 * Prettytime format - similar to Spectracom
2597 *
2598 * sq yy ddd hh:mm:ss ld dut lset agc iden sig errs freq avgt
2599 *
2600 * s	sync indicator ('?' or ' ')
2601 * q	error bits (hex 0-F)
2602 * yyyy	year of century
2603 * ddd	day of year
2604 * hh	hour of day
2605 * mm	minute of hour
2606 * ss	second of minute)
2607 * l	leap second warning (' ' or 'L')
2608 * d	DST state ('S', 'D', 'I', or 'O')
2609 * dut	DUT sign and magnitude (0.1 s)
2610 * lset	minutes since last clock update
2611 * agc	audio gain (0-255)
2612 * iden	reference identifier (station and frequency)
2613 * sig	signal quality (0-100)
2614 * errs	bit errors in last minute
2615 * freq	frequency offset (PPM)
2616 * avgt	averaging time (s)
2617 */
2618static int
2619timecode(
2620	struct wwvunit *up,	/* driver structure pointer */
2621	char *ptr		/* target string */
2622	)
2623{
2624	struct sync *sp;
2625	int year, day, hour, minute, second, dut;
2626	char synchar, leapchar, dst;
2627	char cptr[50];
2628
2629
2630	/*
2631	 * Common fixed-format fields
2632	 */
2633	synchar = (up->status & INSYNC) ? ' ' : '?';
2634	year = up->decvec[YR].digit + up->decvec[YR + 1].digit * 10 +
2635	    2000;
2636	day = up->decvec[DA].digit + up->decvec[DA + 1].digit * 10 +
2637	    up->decvec[DA + 2].digit * 100;
2638	hour = up->decvec[HR].digit + up->decvec[HR + 1].digit * 10;
2639	minute = up->decvec[MN].digit + up->decvec[MN + 1].digit * 10;
2640	second = 0;
2641	leapchar = (up->misc & SECWAR) ? 'L' : ' ';
2642	dst = dstcod[(up->misc >> 4) & 0x3];
2643	dut = up->misc & 0x7;
2644	if (!(up->misc & DUTS))
2645		dut = -dut;
2646	sprintf(ptr, "%c%1X", synchar, up->alarm);
2647	sprintf(cptr, " %4d %03d %02d:%02d:%02d %c%c %+d",
2648	    year, day, hour, minute, second, leapchar, dst, dut);
2649	strcat(ptr, cptr);
2650
2651	/*
2652	 * Specific variable-format fields
2653	 */
2654	sp = up->sptr;
2655	sprintf(cptr, " %d %d %s %.0f %d %.1f %d", up->watch,
2656	    up->mitig[up->dchan].gain, sp->refid, sp->metric,
2657	    up->errcnt, up->freq / SECOND * 1e6, up->avgint);
2658	strcat(ptr, cptr);
2659	return (strlen(ptr));
2660}
2661
2662
2663/*
2664 * wwv_gain - adjust codec gain
2665 *
2666 * This routine is called at the end of each second. During the second
2667 * the number of signal clips above the MAXAMP threshold (6000). If
2668 * there are no clips, the gain is bumped up; if there are more than
2669 * MAXCLP clips (100), it is bumped down. The decoder is relatively
2670 * insensitive to amplitude, so this crudity works just peachy. The
2671 * input port is set and the error flag is cleared, mostly to be ornery.
2672 */
2673static void
2674wwv_gain(
2675	struct peer *peer	/* peer structure pointer */
2676	)
2677{
2678	struct refclockproc *pp;
2679	struct wwvunit *up;
2680
2681	pp = peer->procptr;
2682	up = (struct wwvunit *)pp->unitptr;
2683
2684	/*
2685	 * Apparently, the codec uses only the high order bits of the
2686	 * gain control field. Thus, it may take awhile for changes to
2687	 * wiggle the hardware bits.
2688	 */
2689	if (up->clipcnt == 0) {
2690		up->gain += 4;
2691		if (up->gain > MAXGAIN)
2692			up->gain = MAXGAIN;
2693	} else if (up->clipcnt > MAXCLP) {
2694		up->gain -= 4;
2695		if (up->gain < 0)
2696			up->gain = 0;
2697	}
2698	audio_gain(up->gain, up->mongain, up->port);
2699	up->clipcnt = 0;
2700#if DEBUG
2701	if (debug > 1)
2702		audio_show();
2703#endif
2704}
2705
2706
2707#else
2708int refclock_wwv_bs;
2709#endif /* REFCLOCK */
2710