1193323Sed//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2193323Sed//
3193323Sed//                     The LLVM Compiler Infrastructure
4193323Sed//
5193323Sed// This file is distributed under the University of Illinois Open Source
6193323Sed// License. See LICENSE.TXT for details.
7193323Sed//
8193323Sed//===----------------------------------------------------------------------===//
9193323Sed//
10193323Sed// This pass reassociates commutative expressions in an order that is designed
11201360Srdivacky// to promote better constant propagation, GCSE, LICM, PRE, etc.
12193323Sed//
13193323Sed// For example: 4 + (x + 5) -> x + (4 + 5)
14193323Sed//
15193323Sed// In the implementation of this algorithm, constants are assigned rank = 0,
16193323Sed// function arguments are rank = 1, and other values are assigned ranks
17193323Sed// corresponding to the reverse post order traversal of current function
18193323Sed// (starting at 2), which effectively gives values in deep loops higher rank
19193323Sed// than values not in loops.
20193323Sed//
21193323Sed//===----------------------------------------------------------------------===//
22193323Sed
23193323Sed#define DEBUG_TYPE "reassociate"
24193323Sed#include "llvm/Transforms/Scalar.h"
25239462Sdim#include "llvm/ADT/DenseMap.h"
26239462Sdim#include "llvm/ADT/PostOrderIterator.h"
27239462Sdim#include "llvm/ADT/STLExtras.h"
28239462Sdim#include "llvm/ADT/SetVector.h"
29239462Sdim#include "llvm/ADT/Statistic.h"
30193323Sed#include "llvm/Assembly/Writer.h"
31249423Sdim#include "llvm/IR/Constants.h"
32249423Sdim#include "llvm/IR/DerivedTypes.h"
33249423Sdim#include "llvm/IR/Function.h"
34249423Sdim#include "llvm/IR/IRBuilder.h"
35249423Sdim#include "llvm/IR/Instructions.h"
36249423Sdim#include "llvm/IR/IntrinsicInst.h"
37249423Sdim#include "llvm/Pass.h"
38193323Sed#include "llvm/Support/CFG.h"
39193323Sed#include "llvm/Support/Debug.h"
40193323Sed#include "llvm/Support/ValueHandle.h"
41198090Srdivacky#include "llvm/Support/raw_ostream.h"
42249423Sdim#include "llvm/Transforms/Utils/Local.h"
43193323Sed#include <algorithm>
44193323Sedusing namespace llvm;
45193323Sed
46193323SedSTATISTIC(NumChanged, "Number of insts reassociated");
47193323SedSTATISTIC(NumAnnihil, "Number of expr tree annihilated");
48193323SedSTATISTIC(NumFactor , "Number of multiplies factored");
49193323Sed
50193323Sednamespace {
51198090Srdivacky  struct ValueEntry {
52193323Sed    unsigned Rank;
53193323Sed    Value *Op;
54193323Sed    ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
55193323Sed  };
56193323Sed  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
57193323Sed    return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
58193323Sed  }
59193323Sed}
60193323Sed
61193323Sed#ifndef NDEBUG
62193323Sed/// PrintOps - Print out the expression identified in the Ops list.
63193323Sed///
64201360Srdivackystatic void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
65193323Sed  Module *M = I->getParent()->getParent()->getParent();
66202375Srdivacky  dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
67201360Srdivacky       << *Ops[0].Op->getType() << '\t';
68193323Sed  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
69202375Srdivacky    dbgs() << "[ ";
70202375Srdivacky    WriteAsOperand(dbgs(), Ops[i].Op, false, M);
71202375Srdivacky    dbgs() << ", #" << Ops[i].Rank << "] ";
72193323Sed  }
73193323Sed}
74193323Sed#endif
75239462Sdim
76193323Sednamespace {
77239462Sdim  /// \brief Utility class representing a base and exponent pair which form one
78239462Sdim  /// factor of some product.
79239462Sdim  struct Factor {
80239462Sdim    Value *Base;
81239462Sdim    unsigned Power;
82239462Sdim
83239462Sdim    Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
84239462Sdim
85239462Sdim    /// \brief Sort factors by their Base.
86239462Sdim    struct BaseSorter {
87239462Sdim      bool operator()(const Factor &LHS, const Factor &RHS) {
88239462Sdim        return LHS.Base < RHS.Base;
89239462Sdim      }
90239462Sdim    };
91239462Sdim
92239462Sdim    /// \brief Compare factors for equal bases.
93239462Sdim    struct BaseEqual {
94239462Sdim      bool operator()(const Factor &LHS, const Factor &RHS) {
95239462Sdim        return LHS.Base == RHS.Base;
96239462Sdim      }
97239462Sdim    };
98239462Sdim
99239462Sdim    /// \brief Sort factors in descending order by their power.
100239462Sdim    struct PowerDescendingSorter {
101239462Sdim      bool operator()(const Factor &LHS, const Factor &RHS) {
102239462Sdim        return LHS.Power > RHS.Power;
103239462Sdim      }
104239462Sdim    };
105239462Sdim
106239462Sdim    /// \brief Compare factors for equal powers.
107239462Sdim    struct PowerEqual {
108239462Sdim      bool operator()(const Factor &LHS, const Factor &RHS) {
109239462Sdim        return LHS.Power == RHS.Power;
110239462Sdim      }
111239462Sdim    };
112239462Sdim  };
113249423Sdim
114249423Sdim  /// Utility class representing a non-constant Xor-operand. We classify
115249423Sdim  /// non-constant Xor-Operands into two categories:
116249423Sdim  ///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
117249423Sdim  ///  C2)
118249423Sdim  ///    C2.1) The operand is in the form of "X | C", where C is a non-zero
119249423Sdim  ///          constant.
120249423Sdim  ///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
121249423Sdim  ///          operand as "E | 0"
122249423Sdim  class XorOpnd {
123249423Sdim  public:
124249423Sdim    XorOpnd(Value *V);
125249423Sdim    const XorOpnd &operator=(const XorOpnd &That);
126249423Sdim
127249423Sdim    bool isInvalid() const { return SymbolicPart == 0; }
128249423Sdim    bool isOrExpr() const { return isOr; }
129249423Sdim    Value *getValue() const { return OrigVal; }
130249423Sdim    Value *getSymbolicPart() const { return SymbolicPart; }
131249423Sdim    unsigned getSymbolicRank() const { return SymbolicRank; }
132249423Sdim    const APInt &getConstPart() const { return ConstPart; }
133249423Sdim
134249423Sdim    void Invalidate() { SymbolicPart = OrigVal = 0; }
135249423Sdim    void setSymbolicRank(unsigned R) { SymbolicRank = R; }
136249423Sdim
137249423Sdim    // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank.
138249423Sdim    // The purpose is twofold:
139249423Sdim    // 1) Cluster together the operands sharing the same symbolic-value.
140249423Sdim    // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
141249423Sdim    //   could potentially shorten crital path, and expose more loop-invariants.
142249423Sdim    //   Note that values' rank are basically defined in RPO order (FIXME).
143249423Sdim    //   So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
144249423Sdim    //   than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
145249423Sdim    //   "z" in the order of X-Y-Z is better than any other orders.
146251662Sdim    struct PtrSortFunctor {
147251662Sdim      bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) {
148251662Sdim        return LHS->getSymbolicRank() < RHS->getSymbolicRank();
149249423Sdim      }
150249423Sdim    };
151249423Sdim  private:
152249423Sdim    Value *OrigVal;
153249423Sdim    Value *SymbolicPart;
154249423Sdim    APInt ConstPart;
155249423Sdim    unsigned SymbolicRank;
156249423Sdim    bool isOr;
157249423Sdim  };
158239462Sdim}
159239462Sdim
160239462Sdimnamespace {
161198090Srdivacky  class Reassociate : public FunctionPass {
162201360Srdivacky    DenseMap<BasicBlock*, unsigned> RankMap;
163234353Sdim    DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
164239462Sdim    SetVector<AssertingVH<Instruction> > RedoInsts;
165193323Sed    bool MadeChange;
166193323Sed  public:
167193323Sed    static char ID; // Pass identification, replacement for typeid
168218893Sdim    Reassociate() : FunctionPass(ID) {
169218893Sdim      initializeReassociatePass(*PassRegistry::getPassRegistry());
170218893Sdim    }
171193323Sed
172193323Sed    bool runOnFunction(Function &F);
173193323Sed
174193323Sed    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
175193323Sed      AU.setPreservesCFG();
176193323Sed    }
177193323Sed  private:
178193323Sed    void BuildRankMap(Function &F);
179193323Sed    unsigned getRank(Value *V);
180239462Sdim    void ReassociateExpression(BinaryOperator *I);
181239462Sdim    void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
182201360Srdivacky    Value *OptimizeExpression(BinaryOperator *I,
183201360Srdivacky                              SmallVectorImpl<ValueEntry> &Ops);
184201360Srdivacky    Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
185249423Sdim    Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
186249423Sdim    bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd,
187249423Sdim                        Value *&Res);
188249423Sdim    bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
189249423Sdim                        APInt &ConstOpnd, Value *&Res);
190239462Sdim    bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
191239462Sdim                                SmallVectorImpl<Factor> &Factors);
192239462Sdim    Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
193239462Sdim                                   SmallVectorImpl<Factor> &Factors);
194239462Sdim    Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
195193323Sed    Value *RemoveFactorFromExpression(Value *V, Value *Factor);
196239462Sdim    void EraseInst(Instruction *I);
197239462Sdim    void OptimizeInst(Instruction *I);
198193323Sed  };
199193323Sed}
200193323Sed
201249423SdimXorOpnd::XorOpnd(Value *V) {
202249423Sdim  assert(!isa<ConstantInt>(V) && "No ConstantInt");
203249423Sdim  OrigVal = V;
204249423Sdim  Instruction *I = dyn_cast<Instruction>(V);
205249423Sdim  SymbolicRank = 0;
206249423Sdim
207249423Sdim  if (I && (I->getOpcode() == Instruction::Or ||
208249423Sdim            I->getOpcode() == Instruction::And)) {
209249423Sdim    Value *V0 = I->getOperand(0);
210249423Sdim    Value *V1 = I->getOperand(1);
211249423Sdim    if (isa<ConstantInt>(V0))
212249423Sdim      std::swap(V0, V1);
213249423Sdim
214249423Sdim    if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
215249423Sdim      ConstPart = C->getValue();
216249423Sdim      SymbolicPart = V0;
217249423Sdim      isOr = (I->getOpcode() == Instruction::Or);
218249423Sdim      return;
219249423Sdim    }
220249423Sdim  }
221249423Sdim
222249423Sdim  // view the operand as "V | 0"
223249423Sdim  SymbolicPart = V;
224249423Sdim  ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
225249423Sdim  isOr = true;
226249423Sdim}
227249423Sdim
228249423Sdimconst XorOpnd &XorOpnd::operator=(const XorOpnd &That) {
229249423Sdim  OrigVal = That.OrigVal;
230249423Sdim  SymbolicPart = That.SymbolicPart;
231249423Sdim  ConstPart = That.ConstPart;
232249423Sdim  SymbolicRank = That.SymbolicRank;
233249423Sdim  isOr = That.isOr;
234249423Sdim  return *this;
235249423Sdim}
236249423Sdim
237193323Sedchar Reassociate::ID = 0;
238212904SdimINITIALIZE_PASS(Reassociate, "reassociate",
239218893Sdim                "Reassociate expressions", false, false)
240193323Sed
241193323Sed// Public interface to the Reassociate pass
242193323SedFunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
243193323Sed
244239462Sdim/// isReassociableOp - Return true if V is an instruction of the specified
245239462Sdim/// opcode and if it only has one use.
246239462Sdimstatic BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
247239462Sdim  if (V->hasOneUse() && isa<Instruction>(V) &&
248239462Sdim      cast<Instruction>(V)->getOpcode() == Opcode)
249239462Sdim    return cast<BinaryOperator>(V);
250239462Sdim  return 0;
251193323Sed}
252193323Sed
253193323Sedstatic bool isUnmovableInstruction(Instruction *I) {
254193323Sed  if (I->getOpcode() == Instruction::PHI ||
255239462Sdim      I->getOpcode() == Instruction::LandingPad ||
256193323Sed      I->getOpcode() == Instruction::Alloca ||
257193323Sed      I->getOpcode() == Instruction::Load ||
258193323Sed      I->getOpcode() == Instruction::Invoke ||
259193323Sed      (I->getOpcode() == Instruction::Call &&
260193323Sed       !isa<DbgInfoIntrinsic>(I)) ||
261239462Sdim      I->getOpcode() == Instruction::UDiv ||
262193323Sed      I->getOpcode() == Instruction::SDiv ||
263193323Sed      I->getOpcode() == Instruction::FDiv ||
264193323Sed      I->getOpcode() == Instruction::URem ||
265193323Sed      I->getOpcode() == Instruction::SRem ||
266193323Sed      I->getOpcode() == Instruction::FRem)
267193323Sed    return true;
268193323Sed  return false;
269193323Sed}
270193323Sed
271193323Sedvoid Reassociate::BuildRankMap(Function &F) {
272193323Sed  unsigned i = 2;
273193323Sed
274193323Sed  // Assign distinct ranks to function arguments
275193323Sed  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
276193323Sed    ValueRankMap[&*I] = ++i;
277193323Sed
278193323Sed  ReversePostOrderTraversal<Function*> RPOT(&F);
279193323Sed  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
280193323Sed         E = RPOT.end(); I != E; ++I) {
281193323Sed    BasicBlock *BB = *I;
282193323Sed    unsigned BBRank = RankMap[BB] = ++i << 16;
283193323Sed
284193323Sed    // Walk the basic block, adding precomputed ranks for any instructions that
285193323Sed    // we cannot move.  This ensures that the ranks for these instructions are
286193323Sed    // all different in the block.
287193323Sed    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
288193323Sed      if (isUnmovableInstruction(I))
289193323Sed        ValueRankMap[&*I] = ++BBRank;
290193323Sed  }
291193323Sed}
292193323Sed
293193323Sedunsigned Reassociate::getRank(Value *V) {
294193323Sed  Instruction *I = dyn_cast<Instruction>(V);
295201360Srdivacky  if (I == 0) {
296201360Srdivacky    if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
297201360Srdivacky    return 0;  // Otherwise it's a global or constant, rank 0.
298201360Srdivacky  }
299193323Sed
300201360Srdivacky  if (unsigned Rank = ValueRankMap[I])
301201360Srdivacky    return Rank;    // Rank already known?
302193323Sed
303193323Sed  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
304193323Sed  // we can reassociate expressions for code motion!  Since we do not recurse
305193323Sed  // for PHI nodes, we cannot have infinite recursion here, because there
306193323Sed  // cannot be loops in the value graph that do not go through PHI nodes.
307193323Sed  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
308193323Sed  for (unsigned i = 0, e = I->getNumOperands();
309193323Sed       i != e && Rank != MaxRank; ++i)
310193323Sed    Rank = std::max(Rank, getRank(I->getOperand(i)));
311193323Sed
312193323Sed  // If this is a not or neg instruction, do not count it for rank.  This
313193323Sed  // assures us that X and ~X will have the same rank.
314203954Srdivacky  if (!I->getType()->isIntegerTy() ||
315193323Sed      (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
316193323Sed    ++Rank;
317193323Sed
318202375Srdivacky  //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
319198090Srdivacky  //     << Rank << "\n");
320193323Sed
321201360Srdivacky  return ValueRankMap[I] = Rank;
322193323Sed}
323193323Sed
324193323Sed/// LowerNegateToMultiply - Replace 0-X with X*-1.
325193323Sed///
326239462Sdimstatic BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
327198090Srdivacky  Constant *Cst = Constant::getAllOnesValue(Neg->getType());
328193323Sed
329239462Sdim  BinaryOperator *Res =
330239462Sdim    BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
331239462Sdim  Neg->setOperand(1, Constant::getNullValue(Neg->getType())); // Drop use of op.
332193323Sed  Res->takeName(Neg);
333193323Sed  Neg->replaceAllUsesWith(Res);
334221345Sdim  Res->setDebugLoc(Neg->getDebugLoc());
335193323Sed  return Res;
336193323Sed}
337193323Sed
338239462Sdim/// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda
339239462Sdim/// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for
340239462Sdim/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
341239462Sdim/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
342239462Sdim/// even x in Bitwidth-bit arithmetic.
343239462Sdimstatic unsigned CarmichaelShift(unsigned Bitwidth) {
344239462Sdim  if (Bitwidth < 3)
345239462Sdim    return Bitwidth - 1;
346239462Sdim  return Bitwidth - 2;
347239462Sdim}
348193323Sed
349239462Sdim/// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS',
350239462Sdim/// reducing the combined weight using any special properties of the operation.
351239462Sdim/// The existing weight LHS represents the computation X op X op ... op X where
352239462Sdim/// X occurs LHS times.  The combined weight represents  X op X op ... op X with
353239462Sdim/// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
354239462Sdim/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
355239462Sdim/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
356239462Sdimstatic void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
357239462Sdim  // If we were working with infinite precision arithmetic then the combined
358239462Sdim  // weight would be LHS + RHS.  But we are using finite precision arithmetic,
359239462Sdim  // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
360239462Sdim  // for nilpotent operations and addition, but not for idempotent operations
361239462Sdim  // and multiplication), so it is important to correctly reduce the combined
362239462Sdim  // weight back into range if wrapping would be wrong.
363193323Sed
364239462Sdim  // If RHS is zero then the weight didn't change.
365239462Sdim  if (RHS.isMinValue())
366239462Sdim    return;
367239462Sdim  // If LHS is zero then the combined weight is RHS.
368239462Sdim  if (LHS.isMinValue()) {
369239462Sdim    LHS = RHS;
370239462Sdim    return;
371239462Sdim  }
372239462Sdim  // From this point on we know that neither LHS nor RHS is zero.
373193323Sed
374239462Sdim  if (Instruction::isIdempotent(Opcode)) {
375239462Sdim    // Idempotent means X op X === X, so any non-zero weight is equivalent to a
376239462Sdim    // weight of 1.  Keeping weights at zero or one also means that wrapping is
377239462Sdim    // not a problem.
378239462Sdim    assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
379239462Sdim    return; // Return a weight of 1.
380239462Sdim  }
381239462Sdim  if (Instruction::isNilpotent(Opcode)) {
382239462Sdim    // Nilpotent means X op X === 0, so reduce weights modulo 2.
383239462Sdim    assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
384239462Sdim    LHS = 0; // 1 + 1 === 0 modulo 2.
385239462Sdim    return;
386239462Sdim  }
387239462Sdim  if (Opcode == Instruction::Add) {
388239462Sdim    // TODO: Reduce the weight by exploiting nsw/nuw?
389239462Sdim    LHS += RHS;
390239462Sdim    return;
391239462Sdim  }
392193323Sed
393239462Sdim  assert(Opcode == Instruction::Mul && "Unknown associative operation!");
394239462Sdim  unsigned Bitwidth = LHS.getBitWidth();
395239462Sdim  // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
396239462Sdim  // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
397239462Sdim  // bit number x, since either x is odd in which case x^CM = 1, or x is even in
398239462Sdim  // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
399239462Sdim  // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
400239462Sdim  // which by a happy accident means that they can always be represented using
401239462Sdim  // Bitwidth bits.
402239462Sdim  // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
403239462Sdim  // the Carmichael number).
404239462Sdim  if (Bitwidth > 3) {
405239462Sdim    /// CM - The value of Carmichael's lambda function.
406239462Sdim    APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
407239462Sdim    // Any weight W >= Threshold can be replaced with W - CM.
408239462Sdim    APInt Threshold = CM + Bitwidth;
409239462Sdim    assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
410239462Sdim    // For Bitwidth 4 or more the following sum does not overflow.
411239462Sdim    LHS += RHS;
412239462Sdim    while (LHS.uge(Threshold))
413239462Sdim      LHS -= CM;
414239462Sdim  } else {
415239462Sdim    // To avoid problems with overflow do everything the same as above but using
416239462Sdim    // a larger type.
417239462Sdim    unsigned CM = 1U << CarmichaelShift(Bitwidth);
418239462Sdim    unsigned Threshold = CM + Bitwidth;
419239462Sdim    assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
420239462Sdim           "Weights not reduced!");
421239462Sdim    unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
422239462Sdim    while (Total >= Threshold)
423239462Sdim      Total -= CM;
424239462Sdim    LHS = Total;
425239462Sdim  }
426239462Sdim}
427218893Sdim
428239462Sdimtypedef std::pair<Value*, APInt> RepeatedValue;
429193323Sed
430239462Sdim/// LinearizeExprTree - Given an associative binary expression, return the leaf
431239462Sdim/// nodes in Ops along with their weights (how many times the leaf occurs).  The
432239462Sdim/// original expression is the same as
433239462Sdim///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
434239462Sdim/// op
435239462Sdim///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
436239462Sdim/// op
437239462Sdim///   ...
438239462Sdim/// op
439239462Sdim///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
440193323Sed///
441243830Sdim/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
442193323Sed///
443239462Sdim/// This routine may modify the function, in which case it returns 'true'.  The
444239462Sdim/// changes it makes may well be destructive, changing the value computed by 'I'
445239462Sdim/// to something completely different.  Thus if the routine returns 'true' then
446239462Sdim/// you MUST either replace I with a new expression computed from the Ops array,
447239462Sdim/// or use RewriteExprTree to put the values back in.
448239462Sdim///
449239462Sdim/// A leaf node is either not a binary operation of the same kind as the root
450239462Sdim/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
451239462Sdim/// opcode), or is the same kind of binary operator but has a use which either
452239462Sdim/// does not belong to the expression, or does belong to the expression but is
453239462Sdim/// a leaf node.  Every leaf node has at least one use that is a non-leaf node
454239462Sdim/// of the expression, while for non-leaf nodes (except for the root 'I') every
455239462Sdim/// use is a non-leaf node of the expression.
456239462Sdim///
457239462Sdim/// For example:
458239462Sdim///           expression graph        node names
459239462Sdim///
460239462Sdim///                     +        |        I
461239462Sdim///                    / \       |
462239462Sdim///                   +   +      |      A,  B
463239462Sdim///                  / \ / \     |
464239462Sdim///                 *   +   *    |    C,  D,  E
465239462Sdim///                / \ / \ / \   |
466239462Sdim///                   +   *      |      F,  G
467239462Sdim///
468239462Sdim/// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
469239462Sdim/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
470239462Sdim///
471239462Sdim/// The expression is maximal: if some instruction is a binary operator of the
472239462Sdim/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
473239462Sdim/// then the instruction also belongs to the expression, is not a leaf node of
474239462Sdim/// it, and its operands also belong to the expression (but may be leaf nodes).
475239462Sdim///
476239462Sdim/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
477239462Sdim/// order to ensure that every non-root node in the expression has *exactly one*
478239462Sdim/// use by a non-leaf node of the expression.  This destruction means that the
479239462Sdim/// caller MUST either replace 'I' with a new expression or use something like
480239462Sdim/// RewriteExprTree to put the values back in if the routine indicates that it
481239462Sdim/// made a change by returning 'true'.
482239462Sdim///
483239462Sdim/// In the above example either the right operand of A or the left operand of B
484239462Sdim/// will be replaced by undef.  If it is B's operand then this gives:
485239462Sdim///
486239462Sdim///                     +        |        I
487239462Sdim///                    / \       |
488239462Sdim///                   +   +      |      A,  B - operand of B replaced with undef
489239462Sdim///                  / \   \     |
490239462Sdim///                 *   +   *    |    C,  D,  E
491239462Sdim///                / \ / \ / \   |
492239462Sdim///                   +   *      |      F,  G
493239462Sdim///
494239462Sdim/// Note that such undef operands can only be reached by passing through 'I'.
495239462Sdim/// For example, if you visit operands recursively starting from a leaf node
496239462Sdim/// then you will never see such an undef operand unless you get back to 'I',
497239462Sdim/// which requires passing through a phi node.
498239462Sdim///
499239462Sdim/// Note that this routine may also mutate binary operators of the wrong type
500239462Sdim/// that have all uses inside the expression (i.e. only used by non-leaf nodes
501239462Sdim/// of the expression) if it can turn them into binary operators of the right
502239462Sdim/// type and thus make the expression bigger.
503239462Sdim
504239462Sdimstatic bool LinearizeExprTree(BinaryOperator *I,
505239462Sdim                              SmallVectorImpl<RepeatedValue> &Ops) {
506239462Sdim  DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
507239462Sdim  unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
508193323Sed  unsigned Opcode = I->getOpcode();
509239462Sdim  assert(Instruction::isAssociative(Opcode) &&
510239462Sdim         Instruction::isCommutative(Opcode) &&
511239462Sdim         "Expected an associative and commutative operation!");
512193323Sed
513239462Sdim  // Visit all operands of the expression, keeping track of their weight (the
514239462Sdim  // number of paths from the expression root to the operand, or if you like
515239462Sdim  // the number of times that operand occurs in the linearized expression).
516239462Sdim  // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
517239462Sdim  // while A has weight two.
518193323Sed
519239462Sdim  // Worklist of non-leaf nodes (their operands are in the expression too) along
520239462Sdim  // with their weights, representing a certain number of paths to the operator.
521239462Sdim  // If an operator occurs in the worklist multiple times then we found multiple
522239462Sdim  // ways to get to it.
523239462Sdim  SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
524239462Sdim  Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
525239462Sdim  bool MadeChange = false;
526239462Sdim
527239462Sdim  // Leaves of the expression are values that either aren't the right kind of
528239462Sdim  // operation (eg: a constant, or a multiply in an add tree), or are, but have
529239462Sdim  // some uses that are not inside the expression.  For example, in I = X + X,
530239462Sdim  // X = A + B, the value X has two uses (by I) that are in the expression.  If
531239462Sdim  // X has any other uses, for example in a return instruction, then we consider
532239462Sdim  // X to be a leaf, and won't analyze it further.  When we first visit a value,
533239462Sdim  // if it has more than one use then at first we conservatively consider it to
534239462Sdim  // be a leaf.  Later, as the expression is explored, we may discover some more
535239462Sdim  // uses of the value from inside the expression.  If all uses turn out to be
536239462Sdim  // from within the expression (and the value is a binary operator of the right
537239462Sdim  // kind) then the value is no longer considered to be a leaf, and its operands
538239462Sdim  // are explored.
539239462Sdim
540239462Sdim  // Leaves - Keeps track of the set of putative leaves as well as the number of
541239462Sdim  // paths to each leaf seen so far.
542239462Sdim  typedef DenseMap<Value*, APInt> LeafMap;
543239462Sdim  LeafMap Leaves; // Leaf -> Total weight so far.
544239462Sdim  SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
545239462Sdim
546239462Sdim#ifndef NDEBUG
547239462Sdim  SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
548239462Sdim#endif
549239462Sdim  while (!Worklist.empty()) {
550239462Sdim    std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
551239462Sdim    I = P.first; // We examine the operands of this binary operator.
552239462Sdim
553239462Sdim    for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
554239462Sdim      Value *Op = I->getOperand(OpIdx);
555239462Sdim      APInt Weight = P.second; // Number of paths to this operand.
556239462Sdim      DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
557239462Sdim      assert(!Op->use_empty() && "No uses, so how did we get to it?!");
558239462Sdim
559239462Sdim      // If this is a binary operation of the right kind with only one use then
560239462Sdim      // add its operands to the expression.
561239462Sdim      if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
562239462Sdim        assert(Visited.insert(Op) && "Not first visit!");
563239462Sdim        DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
564239462Sdim        Worklist.push_back(std::make_pair(BO, Weight));
565239462Sdim        continue;
566239462Sdim      }
567239462Sdim
568239462Sdim      // Appears to be a leaf.  Is the operand already in the set of leaves?
569239462Sdim      LeafMap::iterator It = Leaves.find(Op);
570239462Sdim      if (It == Leaves.end()) {
571239462Sdim        // Not in the leaf map.  Must be the first time we saw this operand.
572239462Sdim        assert(Visited.insert(Op) && "Not first visit!");
573239462Sdim        if (!Op->hasOneUse()) {
574239462Sdim          // This value has uses not accounted for by the expression, so it is
575239462Sdim          // not safe to modify.  Mark it as being a leaf.
576239462Sdim          DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
577239462Sdim          LeafOrder.push_back(Op);
578239462Sdim          Leaves[Op] = Weight;
579239462Sdim          continue;
580239462Sdim        }
581239462Sdim        // No uses outside the expression, try morphing it.
582239462Sdim      } else if (It != Leaves.end()) {
583239462Sdim        // Already in the leaf map.
584239462Sdim        assert(Visited.count(Op) && "In leaf map but not visited!");
585239462Sdim
586239462Sdim        // Update the number of paths to the leaf.
587239462Sdim        IncorporateWeight(It->second, Weight, Opcode);
588239462Sdim
589239462Sdim#if 0   // TODO: Re-enable once PR13021 is fixed.
590239462Sdim        // The leaf already has one use from inside the expression.  As we want
591239462Sdim        // exactly one such use, drop this new use of the leaf.
592239462Sdim        assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
593239462Sdim        I->setOperand(OpIdx, UndefValue::get(I->getType()));
594239462Sdim        MadeChange = true;
595239462Sdim
596239462Sdim        // If the leaf is a binary operation of the right kind and we now see
597239462Sdim        // that its multiple original uses were in fact all by nodes belonging
598239462Sdim        // to the expression, then no longer consider it to be a leaf and add
599239462Sdim        // its operands to the expression.
600239462Sdim        if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
601239462Sdim          DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
602239462Sdim          Worklist.push_back(std::make_pair(BO, It->second));
603239462Sdim          Leaves.erase(It);
604239462Sdim          continue;
605239462Sdim        }
606239462Sdim#endif
607239462Sdim
608239462Sdim        // If we still have uses that are not accounted for by the expression
609239462Sdim        // then it is not safe to modify the value.
610239462Sdim        if (!Op->hasOneUse())
611239462Sdim          continue;
612239462Sdim
613239462Sdim        // No uses outside the expression, try morphing it.
614239462Sdim        Weight = It->second;
615239462Sdim        Leaves.erase(It); // Since the value may be morphed below.
616239462Sdim      }
617239462Sdim
618239462Sdim      // At this point we have a value which, first of all, is not a binary
619239462Sdim      // expression of the right kind, and secondly, is only used inside the
620239462Sdim      // expression.  This means that it can safely be modified.  See if we
621239462Sdim      // can usefully morph it into an expression of the right kind.
622239462Sdim      assert((!isa<Instruction>(Op) ||
623239462Sdim              cast<Instruction>(Op)->getOpcode() != Opcode) &&
624239462Sdim             "Should have been handled above!");
625239462Sdim      assert(Op->hasOneUse() && "Has uses outside the expression tree!");
626239462Sdim
627239462Sdim      // If this is a multiply expression, turn any internal negations into
628239462Sdim      // multiplies by -1 so they can be reassociated.
629239462Sdim      BinaryOperator *BO = dyn_cast<BinaryOperator>(Op);
630239462Sdim      if (Opcode == Instruction::Mul && BO && BinaryOperator::isNeg(BO)) {
631239462Sdim        DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
632239462Sdim        BO = LowerNegateToMultiply(BO);
633239462Sdim        DEBUG(dbgs() << *BO << 'n');
634239462Sdim        Worklist.push_back(std::make_pair(BO, Weight));
635239462Sdim        MadeChange = true;
636239462Sdim        continue;
637239462Sdim      }
638239462Sdim
639239462Sdim      // Failed to morph into an expression of the right type.  This really is
640239462Sdim      // a leaf.
641239462Sdim      DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
642239462Sdim      assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
643239462Sdim      LeafOrder.push_back(Op);
644239462Sdim      Leaves[Op] = Weight;
645193323Sed    }
646193323Sed  }
647193323Sed
648239462Sdim  // The leaves, repeated according to their weights, represent the linearized
649239462Sdim  // form of the expression.
650239462Sdim  for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
651239462Sdim    Value *V = LeafOrder[i];
652239462Sdim    LeafMap::iterator It = Leaves.find(V);
653239462Sdim    if (It == Leaves.end())
654239462Sdim      // Node initially thought to be a leaf wasn't.
655239462Sdim      continue;
656239462Sdim    assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
657239462Sdim    APInt Weight = It->second;
658239462Sdim    if (Weight.isMinValue())
659239462Sdim      // Leaf already output or weight reduction eliminated it.
660239462Sdim      continue;
661239462Sdim    // Ensure the leaf is only output once.
662239462Sdim    It->second = 0;
663239462Sdim    Ops.push_back(std::make_pair(V, Weight));
664193323Sed  }
665193323Sed
666239462Sdim  // For nilpotent operations or addition there may be no operands, for example
667239462Sdim  // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
668239462Sdim  // in both cases the weight reduces to 0 causing the value to be skipped.
669239462Sdim  if (Ops.empty()) {
670243830Sdim    Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
671239462Sdim    assert(Identity && "Associative operation without identity!");
672239462Sdim    Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1)));
673239462Sdim  }
674193323Sed
675239462Sdim  return MadeChange;
676193323Sed}
677193323Sed
678193323Sed// RewriteExprTree - Now that the operands for this expression tree are
679239462Sdim// linearized and optimized, emit them in-order.
680193323Sedvoid Reassociate::RewriteExprTree(BinaryOperator *I,
681239462Sdim                                  SmallVectorImpl<ValueEntry> &Ops) {
682239462Sdim  assert(Ops.size() > 1 && "Single values should be used directly!");
683218893Sdim
684243830Sdim  // Since our optimizations should never increase the number of operations, the
685243830Sdim  // new expression can usually be written reusing the existing binary operators
686239462Sdim  // from the original expression tree, without creating any new instructions,
687239462Sdim  // though the rewritten expression may have a completely different topology.
688239462Sdim  // We take care to not change anything if the new expression will be the same
689239462Sdim  // as the original.  If more than trivial changes (like commuting operands)
690239462Sdim  // were made then we are obliged to clear out any optional subclass data like
691239462Sdim  // nsw flags.
692218893Sdim
693239462Sdim  /// NodesToRewrite - Nodes from the original expression available for writing
694239462Sdim  /// the new expression into.
695239462Sdim  SmallVector<BinaryOperator*, 8> NodesToRewrite;
696239462Sdim  unsigned Opcode = I->getOpcode();
697239462Sdim  BinaryOperator *Op = I;
698239462Sdim
699243830Sdim  /// NotRewritable - The operands being written will be the leaves of the new
700243830Sdim  /// expression and must not be used as inner nodes (via NodesToRewrite) by
701243830Sdim  /// mistake.  Inner nodes are always reassociable, and usually leaves are not
702243830Sdim  /// (if they were they would have been incorporated into the expression and so
703243830Sdim  /// would not be leaves), so most of the time there is no danger of this.  But
704243830Sdim  /// in rare cases a leaf may become reassociable if an optimization kills uses
705243830Sdim  /// of it, or it may momentarily become reassociable during rewriting (below)
706243830Sdim  /// due it being removed as an operand of one of its uses.  Ensure that misuse
707243830Sdim  /// of leaf nodes as inner nodes cannot occur by remembering all of the future
708243830Sdim  /// leaves and refusing to reuse any of them as inner nodes.
709243830Sdim  SmallPtrSet<Value*, 8> NotRewritable;
710243830Sdim  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
711243830Sdim    NotRewritable.insert(Ops[i].Op);
712243830Sdim
713239462Sdim  // ExpressionChanged - Non-null if the rewritten expression differs from the
714239462Sdim  // original in some non-trivial way, requiring the clearing of optional flags.
715239462Sdim  // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
716239462Sdim  BinaryOperator *ExpressionChanged = 0;
717239462Sdim  for (unsigned i = 0; ; ++i) {
718239462Sdim    // The last operation (which comes earliest in the IR) is special as both
719239462Sdim    // operands will come from Ops, rather than just one with the other being
720239462Sdim    // a subexpression.
721239462Sdim    if (i+2 == Ops.size()) {
722239462Sdim      Value *NewLHS = Ops[i].Op;
723239462Sdim      Value *NewRHS = Ops[i+1].Op;
724239462Sdim      Value *OldLHS = Op->getOperand(0);
725239462Sdim      Value *OldRHS = Op->getOperand(1);
726239462Sdim
727239462Sdim      if (NewLHS == OldLHS && NewRHS == OldRHS)
728239462Sdim        // Nothing changed, leave it alone.
729239462Sdim        break;
730239462Sdim
731239462Sdim      if (NewLHS == OldRHS && NewRHS == OldLHS) {
732239462Sdim        // The order of the operands was reversed.  Swap them.
733239462Sdim        DEBUG(dbgs() << "RA: " << *Op << '\n');
734239462Sdim        Op->swapOperands();
735239462Sdim        DEBUG(dbgs() << "TO: " << *Op << '\n');
736239462Sdim        MadeChange = true;
737239462Sdim        ++NumChanged;
738239462Sdim        break;
739239462Sdim      }
740239462Sdim
741239462Sdim      // The new operation differs non-trivially from the original. Overwrite
742239462Sdim      // the old operands with the new ones.
743239462Sdim      DEBUG(dbgs() << "RA: " << *Op << '\n');
744239462Sdim      if (NewLHS != OldLHS) {
745243830Sdim        BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
746243830Sdim        if (BO && !NotRewritable.count(BO))
747239462Sdim          NodesToRewrite.push_back(BO);
748239462Sdim        Op->setOperand(0, NewLHS);
749239462Sdim      }
750239462Sdim      if (NewRHS != OldRHS) {
751243830Sdim        BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
752243830Sdim        if (BO && !NotRewritable.count(BO))
753239462Sdim          NodesToRewrite.push_back(BO);
754239462Sdim        Op->setOperand(1, NewRHS);
755239462Sdim      }
756239462Sdim      DEBUG(dbgs() << "TO: " << *Op << '\n');
757239462Sdim
758239462Sdim      ExpressionChanged = Op;
759193323Sed      MadeChange = true;
760193323Sed      ++NumChanged;
761239462Sdim
762239462Sdim      break;
763193323Sed    }
764193323Sed
765239462Sdim    // Not the last operation.  The left-hand side will be a sub-expression
766239462Sdim    // while the right-hand side will be the current element of Ops.
767239462Sdim    Value *NewRHS = Ops[i].Op;
768239462Sdim    if (NewRHS != Op->getOperand(1)) {
769239462Sdim      DEBUG(dbgs() << "RA: " << *Op << '\n');
770239462Sdim      if (NewRHS == Op->getOperand(0)) {
771239462Sdim        // The new right-hand side was already present as the left operand.  If
772239462Sdim        // we are lucky then swapping the operands will sort out both of them.
773239462Sdim        Op->swapOperands();
774239462Sdim      } else {
775239462Sdim        // Overwrite with the new right-hand side.
776243830Sdim        BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
777243830Sdim        if (BO && !NotRewritable.count(BO))
778239462Sdim          NodesToRewrite.push_back(BO);
779239462Sdim        Op->setOperand(1, NewRHS);
780239462Sdim        ExpressionChanged = Op;
781239462Sdim      }
782239462Sdim      DEBUG(dbgs() << "TO: " << *Op << '\n');
783239462Sdim      MadeChange = true;
784239462Sdim      ++NumChanged;
785239462Sdim    }
786218893Sdim
787239462Sdim    // Now deal with the left-hand side.  If this is already an operation node
788239462Sdim    // from the original expression then just rewrite the rest of the expression
789239462Sdim    // into it.
790243830Sdim    BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
791243830Sdim    if (BO && !NotRewritable.count(BO)) {
792239462Sdim      Op = BO;
793239462Sdim      continue;
794239462Sdim    }
795218893Sdim
796239462Sdim    // Otherwise, grab a spare node from the original expression and use that as
797239462Sdim    // the left-hand side.  If there are no nodes left then the optimizers made
798239462Sdim    // an expression with more nodes than the original!  This usually means that
799239462Sdim    // they did something stupid but it might mean that the problem was just too
800239462Sdim    // hard (finding the mimimal number of multiplications needed to realize a
801239462Sdim    // multiplication expression is NP-complete).  Whatever the reason, smart or
802239462Sdim    // stupid, create a new node if there are none left.
803239462Sdim    BinaryOperator *NewOp;
804239462Sdim    if (NodesToRewrite.empty()) {
805239462Sdim      Constant *Undef = UndefValue::get(I->getType());
806239462Sdim      NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
807239462Sdim                                     Undef, Undef, "", I);
808239462Sdim    } else {
809239462Sdim      NewOp = NodesToRewrite.pop_back_val();
810239462Sdim    }
811239462Sdim
812239462Sdim    DEBUG(dbgs() << "RA: " << *Op << '\n');
813239462Sdim    Op->setOperand(0, NewOp);
814239462Sdim    DEBUG(dbgs() << "TO: " << *Op << '\n');
815239462Sdim    ExpressionChanged = Op;
816193323Sed    MadeChange = true;
817193323Sed    ++NumChanged;
818239462Sdim    Op = NewOp;
819193323Sed  }
820193323Sed
821239462Sdim  // If the expression changed non-trivially then clear out all subclass data
822239462Sdim  // starting from the operator specified in ExpressionChanged, and compactify
823239462Sdim  // the operators to just before the expression root to guarantee that the
824239462Sdim  // expression tree is dominated by all of Ops.
825239462Sdim  if (ExpressionChanged)
826239462Sdim    do {
827239462Sdim      ExpressionChanged->clearSubclassOptionalData();
828239462Sdim      if (ExpressionChanged == I)
829239462Sdim        break;
830239462Sdim      ExpressionChanged->moveBefore(I);
831239462Sdim      ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->use_begin());
832239462Sdim    } while (1);
833193323Sed
834239462Sdim  // Throw away any left over nodes from the original expression.
835239462Sdim  for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
836239462Sdim    RedoInsts.insert(NodesToRewrite[i]);
837239462Sdim}
838193323Sed
839239462Sdim/// NegateValue - Insert instructions before the instruction pointed to by BI,
840239462Sdim/// that computes the negative version of the value specified.  The negative
841239462Sdim/// version of the value is returned, and BI is left pointing at the instruction
842239462Sdim/// that should be processed next by the reassociation pass.
843199481Srdivackystatic Value *NegateValue(Value *V, Instruction *BI) {
844201360Srdivacky  if (Constant *C = dyn_cast<Constant>(V))
845201360Srdivacky    return ConstantExpr::getNeg(C);
846239462Sdim
847193323Sed  // We are trying to expose opportunity for reassociation.  One of the things
848193323Sed  // that we want to do to achieve this is to push a negation as deep into an
849193323Sed  // expression chain as possible, to expose the add instructions.  In practice,
850193323Sed  // this means that we turn this:
851193323Sed  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
852193323Sed  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
853193323Sed  // the constants.  We assume that instcombine will clean up the mess later if
854201360Srdivacky  // we introduce tons of unnecessary negation instructions.
855193323Sed  //
856239462Sdim  if (BinaryOperator *I = isReassociableOp(V, Instruction::Add)) {
857239462Sdim    // Push the negates through the add.
858239462Sdim    I->setOperand(0, NegateValue(I->getOperand(0), BI));
859239462Sdim    I->setOperand(1, NegateValue(I->getOperand(1), BI));
860193323Sed
861239462Sdim    // We must move the add instruction here, because the neg instructions do
862239462Sdim    // not dominate the old add instruction in general.  By moving it, we are
863239462Sdim    // assured that the neg instructions we just inserted dominate the
864239462Sdim    // instruction we are about to insert after them.
865239462Sdim    //
866239462Sdim    I->moveBefore(BI);
867239462Sdim    I->setName(I->getName()+".neg");
868239462Sdim    return I;
869239462Sdim  }
870239462Sdim
871201360Srdivacky  // Okay, we need to materialize a negated version of V with an instruction.
872201360Srdivacky  // Scan the use lists of V to see if we have one already.
873201360Srdivacky  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
874210299Sed    User *U = *UI;
875210299Sed    if (!BinaryOperator::isNeg(U)) continue;
876193323Sed
877201360Srdivacky    // We found one!  Now we have to make sure that the definition dominates
878201360Srdivacky    // this use.  We do this by moving it to the entry block (if it is a
879201360Srdivacky    // non-instruction value) or right after the definition.  These negates will
880201360Srdivacky    // be zapped by reassociate later, so we don't need much finesse here.
881210299Sed    BinaryOperator *TheNeg = cast<BinaryOperator>(U);
882202375Srdivacky
883202375Srdivacky    // Verify that the negate is in this function, V might be a constant expr.
884202375Srdivacky    if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
885202375Srdivacky      continue;
886239462Sdim
887201360Srdivacky    BasicBlock::iterator InsertPt;
888201360Srdivacky    if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
889201360Srdivacky      if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
890201360Srdivacky        InsertPt = II->getNormalDest()->begin();
891201360Srdivacky      } else {
892201360Srdivacky        InsertPt = InstInput;
893201360Srdivacky        ++InsertPt;
894201360Srdivacky      }
895201360Srdivacky      while (isa<PHINode>(InsertPt)) ++InsertPt;
896201360Srdivacky    } else {
897201360Srdivacky      InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
898201360Srdivacky    }
899201360Srdivacky    TheNeg->moveBefore(InsertPt);
900201360Srdivacky    return TheNeg;
901201360Srdivacky  }
902201360Srdivacky
903193323Sed  // Insert a 'neg' instruction that subtracts the value from zero to get the
904193323Sed  // negation.
905193323Sed  return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
906193323Sed}
907193323Sed
908193323Sed/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
909193323Sed/// X-Y into (X + -Y).
910199481Srdivackystatic bool ShouldBreakUpSubtract(Instruction *Sub) {
911193323Sed  // If this is a negation, we can't split it up!
912193323Sed  if (BinaryOperator::isNeg(Sub))
913193323Sed    return false;
914239462Sdim
915193323Sed  // Don't bother to break this up unless either the LHS is an associable add or
916193323Sed  // subtract or if this is only used by one.
917193323Sed  if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
918193323Sed      isReassociableOp(Sub->getOperand(0), Instruction::Sub))
919193323Sed    return true;
920193323Sed  if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
921193323Sed      isReassociableOp(Sub->getOperand(1), Instruction::Sub))
922193323Sed    return true;
923239462Sdim  if (Sub->hasOneUse() &&
924193323Sed      (isReassociableOp(Sub->use_back(), Instruction::Add) ||
925193323Sed       isReassociableOp(Sub->use_back(), Instruction::Sub)))
926193323Sed    return true;
927239462Sdim
928193323Sed  return false;
929193323Sed}
930193323Sed
931193323Sed/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
932193323Sed/// only used by an add, transform this into (X+(0-Y)) to promote better
933193323Sed/// reassociation.
934239462Sdimstatic BinaryOperator *BreakUpSubtract(Instruction *Sub) {
935201360Srdivacky  // Convert a subtract into an add and a neg instruction. This allows sub
936201360Srdivacky  // instructions to be commuted with other add instructions.
937193323Sed  //
938201360Srdivacky  // Calculate the negative value of Operand 1 of the sub instruction,
939201360Srdivacky  // and set it as the RHS of the add instruction we just made.
940193323Sed  //
941199481Srdivacky  Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
942239462Sdim  BinaryOperator *New =
943193323Sed    BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
944239462Sdim  Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
945239462Sdim  Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
946193323Sed  New->takeName(Sub);
947193323Sed
948193323Sed  // Everyone now refers to the add instruction.
949193323Sed  Sub->replaceAllUsesWith(New);
950221345Sdim  New->setDebugLoc(Sub->getDebugLoc());
951193323Sed
952202375Srdivacky  DEBUG(dbgs() << "Negated: " << *New << '\n');
953193323Sed  return New;
954193323Sed}
955193323Sed
956193323Sed/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
957193323Sed/// by one, change this into a multiply by a constant to assist with further
958193323Sed/// reassociation.
959239462Sdimstatic BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
960239462Sdim  Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
961239462Sdim  MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
962239462Sdim
963239462Sdim  BinaryOperator *Mul =
964239462Sdim    BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
965239462Sdim  Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
966239462Sdim  Mul->takeName(Shl);
967239462Sdim  Shl->replaceAllUsesWith(Mul);
968239462Sdim  Mul->setDebugLoc(Shl->getDebugLoc());
969239462Sdim  return Mul;
970193323Sed}
971193323Sed
972239462Sdim/// FindInOperandList - Scan backwards and forwards among values with the same
973239462Sdim/// rank as element i to see if X exists.  If X does not exist, return i.  This
974239462Sdim/// is useful when scanning for 'x' when we see '-x' because they both get the
975239462Sdim/// same rank.
976201360Srdivackystatic unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
977193323Sed                                  Value *X) {
978193323Sed  unsigned XRank = Ops[i].Rank;
979193323Sed  unsigned e = Ops.size();
980193323Sed  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
981193323Sed    if (Ops[j].Op == X)
982193323Sed      return j;
983201360Srdivacky  // Scan backwards.
984193323Sed  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
985193323Sed    if (Ops[j].Op == X)
986193323Sed      return j;
987193323Sed  return i;
988193323Sed}
989193323Sed
990193323Sed/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
991193323Sed/// and returning the result.  Insert the tree before I.
992234982Sdimstatic Value *EmitAddTreeOfValues(Instruction *I,
993234982Sdim                                  SmallVectorImpl<WeakVH> &Ops){
994193323Sed  if (Ops.size() == 1) return Ops.back();
995239462Sdim
996193323Sed  Value *V1 = Ops.back();
997193323Sed  Ops.pop_back();
998193323Sed  Value *V2 = EmitAddTreeOfValues(I, Ops);
999193323Sed  return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
1000193323Sed}
1001193323Sed
1002239462Sdim/// RemoveFactorFromExpression - If V is an expression tree that is a
1003193323Sed/// multiplication sequence, and if this sequence contains a multiply by Factor,
1004193323Sed/// remove Factor from the tree and return the new tree.
1005193323SedValue *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
1006193323Sed  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
1007193323Sed  if (!BO) return 0;
1008239462Sdim
1009239462Sdim  SmallVector<RepeatedValue, 8> Tree;
1010239462Sdim  MadeChange |= LinearizeExprTree(BO, Tree);
1011201360Srdivacky  SmallVector<ValueEntry, 8> Factors;
1012239462Sdim  Factors.reserve(Tree.size());
1013239462Sdim  for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1014239462Sdim    RepeatedValue E = Tree[i];
1015239462Sdim    Factors.append(E.second.getZExtValue(),
1016239462Sdim                   ValueEntry(getRank(E.first), E.first));
1017239462Sdim  }
1018193323Sed
1019193323Sed  bool FoundFactor = false;
1020201360Srdivacky  bool NeedsNegate = false;
1021201360Srdivacky  for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1022193323Sed    if (Factors[i].Op == Factor) {
1023193323Sed      FoundFactor = true;
1024193323Sed      Factors.erase(Factors.begin()+i);
1025193323Sed      break;
1026193323Sed    }
1027239462Sdim
1028201360Srdivacky    // If this is a negative version of this factor, remove it.
1029201360Srdivacky    if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
1030201360Srdivacky      if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1031201360Srdivacky        if (FC1->getValue() == -FC2->getValue()) {
1032201360Srdivacky          FoundFactor = NeedsNegate = true;
1033201360Srdivacky          Factors.erase(Factors.begin()+i);
1034201360Srdivacky          break;
1035201360Srdivacky        }
1036201360Srdivacky  }
1037239462Sdim
1038193323Sed  if (!FoundFactor) {
1039193323Sed    // Make sure to restore the operands to the expression tree.
1040193323Sed    RewriteExprTree(BO, Factors);
1041193323Sed    return 0;
1042193323Sed  }
1043239462Sdim
1044201360Srdivacky  BasicBlock::iterator InsertPt = BO; ++InsertPt;
1045239462Sdim
1046201360Srdivacky  // If this was just a single multiply, remove the multiply and return the only
1047201360Srdivacky  // remaining operand.
1048201360Srdivacky  if (Factors.size() == 1) {
1049239462Sdim    RedoInsts.insert(BO);
1050201360Srdivacky    V = Factors[0].Op;
1051201360Srdivacky  } else {
1052201360Srdivacky    RewriteExprTree(BO, Factors);
1053201360Srdivacky    V = BO;
1054201360Srdivacky  }
1055239462Sdim
1056201360Srdivacky  if (NeedsNegate)
1057201360Srdivacky    V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
1058239462Sdim
1059201360Srdivacky  return V;
1060193323Sed}
1061193323Sed
1062193323Sed/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
1063193323Sed/// add its operands as factors, otherwise add V to the list of factors.
1064204792Srdivacky///
1065204792Srdivacky/// Ops is the top-level list of add operands we're trying to factor.
1066193323Sedstatic void FindSingleUseMultiplyFactors(Value *V,
1067204792Srdivacky                                         SmallVectorImpl<Value*> &Factors,
1068239462Sdim                                       const SmallVectorImpl<ValueEntry> &Ops) {
1069239462Sdim  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
1070239462Sdim  if (!BO) {
1071193323Sed    Factors.push_back(V);
1072193323Sed    return;
1073193323Sed  }
1074239462Sdim
1075193323Sed  // Otherwise, add the LHS and RHS to the list of factors.
1076239462Sdim  FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
1077239462Sdim  FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
1078193323Sed}
1079193323Sed
1080201360Srdivacky/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
1081201360Srdivacky/// instruction.  This optimizes based on identities.  If it can be reduced to
1082201360Srdivacky/// a single Value, it is returned, otherwise the Ops list is mutated as
1083201360Srdivacky/// necessary.
1084201360Srdivackystatic Value *OptimizeAndOrXor(unsigned Opcode,
1085201360Srdivacky                               SmallVectorImpl<ValueEntry> &Ops) {
1086201360Srdivacky  // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1087201360Srdivacky  // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1088201360Srdivacky  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1089201360Srdivacky    // First, check for X and ~X in the operand list.
1090201360Srdivacky    assert(i < Ops.size());
1091201360Srdivacky    if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
1092201360Srdivacky      Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1093201360Srdivacky      unsigned FoundX = FindInOperandList(Ops, i, X);
1094201360Srdivacky      if (FoundX != i) {
1095201360Srdivacky        if (Opcode == Instruction::And)   // ...&X&~X = 0
1096201360Srdivacky          return Constant::getNullValue(X->getType());
1097239462Sdim
1098201360Srdivacky        if (Opcode == Instruction::Or)    // ...|X|~X = -1
1099201360Srdivacky          return Constant::getAllOnesValue(X->getType());
1100201360Srdivacky      }
1101201360Srdivacky    }
1102239462Sdim
1103201360Srdivacky    // Next, check for duplicate pairs of values, which we assume are next to
1104201360Srdivacky    // each other, due to our sorting criteria.
1105201360Srdivacky    assert(i < Ops.size());
1106201360Srdivacky    if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1107201360Srdivacky      if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1108201360Srdivacky        // Drop duplicate values for And and Or.
1109201360Srdivacky        Ops.erase(Ops.begin()+i);
1110201360Srdivacky        --i; --e;
1111201360Srdivacky        ++NumAnnihil;
1112201360Srdivacky        continue;
1113201360Srdivacky      }
1114239462Sdim
1115201360Srdivacky      // Drop pairs of values for Xor.
1116201360Srdivacky      assert(Opcode == Instruction::Xor);
1117201360Srdivacky      if (e == 2)
1118201360Srdivacky        return Constant::getNullValue(Ops[0].Op->getType());
1119239462Sdim
1120201360Srdivacky      // Y ^ X^X -> Y
1121201360Srdivacky      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1122201360Srdivacky      i -= 1; e -= 2;
1123201360Srdivacky      ++NumAnnihil;
1124201360Srdivacky    }
1125201360Srdivacky  }
1126201360Srdivacky  return 0;
1127201360Srdivacky}
1128193323Sed
1129249423Sdim/// Helper funciton of CombineXorOpnd(). It creates a bitwise-and
1130249423Sdim/// instruction with the given two operands, and return the resulting
1131249423Sdim/// instruction. There are two special cases: 1) if the constant operand is 0,
1132249423Sdim/// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1133249423Sdim/// be returned.
1134249423Sdimstatic Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1135249423Sdim                             const APInt &ConstOpnd) {
1136249423Sdim  if (ConstOpnd != 0) {
1137249423Sdim    if (!ConstOpnd.isAllOnesValue()) {
1138249423Sdim      LLVMContext &Ctx = Opnd->getType()->getContext();
1139249423Sdim      Instruction *I;
1140249423Sdim      I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
1141249423Sdim                                    "and.ra", InsertBefore);
1142249423Sdim      I->setDebugLoc(InsertBefore->getDebugLoc());
1143249423Sdim      return I;
1144249423Sdim    }
1145249423Sdim    return Opnd;
1146249423Sdim  }
1147249423Sdim  return 0;
1148249423Sdim}
1149249423Sdim
1150249423Sdim// Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1151249423Sdim// into "R ^ C", where C would be 0, and R is a symbolic value.
1152249423Sdim//
1153249423Sdim// If it was successful, true is returned, and the "R" and "C" is returned
1154249423Sdim// via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1155249423Sdim// and both "Res" and "ConstOpnd" remain unchanged.
1156249423Sdim//
1157249423Sdimbool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1158249423Sdim                                 APInt &ConstOpnd, Value *&Res) {
1159249423Sdim  // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1160249423Sdim  //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
1161249423Sdim  //                       = (x & ~c1) ^ (c1 ^ c2)
1162249423Sdim  // It is useful only when c1 == c2.
1163249423Sdim  if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
1164249423Sdim    if (!Opnd1->getValue()->hasOneUse())
1165249423Sdim      return false;
1166249423Sdim
1167249423Sdim    const APInt &C1 = Opnd1->getConstPart();
1168249423Sdim    if (C1 != ConstOpnd)
1169249423Sdim      return false;
1170249423Sdim
1171249423Sdim    Value *X = Opnd1->getSymbolicPart();
1172249423Sdim    Res = createAndInstr(I, X, ~C1);
1173249423Sdim    // ConstOpnd was C2, now C1 ^ C2.
1174249423Sdim    ConstOpnd ^= C1;
1175249423Sdim
1176249423Sdim    if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1177249423Sdim      RedoInsts.insert(T);
1178249423Sdim    return true;
1179249423Sdim  }
1180249423Sdim  return false;
1181249423Sdim}
1182249423Sdim
1183249423Sdim
1184249423Sdim// Helper function of OptimizeXor(). It tries to simplify
1185249423Sdim// "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1186249423Sdim// symbolic value.
1187249423Sdim//
1188249423Sdim// If it was successful, true is returned, and the "R" and "C" is returned
1189249423Sdim// via "Res" and "ConstOpnd", respectively (If the entire expression is
1190249423Sdim// evaluated to a constant, the Res is set to NULL); otherwise, false is
1191249423Sdim// returned, and both "Res" and "ConstOpnd" remain unchanged.
1192249423Sdimbool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
1193249423Sdim                                 APInt &ConstOpnd, Value *&Res) {
1194249423Sdim  Value *X = Opnd1->getSymbolicPart();
1195249423Sdim  if (X != Opnd2->getSymbolicPart())
1196249423Sdim    return false;
1197249423Sdim
1198249423Sdim  // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1199249423Sdim  int DeadInstNum = 1;
1200249423Sdim  if (Opnd1->getValue()->hasOneUse())
1201249423Sdim    DeadInstNum++;
1202249423Sdim  if (Opnd2->getValue()->hasOneUse())
1203249423Sdim    DeadInstNum++;
1204249423Sdim
1205249423Sdim  // Xor-Rule 2:
1206249423Sdim  //  (x | c1) ^ (x & c2)
1207249423Sdim  //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1208249423Sdim  //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
1209249423Sdim  //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
1210249423Sdim  //
1211249423Sdim  if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1212249423Sdim    if (Opnd2->isOrExpr())
1213249423Sdim      std::swap(Opnd1, Opnd2);
1214249423Sdim
1215251662Sdim    const APInt &C1 = Opnd1->getConstPart();
1216251662Sdim    const APInt &C2 = Opnd2->getConstPart();
1217249423Sdim    APInt C3((~C1) ^ C2);
1218249423Sdim
1219249423Sdim    // Do not increase code size!
1220249423Sdim    if (C3 != 0 && !C3.isAllOnesValue()) {
1221249423Sdim      int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1222249423Sdim      if (NewInstNum > DeadInstNum)
1223249423Sdim        return false;
1224249423Sdim    }
1225249423Sdim
1226249423Sdim    Res = createAndInstr(I, X, C3);
1227249423Sdim    ConstOpnd ^= C1;
1228249423Sdim
1229249423Sdim  } else if (Opnd1->isOrExpr()) {
1230249423Sdim    // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1231249423Sdim    //
1232251662Sdim    const APInt &C1 = Opnd1->getConstPart();
1233251662Sdim    const APInt &C2 = Opnd2->getConstPart();
1234249423Sdim    APInt C3 = C1 ^ C2;
1235249423Sdim
1236249423Sdim    // Do not increase code size
1237249423Sdim    if (C3 != 0 && !C3.isAllOnesValue()) {
1238249423Sdim      int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1239249423Sdim      if (NewInstNum > DeadInstNum)
1240249423Sdim        return false;
1241249423Sdim    }
1242249423Sdim
1243249423Sdim    Res = createAndInstr(I, X, C3);
1244249423Sdim    ConstOpnd ^= C3;
1245249423Sdim  } else {
1246249423Sdim    // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1247249423Sdim    //
1248251662Sdim    const APInt &C1 = Opnd1->getConstPart();
1249251662Sdim    const APInt &C2 = Opnd2->getConstPart();
1250249423Sdim    APInt C3 = C1 ^ C2;
1251249423Sdim    Res = createAndInstr(I, X, C3);
1252249423Sdim  }
1253249423Sdim
1254249423Sdim  // Put the original operands in the Redo list; hope they will be deleted
1255249423Sdim  // as dead code.
1256249423Sdim  if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1257249423Sdim    RedoInsts.insert(T);
1258249423Sdim  if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1259249423Sdim    RedoInsts.insert(T);
1260249423Sdim
1261249423Sdim  return true;
1262249423Sdim}
1263249423Sdim
1264249423Sdim/// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1265249423Sdim/// to a single Value, it is returned, otherwise the Ops list is mutated as
1266249423Sdim/// necessary.
1267249423SdimValue *Reassociate::OptimizeXor(Instruction *I,
1268249423Sdim                                SmallVectorImpl<ValueEntry> &Ops) {
1269249423Sdim  if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1270249423Sdim    return V;
1271249423Sdim
1272249423Sdim  if (Ops.size() == 1)
1273249423Sdim    return 0;
1274249423Sdim
1275249423Sdim  SmallVector<XorOpnd, 8> Opnds;
1276251662Sdim  SmallVector<XorOpnd*, 8> OpndPtrs;
1277249423Sdim  Type *Ty = Ops[0].Op->getType();
1278249423Sdim  APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
1279249423Sdim
1280249423Sdim  // Step 1: Convert ValueEntry to XorOpnd
1281249423Sdim  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1282249423Sdim    Value *V = Ops[i].Op;
1283249423Sdim    if (!isa<ConstantInt>(V)) {
1284249423Sdim      XorOpnd O(V);
1285249423Sdim      O.setSymbolicRank(getRank(O.getSymbolicPart()));
1286249423Sdim      Opnds.push_back(O);
1287249423Sdim    } else
1288249423Sdim      ConstOpnd ^= cast<ConstantInt>(V)->getValue();
1289249423Sdim  }
1290249423Sdim
1291251662Sdim  // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1292251662Sdim  //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1293251662Sdim  //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1294251662Sdim  //  with the previous loop --- the iterator of the "Opnds" may be invalidated
1295251662Sdim  //  when new elements are added to the vector.
1296251662Sdim  for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1297251662Sdim    OpndPtrs.push_back(&Opnds[i]);
1298251662Sdim
1299249423Sdim  // Step 2: Sort the Xor-Operands in a way such that the operands containing
1300249423Sdim  //  the same symbolic value cluster together. For instance, the input operand
1301249423Sdim  //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1302249423Sdim  //  ("x | 123", "x & 789", "y & 456").
1303251662Sdim  std::sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor());
1304249423Sdim
1305249423Sdim  // Step 3: Combine adjacent operands
1306249423Sdim  XorOpnd *PrevOpnd = 0;
1307249423Sdim  bool Changed = false;
1308249423Sdim  for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
1309251662Sdim    XorOpnd *CurrOpnd = OpndPtrs[i];
1310249423Sdim    // The combined value
1311249423Sdim    Value *CV;
1312249423Sdim
1313249423Sdim    // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1314249423Sdim    if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1315249423Sdim      Changed = true;
1316249423Sdim      if (CV)
1317249423Sdim        *CurrOpnd = XorOpnd(CV);
1318249423Sdim      else {
1319249423Sdim        CurrOpnd->Invalidate();
1320249423Sdim        continue;
1321249423Sdim      }
1322249423Sdim    }
1323249423Sdim
1324249423Sdim    if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1325249423Sdim      PrevOpnd = CurrOpnd;
1326249423Sdim      continue;
1327249423Sdim    }
1328249423Sdim
1329249423Sdim    // step 3.2: When previous and current operands share the same symbolic
1330249423Sdim    //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1331249423Sdim    //
1332249423Sdim    if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1333249423Sdim      // Remove previous operand
1334249423Sdim      PrevOpnd->Invalidate();
1335249423Sdim      if (CV) {
1336249423Sdim        *CurrOpnd = XorOpnd(CV);
1337249423Sdim        PrevOpnd = CurrOpnd;
1338249423Sdim      } else {
1339249423Sdim        CurrOpnd->Invalidate();
1340249423Sdim        PrevOpnd = 0;
1341249423Sdim      }
1342249423Sdim      Changed = true;
1343249423Sdim    }
1344249423Sdim  }
1345249423Sdim
1346249423Sdim  // Step 4: Reassemble the Ops
1347249423Sdim  if (Changed) {
1348249423Sdim    Ops.clear();
1349249423Sdim    for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1350249423Sdim      XorOpnd &O = Opnds[i];
1351249423Sdim      if (O.isInvalid())
1352249423Sdim        continue;
1353249423Sdim      ValueEntry VE(getRank(O.getValue()), O.getValue());
1354249423Sdim      Ops.push_back(VE);
1355249423Sdim    }
1356249423Sdim    if (ConstOpnd != 0) {
1357249423Sdim      Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
1358249423Sdim      ValueEntry VE(getRank(C), C);
1359249423Sdim      Ops.push_back(VE);
1360249423Sdim    }
1361249423Sdim    int Sz = Ops.size();
1362249423Sdim    if (Sz == 1)
1363249423Sdim      return Ops.back().Op;
1364249423Sdim    else if (Sz == 0) {
1365249423Sdim      assert(ConstOpnd == 0);
1366249423Sdim      return ConstantInt::get(Ty->getContext(), ConstOpnd);
1367249423Sdim    }
1368249423Sdim  }
1369249423Sdim
1370249423Sdim  return 0;
1371249423Sdim}
1372249423Sdim
1373201360Srdivacky/// OptimizeAdd - Optimize a series of operands to an 'add' instruction.  This
1374201360Srdivacky/// optimizes based on identities.  If it can be reduced to a single Value, it
1375201360Srdivacky/// is returned, otherwise the Ops list is mutated as necessary.
1376201360SrdivackyValue *Reassociate::OptimizeAdd(Instruction *I,
1377201360Srdivacky                                SmallVectorImpl<ValueEntry> &Ops) {
1378201360Srdivacky  // Scan the operand lists looking for X and -X pairs.  If we find any, we
1379201360Srdivacky  // can simplify the expression. X+-X == 0.  While we're at it, scan for any
1380201360Srdivacky  // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1381201360Srdivacky  //
1382201360Srdivacky  // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
1383201360Srdivacky  //
1384201360Srdivacky  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1385201360Srdivacky    Value *TheOp = Ops[i].Op;
1386201360Srdivacky    // Check to see if we've seen this operand before.  If so, we factor all
1387201360Srdivacky    // instances of the operand together.  Due to our sorting criteria, we know
1388201360Srdivacky    // that these need to be next to each other in the vector.
1389201360Srdivacky    if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1390201360Srdivacky      // Rescan the list, remove all instances of this operand from the expr.
1391201360Srdivacky      unsigned NumFound = 0;
1392201360Srdivacky      do {
1393201360Srdivacky        Ops.erase(Ops.begin()+i);
1394201360Srdivacky        ++NumFound;
1395201360Srdivacky      } while (i != Ops.size() && Ops[i].Op == TheOp);
1396239462Sdim
1397201360Srdivacky      DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
1398201360Srdivacky      ++NumFactor;
1399239462Sdim
1400201360Srdivacky      // Insert a new multiply.
1401201360Srdivacky      Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
1402201360Srdivacky      Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
1403239462Sdim
1404201360Srdivacky      // Now that we have inserted a multiply, optimize it. This allows us to
1405201360Srdivacky      // handle cases that require multiple factoring steps, such as this:
1406201360Srdivacky      // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1407239462Sdim      RedoInsts.insert(cast<Instruction>(Mul));
1408239462Sdim
1409201360Srdivacky      // If every add operand was a duplicate, return the multiply.
1410201360Srdivacky      if (Ops.empty())
1411201360Srdivacky        return Mul;
1412239462Sdim
1413201360Srdivacky      // Otherwise, we had some input that didn't have the dupe, such as
1414201360Srdivacky      // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
1415201360Srdivacky      // things being added by this operation.
1416201360Srdivacky      Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1417239462Sdim
1418201360Srdivacky      --i;
1419201360Srdivacky      e = Ops.size();
1420201360Srdivacky      continue;
1421201360Srdivacky    }
1422239462Sdim
1423201360Srdivacky    // Check for X and -X in the operand list.
1424201360Srdivacky    if (!BinaryOperator::isNeg(TheOp))
1425201360Srdivacky      continue;
1426239462Sdim
1427201360Srdivacky    Value *X = BinaryOperator::getNegArgument(TheOp);
1428201360Srdivacky    unsigned FoundX = FindInOperandList(Ops, i, X);
1429201360Srdivacky    if (FoundX == i)
1430201360Srdivacky      continue;
1431239462Sdim
1432201360Srdivacky    // Remove X and -X from the operand list.
1433201360Srdivacky    if (Ops.size() == 2)
1434201360Srdivacky      return Constant::getNullValue(X->getType());
1435239462Sdim
1436201360Srdivacky    Ops.erase(Ops.begin()+i);
1437201360Srdivacky    if (i < FoundX)
1438201360Srdivacky      --FoundX;
1439201360Srdivacky    else
1440201360Srdivacky      --i;   // Need to back up an extra one.
1441201360Srdivacky    Ops.erase(Ops.begin()+FoundX);
1442201360Srdivacky    ++NumAnnihil;
1443201360Srdivacky    --i;     // Revisit element.
1444201360Srdivacky    e -= 2;  // Removed two elements.
1445201360Srdivacky  }
1446239462Sdim
1447201360Srdivacky  // Scan the operand list, checking to see if there are any common factors
1448201360Srdivacky  // between operands.  Consider something like A*A+A*B*C+D.  We would like to
1449201360Srdivacky  // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1450201360Srdivacky  // To efficiently find this, we count the number of times a factor occurs
1451201360Srdivacky  // for any ADD operands that are MULs.
1452201360Srdivacky  DenseMap<Value*, unsigned> FactorOccurrences;
1453239462Sdim
1454201360Srdivacky  // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1455201360Srdivacky  // where they are actually the same multiply.
1456201360Srdivacky  unsigned MaxOcc = 0;
1457201360Srdivacky  Value *MaxOccVal = 0;
1458201360Srdivacky  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1459239462Sdim    BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1460239462Sdim    if (!BOp)
1461201360Srdivacky      continue;
1462239462Sdim
1463201360Srdivacky    // Compute all of the factors of this added value.
1464201360Srdivacky    SmallVector<Value*, 8> Factors;
1465239462Sdim    FindSingleUseMultiplyFactors(BOp, Factors, Ops);
1466201360Srdivacky    assert(Factors.size() > 1 && "Bad linearize!");
1467239462Sdim
1468201360Srdivacky    // Add one to FactorOccurrences for each unique factor in this op.
1469201360Srdivacky    SmallPtrSet<Value*, 8> Duplicates;
1470201360Srdivacky    for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1471201360Srdivacky      Value *Factor = Factors[i];
1472201360Srdivacky      if (!Duplicates.insert(Factor)) continue;
1473239462Sdim
1474201360Srdivacky      unsigned Occ = ++FactorOccurrences[Factor];
1475201360Srdivacky      if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
1476239462Sdim
1477201360Srdivacky      // If Factor is a negative constant, add the negated value as a factor
1478201360Srdivacky      // because we can percolate the negate out.  Watch for minint, which
1479201360Srdivacky      // cannot be positivified.
1480201360Srdivacky      if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
1481224145Sdim        if (CI->isNegative() && !CI->isMinValue(true)) {
1482201360Srdivacky          Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1483201360Srdivacky          assert(!Duplicates.count(Factor) &&
1484201360Srdivacky                 "Shouldn't have two constant factors, missed a canonicalize");
1485239462Sdim
1486201360Srdivacky          unsigned Occ = ++FactorOccurrences[Factor];
1487201360Srdivacky          if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
1488201360Srdivacky        }
1489201360Srdivacky    }
1490201360Srdivacky  }
1491239462Sdim
1492201360Srdivacky  // If any factor occurred more than one time, we can pull it out.
1493201360Srdivacky  if (MaxOcc > 1) {
1494201360Srdivacky    DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
1495201360Srdivacky    ++NumFactor;
1496193323Sed
1497201360Srdivacky    // Create a new instruction that uses the MaxOccVal twice.  If we don't do
1498201360Srdivacky    // this, we could otherwise run into situations where removing a factor
1499239462Sdim    // from an expression will drop a use of maxocc, and this can cause
1500201360Srdivacky    // RemoveFactorFromExpression on successive values to behave differently.
1501201360Srdivacky    Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
1502234982Sdim    SmallVector<WeakVH, 4> NewMulOps;
1503218893Sdim    for (unsigned i = 0; i != Ops.size(); ++i) {
1504202375Srdivacky      // Only try to remove factors from expressions we're allowed to.
1505239462Sdim      BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1506239462Sdim      if (!BOp)
1507202375Srdivacky        continue;
1508239462Sdim
1509201360Srdivacky      if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1510218893Sdim        // The factorized operand may occur several times.  Convert them all in
1511218893Sdim        // one fell swoop.
1512218893Sdim        for (unsigned j = Ops.size(); j != i;) {
1513218893Sdim          --j;
1514218893Sdim          if (Ops[j].Op == Ops[i].Op) {
1515218893Sdim            NewMulOps.push_back(V);
1516218893Sdim            Ops.erase(Ops.begin()+j);
1517218893Sdim          }
1518218893Sdim        }
1519218893Sdim        --i;
1520201360Srdivacky      }
1521201360Srdivacky    }
1522239462Sdim
1523201360Srdivacky    // No need for extra uses anymore.
1524201360Srdivacky    delete DummyInst;
1525202375Srdivacky
1526201360Srdivacky    unsigned NumAddedValues = NewMulOps.size();
1527201360Srdivacky    Value *V = EmitAddTreeOfValues(I, NewMulOps);
1528202375Srdivacky
1529201360Srdivacky    // Now that we have inserted the add tree, optimize it. This allows us to
1530201360Srdivacky    // handle cases that require multiple factoring steps, such as this:
1531201360Srdivacky    // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
1532201360Srdivacky    assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1533202375Srdivacky    (void)NumAddedValues;
1534239462Sdim    if (Instruction *VI = dyn_cast<Instruction>(V))
1535239462Sdim      RedoInsts.insert(VI);
1536201360Srdivacky
1537201360Srdivacky    // Create the multiply.
1538239462Sdim    Instruction *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
1539201360Srdivacky
1540201360Srdivacky    // Rerun associate on the multiply in case the inner expression turned into
1541201360Srdivacky    // a multiply.  We want to make sure that we keep things in canonical form.
1542239462Sdim    RedoInsts.insert(V2);
1543239462Sdim
1544201360Srdivacky    // If every add operand included the factor (e.g. "A*B + A*C"), then the
1545201360Srdivacky    // entire result expression is just the multiply "A*(B+C)".
1546201360Srdivacky    if (Ops.empty())
1547201360Srdivacky      return V2;
1548239462Sdim
1549201360Srdivacky    // Otherwise, we had some input that didn't have the factor, such as
1550201360Srdivacky    // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
1551201360Srdivacky    // things being added by this operation.
1552201360Srdivacky    Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1553201360Srdivacky  }
1554239462Sdim
1555201360Srdivacky  return 0;
1556201360Srdivacky}
1557201360Srdivacky
1558239462Sdimnamespace {
1559239462Sdim  /// \brief Predicate tests whether a ValueEntry's op is in a map.
1560239462Sdim  struct IsValueInMap {
1561239462Sdim    const DenseMap<Value *, unsigned> &Map;
1562239462Sdim
1563239462Sdim    IsValueInMap(const DenseMap<Value *, unsigned> &Map) : Map(Map) {}
1564239462Sdim
1565239462Sdim    bool operator()(const ValueEntry &Entry) {
1566239462Sdim      return Map.find(Entry.Op) != Map.end();
1567239462Sdim    }
1568239462Sdim  };
1569239462Sdim}
1570239462Sdim
1571239462Sdim/// \brief Build up a vector of value/power pairs factoring a product.
1572239462Sdim///
1573239462Sdim/// Given a series of multiplication operands, build a vector of factors and
1574239462Sdim/// the powers each is raised to when forming the final product. Sort them in
1575239462Sdim/// the order of descending power.
1576239462Sdim///
1577239462Sdim///      (x*x)          -> [(x, 2)]
1578239462Sdim///     ((x*x)*x)       -> [(x, 3)]
1579239462Sdim///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1580239462Sdim///
1581239462Sdim/// \returns Whether any factors have a power greater than one.
1582239462Sdimbool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1583239462Sdim                                         SmallVectorImpl<Factor> &Factors) {
1584239462Sdim  // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1585239462Sdim  // Compute the sum of powers of simplifiable factors.
1586239462Sdim  unsigned FactorPowerSum = 0;
1587239462Sdim  for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1588239462Sdim    Value *Op = Ops[Idx-1].Op;
1589239462Sdim
1590239462Sdim    // Count the number of occurrences of this value.
1591239462Sdim    unsigned Count = 1;
1592239462Sdim    for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1593239462Sdim      ++Count;
1594239462Sdim    // Track for simplification all factors which occur 2 or more times.
1595239462Sdim    if (Count > 1)
1596239462Sdim      FactorPowerSum += Count;
1597239462Sdim  }
1598239462Sdim
1599239462Sdim  // We can only simplify factors if the sum of the powers of our simplifiable
1600239462Sdim  // factors is 4 or higher. When that is the case, we will *always* have
1601239462Sdim  // a simplification. This is an important invariant to prevent cyclicly
1602239462Sdim  // trying to simplify already minimal formations.
1603239462Sdim  if (FactorPowerSum < 4)
1604239462Sdim    return false;
1605239462Sdim
1606239462Sdim  // Now gather the simplifiable factors, removing them from Ops.
1607239462Sdim  FactorPowerSum = 0;
1608239462Sdim  for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1609239462Sdim    Value *Op = Ops[Idx-1].Op;
1610239462Sdim
1611239462Sdim    // Count the number of occurrences of this value.
1612239462Sdim    unsigned Count = 1;
1613239462Sdim    for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1614239462Sdim      ++Count;
1615239462Sdim    if (Count == 1)
1616239462Sdim      continue;
1617239462Sdim    // Move an even number of occurrences to Factors.
1618239462Sdim    Count &= ~1U;
1619239462Sdim    Idx -= Count;
1620239462Sdim    FactorPowerSum += Count;
1621239462Sdim    Factors.push_back(Factor(Op, Count));
1622239462Sdim    Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1623239462Sdim  }
1624239462Sdim
1625239462Sdim  // None of the adjustments above should have reduced the sum of factor powers
1626239462Sdim  // below our mininum of '4'.
1627239462Sdim  assert(FactorPowerSum >= 4);
1628239462Sdim
1629239462Sdim  std::sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
1630239462Sdim  return true;
1631239462Sdim}
1632239462Sdim
1633239462Sdim/// \brief Build a tree of multiplies, computing the product of Ops.
1634239462Sdimstatic Value *buildMultiplyTree(IRBuilder<> &Builder,
1635239462Sdim                                SmallVectorImpl<Value*> &Ops) {
1636239462Sdim  if (Ops.size() == 1)
1637239462Sdim    return Ops.back();
1638239462Sdim
1639239462Sdim  Value *LHS = Ops.pop_back_val();
1640239462Sdim  do {
1641239462Sdim    LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1642239462Sdim  } while (!Ops.empty());
1643239462Sdim
1644239462Sdim  return LHS;
1645239462Sdim}
1646239462Sdim
1647239462Sdim/// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1648239462Sdim///
1649239462Sdim/// Given a vector of values raised to various powers, where no two values are
1650239462Sdim/// equal and the powers are sorted in decreasing order, compute the minimal
1651239462Sdim/// DAG of multiplies to compute the final product, and return that product
1652239462Sdim/// value.
1653239462SdimValue *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1654239462Sdim                                            SmallVectorImpl<Factor> &Factors) {
1655239462Sdim  assert(Factors[0].Power);
1656239462Sdim  SmallVector<Value *, 4> OuterProduct;
1657239462Sdim  for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1658239462Sdim       Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1659239462Sdim    if (Factors[Idx].Power != Factors[LastIdx].Power) {
1660239462Sdim      LastIdx = Idx;
1661239462Sdim      continue;
1662239462Sdim    }
1663239462Sdim
1664239462Sdim    // We want to multiply across all the factors with the same power so that
1665239462Sdim    // we can raise them to that power as a single entity. Build a mini tree
1666239462Sdim    // for that.
1667239462Sdim    SmallVector<Value *, 4> InnerProduct;
1668239462Sdim    InnerProduct.push_back(Factors[LastIdx].Base);
1669239462Sdim    do {
1670239462Sdim      InnerProduct.push_back(Factors[Idx].Base);
1671239462Sdim      ++Idx;
1672239462Sdim    } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1673239462Sdim
1674239462Sdim    // Reset the base value of the first factor to the new expression tree.
1675239462Sdim    // We'll remove all the factors with the same power in a second pass.
1676239462Sdim    Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1677239462Sdim    if (Instruction *MI = dyn_cast<Instruction>(M))
1678239462Sdim      RedoInsts.insert(MI);
1679239462Sdim
1680239462Sdim    LastIdx = Idx;
1681239462Sdim  }
1682239462Sdim  // Unique factors with equal powers -- we've folded them into the first one's
1683239462Sdim  // base.
1684239462Sdim  Factors.erase(std::unique(Factors.begin(), Factors.end(),
1685239462Sdim                            Factor::PowerEqual()),
1686239462Sdim                Factors.end());
1687239462Sdim
1688239462Sdim  // Iteratively collect the base of each factor with an add power into the
1689239462Sdim  // outer product, and halve each power in preparation for squaring the
1690239462Sdim  // expression.
1691239462Sdim  for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1692239462Sdim    if (Factors[Idx].Power & 1)
1693239462Sdim      OuterProduct.push_back(Factors[Idx].Base);
1694239462Sdim    Factors[Idx].Power >>= 1;
1695239462Sdim  }
1696239462Sdim  if (Factors[0].Power) {
1697239462Sdim    Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1698239462Sdim    OuterProduct.push_back(SquareRoot);
1699239462Sdim    OuterProduct.push_back(SquareRoot);
1700239462Sdim  }
1701239462Sdim  if (OuterProduct.size() == 1)
1702239462Sdim    return OuterProduct.front();
1703239462Sdim
1704239462Sdim  Value *V = buildMultiplyTree(Builder, OuterProduct);
1705239462Sdim  return V;
1706239462Sdim}
1707239462Sdim
1708239462SdimValue *Reassociate::OptimizeMul(BinaryOperator *I,
1709239462Sdim                                SmallVectorImpl<ValueEntry> &Ops) {
1710239462Sdim  // We can only optimize the multiplies when there is a chain of more than
1711239462Sdim  // three, such that a balanced tree might require fewer total multiplies.
1712239462Sdim  if (Ops.size() < 4)
1713239462Sdim    return 0;
1714239462Sdim
1715239462Sdim  // Try to turn linear trees of multiplies without other uses of the
1716239462Sdim  // intermediate stages into minimal multiply DAGs with perfect sub-expression
1717239462Sdim  // re-use.
1718239462Sdim  SmallVector<Factor, 4> Factors;
1719239462Sdim  if (!collectMultiplyFactors(Ops, Factors))
1720239462Sdim    return 0; // All distinct factors, so nothing left for us to do.
1721239462Sdim
1722239462Sdim  IRBuilder<> Builder(I);
1723239462Sdim  Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1724239462Sdim  if (Ops.empty())
1725239462Sdim    return V;
1726239462Sdim
1727239462Sdim  ValueEntry NewEntry = ValueEntry(getRank(V), V);
1728239462Sdim  Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
1729239462Sdim  return 0;
1730239462Sdim}
1731239462Sdim
1732193323SedValue *Reassociate::OptimizeExpression(BinaryOperator *I,
1733201360Srdivacky                                       SmallVectorImpl<ValueEntry> &Ops) {
1734193323Sed  // Now that we have the linearized expression tree, try to optimize it.
1735193323Sed  // Start by folding any constants that we found.
1736243830Sdim  Constant *Cst = 0;
1737243830Sdim  unsigned Opcode = I->getOpcode();
1738243830Sdim  while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1739243830Sdim    Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1740243830Sdim    Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1741243830Sdim  }
1742243830Sdim  // If there was nothing but constants then we are done.
1743243830Sdim  if (Ops.empty())
1744243830Sdim    return Cst;
1745243830Sdim
1746243830Sdim  // Put the combined constant back at the end of the operand list, except if
1747243830Sdim  // there is no point.  For example, an add of 0 gets dropped here, while a
1748243830Sdim  // multiplication by zero turns the whole expression into zero.
1749243830Sdim  if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1750243830Sdim    if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1751243830Sdim      return Cst;
1752243830Sdim    Ops.push_back(ValueEntry(0, Cst));
1753243830Sdim  }
1754243830Sdim
1755193323Sed  if (Ops.size() == 1) return Ops[0].Op;
1756193323Sed
1757201360Srdivacky  // Handle destructive annihilation due to identities between elements in the
1758193323Sed  // argument list here.
1759239462Sdim  unsigned NumOps = Ops.size();
1760193323Sed  switch (Opcode) {
1761193323Sed  default: break;
1762193323Sed  case Instruction::And:
1763193323Sed  case Instruction::Or:
1764201360Srdivacky    if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1765201360Srdivacky      return Result;
1766193323Sed    break;
1767193323Sed
1768249423Sdim  case Instruction::Xor:
1769249423Sdim    if (Value *Result = OptimizeXor(I, Ops))
1770249423Sdim      return Result;
1771249423Sdim    break;
1772249423Sdim
1773239462Sdim  case Instruction::Add:
1774201360Srdivacky    if (Value *Result = OptimizeAdd(I, Ops))
1775201360Srdivacky      return Result;
1776239462Sdim    break;
1777193323Sed
1778239462Sdim  case Instruction::Mul:
1779239462Sdim    if (Value *Result = OptimizeMul(I, Ops))
1780239462Sdim      return Result;
1781193323Sed    break;
1782193323Sed  }
1783193323Sed
1784239462Sdim  if (Ops.size() != NumOps)
1785193323Sed    return OptimizeExpression(I, Ops);
1786193323Sed  return 0;
1787193323Sed}
1788193323Sed
1789239462Sdim/// EraseInst - Zap the given instruction, adding interesting operands to the
1790239462Sdim/// work list.
1791239462Sdimvoid Reassociate::EraseInst(Instruction *I) {
1792239462Sdim  assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1793239462Sdim  SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1794239462Sdim  // Erase the dead instruction.
1795239462Sdim  ValueRankMap.erase(I);
1796239462Sdim  RedoInsts.remove(I);
1797239462Sdim  I->eraseFromParent();
1798239462Sdim  // Optimize its operands.
1799239462Sdim  SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
1800239462Sdim  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1801239462Sdim    if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1802239462Sdim      // If this is a node in an expression tree, climb to the expression root
1803239462Sdim      // and add that since that's where optimization actually happens.
1804239462Sdim      unsigned Opcode = Op->getOpcode();
1805239462Sdim      while (Op->hasOneUse() && Op->use_back()->getOpcode() == Opcode &&
1806239462Sdim             Visited.insert(Op))
1807239462Sdim        Op = Op->use_back();
1808239462Sdim      RedoInsts.insert(Op);
1809239462Sdim    }
1810239462Sdim}
1811193323Sed
1812239462Sdim/// OptimizeInst - Inspect and optimize the given instruction. Note that erasing
1813239462Sdim/// instructions is not allowed.
1814239462Sdimvoid Reassociate::OptimizeInst(Instruction *I) {
1815239462Sdim  // Only consider operations that we understand.
1816239462Sdim  if (!isa<BinaryOperator>(I))
1817239462Sdim    return;
1818239462Sdim
1819239462Sdim  if (I->getOpcode() == Instruction::Shl &&
1820239462Sdim      isa<ConstantInt>(I->getOperand(1)))
1821239462Sdim    // If an operand of this shift is a reassociable multiply, or if the shift
1822239462Sdim    // is used by a reassociable multiply or add, turn into a multiply.
1823239462Sdim    if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
1824239462Sdim        (I->hasOneUse() &&
1825239462Sdim         (isReassociableOp(I->use_back(), Instruction::Mul) ||
1826239462Sdim          isReassociableOp(I->use_back(), Instruction::Add)))) {
1827239462Sdim      Instruction *NI = ConvertShiftToMul(I);
1828239462Sdim      RedoInsts.insert(I);
1829221345Sdim      MadeChange = true;
1830239462Sdim      I = NI;
1831221345Sdim    }
1832193323Sed
1833239462Sdim  // Floating point binary operators are not associative, but we can still
1834239462Sdim  // commute (some) of them, to canonicalize the order of their operands.
1835239462Sdim  // This can potentially expose more CSE opportunities, and makes writing
1836239462Sdim  // other transformations simpler.
1837239462Sdim  if ((I->getType()->isFloatingPointTy() || I->getType()->isVectorTy())) {
1838239462Sdim    // FAdd and FMul can be commuted.
1839239462Sdim    if (I->getOpcode() != Instruction::FMul &&
1840239462Sdim        I->getOpcode() != Instruction::FAdd)
1841239462Sdim      return;
1842193323Sed
1843239462Sdim    Value *LHS = I->getOperand(0);
1844239462Sdim    Value *RHS = I->getOperand(1);
1845239462Sdim    unsigned LHSRank = getRank(LHS);
1846239462Sdim    unsigned RHSRank = getRank(RHS);
1847239462Sdim
1848239462Sdim    // Sort the operands by rank.
1849239462Sdim    if (RHSRank < LHSRank) {
1850239462Sdim      I->setOperand(0, RHS);
1851239462Sdim      I->setOperand(1, LHS);
1852239462Sdim    }
1853239462Sdim
1854239462Sdim    return;
1855239462Sdim  }
1856239462Sdim
1857221345Sdim  // Do not reassociate boolean (i1) expressions.  We want to preserve the
1858221345Sdim  // original order of evaluation for short-circuited comparisons that
1859221345Sdim  // SimplifyCFG has folded to AND/OR expressions.  If the expression
1860221345Sdim  // is not further optimized, it is likely to be transformed back to a
1861221345Sdim  // short-circuited form for code gen, and the source order may have been
1862221345Sdim  // optimized for the most likely conditions.
1863239462Sdim  if (I->getType()->isIntegerTy(1))
1864221345Sdim    return;
1865203954Srdivacky
1866221345Sdim  // If this is a subtract instruction which is not already in negate form,
1867221345Sdim  // see if we can convert it to X+-Y.
1868239462Sdim  if (I->getOpcode() == Instruction::Sub) {
1869239462Sdim    if (ShouldBreakUpSubtract(I)) {
1870239462Sdim      Instruction *NI = BreakUpSubtract(I);
1871239462Sdim      RedoInsts.insert(I);
1872221345Sdim      MadeChange = true;
1873239462Sdim      I = NI;
1874239462Sdim    } else if (BinaryOperator::isNeg(I)) {
1875221345Sdim      // Otherwise, this is a negation.  See if the operand is a multiply tree
1876221345Sdim      // and if this is not an inner node of a multiply tree.
1877239462Sdim      if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
1878239462Sdim          (!I->hasOneUse() ||
1879239462Sdim           !isReassociableOp(I->use_back(), Instruction::Mul))) {
1880239462Sdim        Instruction *NI = LowerNegateToMultiply(I);
1881239462Sdim        RedoInsts.insert(I);
1882193323Sed        MadeChange = true;
1883239462Sdim        I = NI;
1884193323Sed      }
1885193323Sed    }
1886221345Sdim  }
1887193323Sed
1888239462Sdim  // If this instruction is an associative binary operator, process it.
1889239462Sdim  if (!I->isAssociative()) return;
1890239462Sdim  BinaryOperator *BO = cast<BinaryOperator>(I);
1891193323Sed
1892221345Sdim  // If this is an interior node of a reassociable tree, ignore it until we
1893221345Sdim  // get to the root of the tree, to avoid N^2 analysis.
1894239462Sdim  unsigned Opcode = BO->getOpcode();
1895239462Sdim  if (BO->hasOneUse() && BO->use_back()->getOpcode() == Opcode)
1896221345Sdim    return;
1897193323Sed
1898239462Sdim  // If this is an add tree that is used by a sub instruction, ignore it
1899221345Sdim  // until we process the subtract.
1900239462Sdim  if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
1901239462Sdim      cast<Instruction>(BO->use_back())->getOpcode() == Instruction::Sub)
1902221345Sdim    return;
1903193323Sed
1904239462Sdim  ReassociateExpression(BO);
1905193323Sed}
1906193323Sed
1907239462Sdimvoid Reassociate::ReassociateExpression(BinaryOperator *I) {
1908239462Sdim
1909201360Srdivacky  // First, walk the expression tree, linearizing the tree, collecting the
1910201360Srdivacky  // operand information.
1911239462Sdim  SmallVector<RepeatedValue, 8> Tree;
1912239462Sdim  MadeChange |= LinearizeExprTree(I, Tree);
1913201360Srdivacky  SmallVector<ValueEntry, 8> Ops;
1914239462Sdim  Ops.reserve(Tree.size());
1915239462Sdim  for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1916239462Sdim    RepeatedValue E = Tree[i];
1917239462Sdim    Ops.append(E.second.getZExtValue(),
1918239462Sdim               ValueEntry(getRank(E.first), E.first));
1919239462Sdim  }
1920239462Sdim
1921202375Srdivacky  DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
1922239462Sdim
1923193323Sed  // Now that we have linearized the tree to a list and have gathered all of
1924193323Sed  // the operands and their ranks, sort the operands by their rank.  Use a
1925193323Sed  // stable_sort so that values with equal ranks will have their relative
1926193323Sed  // positions maintained (and so the compiler is deterministic).  Note that
1927193323Sed  // this sorts so that the highest ranking values end up at the beginning of
1928193323Sed  // the vector.
1929193323Sed  std::stable_sort(Ops.begin(), Ops.end());
1930239462Sdim
1931193323Sed  // OptimizeExpression - Now that we have the expression tree in a convenient
1932193323Sed  // sorted form, optimize it globally if possible.
1933193323Sed  if (Value *V = OptimizeExpression(I, Ops)) {
1934239462Sdim    if (V == I)
1935239462Sdim      // Self-referential expression in unreachable code.
1936239462Sdim      return;
1937193323Sed    // This expression tree simplified to something that isn't a tree,
1938193323Sed    // eliminate it.
1939202375Srdivacky    DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
1940193323Sed    I->replaceAllUsesWith(V);
1941221345Sdim    if (Instruction *VI = dyn_cast<Instruction>(V))
1942221345Sdim      VI->setDebugLoc(I->getDebugLoc());
1943239462Sdim    RedoInsts.insert(I);
1944201360Srdivacky    ++NumAnnihil;
1945239462Sdim    return;
1946193323Sed  }
1947239462Sdim
1948193323Sed  // We want to sink immediates as deeply as possible except in the case where
1949193323Sed  // this is a multiply tree used only by an add, and the immediate is a -1.
1950193323Sed  // In this case we reassociate to put the negation on the outside so that we
1951193323Sed  // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1952193323Sed  if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
1953193323Sed      cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
1954193323Sed      isa<ConstantInt>(Ops.back().Op) &&
1955193323Sed      cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
1956201360Srdivacky    ValueEntry Tmp = Ops.pop_back_val();
1957201360Srdivacky    Ops.insert(Ops.begin(), Tmp);
1958193323Sed  }
1959239462Sdim
1960202375Srdivacky  DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
1961239462Sdim
1962193323Sed  if (Ops.size() == 1) {
1963239462Sdim    if (Ops[0].Op == I)
1964239462Sdim      // Self-referential expression in unreachable code.
1965239462Sdim      return;
1966239462Sdim
1967193323Sed    // This expression tree simplified to something that isn't a tree,
1968193323Sed    // eliminate it.
1969193323Sed    I->replaceAllUsesWith(Ops[0].Op);
1970221345Sdim    if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
1971221345Sdim      OI->setDebugLoc(I->getDebugLoc());
1972239462Sdim    RedoInsts.insert(I);
1973239462Sdim    return;
1974193323Sed  }
1975239462Sdim
1976201360Srdivacky  // Now that we ordered and optimized the expressions, splat them back into
1977201360Srdivacky  // the expression tree, removing any unneeded nodes.
1978201360Srdivacky  RewriteExprTree(I, Ops);
1979193323Sed}
1980193323Sed
1981193323Sedbool Reassociate::runOnFunction(Function &F) {
1982239462Sdim  // Calculate the rank map for F
1983193323Sed  BuildRankMap(F);
1984193323Sed
1985193323Sed  MadeChange = false;
1986239462Sdim  for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
1987239462Sdim    // Optimize every instruction in the basic block.
1988239462Sdim    for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
1989239462Sdim      if (isInstructionTriviallyDead(II)) {
1990239462Sdim        EraseInst(II++);
1991239462Sdim      } else {
1992239462Sdim        OptimizeInst(II);
1993239462Sdim        assert(II->getParent() == BI && "Moved to a different block!");
1994239462Sdim        ++II;
1995239462Sdim      }
1996193323Sed
1997239462Sdim    // If this produced extra instructions to optimize, handle them now.
1998239462Sdim    while (!RedoInsts.empty()) {
1999239462Sdim      Instruction *I = RedoInsts.pop_back_val();
2000239462Sdim      if (isInstructionTriviallyDead(I))
2001239462Sdim        EraseInst(I);
2002239462Sdim      else
2003239462Sdim        OptimizeInst(I);
2004221345Sdim    }
2005239462Sdim  }
2006221345Sdim
2007201360Srdivacky  // We are done with the rank map.
2008193323Sed  RankMap.clear();
2009193323Sed  ValueRankMap.clear();
2010239462Sdim
2011193323Sed  return MadeChange;
2012193323Sed}
2013