1//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a basic region store model. In this model, we do have field
11// sensitivity. But we assume nothing about the heap shape. So recursive data
12// structures are largely ignored. Basically we do 1-limiting analysis.
13// Parameter pointers are assumed with no aliasing. Pointee objects of
14// parameters are created lazily.
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/Analysis/Analyses/LiveVariables.h"
20#include "clang/Analysis/AnalysisContext.h"
21#include "clang/Basic/TargetInfo.h"
22#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
23#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
24#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
25#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
26#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
27#include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
28#include "llvm/ADT/ImmutableList.h"
29#include "llvm/ADT/ImmutableMap.h"
30#include "llvm/ADT/Optional.h"
31#include "llvm/Support/raw_ostream.h"
32
33using namespace clang;
34using namespace ento;
35
36//===----------------------------------------------------------------------===//
37// Representation of binding keys.
38//===----------------------------------------------------------------------===//
39
40namespace {
41class BindingKey {
42public:
43  enum Kind { Default = 0x0, Direct = 0x1 };
44private:
45  enum { Symbolic = 0x2 };
46
47  llvm::PointerIntPair<const MemRegion *, 2> P;
48  uint64_t Data;
49
50  /// Create a key for a binding to region \p r, which has a symbolic offset
51  /// from region \p Base.
52  explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k)
53    : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) {
54    assert(r && Base && "Must have known regions.");
55    assert(getConcreteOffsetRegion() == Base && "Failed to store base region");
56  }
57
58  /// Create a key for a binding at \p offset from base region \p r.
59  explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
60    : P(r, k), Data(offset) {
61    assert(r && "Must have known regions.");
62    assert(getOffset() == offset && "Failed to store offset");
63    assert((r == r->getBaseRegion() || isa<ObjCIvarRegion>(r)) && "Not a base");
64  }
65public:
66
67  bool isDirect() const { return P.getInt() & Direct; }
68  bool hasSymbolicOffset() const { return P.getInt() & Symbolic; }
69
70  const MemRegion *getRegion() const { return P.getPointer(); }
71  uint64_t getOffset() const {
72    assert(!hasSymbolicOffset());
73    return Data;
74  }
75
76  const SubRegion *getConcreteOffsetRegion() const {
77    assert(hasSymbolicOffset());
78    return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data));
79  }
80
81  const MemRegion *getBaseRegion() const {
82    if (hasSymbolicOffset())
83      return getConcreteOffsetRegion()->getBaseRegion();
84    return getRegion()->getBaseRegion();
85  }
86
87  void Profile(llvm::FoldingSetNodeID& ID) const {
88    ID.AddPointer(P.getOpaqueValue());
89    ID.AddInteger(Data);
90  }
91
92  static BindingKey Make(const MemRegion *R, Kind k);
93
94  bool operator<(const BindingKey &X) const {
95    if (P.getOpaqueValue() < X.P.getOpaqueValue())
96      return true;
97    if (P.getOpaqueValue() > X.P.getOpaqueValue())
98      return false;
99    return Data < X.Data;
100  }
101
102  bool operator==(const BindingKey &X) const {
103    return P.getOpaqueValue() == X.P.getOpaqueValue() &&
104           Data == X.Data;
105  }
106
107  LLVM_ATTRIBUTE_USED void dump() const;
108};
109} // end anonymous namespace
110
111BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
112  const RegionOffset &RO = R->getAsOffset();
113  if (RO.hasSymbolicOffset())
114    return BindingKey(cast<SubRegion>(R), cast<SubRegion>(RO.getRegion()), k);
115
116  return BindingKey(RO.getRegion(), RO.getOffset(), k);
117}
118
119namespace llvm {
120  static inline
121  raw_ostream &operator<<(raw_ostream &os, BindingKey K) {
122    os << '(' << K.getRegion();
123    if (!K.hasSymbolicOffset())
124      os << ',' << K.getOffset();
125    os << ',' << (K.isDirect() ? "direct" : "default")
126       << ')';
127    return os;
128  }
129
130  template <typename T> struct isPodLike;
131  template <> struct isPodLike<BindingKey> {
132    static const bool value = true;
133  };
134} // end llvm namespace
135
136void BindingKey::dump() const {
137  llvm::errs() << *this;
138}
139
140//===----------------------------------------------------------------------===//
141// Actual Store type.
142//===----------------------------------------------------------------------===//
143
144typedef llvm::ImmutableMap<BindingKey, SVal>    ClusterBindings;
145typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef;
146typedef std::pair<BindingKey, SVal> BindingPair;
147
148typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings>
149        RegionBindings;
150
151namespace {
152class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *,
153                                 ClusterBindings> {
154 ClusterBindings::Factory &CBFactory;
155public:
156  typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>
157          ParentTy;
158
159  RegionBindingsRef(ClusterBindings::Factory &CBFactory,
160                    const RegionBindings::TreeTy *T,
161                    RegionBindings::TreeTy::Factory *F)
162    : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F),
163      CBFactory(CBFactory) {}
164
165  RegionBindingsRef(const ParentTy &P, ClusterBindings::Factory &CBFactory)
166    : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P),
167      CBFactory(CBFactory) {}
168
169  RegionBindingsRef add(key_type_ref K, data_type_ref D) const {
170    return RegionBindingsRef(static_cast<const ParentTy*>(this)->add(K, D),
171                             CBFactory);
172  }
173
174  RegionBindingsRef remove(key_type_ref K) const {
175    return RegionBindingsRef(static_cast<const ParentTy*>(this)->remove(K),
176                             CBFactory);
177  }
178
179  RegionBindingsRef addBinding(BindingKey K, SVal V) const;
180
181  RegionBindingsRef addBinding(const MemRegion *R,
182                               BindingKey::Kind k, SVal V) const;
183
184  RegionBindingsRef &operator=(const RegionBindingsRef &X) {
185    *static_cast<ParentTy*>(this) = X;
186    return *this;
187  }
188
189  const SVal *lookup(BindingKey K) const;
190  const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const;
191  const ClusterBindings *lookup(const MemRegion *R) const {
192    return static_cast<const ParentTy*>(this)->lookup(R);
193  }
194
195  RegionBindingsRef removeBinding(BindingKey K);
196
197  RegionBindingsRef removeBinding(const MemRegion *R,
198                                  BindingKey::Kind k);
199
200  RegionBindingsRef removeBinding(const MemRegion *R) {
201    return removeBinding(R, BindingKey::Direct).
202           removeBinding(R, BindingKey::Default);
203  }
204
205  Optional<SVal> getDirectBinding(const MemRegion *R) const;
206
207  /// getDefaultBinding - Returns an SVal* representing an optional default
208  ///  binding associated with a region and its subregions.
209  Optional<SVal> getDefaultBinding(const MemRegion *R) const;
210
211  /// Return the internal tree as a Store.
212  Store asStore() const {
213    return asImmutableMap().getRootWithoutRetain();
214  }
215
216  void dump(raw_ostream &OS, const char *nl) const {
217   for (iterator I = begin(), E = end(); I != E; ++I) {
218     const ClusterBindings &Cluster = I.getData();
219     for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
220          CI != CE; ++CI) {
221       OS << ' ' << CI.getKey() << " : " << CI.getData() << nl;
222     }
223     OS << nl;
224   }
225  }
226
227  LLVM_ATTRIBUTE_USED void dump() const {
228    dump(llvm::errs(), "\n");
229  }
230};
231} // end anonymous namespace
232
233typedef const RegionBindingsRef& RegionBindingsConstRef;
234
235Optional<SVal> RegionBindingsRef::getDirectBinding(const MemRegion *R) const {
236  return Optional<SVal>::create(lookup(R, BindingKey::Direct));
237}
238
239Optional<SVal> RegionBindingsRef::getDefaultBinding(const MemRegion *R) const {
240  if (R->isBoundable())
241    if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R))
242      if (TR->getValueType()->isUnionType())
243        return UnknownVal();
244
245  return Optional<SVal>::create(lookup(R, BindingKey::Default));
246}
247
248RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const {
249  const MemRegion *Base = K.getBaseRegion();
250
251  const ClusterBindings *ExistingCluster = lookup(Base);
252  ClusterBindings Cluster = (ExistingCluster ? *ExistingCluster
253                             : CBFactory.getEmptyMap());
254
255  ClusterBindings NewCluster = CBFactory.add(Cluster, K, V);
256  return add(Base, NewCluster);
257}
258
259
260RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R,
261                                                BindingKey::Kind k,
262                                                SVal V) const {
263  return addBinding(BindingKey::Make(R, k), V);
264}
265
266const SVal *RegionBindingsRef::lookup(BindingKey K) const {
267  const ClusterBindings *Cluster = lookup(K.getBaseRegion());
268  if (!Cluster)
269    return 0;
270  return Cluster->lookup(K);
271}
272
273const SVal *RegionBindingsRef::lookup(const MemRegion *R,
274                                      BindingKey::Kind k) const {
275  return lookup(BindingKey::Make(R, k));
276}
277
278RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) {
279  const MemRegion *Base = K.getBaseRegion();
280  const ClusterBindings *Cluster = lookup(Base);
281  if (!Cluster)
282    return *this;
283
284  ClusterBindings NewCluster = CBFactory.remove(*Cluster, K);
285  if (NewCluster.isEmpty())
286    return remove(Base);
287  return add(Base, NewCluster);
288}
289
290RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R,
291                                                BindingKey::Kind k){
292  return removeBinding(BindingKey::Make(R, k));
293}
294
295//===----------------------------------------------------------------------===//
296// Fine-grained control of RegionStoreManager.
297//===----------------------------------------------------------------------===//
298
299namespace {
300struct minimal_features_tag {};
301struct maximal_features_tag {};
302
303class RegionStoreFeatures {
304  bool SupportsFields;
305public:
306  RegionStoreFeatures(minimal_features_tag) :
307    SupportsFields(false) {}
308
309  RegionStoreFeatures(maximal_features_tag) :
310    SupportsFields(true) {}
311
312  void enableFields(bool t) { SupportsFields = t; }
313
314  bool supportsFields() const { return SupportsFields; }
315};
316}
317
318//===----------------------------------------------------------------------===//
319// Main RegionStore logic.
320//===----------------------------------------------------------------------===//
321
322namespace {
323class invalidateRegionsWorker;
324
325class RegionStoreManager : public StoreManager {
326public:
327  const RegionStoreFeatures Features;
328
329  RegionBindings::Factory RBFactory;
330  mutable ClusterBindings::Factory CBFactory;
331
332  typedef std::vector<SVal> SValListTy;
333private:
334  typedef llvm::DenseMap<const LazyCompoundValData *,
335                         SValListTy> LazyBindingsMapTy;
336  LazyBindingsMapTy LazyBindingsMap;
337
338  /// The largest number of fields a struct can have and still be
339  /// considered "small".
340  ///
341  /// This is currently used to decide whether or not it is worth "forcing" a
342  /// LazyCompoundVal on bind.
343  ///
344  /// This is controlled by 'region-store-small-struct-limit' option.
345  /// To disable all small-struct-dependent behavior, set the option to "0".
346  unsigned SmallStructLimit;
347
348  /// \brief A helper used to populate the work list with the given set of
349  /// regions.
350  void populateWorkList(invalidateRegionsWorker &W,
351                        ArrayRef<SVal> Values,
352                        bool IsArrayOfConstRegions,
353                        InvalidatedRegions *TopLevelRegions);
354
355public:
356  RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
357    : StoreManager(mgr), Features(f),
358      RBFactory(mgr.getAllocator()), CBFactory(mgr.getAllocator()),
359      SmallStructLimit(0) {
360    if (SubEngine *Eng = StateMgr.getOwningEngine()) {
361      AnalyzerOptions &Options = Eng->getAnalysisManager().options;
362      SmallStructLimit =
363        Options.getOptionAsInteger("region-store-small-struct-limit", 2);
364    }
365  }
366
367
368  /// setImplicitDefaultValue - Set the default binding for the provided
369  ///  MemRegion to the value implicitly defined for compound literals when
370  ///  the value is not specified.
371  RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B,
372                                            const MemRegion *R, QualType T);
373
374  /// ArrayToPointer - Emulates the "decay" of an array to a pointer
375  ///  type.  'Array' represents the lvalue of the array being decayed
376  ///  to a pointer, and the returned SVal represents the decayed
377  ///  version of that lvalue (i.e., a pointer to the first element of
378  ///  the array).  This is called by ExprEngine when evaluating
379  ///  casts from arrays to pointers.
380  SVal ArrayToPointer(Loc Array);
381
382  StoreRef getInitialStore(const LocationContext *InitLoc) {
383    return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this);
384  }
385
386  //===-------------------------------------------------------------------===//
387  // Binding values to regions.
388  //===-------------------------------------------------------------------===//
389  RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K,
390                                           const Expr *Ex,
391                                           unsigned Count,
392                                           const LocationContext *LCtx,
393                                           RegionBindingsRef B,
394                                           InvalidatedRegions *Invalidated);
395
396  StoreRef invalidateRegions(Store store,
397                             ArrayRef<SVal> Values,
398                             ArrayRef<SVal> ConstValues,
399                             const Expr *E, unsigned Count,
400                             const LocationContext *LCtx,
401                             const CallEvent *Call,
402                             InvalidatedSymbols &IS,
403                             InvalidatedSymbols &ConstIS,
404                             InvalidatedRegions *Invalidated,
405                             InvalidatedRegions *InvalidatedTopLevel,
406                             InvalidatedRegions *InvalidatedTopLevelConst);
407
408  bool scanReachableSymbols(Store S, const MemRegion *R,
409                            ScanReachableSymbols &Callbacks);
410
411  RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B,
412                                            const SubRegion *R);
413
414public: // Part of public interface to class.
415
416  virtual StoreRef Bind(Store store, Loc LV, SVal V) {
417    return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this);
418  }
419
420  RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V);
421
422  // BindDefault is only used to initialize a region with a default value.
423  StoreRef BindDefault(Store store, const MemRegion *R, SVal V) {
424    RegionBindingsRef B = getRegionBindings(store);
425    assert(!B.lookup(R, BindingKey::Default));
426    assert(!B.lookup(R, BindingKey::Direct));
427    return StoreRef(B.addBinding(R, BindingKey::Default, V)
428                     .asImmutableMap()
429                     .getRootWithoutRetain(), *this);
430  }
431
432  /// Attempt to extract the fields of \p LCV and bind them to the struct region
433  /// \p R.
434  ///
435  /// This path is used when it seems advantageous to "force" loading the values
436  /// within a LazyCompoundVal to bind memberwise to the struct region, rather
437  /// than using a Default binding at the base of the entire region. This is a
438  /// heuristic attempting to avoid building long chains of LazyCompoundVals.
439  ///
440  /// \returns The updated store bindings, or \c None if binding non-lazily
441  ///          would be too expensive.
442  Optional<RegionBindingsRef> tryBindSmallStruct(RegionBindingsConstRef B,
443                                                 const TypedValueRegion *R,
444                                                 const RecordDecl *RD,
445                                                 nonloc::LazyCompoundVal LCV);
446
447  /// BindStruct - Bind a compound value to a structure.
448  RegionBindingsRef bindStruct(RegionBindingsConstRef B,
449                               const TypedValueRegion* R, SVal V);
450
451  /// BindVector - Bind a compound value to a vector.
452  RegionBindingsRef bindVector(RegionBindingsConstRef B,
453                               const TypedValueRegion* R, SVal V);
454
455  RegionBindingsRef bindArray(RegionBindingsConstRef B,
456                              const TypedValueRegion* R,
457                              SVal V);
458
459  /// Clears out all bindings in the given region and assigns a new value
460  /// as a Default binding.
461  RegionBindingsRef bindAggregate(RegionBindingsConstRef B,
462                                  const TypedRegion *R,
463                                  SVal DefaultVal);
464
465  /// \brief Create a new store with the specified binding removed.
466  /// \param ST the original store, that is the basis for the new store.
467  /// \param L the location whose binding should be removed.
468  virtual StoreRef killBinding(Store ST, Loc L);
469
470  void incrementReferenceCount(Store store) {
471    getRegionBindings(store).manualRetain();
472  }
473
474  /// If the StoreManager supports it, decrement the reference count of
475  /// the specified Store object.  If the reference count hits 0, the memory
476  /// associated with the object is recycled.
477  void decrementReferenceCount(Store store) {
478    getRegionBindings(store).manualRelease();
479  }
480
481  bool includedInBindings(Store store, const MemRegion *region) const;
482
483  /// \brief Return the value bound to specified location in a given state.
484  ///
485  /// The high level logic for this method is this:
486  /// getBinding (L)
487  ///   if L has binding
488  ///     return L's binding
489  ///   else if L is in killset
490  ///     return unknown
491  ///   else
492  ///     if L is on stack or heap
493  ///       return undefined
494  ///     else
495  ///       return symbolic
496  virtual SVal getBinding(Store S, Loc L, QualType T) {
497    return getBinding(getRegionBindings(S), L, T);
498  }
499
500  SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType());
501
502  SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R);
503
504  SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R);
505
506  SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R);
507
508  SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R);
509
510  SVal getBindingForLazySymbol(const TypedValueRegion *R);
511
512  SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
513                                         const TypedValueRegion *R,
514                                         QualType Ty);
515
516  SVal getLazyBinding(const SubRegion *LazyBindingRegion,
517                      RegionBindingsRef LazyBinding);
518
519  /// Get bindings for the values in a struct and return a CompoundVal, used
520  /// when doing struct copy:
521  /// struct s x, y;
522  /// x = y;
523  /// y's value is retrieved by this method.
524  SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R);
525  SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R);
526  NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R);
527
528  /// Used to lazily generate derived symbols for bindings that are defined
529  /// implicitly by default bindings in a super region.
530  ///
531  /// Note that callers may need to specially handle LazyCompoundVals, which
532  /// are returned as is in case the caller needs to treat them differently.
533  Optional<SVal> getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
534                                                  const MemRegion *superR,
535                                                  const TypedValueRegion *R,
536                                                  QualType Ty);
537
538  /// Get the state and region whose binding this region \p R corresponds to.
539  ///
540  /// If there is no lazy binding for \p R, the returned value will have a null
541  /// \c second. Note that a null pointer can represents a valid Store.
542  std::pair<Store, const SubRegion *>
543  findLazyBinding(RegionBindingsConstRef B, const SubRegion *R,
544                  const SubRegion *originalRegion);
545
546  /// Returns the cached set of interesting SVals contained within a lazy
547  /// binding.
548  ///
549  /// The precise value of "interesting" is determined for the purposes of
550  /// RegionStore's internal analysis. It must always contain all regions and
551  /// symbols, but may omit constants and other kinds of SVal.
552  const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV);
553
554  //===------------------------------------------------------------------===//
555  // State pruning.
556  //===------------------------------------------------------------------===//
557
558  /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
559  ///  It returns a new Store with these values removed.
560  StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
561                              SymbolReaper& SymReaper);
562
563  //===------------------------------------------------------------------===//
564  // Region "extents".
565  //===------------------------------------------------------------------===//
566
567  // FIXME: This method will soon be eliminated; see the note in Store.h.
568  DefinedOrUnknownSVal getSizeInElements(ProgramStateRef state,
569                                         const MemRegion* R, QualType EleTy);
570
571  //===------------------------------------------------------------------===//
572  // Utility methods.
573  //===------------------------------------------------------------------===//
574
575  RegionBindingsRef getRegionBindings(Store store) const {
576    return RegionBindingsRef(CBFactory,
577                             static_cast<const RegionBindings::TreeTy*>(store),
578                             RBFactory.getTreeFactory());
579  }
580
581  void print(Store store, raw_ostream &Out, const char* nl,
582             const char *sep);
583
584  void iterBindings(Store store, BindingsHandler& f) {
585    RegionBindingsRef B = getRegionBindings(store);
586    for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
587      const ClusterBindings &Cluster = I.getData();
588      for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
589           CI != CE; ++CI) {
590        const BindingKey &K = CI.getKey();
591        if (!K.isDirect())
592          continue;
593        if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) {
594          // FIXME: Possibly incorporate the offset?
595          if (!f.HandleBinding(*this, store, R, CI.getData()))
596            return;
597        }
598      }
599    }
600  }
601};
602
603} // end anonymous namespace
604
605//===----------------------------------------------------------------------===//
606// RegionStore creation.
607//===----------------------------------------------------------------------===//
608
609StoreManager *ento::CreateRegionStoreManager(ProgramStateManager& StMgr) {
610  RegionStoreFeatures F = maximal_features_tag();
611  return new RegionStoreManager(StMgr, F);
612}
613
614StoreManager *
615ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
616  RegionStoreFeatures F = minimal_features_tag();
617  F.enableFields(true);
618  return new RegionStoreManager(StMgr, F);
619}
620
621
622//===----------------------------------------------------------------------===//
623// Region Cluster analysis.
624//===----------------------------------------------------------------------===//
625
626namespace {
627/// Used to determine which global regions are automatically included in the
628/// initial worklist of a ClusterAnalysis.
629enum GlobalsFilterKind {
630  /// Don't include any global regions.
631  GFK_None,
632  /// Only include system globals.
633  GFK_SystemOnly,
634  /// Include all global regions.
635  GFK_All
636};
637
638template <typename DERIVED>
639class ClusterAnalysis  {
640protected:
641  typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap;
642  typedef llvm::PointerIntPair<const MemRegion *, 1, bool> WorkListElement;
643  typedef SmallVector<WorkListElement, 10> WorkList;
644
645  llvm::SmallPtrSet<const ClusterBindings *, 16> Visited;
646
647  WorkList WL;
648
649  RegionStoreManager &RM;
650  ASTContext &Ctx;
651  SValBuilder &svalBuilder;
652
653  RegionBindingsRef B;
654
655private:
656  GlobalsFilterKind GlobalsFilter;
657
658protected:
659  const ClusterBindings *getCluster(const MemRegion *R) {
660    return B.lookup(R);
661  }
662
663  /// Returns true if the memory space of the given region is one of the global
664  /// regions specially included at the start of analysis.
665  bool isInitiallyIncludedGlobalRegion(const MemRegion *R) {
666    switch (GlobalsFilter) {
667    case GFK_None:
668      return false;
669    case GFK_SystemOnly:
670      return isa<GlobalSystemSpaceRegion>(R->getMemorySpace());
671    case GFK_All:
672      return isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace());
673    }
674
675    llvm_unreachable("unknown globals filter");
676  }
677
678public:
679  ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
680                  RegionBindingsRef b, GlobalsFilterKind GFK)
681    : RM(rm), Ctx(StateMgr.getContext()),
682      svalBuilder(StateMgr.getSValBuilder()),
683      B(b), GlobalsFilter(GFK) {}
684
685  RegionBindingsRef getRegionBindings() const { return B; }
686
687  bool isVisited(const MemRegion *R) {
688    return Visited.count(getCluster(R));
689  }
690
691  void GenerateClusters() {
692    // Scan the entire set of bindings and record the region clusters.
693    for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end();
694         RI != RE; ++RI){
695      const MemRegion *Base = RI.getKey();
696
697      const ClusterBindings &Cluster = RI.getData();
698      assert(!Cluster.isEmpty() && "Empty clusters should be removed");
699      static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster);
700
701      // If this is an interesting global region, add it the work list up front.
702      if (isInitiallyIncludedGlobalRegion(Base))
703        AddToWorkList(WorkListElement(Base), &Cluster);
704    }
705  }
706
707  bool AddToWorkList(WorkListElement E, const ClusterBindings *C) {
708    if (C && !Visited.insert(C))
709      return false;
710    WL.push_back(E);
711    return true;
712  }
713
714  bool AddToWorkList(const MemRegion *R, bool Flag = false) {
715    const MemRegion *BaseR = R->getBaseRegion();
716    return AddToWorkList(WorkListElement(BaseR, Flag), getCluster(BaseR));
717  }
718
719  void RunWorkList() {
720    while (!WL.empty()) {
721      WorkListElement E = WL.pop_back_val();
722      const MemRegion *BaseR = E.getPointer();
723
724      static_cast<DERIVED*>(this)->VisitCluster(BaseR, getCluster(BaseR),
725                                                E.getInt());
726    }
727  }
728
729  void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {}
730  void VisitCluster(const MemRegion *baseR, const ClusterBindings *C) {}
731
732  void VisitCluster(const MemRegion *BaseR, const ClusterBindings *C,
733                    bool Flag) {
734    static_cast<DERIVED*>(this)->VisitCluster(BaseR, C);
735  }
736};
737}
738
739//===----------------------------------------------------------------------===//
740// Binding invalidation.
741//===----------------------------------------------------------------------===//
742
743bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R,
744                                              ScanReachableSymbols &Callbacks) {
745  assert(R == R->getBaseRegion() && "Should only be called for base regions");
746  RegionBindingsRef B = getRegionBindings(S);
747  const ClusterBindings *Cluster = B.lookup(R);
748
749  if (!Cluster)
750    return true;
751
752  for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end();
753       RI != RE; ++RI) {
754    if (!Callbacks.scan(RI.getData()))
755      return false;
756  }
757
758  return true;
759}
760
761static inline bool isUnionField(const FieldRegion *FR) {
762  return FR->getDecl()->getParent()->isUnion();
763}
764
765typedef SmallVector<const FieldDecl *, 8> FieldVector;
766
767void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) {
768  assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
769
770  const MemRegion *Base = K.getConcreteOffsetRegion();
771  const MemRegion *R = K.getRegion();
772
773  while (R != Base) {
774    if (const FieldRegion *FR = dyn_cast<FieldRegion>(R))
775      if (!isUnionField(FR))
776        Fields.push_back(FR->getDecl());
777
778    R = cast<SubRegion>(R)->getSuperRegion();
779  }
780}
781
782static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) {
783  assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
784
785  if (Fields.empty())
786    return true;
787
788  FieldVector FieldsInBindingKey;
789  getSymbolicOffsetFields(K, FieldsInBindingKey);
790
791  ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size();
792  if (Delta >= 0)
793    return std::equal(FieldsInBindingKey.begin() + Delta,
794                      FieldsInBindingKey.end(),
795                      Fields.begin());
796  else
797    return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(),
798                      Fields.begin() - Delta);
799}
800
801/// Collects all bindings in \p Cluster that may refer to bindings within
802/// \p Top.
803///
804/// Each binding is a pair whose \c first is the key (a BindingKey) and whose
805/// \c second is the value (an SVal).
806///
807/// The \p IncludeAllDefaultBindings parameter specifies whether to include
808/// default bindings that may extend beyond \p Top itself, e.g. if \p Top is
809/// an aggregate within a larger aggregate with a default binding.
810static void
811collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
812                         SValBuilder &SVB, const ClusterBindings &Cluster,
813                         const SubRegion *Top, BindingKey TopKey,
814                         bool IncludeAllDefaultBindings) {
815  FieldVector FieldsInSymbolicSubregions;
816  if (TopKey.hasSymbolicOffset()) {
817    getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions);
818    Top = cast<SubRegion>(TopKey.getConcreteOffsetRegion());
819    TopKey = BindingKey::Make(Top, BindingKey::Default);
820  }
821
822  // Find the length (in bits) of the region being invalidated.
823  uint64_t Length = UINT64_MAX;
824  SVal Extent = Top->getExtent(SVB);
825  if (Optional<nonloc::ConcreteInt> ExtentCI =
826          Extent.getAs<nonloc::ConcreteInt>()) {
827    const llvm::APSInt &ExtentInt = ExtentCI->getValue();
828    assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned());
829    // Extents are in bytes but region offsets are in bits. Be careful!
830    Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth();
831  } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Top)) {
832    if (FR->getDecl()->isBitField())
833      Length = FR->getDecl()->getBitWidthValue(SVB.getContext());
834  }
835
836  for (ClusterBindings::iterator I = Cluster.begin(), E = Cluster.end();
837       I != E; ++I) {
838    BindingKey NextKey = I.getKey();
839    if (NextKey.getRegion() == TopKey.getRegion()) {
840      // FIXME: This doesn't catch the case where we're really invalidating a
841      // region with a symbolic offset. Example:
842      //      R: points[i].y
843      //   Next: points[0].x
844
845      if (NextKey.getOffset() > TopKey.getOffset() &&
846          NextKey.getOffset() - TopKey.getOffset() < Length) {
847        // Case 1: The next binding is inside the region we're invalidating.
848        // Include it.
849        Bindings.push_back(*I);
850
851      } else if (NextKey.getOffset() == TopKey.getOffset()) {
852        // Case 2: The next binding is at the same offset as the region we're
853        // invalidating. In this case, we need to leave default bindings alone,
854        // since they may be providing a default value for a regions beyond what
855        // we're invalidating.
856        // FIXME: This is probably incorrect; consider invalidating an outer
857        // struct whose first field is bound to a LazyCompoundVal.
858        if (IncludeAllDefaultBindings || NextKey.isDirect())
859          Bindings.push_back(*I);
860      }
861
862    } else if (NextKey.hasSymbolicOffset()) {
863      const MemRegion *Base = NextKey.getConcreteOffsetRegion();
864      if (Top->isSubRegionOf(Base)) {
865        // Case 3: The next key is symbolic and we just changed something within
866        // its concrete region. We don't know if the binding is still valid, so
867        // we'll be conservative and include it.
868        if (IncludeAllDefaultBindings || NextKey.isDirect())
869          if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
870            Bindings.push_back(*I);
871      } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) {
872        // Case 4: The next key is symbolic, but we changed a known
873        // super-region. In this case the binding is certainly included.
874        if (Top == Base || BaseSR->isSubRegionOf(Top))
875          if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
876            Bindings.push_back(*I);
877      }
878    }
879  }
880}
881
882static void
883collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
884                         SValBuilder &SVB, const ClusterBindings &Cluster,
885                         const SubRegion *Top, bool IncludeAllDefaultBindings) {
886  collectSubRegionBindings(Bindings, SVB, Cluster, Top,
887                           BindingKey::Make(Top, BindingKey::Default),
888                           IncludeAllDefaultBindings);
889}
890
891RegionBindingsRef
892RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B,
893                                            const SubRegion *Top) {
894  BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default);
895  const MemRegion *ClusterHead = TopKey.getBaseRegion();
896
897  if (Top == ClusterHead) {
898    // We can remove an entire cluster's bindings all in one go.
899    return B.remove(Top);
900  }
901
902  const ClusterBindings *Cluster = B.lookup(ClusterHead);
903  if (!Cluster) {
904    // If we're invalidating a region with a symbolic offset, we need to make
905    // sure we don't treat the base region as uninitialized anymore.
906    if (TopKey.hasSymbolicOffset()) {
907      const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
908      return B.addBinding(Concrete, BindingKey::Default, UnknownVal());
909    }
910    return B;
911  }
912
913  SmallVector<BindingPair, 32> Bindings;
914  collectSubRegionBindings(Bindings, svalBuilder, *Cluster, Top, TopKey,
915                           /*IncludeAllDefaultBindings=*/false);
916
917  ClusterBindingsRef Result(*Cluster, CBFactory);
918  for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
919                                                    E = Bindings.end();
920       I != E; ++I)
921    Result = Result.remove(I->first);
922
923  // If we're invalidating a region with a symbolic offset, we need to make sure
924  // we don't treat the base region as uninitialized anymore.
925  // FIXME: This isn't very precise; see the example in
926  // collectSubRegionBindings.
927  if (TopKey.hasSymbolicOffset()) {
928    const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
929    Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default),
930                        UnknownVal());
931  }
932
933  if (Result.isEmpty())
934    return B.remove(ClusterHead);
935  return B.add(ClusterHead, Result.asImmutableMap());
936}
937
938namespace {
939class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker>
940{
941  const Expr *Ex;
942  unsigned Count;
943  const LocationContext *LCtx;
944  InvalidatedSymbols &IS;
945  InvalidatedSymbols &ConstIS;
946  StoreManager::InvalidatedRegions *Regions;
947public:
948  invalidateRegionsWorker(RegionStoreManager &rm,
949                          ProgramStateManager &stateMgr,
950                          RegionBindingsRef b,
951                          const Expr *ex, unsigned count,
952                          const LocationContext *lctx,
953                          InvalidatedSymbols &is,
954                          InvalidatedSymbols &inConstIS,
955                          StoreManager::InvalidatedRegions *r,
956                          GlobalsFilterKind GFK)
957    : ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b, GFK),
958      Ex(ex), Count(count), LCtx(lctx), IS(is), ConstIS(inConstIS), Regions(r){}
959
960  /// \param IsConst Specifies if the region we are invalidating is constant.
961  /// If it is, we invalidate all subregions, but not the base region itself.
962  void VisitCluster(const MemRegion *baseR, const ClusterBindings *C,
963                    bool IsConst);
964  void VisitBinding(SVal V);
965};
966}
967
968void invalidateRegionsWorker::VisitBinding(SVal V) {
969  // A symbol?  Mark it touched by the invalidation.
970  if (SymbolRef Sym = V.getAsSymbol())
971    IS.insert(Sym);
972
973  if (const MemRegion *R = V.getAsRegion()) {
974    AddToWorkList(R);
975    return;
976  }
977
978  // Is it a LazyCompoundVal?  All references get invalidated as well.
979  if (Optional<nonloc::LazyCompoundVal> LCS =
980          V.getAs<nonloc::LazyCompoundVal>()) {
981
982    const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
983
984    for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
985                                                        E = Vals.end();
986         I != E; ++I)
987      VisitBinding(*I);
988
989    return;
990  }
991}
992
993void invalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
994                                           const ClusterBindings *C,
995                                           bool IsConst) {
996  if (C) {
997    for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I)
998      VisitBinding(I.getData());
999
1000    // Invalidate the contents of a non-const base region.
1001    if (!IsConst)
1002      B = B.remove(baseR);
1003  }
1004
1005  // BlockDataRegion?  If so, invalidate captured variables that are passed
1006  // by reference.
1007  if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
1008    for (BlockDataRegion::referenced_vars_iterator
1009         BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
1010         BI != BE; ++BI) {
1011      const VarRegion *VR = BI.getCapturedRegion();
1012      const VarDecl *VD = VR->getDecl();
1013      if (VD->getAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
1014        AddToWorkList(VR);
1015      }
1016      else if (Loc::isLocType(VR->getValueType())) {
1017        // Map the current bindings to a Store to retrieve the value
1018        // of the binding.  If that binding itself is a region, we should
1019        // invalidate that region.  This is because a block may capture
1020        // a pointer value, but the thing pointed by that pointer may
1021        // get invalidated.
1022        SVal V = RM.getBinding(B, loc::MemRegionVal(VR));
1023        if (Optional<Loc> L = V.getAs<Loc>()) {
1024          if (const MemRegion *LR = L->getAsRegion())
1025            AddToWorkList(LR);
1026        }
1027      }
1028    }
1029    return;
1030  }
1031
1032  // Symbolic region?
1033  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
1034    SymbolRef RegionSym = SR->getSymbol();
1035
1036    // Mark that symbol touched by the invalidation.
1037    if (IsConst)
1038      ConstIS.insert(RegionSym);
1039    else
1040      IS.insert(RegionSym);
1041  }
1042
1043  // Nothing else should be done for a const region.
1044  if (IsConst)
1045    return;
1046
1047  // Otherwise, we have a normal data region. Record that we touched the region.
1048  if (Regions)
1049    Regions->push_back(baseR);
1050
1051  if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
1052    // Invalidate the region by setting its default value to
1053    // conjured symbol. The type of the symbol is irrelavant.
1054    DefinedOrUnknownSVal V =
1055      svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
1056    B = B.addBinding(baseR, BindingKey::Default, V);
1057    return;
1058  }
1059
1060  if (!baseR->isBoundable())
1061    return;
1062
1063  const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
1064  QualType T = TR->getValueType();
1065
1066  if (isInitiallyIncludedGlobalRegion(baseR)) {
1067    // If the region is a global and we are invalidating all globals,
1068    // erasing the entry is good enough.  This causes all globals to be lazily
1069    // symbolicated from the same base symbol.
1070    return;
1071  }
1072
1073  if (T->isStructureOrClassType()) {
1074    // Invalidate the region by setting its default value to
1075    // conjured symbol. The type of the symbol is irrelavant.
1076    DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1077                                                          Ctx.IntTy, Count);
1078    B = B.addBinding(baseR, BindingKey::Default, V);
1079    return;
1080  }
1081
1082  if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
1083      // Set the default value of the array to conjured symbol.
1084    DefinedOrUnknownSVal V =
1085    svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1086                                     AT->getElementType(), Count);
1087    B = B.addBinding(baseR, BindingKey::Default, V);
1088    return;
1089  }
1090
1091  DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1092                                                        T,Count);
1093  assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
1094  B = B.addBinding(baseR, BindingKey::Direct, V);
1095}
1096
1097RegionBindingsRef
1098RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
1099                                           const Expr *Ex,
1100                                           unsigned Count,
1101                                           const LocationContext *LCtx,
1102                                           RegionBindingsRef B,
1103                                           InvalidatedRegions *Invalidated) {
1104  // Bind the globals memory space to a new symbol that we will use to derive
1105  // the bindings for all globals.
1106  const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
1107  SVal V = svalBuilder.conjureSymbolVal(/* SymbolTag = */ (const void*) GS, Ex, LCtx,
1108                                        /* type does not matter */ Ctx.IntTy,
1109                                        Count);
1110
1111  B = B.removeBinding(GS)
1112       .addBinding(BindingKey::Make(GS, BindingKey::Default), V);
1113
1114  // Even if there are no bindings in the global scope, we still need to
1115  // record that we touched it.
1116  if (Invalidated)
1117    Invalidated->push_back(GS);
1118
1119  return B;
1120}
1121
1122void RegionStoreManager::populateWorkList(invalidateRegionsWorker &W,
1123                                          ArrayRef<SVal> Values,
1124                                          bool IsArrayOfConstRegions,
1125                                          InvalidatedRegions *TopLevelRegions) {
1126  for (ArrayRef<SVal>::iterator I = Values.begin(),
1127                                E = Values.end(); I != E; ++I) {
1128    SVal V = *I;
1129    if (Optional<nonloc::LazyCompoundVal> LCS =
1130        V.getAs<nonloc::LazyCompoundVal>()) {
1131
1132      const SValListTy &Vals = getInterestingValues(*LCS);
1133
1134      for (SValListTy::const_iterator I = Vals.begin(),
1135                                      E = Vals.end(); I != E; ++I) {
1136        // Note: the last argument is false here because these are
1137        // non-top-level regions.
1138        if (const MemRegion *R = (*I).getAsRegion())
1139          W.AddToWorkList(R, /*IsConst=*/ false);
1140      }
1141      continue;
1142    }
1143
1144    if (const MemRegion *R = V.getAsRegion()) {
1145      if (TopLevelRegions)
1146        TopLevelRegions->push_back(R);
1147      W.AddToWorkList(R, /*IsConst=*/ IsArrayOfConstRegions);
1148      continue;
1149    }
1150  }
1151}
1152
1153StoreRef
1154RegionStoreManager::invalidateRegions(Store store,
1155                                      ArrayRef<SVal> Values,
1156                                      ArrayRef<SVal> ConstValues,
1157                                      const Expr *Ex, unsigned Count,
1158                                      const LocationContext *LCtx,
1159                                      const CallEvent *Call,
1160                                      InvalidatedSymbols &IS,
1161                                      InvalidatedSymbols &ConstIS,
1162                                      InvalidatedRegions *TopLevelRegions,
1163                                      InvalidatedRegions *TopLevelConstRegions,
1164                                      InvalidatedRegions *Invalidated) {
1165  GlobalsFilterKind GlobalsFilter;
1166  if (Call) {
1167    if (Call->isInSystemHeader())
1168      GlobalsFilter = GFK_SystemOnly;
1169    else
1170      GlobalsFilter = GFK_All;
1171  } else {
1172    GlobalsFilter = GFK_None;
1173  }
1174
1175  RegionBindingsRef B = getRegionBindings(store);
1176  invalidateRegionsWorker W(*this, StateMgr, B, Ex, Count, LCtx, IS, ConstIS,
1177                            Invalidated, GlobalsFilter);
1178
1179  // Scan the bindings and generate the clusters.
1180  W.GenerateClusters();
1181
1182  // Add the regions to the worklist.
1183  populateWorkList(W, Values, /*IsArrayOfConstRegions*/ false,
1184                   TopLevelRegions);
1185  populateWorkList(W, ConstValues, /*IsArrayOfConstRegions*/ true,
1186                   TopLevelConstRegions);
1187
1188  W.RunWorkList();
1189
1190  // Return the new bindings.
1191  B = W.getRegionBindings();
1192
1193  // For calls, determine which global regions should be invalidated and
1194  // invalidate them. (Note that function-static and immutable globals are never
1195  // invalidated by this.)
1196  // TODO: This could possibly be more precise with modules.
1197  switch (GlobalsFilter) {
1198  case GFK_All:
1199    B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
1200                               Ex, Count, LCtx, B, Invalidated);
1201    // FALLTHROUGH
1202  case GFK_SystemOnly:
1203    B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
1204                               Ex, Count, LCtx, B, Invalidated);
1205    // FALLTHROUGH
1206  case GFK_None:
1207    break;
1208  }
1209
1210  return StoreRef(B.asStore(), *this);
1211}
1212
1213//===----------------------------------------------------------------------===//
1214// Extents for regions.
1215//===----------------------------------------------------------------------===//
1216
1217DefinedOrUnknownSVal
1218RegionStoreManager::getSizeInElements(ProgramStateRef state,
1219                                      const MemRegion *R,
1220                                      QualType EleTy) {
1221  SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
1222  const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
1223  if (!SizeInt)
1224    return UnknownVal();
1225
1226  CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
1227
1228  if (Ctx.getAsVariableArrayType(EleTy)) {
1229    // FIXME: We need to track extra state to properly record the size
1230    // of VLAs.  Returning UnknownVal here, however, is a stop-gap so that
1231    // we don't have a divide-by-zero below.
1232    return UnknownVal();
1233  }
1234
1235  CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
1236
1237  // If a variable is reinterpreted as a type that doesn't fit into a larger
1238  // type evenly, round it down.
1239  // This is a signed value, since it's used in arithmetic with signed indices.
1240  return svalBuilder.makeIntVal(RegionSize / EleSize, false);
1241}
1242
1243//===----------------------------------------------------------------------===//
1244// Location and region casting.
1245//===----------------------------------------------------------------------===//
1246
1247/// ArrayToPointer - Emulates the "decay" of an array to a pointer
1248///  type.  'Array' represents the lvalue of the array being decayed
1249///  to a pointer, and the returned SVal represents the decayed
1250///  version of that lvalue (i.e., a pointer to the first element of
1251///  the array).  This is called by ExprEngine when evaluating casts
1252///  from arrays to pointers.
1253SVal RegionStoreManager::ArrayToPointer(Loc Array) {
1254  if (!Array.getAs<loc::MemRegionVal>())
1255    return UnknownVal();
1256
1257  const MemRegion* R = Array.castAs<loc::MemRegionVal>().getRegion();
1258  const TypedValueRegion* ArrayR = dyn_cast<TypedValueRegion>(R);
1259
1260  if (!ArrayR)
1261    return UnknownVal();
1262
1263  // Strip off typedefs from the ArrayRegion's ValueType.
1264  QualType T = ArrayR->getValueType().getDesugaredType(Ctx);
1265  const ArrayType *AT = cast<ArrayType>(T);
1266  T = AT->getElementType();
1267
1268  NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
1269  return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, ArrayR, Ctx));
1270}
1271
1272//===----------------------------------------------------------------------===//
1273// Loading values from regions.
1274//===----------------------------------------------------------------------===//
1275
1276SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) {
1277  assert(!L.getAs<UnknownVal>() && "location unknown");
1278  assert(!L.getAs<UndefinedVal>() && "location undefined");
1279
1280  // For access to concrete addresses, return UnknownVal.  Checks
1281  // for null dereferences (and similar errors) are done by checkers, not
1282  // the Store.
1283  // FIXME: We can consider lazily symbolicating such memory, but we really
1284  // should defer this when we can reason easily about symbolicating arrays
1285  // of bytes.
1286  if (L.getAs<loc::ConcreteInt>()) {
1287    return UnknownVal();
1288  }
1289  if (!L.getAs<loc::MemRegionVal>()) {
1290    return UnknownVal();
1291  }
1292
1293  const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion();
1294
1295  if (isa<AllocaRegion>(MR) ||
1296      isa<SymbolicRegion>(MR) ||
1297      isa<CodeTextRegion>(MR)) {
1298    if (T.isNull()) {
1299      if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR))
1300        T = TR->getLocationType();
1301      else {
1302        const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
1303        T = SR->getSymbol()->getType();
1304      }
1305    }
1306    MR = GetElementZeroRegion(MR, T);
1307  }
1308
1309  // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
1310  //  instead of 'Loc', and have the other Loc cases handled at a higher level.
1311  const TypedValueRegion *R = cast<TypedValueRegion>(MR);
1312  QualType RTy = R->getValueType();
1313
1314  // FIXME: we do not yet model the parts of a complex type, so treat the
1315  // whole thing as "unknown".
1316  if (RTy->isAnyComplexType())
1317    return UnknownVal();
1318
1319  // FIXME: We should eventually handle funny addressing.  e.g.:
1320  //
1321  //   int x = ...;
1322  //   int *p = &x;
1323  //   char *q = (char*) p;
1324  //   char c = *q;  // returns the first byte of 'x'.
1325  //
1326  // Such funny addressing will occur due to layering of regions.
1327  if (RTy->isStructureOrClassType())
1328    return getBindingForStruct(B, R);
1329
1330  // FIXME: Handle unions.
1331  if (RTy->isUnionType())
1332    return UnknownVal();
1333
1334  if (RTy->isArrayType()) {
1335    if (RTy->isConstantArrayType())
1336      return getBindingForArray(B, R);
1337    else
1338      return UnknownVal();
1339  }
1340
1341  // FIXME: handle Vector types.
1342  if (RTy->isVectorType())
1343    return UnknownVal();
1344
1345  if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
1346    return CastRetrievedVal(getBindingForField(B, FR), FR, T, false);
1347
1348  if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
1349    // FIXME: Here we actually perform an implicit conversion from the loaded
1350    // value to the element type.  Eventually we want to compose these values
1351    // more intelligently.  For example, an 'element' can encompass multiple
1352    // bound regions (e.g., several bound bytes), or could be a subset of
1353    // a larger value.
1354    return CastRetrievedVal(getBindingForElement(B, ER), ER, T, false);
1355  }
1356
1357  if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
1358    // FIXME: Here we actually perform an implicit conversion from the loaded
1359    // value to the ivar type.  What we should model is stores to ivars
1360    // that blow past the extent of the ivar.  If the address of the ivar is
1361    // reinterpretted, it is possible we stored a different value that could
1362    // fit within the ivar.  Either we need to cast these when storing them
1363    // or reinterpret them lazily (as we do here).
1364    return CastRetrievedVal(getBindingForObjCIvar(B, IVR), IVR, T, false);
1365  }
1366
1367  if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
1368    // FIXME: Here we actually perform an implicit conversion from the loaded
1369    // value to the variable type.  What we should model is stores to variables
1370    // that blow past the extent of the variable.  If the address of the
1371    // variable is reinterpretted, it is possible we stored a different value
1372    // that could fit within the variable.  Either we need to cast these when
1373    // storing them or reinterpret them lazily (as we do here).
1374    return CastRetrievedVal(getBindingForVar(B, VR), VR, T, false);
1375  }
1376
1377  const SVal *V = B.lookup(R, BindingKey::Direct);
1378
1379  // Check if the region has a binding.
1380  if (V)
1381    return *V;
1382
1383  // The location does not have a bound value.  This means that it has
1384  // the value it had upon its creation and/or entry to the analyzed
1385  // function/method.  These are either symbolic values or 'undefined'.
1386  if (R->hasStackNonParametersStorage()) {
1387    // All stack variables are considered to have undefined values
1388    // upon creation.  All heap allocated blocks are considered to
1389    // have undefined values as well unless they are explicitly bound
1390    // to specific values.
1391    return UndefinedVal();
1392  }
1393
1394  // All other values are symbolic.
1395  return svalBuilder.getRegionValueSymbolVal(R);
1396}
1397
1398static QualType getUnderlyingType(const SubRegion *R) {
1399  QualType RegionTy;
1400  if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(R))
1401    RegionTy = TVR->getValueType();
1402
1403  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1404    RegionTy = SR->getSymbol()->getType();
1405
1406  return RegionTy;
1407}
1408
1409/// Checks to see if store \p B has a lazy binding for region \p R.
1410///
1411/// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected
1412/// if there are additional bindings within \p R.
1413///
1414/// Note that unlike RegionStoreManager::findLazyBinding, this will not search
1415/// for lazy bindings for super-regions of \p R.
1416static Optional<nonloc::LazyCompoundVal>
1417getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B,
1418                       const SubRegion *R, bool AllowSubregionBindings) {
1419  Optional<SVal> V = B.getDefaultBinding(R);
1420  if (!V)
1421    return None;
1422
1423  Optional<nonloc::LazyCompoundVal> LCV = V->getAs<nonloc::LazyCompoundVal>();
1424  if (!LCV)
1425    return None;
1426
1427  // If the LCV is for a subregion, the types might not match, and we shouldn't
1428  // reuse the binding.
1429  QualType RegionTy = getUnderlyingType(R);
1430  if (!RegionTy.isNull() &&
1431      !RegionTy->isVoidPointerType()) {
1432    QualType SourceRegionTy = LCV->getRegion()->getValueType();
1433    if (!SVB.getContext().hasSameUnqualifiedType(RegionTy, SourceRegionTy))
1434      return None;
1435  }
1436
1437  if (!AllowSubregionBindings) {
1438    // If there are any other bindings within this region, we shouldn't reuse
1439    // the top-level binding.
1440    SmallVector<BindingPair, 16> Bindings;
1441    collectSubRegionBindings(Bindings, SVB, *B.lookup(R->getBaseRegion()), R,
1442                             /*IncludeAllDefaultBindings=*/true);
1443    if (Bindings.size() > 1)
1444      return None;
1445  }
1446
1447  return *LCV;
1448}
1449
1450
1451std::pair<Store, const SubRegion *>
1452RegionStoreManager::findLazyBinding(RegionBindingsConstRef B,
1453                                   const SubRegion *R,
1454                                   const SubRegion *originalRegion) {
1455  if (originalRegion != R) {
1456    if (Optional<nonloc::LazyCompoundVal> V =
1457          getExistingLazyBinding(svalBuilder, B, R, true))
1458      return std::make_pair(V->getStore(), V->getRegion());
1459  }
1460
1461  typedef std::pair<Store, const SubRegion *> StoreRegionPair;
1462  StoreRegionPair Result = StoreRegionPair();
1463
1464  if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1465    Result = findLazyBinding(B, cast<SubRegion>(ER->getSuperRegion()),
1466                             originalRegion);
1467
1468    if (Result.second)
1469      Result.second = MRMgr.getElementRegionWithSuper(ER, Result.second);
1470
1471  } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1472    Result = findLazyBinding(B, cast<SubRegion>(FR->getSuperRegion()),
1473                                       originalRegion);
1474
1475    if (Result.second)
1476      Result.second = MRMgr.getFieldRegionWithSuper(FR, Result.second);
1477
1478  } else if (const CXXBaseObjectRegion *BaseReg =
1479               dyn_cast<CXXBaseObjectRegion>(R)) {
1480    // C++ base object region is another kind of region that we should blast
1481    // through to look for lazy compound value. It is like a field region.
1482    Result = findLazyBinding(B, cast<SubRegion>(BaseReg->getSuperRegion()),
1483                             originalRegion);
1484
1485    if (Result.second)
1486      Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(BaseReg,
1487                                                            Result.second);
1488  }
1489
1490  return Result;
1491}
1492
1493SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B,
1494                                              const ElementRegion* R) {
1495  // We do not currently model bindings of the CompoundLiteralregion.
1496  if (isa<CompoundLiteralRegion>(R->getBaseRegion()))
1497    return UnknownVal();
1498
1499  // Check if the region has a binding.
1500  if (const Optional<SVal> &V = B.getDirectBinding(R))
1501    return *V;
1502
1503  const MemRegion* superR = R->getSuperRegion();
1504
1505  // Check if the region is an element region of a string literal.
1506  if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
1507    // FIXME: Handle loads from strings where the literal is treated as
1508    // an integer, e.g., *((unsigned int*)"hello")
1509    QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1510    if (T != Ctx.getCanonicalType(R->getElementType()))
1511      return UnknownVal();
1512
1513    const StringLiteral *Str = StrR->getStringLiteral();
1514    SVal Idx = R->getIndex();
1515    if (Optional<nonloc::ConcreteInt> CI = Idx.getAs<nonloc::ConcreteInt>()) {
1516      int64_t i = CI->getValue().getSExtValue();
1517      // Abort on string underrun.  This can be possible by arbitrary
1518      // clients of getBindingForElement().
1519      if (i < 0)
1520        return UndefinedVal();
1521      int64_t length = Str->getLength();
1522      // Technically, only i == length is guaranteed to be null.
1523      // However, such overflows should be caught before reaching this point;
1524      // the only time such an access would be made is if a string literal was
1525      // used to initialize a larger array.
1526      char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
1527      return svalBuilder.makeIntVal(c, T);
1528    }
1529  }
1530
1531  // Check for loads from a code text region.  For such loads, just give up.
1532  if (isa<CodeTextRegion>(superR))
1533    return UnknownVal();
1534
1535  // Handle the case where we are indexing into a larger scalar object.
1536  // For example, this handles:
1537  //   int x = ...
1538  //   char *y = &x;
1539  //   return *y;
1540  // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1541  const RegionRawOffset &O = R->getAsArrayOffset();
1542
1543  // If we cannot reason about the offset, return an unknown value.
1544  if (!O.getRegion())
1545    return UnknownVal();
1546
1547  if (const TypedValueRegion *baseR =
1548        dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
1549    QualType baseT = baseR->getValueType();
1550    if (baseT->isScalarType()) {
1551      QualType elemT = R->getElementType();
1552      if (elemT->isScalarType()) {
1553        if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
1554          if (const Optional<SVal> &V = B.getDirectBinding(superR)) {
1555            if (SymbolRef parentSym = V->getAsSymbol())
1556              return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1557
1558            if (V->isUnknownOrUndef())
1559              return *V;
1560            // Other cases: give up.  We are indexing into a larger object
1561            // that has some value, but we don't know how to handle that yet.
1562            return UnknownVal();
1563          }
1564        }
1565      }
1566    }
1567  }
1568  return getBindingForFieldOrElementCommon(B, R, R->getElementType());
1569}
1570
1571SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B,
1572                                            const FieldRegion* R) {
1573
1574  // Check if the region has a binding.
1575  if (const Optional<SVal> &V = B.getDirectBinding(R))
1576    return *V;
1577
1578  QualType Ty = R->getValueType();
1579  return getBindingForFieldOrElementCommon(B, R, Ty);
1580}
1581
1582Optional<SVal>
1583RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
1584                                                     const MemRegion *superR,
1585                                                     const TypedValueRegion *R,
1586                                                     QualType Ty) {
1587
1588  if (const Optional<SVal> &D = B.getDefaultBinding(superR)) {
1589    const SVal &val = D.getValue();
1590    if (SymbolRef parentSym = val.getAsSymbol())
1591      return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1592
1593    if (val.isZeroConstant())
1594      return svalBuilder.makeZeroVal(Ty);
1595
1596    if (val.isUnknownOrUndef())
1597      return val;
1598
1599    // Lazy bindings are usually handled through getExistingLazyBinding().
1600    // We should unify these two code paths at some point.
1601    if (val.getAs<nonloc::LazyCompoundVal>())
1602      return val;
1603
1604    llvm_unreachable("Unknown default value");
1605  }
1606
1607  return None;
1608}
1609
1610SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion,
1611                                        RegionBindingsRef LazyBinding) {
1612  SVal Result;
1613  if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion))
1614    Result = getBindingForElement(LazyBinding, ER);
1615  else
1616    Result = getBindingForField(LazyBinding,
1617                                cast<FieldRegion>(LazyBindingRegion));
1618
1619  // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
1620  // default value for /part/ of an aggregate from a default value for the
1621  // /entire/ aggregate. The most common case of this is when struct Outer
1622  // has as its first member a struct Inner, which is copied in from a stack
1623  // variable. In this case, even if the Outer's default value is symbolic, 0,
1624  // or unknown, it gets overridden by the Inner's default value of undefined.
1625  //
1626  // This is a general problem -- if the Inner is zero-initialized, the Outer
1627  // will now look zero-initialized. The proper way to solve this is with a
1628  // new version of RegionStore that tracks the extent of a binding as well
1629  // as the offset.
1630  //
1631  // This hack only takes care of the undefined case because that can very
1632  // quickly result in a warning.
1633  if (Result.isUndef())
1634    Result = UnknownVal();
1635
1636  return Result;
1637}
1638
1639SVal
1640RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
1641                                                      const TypedValueRegion *R,
1642                                                      QualType Ty) {
1643
1644  // At this point we have already checked in either getBindingForElement or
1645  // getBindingForField if 'R' has a direct binding.
1646
1647  // Lazy binding?
1648  Store lazyBindingStore = NULL;
1649  const SubRegion *lazyBindingRegion = NULL;
1650  llvm::tie(lazyBindingStore, lazyBindingRegion) = findLazyBinding(B, R, R);
1651  if (lazyBindingRegion)
1652    return getLazyBinding(lazyBindingRegion,
1653                          getRegionBindings(lazyBindingStore));
1654
1655  // Record whether or not we see a symbolic index.  That can completely
1656  // be out of scope of our lookup.
1657  bool hasSymbolicIndex = false;
1658
1659  // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
1660  // default value for /part/ of an aggregate from a default value for the
1661  // /entire/ aggregate. The most common case of this is when struct Outer
1662  // has as its first member a struct Inner, which is copied in from a stack
1663  // variable. In this case, even if the Outer's default value is symbolic, 0,
1664  // or unknown, it gets overridden by the Inner's default value of undefined.
1665  //
1666  // This is a general problem -- if the Inner is zero-initialized, the Outer
1667  // will now look zero-initialized. The proper way to solve this is with a
1668  // new version of RegionStore that tracks the extent of a binding as well
1669  // as the offset.
1670  //
1671  // This hack only takes care of the undefined case because that can very
1672  // quickly result in a warning.
1673  bool hasPartialLazyBinding = false;
1674
1675  const SubRegion *SR = dyn_cast<SubRegion>(R);
1676  while (SR) {
1677    const MemRegion *Base = SR->getSuperRegion();
1678    if (Optional<SVal> D = getBindingForDerivedDefaultValue(B, Base, R, Ty)) {
1679      if (D->getAs<nonloc::LazyCompoundVal>()) {
1680        hasPartialLazyBinding = true;
1681        break;
1682      }
1683
1684      return *D;
1685    }
1686
1687    if (const ElementRegion *ER = dyn_cast<ElementRegion>(Base)) {
1688      NonLoc index = ER->getIndex();
1689      if (!index.isConstant())
1690        hasSymbolicIndex = true;
1691    }
1692
1693    // If our super region is a field or element itself, walk up the region
1694    // hierarchy to see if there is a default value installed in an ancestor.
1695    SR = dyn_cast<SubRegion>(Base);
1696  }
1697
1698  if (R->hasStackNonParametersStorage()) {
1699    if (isa<ElementRegion>(R)) {
1700      // Currently we don't reason specially about Clang-style vectors.  Check
1701      // if superR is a vector and if so return Unknown.
1702      if (const TypedValueRegion *typedSuperR =
1703            dyn_cast<TypedValueRegion>(R->getSuperRegion())) {
1704        if (typedSuperR->getValueType()->isVectorType())
1705          return UnknownVal();
1706      }
1707    }
1708
1709    // FIXME: We also need to take ElementRegions with symbolic indexes into
1710    // account.  This case handles both directly accessing an ElementRegion
1711    // with a symbolic offset, but also fields within an element with
1712    // a symbolic offset.
1713    if (hasSymbolicIndex)
1714      return UnknownVal();
1715
1716    if (!hasPartialLazyBinding)
1717      return UndefinedVal();
1718  }
1719
1720  // All other values are symbolic.
1721  return svalBuilder.getRegionValueSymbolVal(R);
1722}
1723
1724SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B,
1725                                               const ObjCIvarRegion* R) {
1726  // Check if the region has a binding.
1727  if (const Optional<SVal> &V = B.getDirectBinding(R))
1728    return *V;
1729
1730  const MemRegion *superR = R->getSuperRegion();
1731
1732  // Check if the super region has a default binding.
1733  if (const Optional<SVal> &V = B.getDefaultBinding(superR)) {
1734    if (SymbolRef parentSym = V->getAsSymbol())
1735      return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1736
1737    // Other cases: give up.
1738    return UnknownVal();
1739  }
1740
1741  return getBindingForLazySymbol(R);
1742}
1743
1744SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B,
1745                                          const VarRegion *R) {
1746
1747  // Check if the region has a binding.
1748  if (const Optional<SVal> &V = B.getDirectBinding(R))
1749    return *V;
1750
1751  // Lazily derive a value for the VarRegion.
1752  const VarDecl *VD = R->getDecl();
1753  const MemSpaceRegion *MS = R->getMemorySpace();
1754
1755  // Arguments are always symbolic.
1756  if (isa<StackArgumentsSpaceRegion>(MS))
1757    return svalBuilder.getRegionValueSymbolVal(R);
1758
1759  // Is 'VD' declared constant?  If so, retrieve the constant value.
1760  if (VD->getType().isConstQualified())
1761    if (const Expr *Init = VD->getInit())
1762      if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
1763        return *V;
1764
1765  // This must come after the check for constants because closure-captured
1766  // constant variables may appear in UnknownSpaceRegion.
1767  if (isa<UnknownSpaceRegion>(MS))
1768    return svalBuilder.getRegionValueSymbolVal(R);
1769
1770  if (isa<GlobalsSpaceRegion>(MS)) {
1771    QualType T = VD->getType();
1772
1773    // Function-scoped static variables are default-initialized to 0; if they
1774    // have an initializer, it would have been processed by now.
1775    if (isa<StaticGlobalSpaceRegion>(MS))
1776      return svalBuilder.makeZeroVal(T);
1777
1778    if (Optional<SVal> V = getBindingForDerivedDefaultValue(B, MS, R, T)) {
1779      assert(!V->getAs<nonloc::LazyCompoundVal>());
1780      return V.getValue();
1781    }
1782
1783    return svalBuilder.getRegionValueSymbolVal(R);
1784  }
1785
1786  return UndefinedVal();
1787}
1788
1789SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
1790  // All other values are symbolic.
1791  return svalBuilder.getRegionValueSymbolVal(R);
1792}
1793
1794const RegionStoreManager::SValListTy &
1795RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) {
1796  // First, check the cache.
1797  LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData());
1798  if (I != LazyBindingsMap.end())
1799    return I->second;
1800
1801  // If we don't have a list of values cached, start constructing it.
1802  SValListTy List;
1803
1804  const SubRegion *LazyR = LCV.getRegion();
1805  RegionBindingsRef B = getRegionBindings(LCV.getStore());
1806
1807  // If this region had /no/ bindings at the time, there are no interesting
1808  // values to return.
1809  const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion());
1810  if (!Cluster)
1811    return (LazyBindingsMap[LCV.getCVData()] = llvm_move(List));
1812
1813  SmallVector<BindingPair, 32> Bindings;
1814  collectSubRegionBindings(Bindings, svalBuilder, *Cluster, LazyR,
1815                           /*IncludeAllDefaultBindings=*/true);
1816  for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
1817                                                    E = Bindings.end();
1818       I != E; ++I) {
1819    SVal V = I->second;
1820    if (V.isUnknownOrUndef() || V.isConstant())
1821      continue;
1822
1823    if (Optional<nonloc::LazyCompoundVal> InnerLCV =
1824            V.getAs<nonloc::LazyCompoundVal>()) {
1825      const SValListTy &InnerList = getInterestingValues(*InnerLCV);
1826      List.insert(List.end(), InnerList.begin(), InnerList.end());
1827      continue;
1828    }
1829
1830    List.push_back(V);
1831  }
1832
1833  return (LazyBindingsMap[LCV.getCVData()] = llvm_move(List));
1834}
1835
1836NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B,
1837                                             const TypedValueRegion *R) {
1838  if (Optional<nonloc::LazyCompoundVal> V =
1839        getExistingLazyBinding(svalBuilder, B, R, false))
1840    return *V;
1841
1842  return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R);
1843}
1844
1845SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B,
1846                                             const TypedValueRegion *R) {
1847  const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl();
1848  if (RD->field_empty())
1849    return UnknownVal();
1850
1851  return createLazyBinding(B, R);
1852}
1853
1854SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B,
1855                                            const TypedValueRegion *R) {
1856  assert(Ctx.getAsConstantArrayType(R->getValueType()) &&
1857         "Only constant array types can have compound bindings.");
1858
1859  return createLazyBinding(B, R);
1860}
1861
1862bool RegionStoreManager::includedInBindings(Store store,
1863                                            const MemRegion *region) const {
1864  RegionBindingsRef B = getRegionBindings(store);
1865  region = region->getBaseRegion();
1866
1867  // Quick path: if the base is the head of a cluster, the region is live.
1868  if (B.lookup(region))
1869    return true;
1870
1871  // Slow path: if the region is the VALUE of any binding, it is live.
1872  for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
1873    const ClusterBindings &Cluster = RI.getData();
1874    for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
1875         CI != CE; ++CI) {
1876      const SVal &D = CI.getData();
1877      if (const MemRegion *R = D.getAsRegion())
1878        if (R->getBaseRegion() == region)
1879          return true;
1880    }
1881  }
1882
1883  return false;
1884}
1885
1886//===----------------------------------------------------------------------===//
1887// Binding values to regions.
1888//===----------------------------------------------------------------------===//
1889
1890StoreRef RegionStoreManager::killBinding(Store ST, Loc L) {
1891  if (Optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>())
1892    if (const MemRegion* R = LV->getRegion())
1893      return StoreRef(getRegionBindings(ST).removeBinding(R)
1894                                           .asImmutableMap()
1895                                           .getRootWithoutRetain(),
1896                      *this);
1897
1898  return StoreRef(ST, *this);
1899}
1900
1901RegionBindingsRef
1902RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) {
1903  if (L.getAs<loc::ConcreteInt>())
1904    return B;
1905
1906  // If we get here, the location should be a region.
1907  const MemRegion *R = L.castAs<loc::MemRegionVal>().getRegion();
1908
1909  // Check if the region is a struct region.
1910  if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
1911    QualType Ty = TR->getValueType();
1912    if (Ty->isArrayType())
1913      return bindArray(B, TR, V);
1914    if (Ty->isStructureOrClassType())
1915      return bindStruct(B, TR, V);
1916    if (Ty->isVectorType())
1917      return bindVector(B, TR, V);
1918  }
1919
1920  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
1921    // Binding directly to a symbolic region should be treated as binding
1922    // to element 0.
1923    QualType T = SR->getSymbol()->getType();
1924    if (T->isAnyPointerType() || T->isReferenceType())
1925      T = T->getPointeeType();
1926
1927    R = GetElementZeroRegion(SR, T);
1928  }
1929
1930  // Clear out bindings that may overlap with this binding.
1931  RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R));
1932  return NewB.addBinding(BindingKey::Make(R, BindingKey::Direct), V);
1933}
1934
1935RegionBindingsRef
1936RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B,
1937                                            const MemRegion *R,
1938                                            QualType T) {
1939  SVal V;
1940
1941  if (Loc::isLocType(T))
1942    V = svalBuilder.makeNull();
1943  else if (T->isIntegralOrEnumerationType())
1944    V = svalBuilder.makeZeroVal(T);
1945  else if (T->isStructureOrClassType() || T->isArrayType()) {
1946    // Set the default value to a zero constant when it is a structure
1947    // or array.  The type doesn't really matter.
1948    V = svalBuilder.makeZeroVal(Ctx.IntTy);
1949  }
1950  else {
1951    // We can't represent values of this type, but we still need to set a value
1952    // to record that the region has been initialized.
1953    // If this assertion ever fires, a new case should be added above -- we
1954    // should know how to default-initialize any value we can symbolicate.
1955    assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
1956    V = UnknownVal();
1957  }
1958
1959  return B.addBinding(R, BindingKey::Default, V);
1960}
1961
1962RegionBindingsRef
1963RegionStoreManager::bindArray(RegionBindingsConstRef B,
1964                              const TypedValueRegion* R,
1965                              SVal Init) {
1966
1967  const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
1968  QualType ElementTy = AT->getElementType();
1969  Optional<uint64_t> Size;
1970
1971  if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
1972    Size = CAT->getSize().getZExtValue();
1973
1974  // Check if the init expr is a string literal.
1975  if (Optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) {
1976    const StringRegion *S = cast<StringRegion>(MRV->getRegion());
1977
1978    // Treat the string as a lazy compound value.
1979    StoreRef store(B.asStore(), *this);
1980    nonloc::LazyCompoundVal LCV = svalBuilder.makeLazyCompoundVal(store, S)
1981        .castAs<nonloc::LazyCompoundVal>();
1982    return bindAggregate(B, R, LCV);
1983  }
1984
1985  // Handle lazy compound values.
1986  if (Init.getAs<nonloc::LazyCompoundVal>())
1987    return bindAggregate(B, R, Init);
1988
1989  // Remaining case: explicit compound values.
1990
1991  if (Init.isUnknown())
1992    return setImplicitDefaultValue(B, R, ElementTy);
1993
1994  const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>();
1995  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1996  uint64_t i = 0;
1997
1998  RegionBindingsRef NewB(B);
1999
2000  for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
2001    // The init list might be shorter than the array length.
2002    if (VI == VE)
2003      break;
2004
2005    const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
2006    const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
2007
2008    if (ElementTy->isStructureOrClassType())
2009      NewB = bindStruct(NewB, ER, *VI);
2010    else if (ElementTy->isArrayType())
2011      NewB = bindArray(NewB, ER, *VI);
2012    else
2013      NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2014  }
2015
2016  // If the init list is shorter than the array length, set the
2017  // array default value.
2018  if (Size.hasValue() && i < Size.getValue())
2019    NewB = setImplicitDefaultValue(NewB, R, ElementTy);
2020
2021  return NewB;
2022}
2023
2024RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B,
2025                                                 const TypedValueRegion* R,
2026                                                 SVal V) {
2027  QualType T = R->getValueType();
2028  assert(T->isVectorType());
2029  const VectorType *VT = T->getAs<VectorType>(); // Use getAs for typedefs.
2030
2031  // Handle lazy compound values and symbolic values.
2032  if (V.getAs<nonloc::LazyCompoundVal>() || V.getAs<nonloc::SymbolVal>())
2033    return bindAggregate(B, R, V);
2034
2035  // We may get non-CompoundVal accidentally due to imprecise cast logic or
2036  // that we are binding symbolic struct value. Kill the field values, and if
2037  // the value is symbolic go and bind it as a "default" binding.
2038  if (!V.getAs<nonloc::CompoundVal>()) {
2039    return bindAggregate(B, R, UnknownVal());
2040  }
2041
2042  QualType ElemType = VT->getElementType();
2043  nonloc::CompoundVal CV = V.castAs<nonloc::CompoundVal>();
2044  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2045  unsigned index = 0, numElements = VT->getNumElements();
2046  RegionBindingsRef NewB(B);
2047
2048  for ( ; index != numElements ; ++index) {
2049    if (VI == VE)
2050      break;
2051
2052    NonLoc Idx = svalBuilder.makeArrayIndex(index);
2053    const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
2054
2055    if (ElemType->isArrayType())
2056      NewB = bindArray(NewB, ER, *VI);
2057    else if (ElemType->isStructureOrClassType())
2058      NewB = bindStruct(NewB, ER, *VI);
2059    else
2060      NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2061  }
2062  return NewB;
2063}
2064
2065Optional<RegionBindingsRef>
2066RegionStoreManager::tryBindSmallStruct(RegionBindingsConstRef B,
2067                                       const TypedValueRegion *R,
2068                                       const RecordDecl *RD,
2069                                       nonloc::LazyCompoundVal LCV) {
2070  FieldVector Fields;
2071
2072  if (const CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(RD))
2073    if (Class->getNumBases() != 0 || Class->getNumVBases() != 0)
2074      return None;
2075
2076  for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
2077       I != E; ++I) {
2078    const FieldDecl *FD = *I;
2079    if (FD->isUnnamedBitfield())
2080      continue;
2081
2082    // If there are too many fields, or if any of the fields are aggregates,
2083    // just use the LCV as a default binding.
2084    if (Fields.size() == SmallStructLimit)
2085      return None;
2086
2087    QualType Ty = FD->getType();
2088    if (!(Ty->isScalarType() || Ty->isReferenceType()))
2089      return None;
2090
2091    Fields.push_back(*I);
2092  }
2093
2094  RegionBindingsRef NewB = B;
2095
2096  for (FieldVector::iterator I = Fields.begin(), E = Fields.end(); I != E; ++I){
2097    const FieldRegion *SourceFR = MRMgr.getFieldRegion(*I, LCV.getRegion());
2098    SVal V = getBindingForField(getRegionBindings(LCV.getStore()), SourceFR);
2099
2100    const FieldRegion *DestFR = MRMgr.getFieldRegion(*I, R);
2101    NewB = bind(NewB, loc::MemRegionVal(DestFR), V);
2102  }
2103
2104  return NewB;
2105}
2106
2107RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B,
2108                                                 const TypedValueRegion* R,
2109                                                 SVal V) {
2110  if (!Features.supportsFields())
2111    return B;
2112
2113  QualType T = R->getValueType();
2114  assert(T->isStructureOrClassType());
2115
2116  const RecordType* RT = T->getAs<RecordType>();
2117  const RecordDecl *RD = RT->getDecl();
2118
2119  if (!RD->isCompleteDefinition())
2120    return B;
2121
2122  // Handle lazy compound values and symbolic values.
2123  if (Optional<nonloc::LazyCompoundVal> LCV =
2124        V.getAs<nonloc::LazyCompoundVal>()) {
2125    if (Optional<RegionBindingsRef> NewB = tryBindSmallStruct(B, R, RD, *LCV))
2126      return *NewB;
2127    return bindAggregate(B, R, V);
2128  }
2129  if (V.getAs<nonloc::SymbolVal>())
2130    return bindAggregate(B, R, V);
2131
2132  // We may get non-CompoundVal accidentally due to imprecise cast logic or
2133  // that we are binding symbolic struct value. Kill the field values, and if
2134  // the value is symbolic go and bind it as a "default" binding.
2135  if (V.isUnknown() || !V.getAs<nonloc::CompoundVal>())
2136    return bindAggregate(B, R, UnknownVal());
2137
2138  const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>();
2139  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2140
2141  RecordDecl::field_iterator FI, FE;
2142  RegionBindingsRef NewB(B);
2143
2144  for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
2145
2146    if (VI == VE)
2147      break;
2148
2149    // Skip any unnamed bitfields to stay in sync with the initializers.
2150    if (FI->isUnnamedBitfield())
2151      continue;
2152
2153    QualType FTy = FI->getType();
2154    const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
2155
2156    if (FTy->isArrayType())
2157      NewB = bindArray(NewB, FR, *VI);
2158    else if (FTy->isStructureOrClassType())
2159      NewB = bindStruct(NewB, FR, *VI);
2160    else
2161      NewB = bind(NewB, loc::MemRegionVal(FR), *VI);
2162    ++VI;
2163  }
2164
2165  // There may be fewer values in the initialize list than the fields of struct.
2166  if (FI != FE) {
2167    NewB = NewB.addBinding(R, BindingKey::Default,
2168                           svalBuilder.makeIntVal(0, false));
2169  }
2170
2171  return NewB;
2172}
2173
2174RegionBindingsRef
2175RegionStoreManager::bindAggregate(RegionBindingsConstRef B,
2176                                  const TypedRegion *R,
2177                                  SVal Val) {
2178  // Remove the old bindings, using 'R' as the root of all regions
2179  // we will invalidate. Then add the new binding.
2180  return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val);
2181}
2182
2183//===----------------------------------------------------------------------===//
2184// State pruning.
2185//===----------------------------------------------------------------------===//
2186
2187namespace {
2188class removeDeadBindingsWorker :
2189  public ClusterAnalysis<removeDeadBindingsWorker> {
2190  SmallVector<const SymbolicRegion*, 12> Postponed;
2191  SymbolReaper &SymReaper;
2192  const StackFrameContext *CurrentLCtx;
2193
2194public:
2195  removeDeadBindingsWorker(RegionStoreManager &rm,
2196                           ProgramStateManager &stateMgr,
2197                           RegionBindingsRef b, SymbolReaper &symReaper,
2198                           const StackFrameContext *LCtx)
2199    : ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b, GFK_None),
2200      SymReaper(symReaper), CurrentLCtx(LCtx) {}
2201
2202  // Called by ClusterAnalysis.
2203  void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C);
2204  void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
2205  using ClusterAnalysis<removeDeadBindingsWorker>::VisitCluster;
2206
2207  bool UpdatePostponed();
2208  void VisitBinding(SVal V);
2209};
2210}
2211
2212void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
2213                                                   const ClusterBindings &C) {
2214
2215  if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
2216    if (SymReaper.isLive(VR))
2217      AddToWorkList(baseR, &C);
2218
2219    return;
2220  }
2221
2222  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
2223    if (SymReaper.isLive(SR->getSymbol()))
2224      AddToWorkList(SR, &C);
2225    else
2226      Postponed.push_back(SR);
2227
2228    return;
2229  }
2230
2231  if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
2232    AddToWorkList(baseR, &C);
2233    return;
2234  }
2235
2236  // CXXThisRegion in the current or parent location context is live.
2237  if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
2238    const StackArgumentsSpaceRegion *StackReg =
2239      cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
2240    const StackFrameContext *RegCtx = StackReg->getStackFrame();
2241    if (CurrentLCtx &&
2242        (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx)))
2243      AddToWorkList(TR, &C);
2244  }
2245}
2246
2247void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
2248                                            const ClusterBindings *C) {
2249  if (!C)
2250    return;
2251
2252  // Mark the symbol for any SymbolicRegion with live bindings as live itself.
2253  // This means we should continue to track that symbol.
2254  if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR))
2255    SymReaper.markLive(SymR->getSymbol());
2256
2257  for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I)
2258    VisitBinding(I.getData());
2259}
2260
2261void removeDeadBindingsWorker::VisitBinding(SVal V) {
2262  // Is it a LazyCompoundVal?  All referenced regions are live as well.
2263  if (Optional<nonloc::LazyCompoundVal> LCS =
2264          V.getAs<nonloc::LazyCompoundVal>()) {
2265
2266    const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
2267
2268    for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
2269                                                        E = Vals.end();
2270         I != E; ++I)
2271      VisitBinding(*I);
2272
2273    return;
2274  }
2275
2276  // If V is a region, then add it to the worklist.
2277  if (const MemRegion *R = V.getAsRegion()) {
2278    AddToWorkList(R);
2279
2280    // All regions captured by a block are also live.
2281    if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
2282      BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(),
2283                                                E = BR->referenced_vars_end();
2284      for ( ; I != E; ++I)
2285        AddToWorkList(I.getCapturedRegion());
2286    }
2287  }
2288
2289
2290  // Update the set of live symbols.
2291  for (SymExpr::symbol_iterator SI = V.symbol_begin(), SE = V.symbol_end();
2292       SI!=SE; ++SI)
2293    SymReaper.markLive(*SI);
2294}
2295
2296bool removeDeadBindingsWorker::UpdatePostponed() {
2297  // See if any postponed SymbolicRegions are actually live now, after
2298  // having done a scan.
2299  bool changed = false;
2300
2301  for (SmallVectorImpl<const SymbolicRegion*>::iterator
2302        I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) {
2303    if (const SymbolicRegion *SR = *I) {
2304      if (SymReaper.isLive(SR->getSymbol())) {
2305        changed |= AddToWorkList(SR);
2306        *I = NULL;
2307      }
2308    }
2309  }
2310
2311  return changed;
2312}
2313
2314StoreRef RegionStoreManager::removeDeadBindings(Store store,
2315                                                const StackFrameContext *LCtx,
2316                                                SymbolReaper& SymReaper) {
2317  RegionBindingsRef B = getRegionBindings(store);
2318  removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
2319  W.GenerateClusters();
2320
2321  // Enqueue the region roots onto the worklist.
2322  for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
2323       E = SymReaper.region_end(); I != E; ++I) {
2324    W.AddToWorkList(*I);
2325  }
2326
2327  do W.RunWorkList(); while (W.UpdatePostponed());
2328
2329  // We have now scanned the store, marking reachable regions and symbols
2330  // as live.  We now remove all the regions that are dead from the store
2331  // as well as update DSymbols with the set symbols that are now dead.
2332  for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
2333    const MemRegion *Base = I.getKey();
2334
2335    // If the cluster has been visited, we know the region has been marked.
2336    if (W.isVisited(Base))
2337      continue;
2338
2339    // Remove the dead entry.
2340    B = B.remove(Base);
2341
2342    if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(Base))
2343      SymReaper.maybeDead(SymR->getSymbol());
2344
2345    // Mark all non-live symbols that this binding references as dead.
2346    const ClusterBindings &Cluster = I.getData();
2347    for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
2348         CI != CE; ++CI) {
2349      SVal X = CI.getData();
2350      SymExpr::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
2351      for (; SI != SE; ++SI)
2352        SymReaper.maybeDead(*SI);
2353    }
2354  }
2355
2356  return StoreRef(B.asStore(), *this);
2357}
2358
2359//===----------------------------------------------------------------------===//
2360// Utility methods.
2361//===----------------------------------------------------------------------===//
2362
2363void RegionStoreManager::print(Store store, raw_ostream &OS,
2364                               const char* nl, const char *sep) {
2365  RegionBindingsRef B = getRegionBindings(store);
2366  OS << "Store (direct and default bindings), "
2367     << B.asStore()
2368     << " :" << nl;
2369  B.dump(OS, nl);
2370}
2371