1//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE, etc.
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "reassociate"
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/PostOrderIterator.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/SetVector.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/Assembly/Writer.h"
31#include "llvm/IR/Constants.h"
32#include "llvm/IR/DerivedTypes.h"
33#include "llvm/IR/Function.h"
34#include "llvm/IR/IRBuilder.h"
35#include "llvm/IR/Instructions.h"
36#include "llvm/IR/IntrinsicInst.h"
37#include "llvm/Pass.h"
38#include "llvm/Support/CFG.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/ValueHandle.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/Transforms/Utils/Local.h"
43#include <algorithm>
44using namespace llvm;
45
46STATISTIC(NumChanged, "Number of insts reassociated");
47STATISTIC(NumAnnihil, "Number of expr tree annihilated");
48STATISTIC(NumFactor , "Number of multiplies factored");
49
50namespace {
51  struct ValueEntry {
52    unsigned Rank;
53    Value *Op;
54    ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
55  };
56  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
57    return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
58  }
59}
60
61#ifndef NDEBUG
62/// PrintOps - Print out the expression identified in the Ops list.
63///
64static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
65  Module *M = I->getParent()->getParent()->getParent();
66  dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
67       << *Ops[0].Op->getType() << '\t';
68  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
69    dbgs() << "[ ";
70    WriteAsOperand(dbgs(), Ops[i].Op, false, M);
71    dbgs() << ", #" << Ops[i].Rank << "] ";
72  }
73}
74#endif
75
76namespace {
77  /// \brief Utility class representing a base and exponent pair which form one
78  /// factor of some product.
79  struct Factor {
80    Value *Base;
81    unsigned Power;
82
83    Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
84
85    /// \brief Sort factors by their Base.
86    struct BaseSorter {
87      bool operator()(const Factor &LHS, const Factor &RHS) {
88        return LHS.Base < RHS.Base;
89      }
90    };
91
92    /// \brief Compare factors for equal bases.
93    struct BaseEqual {
94      bool operator()(const Factor &LHS, const Factor &RHS) {
95        return LHS.Base == RHS.Base;
96      }
97    };
98
99    /// \brief Sort factors in descending order by their power.
100    struct PowerDescendingSorter {
101      bool operator()(const Factor &LHS, const Factor &RHS) {
102        return LHS.Power > RHS.Power;
103      }
104    };
105
106    /// \brief Compare factors for equal powers.
107    struct PowerEqual {
108      bool operator()(const Factor &LHS, const Factor &RHS) {
109        return LHS.Power == RHS.Power;
110      }
111    };
112  };
113
114  /// Utility class representing a non-constant Xor-operand. We classify
115  /// non-constant Xor-Operands into two categories:
116  ///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
117  ///  C2)
118  ///    C2.1) The operand is in the form of "X | C", where C is a non-zero
119  ///          constant.
120  ///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
121  ///          operand as "E | 0"
122  class XorOpnd {
123  public:
124    XorOpnd(Value *V);
125    const XorOpnd &operator=(const XorOpnd &That);
126
127    bool isInvalid() const { return SymbolicPart == 0; }
128    bool isOrExpr() const { return isOr; }
129    Value *getValue() const { return OrigVal; }
130    Value *getSymbolicPart() const { return SymbolicPart; }
131    unsigned getSymbolicRank() const { return SymbolicRank; }
132    const APInt &getConstPart() const { return ConstPart; }
133
134    void Invalidate() { SymbolicPart = OrigVal = 0; }
135    void setSymbolicRank(unsigned R) { SymbolicRank = R; }
136
137    // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank.
138    // The purpose is twofold:
139    // 1) Cluster together the operands sharing the same symbolic-value.
140    // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
141    //   could potentially shorten crital path, and expose more loop-invariants.
142    //   Note that values' rank are basically defined in RPO order (FIXME).
143    //   So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
144    //   than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
145    //   "z" in the order of X-Y-Z is better than any other orders.
146    struct PtrSortFunctor {
147      bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) {
148        return LHS->getSymbolicRank() < RHS->getSymbolicRank();
149      }
150    };
151  private:
152    Value *OrigVal;
153    Value *SymbolicPart;
154    APInt ConstPart;
155    unsigned SymbolicRank;
156    bool isOr;
157  };
158}
159
160namespace {
161  class Reassociate : public FunctionPass {
162    DenseMap<BasicBlock*, unsigned> RankMap;
163    DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
164    SetVector<AssertingVH<Instruction> > RedoInsts;
165    bool MadeChange;
166  public:
167    static char ID; // Pass identification, replacement for typeid
168    Reassociate() : FunctionPass(ID) {
169      initializeReassociatePass(*PassRegistry::getPassRegistry());
170    }
171
172    bool runOnFunction(Function &F);
173
174    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
175      AU.setPreservesCFG();
176    }
177  private:
178    void BuildRankMap(Function &F);
179    unsigned getRank(Value *V);
180    void ReassociateExpression(BinaryOperator *I);
181    void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
182    Value *OptimizeExpression(BinaryOperator *I,
183                              SmallVectorImpl<ValueEntry> &Ops);
184    Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
185    Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
186    bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd,
187                        Value *&Res);
188    bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
189                        APInt &ConstOpnd, Value *&Res);
190    bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
191                                SmallVectorImpl<Factor> &Factors);
192    Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
193                                   SmallVectorImpl<Factor> &Factors);
194    Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
195    Value *RemoveFactorFromExpression(Value *V, Value *Factor);
196    void EraseInst(Instruction *I);
197    void OptimizeInst(Instruction *I);
198  };
199}
200
201XorOpnd::XorOpnd(Value *V) {
202  assert(!isa<ConstantInt>(V) && "No ConstantInt");
203  OrigVal = V;
204  Instruction *I = dyn_cast<Instruction>(V);
205  SymbolicRank = 0;
206
207  if (I && (I->getOpcode() == Instruction::Or ||
208            I->getOpcode() == Instruction::And)) {
209    Value *V0 = I->getOperand(0);
210    Value *V1 = I->getOperand(1);
211    if (isa<ConstantInt>(V0))
212      std::swap(V0, V1);
213
214    if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
215      ConstPart = C->getValue();
216      SymbolicPart = V0;
217      isOr = (I->getOpcode() == Instruction::Or);
218      return;
219    }
220  }
221
222  // view the operand as "V | 0"
223  SymbolicPart = V;
224  ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
225  isOr = true;
226}
227
228const XorOpnd &XorOpnd::operator=(const XorOpnd &That) {
229  OrigVal = That.OrigVal;
230  SymbolicPart = That.SymbolicPart;
231  ConstPart = That.ConstPart;
232  SymbolicRank = That.SymbolicRank;
233  isOr = That.isOr;
234  return *this;
235}
236
237char Reassociate::ID = 0;
238INITIALIZE_PASS(Reassociate, "reassociate",
239                "Reassociate expressions", false, false)
240
241// Public interface to the Reassociate pass
242FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
243
244/// isReassociableOp - Return true if V is an instruction of the specified
245/// opcode and if it only has one use.
246static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
247  if (V->hasOneUse() && isa<Instruction>(V) &&
248      cast<Instruction>(V)->getOpcode() == Opcode)
249    return cast<BinaryOperator>(V);
250  return 0;
251}
252
253static bool isUnmovableInstruction(Instruction *I) {
254  if (I->getOpcode() == Instruction::PHI ||
255      I->getOpcode() == Instruction::LandingPad ||
256      I->getOpcode() == Instruction::Alloca ||
257      I->getOpcode() == Instruction::Load ||
258      I->getOpcode() == Instruction::Invoke ||
259      (I->getOpcode() == Instruction::Call &&
260       !isa<DbgInfoIntrinsic>(I)) ||
261      I->getOpcode() == Instruction::UDiv ||
262      I->getOpcode() == Instruction::SDiv ||
263      I->getOpcode() == Instruction::FDiv ||
264      I->getOpcode() == Instruction::URem ||
265      I->getOpcode() == Instruction::SRem ||
266      I->getOpcode() == Instruction::FRem)
267    return true;
268  return false;
269}
270
271void Reassociate::BuildRankMap(Function &F) {
272  unsigned i = 2;
273
274  // Assign distinct ranks to function arguments
275  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
276    ValueRankMap[&*I] = ++i;
277
278  ReversePostOrderTraversal<Function*> RPOT(&F);
279  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
280         E = RPOT.end(); I != E; ++I) {
281    BasicBlock *BB = *I;
282    unsigned BBRank = RankMap[BB] = ++i << 16;
283
284    // Walk the basic block, adding precomputed ranks for any instructions that
285    // we cannot move.  This ensures that the ranks for these instructions are
286    // all different in the block.
287    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
288      if (isUnmovableInstruction(I))
289        ValueRankMap[&*I] = ++BBRank;
290  }
291}
292
293unsigned Reassociate::getRank(Value *V) {
294  Instruction *I = dyn_cast<Instruction>(V);
295  if (I == 0) {
296    if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
297    return 0;  // Otherwise it's a global or constant, rank 0.
298  }
299
300  if (unsigned Rank = ValueRankMap[I])
301    return Rank;    // Rank already known?
302
303  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
304  // we can reassociate expressions for code motion!  Since we do not recurse
305  // for PHI nodes, we cannot have infinite recursion here, because there
306  // cannot be loops in the value graph that do not go through PHI nodes.
307  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
308  for (unsigned i = 0, e = I->getNumOperands();
309       i != e && Rank != MaxRank; ++i)
310    Rank = std::max(Rank, getRank(I->getOperand(i)));
311
312  // If this is a not or neg instruction, do not count it for rank.  This
313  // assures us that X and ~X will have the same rank.
314  if (!I->getType()->isIntegerTy() ||
315      (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
316    ++Rank;
317
318  //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
319  //     << Rank << "\n");
320
321  return ValueRankMap[I] = Rank;
322}
323
324/// LowerNegateToMultiply - Replace 0-X with X*-1.
325///
326static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
327  Constant *Cst = Constant::getAllOnesValue(Neg->getType());
328
329  BinaryOperator *Res =
330    BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
331  Neg->setOperand(1, Constant::getNullValue(Neg->getType())); // Drop use of op.
332  Res->takeName(Neg);
333  Neg->replaceAllUsesWith(Res);
334  Res->setDebugLoc(Neg->getDebugLoc());
335  return Res;
336}
337
338/// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda
339/// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for
340/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
341/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
342/// even x in Bitwidth-bit arithmetic.
343static unsigned CarmichaelShift(unsigned Bitwidth) {
344  if (Bitwidth < 3)
345    return Bitwidth - 1;
346  return Bitwidth - 2;
347}
348
349/// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS',
350/// reducing the combined weight using any special properties of the operation.
351/// The existing weight LHS represents the computation X op X op ... op X where
352/// X occurs LHS times.  The combined weight represents  X op X op ... op X with
353/// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
354/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
355/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
356static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
357  // If we were working with infinite precision arithmetic then the combined
358  // weight would be LHS + RHS.  But we are using finite precision arithmetic,
359  // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
360  // for nilpotent operations and addition, but not for idempotent operations
361  // and multiplication), so it is important to correctly reduce the combined
362  // weight back into range if wrapping would be wrong.
363
364  // If RHS is zero then the weight didn't change.
365  if (RHS.isMinValue())
366    return;
367  // If LHS is zero then the combined weight is RHS.
368  if (LHS.isMinValue()) {
369    LHS = RHS;
370    return;
371  }
372  // From this point on we know that neither LHS nor RHS is zero.
373
374  if (Instruction::isIdempotent(Opcode)) {
375    // Idempotent means X op X === X, so any non-zero weight is equivalent to a
376    // weight of 1.  Keeping weights at zero or one also means that wrapping is
377    // not a problem.
378    assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
379    return; // Return a weight of 1.
380  }
381  if (Instruction::isNilpotent(Opcode)) {
382    // Nilpotent means X op X === 0, so reduce weights modulo 2.
383    assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
384    LHS = 0; // 1 + 1 === 0 modulo 2.
385    return;
386  }
387  if (Opcode == Instruction::Add) {
388    // TODO: Reduce the weight by exploiting nsw/nuw?
389    LHS += RHS;
390    return;
391  }
392
393  assert(Opcode == Instruction::Mul && "Unknown associative operation!");
394  unsigned Bitwidth = LHS.getBitWidth();
395  // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
396  // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
397  // bit number x, since either x is odd in which case x^CM = 1, or x is even in
398  // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
399  // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
400  // which by a happy accident means that they can always be represented using
401  // Bitwidth bits.
402  // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
403  // the Carmichael number).
404  if (Bitwidth > 3) {
405    /// CM - The value of Carmichael's lambda function.
406    APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
407    // Any weight W >= Threshold can be replaced with W - CM.
408    APInt Threshold = CM + Bitwidth;
409    assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
410    // For Bitwidth 4 or more the following sum does not overflow.
411    LHS += RHS;
412    while (LHS.uge(Threshold))
413      LHS -= CM;
414  } else {
415    // To avoid problems with overflow do everything the same as above but using
416    // a larger type.
417    unsigned CM = 1U << CarmichaelShift(Bitwidth);
418    unsigned Threshold = CM + Bitwidth;
419    assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
420           "Weights not reduced!");
421    unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
422    while (Total >= Threshold)
423      Total -= CM;
424    LHS = Total;
425  }
426}
427
428typedef std::pair<Value*, APInt> RepeatedValue;
429
430/// LinearizeExprTree - Given an associative binary expression, return the leaf
431/// nodes in Ops along with their weights (how many times the leaf occurs).  The
432/// original expression is the same as
433///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
434/// op
435///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
436/// op
437///   ...
438/// op
439///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
440///
441/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
442///
443/// This routine may modify the function, in which case it returns 'true'.  The
444/// changes it makes may well be destructive, changing the value computed by 'I'
445/// to something completely different.  Thus if the routine returns 'true' then
446/// you MUST either replace I with a new expression computed from the Ops array,
447/// or use RewriteExprTree to put the values back in.
448///
449/// A leaf node is either not a binary operation of the same kind as the root
450/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
451/// opcode), or is the same kind of binary operator but has a use which either
452/// does not belong to the expression, or does belong to the expression but is
453/// a leaf node.  Every leaf node has at least one use that is a non-leaf node
454/// of the expression, while for non-leaf nodes (except for the root 'I') every
455/// use is a non-leaf node of the expression.
456///
457/// For example:
458///           expression graph        node names
459///
460///                     +        |        I
461///                    / \       |
462///                   +   +      |      A,  B
463///                  / \ / \     |
464///                 *   +   *    |    C,  D,  E
465///                / \ / \ / \   |
466///                   +   *      |      F,  G
467///
468/// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
469/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
470///
471/// The expression is maximal: if some instruction is a binary operator of the
472/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
473/// then the instruction also belongs to the expression, is not a leaf node of
474/// it, and its operands also belong to the expression (but may be leaf nodes).
475///
476/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
477/// order to ensure that every non-root node in the expression has *exactly one*
478/// use by a non-leaf node of the expression.  This destruction means that the
479/// caller MUST either replace 'I' with a new expression or use something like
480/// RewriteExprTree to put the values back in if the routine indicates that it
481/// made a change by returning 'true'.
482///
483/// In the above example either the right operand of A or the left operand of B
484/// will be replaced by undef.  If it is B's operand then this gives:
485///
486///                     +        |        I
487///                    / \       |
488///                   +   +      |      A,  B - operand of B replaced with undef
489///                  / \   \     |
490///                 *   +   *    |    C,  D,  E
491///                / \ / \ / \   |
492///                   +   *      |      F,  G
493///
494/// Note that such undef operands can only be reached by passing through 'I'.
495/// For example, if you visit operands recursively starting from a leaf node
496/// then you will never see such an undef operand unless you get back to 'I',
497/// which requires passing through a phi node.
498///
499/// Note that this routine may also mutate binary operators of the wrong type
500/// that have all uses inside the expression (i.e. only used by non-leaf nodes
501/// of the expression) if it can turn them into binary operators of the right
502/// type and thus make the expression bigger.
503
504static bool LinearizeExprTree(BinaryOperator *I,
505                              SmallVectorImpl<RepeatedValue> &Ops) {
506  DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
507  unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
508  unsigned Opcode = I->getOpcode();
509  assert(Instruction::isAssociative(Opcode) &&
510         Instruction::isCommutative(Opcode) &&
511         "Expected an associative and commutative operation!");
512
513  // Visit all operands of the expression, keeping track of their weight (the
514  // number of paths from the expression root to the operand, or if you like
515  // the number of times that operand occurs in the linearized expression).
516  // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
517  // while A has weight two.
518
519  // Worklist of non-leaf nodes (their operands are in the expression too) along
520  // with their weights, representing a certain number of paths to the operator.
521  // If an operator occurs in the worklist multiple times then we found multiple
522  // ways to get to it.
523  SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
524  Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
525  bool MadeChange = false;
526
527  // Leaves of the expression are values that either aren't the right kind of
528  // operation (eg: a constant, or a multiply in an add tree), or are, but have
529  // some uses that are not inside the expression.  For example, in I = X + X,
530  // X = A + B, the value X has two uses (by I) that are in the expression.  If
531  // X has any other uses, for example in a return instruction, then we consider
532  // X to be a leaf, and won't analyze it further.  When we first visit a value,
533  // if it has more than one use then at first we conservatively consider it to
534  // be a leaf.  Later, as the expression is explored, we may discover some more
535  // uses of the value from inside the expression.  If all uses turn out to be
536  // from within the expression (and the value is a binary operator of the right
537  // kind) then the value is no longer considered to be a leaf, and its operands
538  // are explored.
539
540  // Leaves - Keeps track of the set of putative leaves as well as the number of
541  // paths to each leaf seen so far.
542  typedef DenseMap<Value*, APInt> LeafMap;
543  LeafMap Leaves; // Leaf -> Total weight so far.
544  SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
545
546#ifndef NDEBUG
547  SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
548#endif
549  while (!Worklist.empty()) {
550    std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
551    I = P.first; // We examine the operands of this binary operator.
552
553    for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
554      Value *Op = I->getOperand(OpIdx);
555      APInt Weight = P.second; // Number of paths to this operand.
556      DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
557      assert(!Op->use_empty() && "No uses, so how did we get to it?!");
558
559      // If this is a binary operation of the right kind with only one use then
560      // add its operands to the expression.
561      if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
562        assert(Visited.insert(Op) && "Not first visit!");
563        DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
564        Worklist.push_back(std::make_pair(BO, Weight));
565        continue;
566      }
567
568      // Appears to be a leaf.  Is the operand already in the set of leaves?
569      LeafMap::iterator It = Leaves.find(Op);
570      if (It == Leaves.end()) {
571        // Not in the leaf map.  Must be the first time we saw this operand.
572        assert(Visited.insert(Op) && "Not first visit!");
573        if (!Op->hasOneUse()) {
574          // This value has uses not accounted for by the expression, so it is
575          // not safe to modify.  Mark it as being a leaf.
576          DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
577          LeafOrder.push_back(Op);
578          Leaves[Op] = Weight;
579          continue;
580        }
581        // No uses outside the expression, try morphing it.
582      } else if (It != Leaves.end()) {
583        // Already in the leaf map.
584        assert(Visited.count(Op) && "In leaf map but not visited!");
585
586        // Update the number of paths to the leaf.
587        IncorporateWeight(It->second, Weight, Opcode);
588
589#if 0   // TODO: Re-enable once PR13021 is fixed.
590        // The leaf already has one use from inside the expression.  As we want
591        // exactly one such use, drop this new use of the leaf.
592        assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
593        I->setOperand(OpIdx, UndefValue::get(I->getType()));
594        MadeChange = true;
595
596        // If the leaf is a binary operation of the right kind and we now see
597        // that its multiple original uses were in fact all by nodes belonging
598        // to the expression, then no longer consider it to be a leaf and add
599        // its operands to the expression.
600        if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
601          DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
602          Worklist.push_back(std::make_pair(BO, It->second));
603          Leaves.erase(It);
604          continue;
605        }
606#endif
607
608        // If we still have uses that are not accounted for by the expression
609        // then it is not safe to modify the value.
610        if (!Op->hasOneUse())
611          continue;
612
613        // No uses outside the expression, try morphing it.
614        Weight = It->second;
615        Leaves.erase(It); // Since the value may be morphed below.
616      }
617
618      // At this point we have a value which, first of all, is not a binary
619      // expression of the right kind, and secondly, is only used inside the
620      // expression.  This means that it can safely be modified.  See if we
621      // can usefully morph it into an expression of the right kind.
622      assert((!isa<Instruction>(Op) ||
623              cast<Instruction>(Op)->getOpcode() != Opcode) &&
624             "Should have been handled above!");
625      assert(Op->hasOneUse() && "Has uses outside the expression tree!");
626
627      // If this is a multiply expression, turn any internal negations into
628      // multiplies by -1 so they can be reassociated.
629      BinaryOperator *BO = dyn_cast<BinaryOperator>(Op);
630      if (Opcode == Instruction::Mul && BO && BinaryOperator::isNeg(BO)) {
631        DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
632        BO = LowerNegateToMultiply(BO);
633        DEBUG(dbgs() << *BO << 'n');
634        Worklist.push_back(std::make_pair(BO, Weight));
635        MadeChange = true;
636        continue;
637      }
638
639      // Failed to morph into an expression of the right type.  This really is
640      // a leaf.
641      DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
642      assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
643      LeafOrder.push_back(Op);
644      Leaves[Op] = Weight;
645    }
646  }
647
648  // The leaves, repeated according to their weights, represent the linearized
649  // form of the expression.
650  for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
651    Value *V = LeafOrder[i];
652    LeafMap::iterator It = Leaves.find(V);
653    if (It == Leaves.end())
654      // Node initially thought to be a leaf wasn't.
655      continue;
656    assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
657    APInt Weight = It->second;
658    if (Weight.isMinValue())
659      // Leaf already output or weight reduction eliminated it.
660      continue;
661    // Ensure the leaf is only output once.
662    It->second = 0;
663    Ops.push_back(std::make_pair(V, Weight));
664  }
665
666  // For nilpotent operations or addition there may be no operands, for example
667  // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
668  // in both cases the weight reduces to 0 causing the value to be skipped.
669  if (Ops.empty()) {
670    Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
671    assert(Identity && "Associative operation without identity!");
672    Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1)));
673  }
674
675  return MadeChange;
676}
677
678// RewriteExprTree - Now that the operands for this expression tree are
679// linearized and optimized, emit them in-order.
680void Reassociate::RewriteExprTree(BinaryOperator *I,
681                                  SmallVectorImpl<ValueEntry> &Ops) {
682  assert(Ops.size() > 1 && "Single values should be used directly!");
683
684  // Since our optimizations should never increase the number of operations, the
685  // new expression can usually be written reusing the existing binary operators
686  // from the original expression tree, without creating any new instructions,
687  // though the rewritten expression may have a completely different topology.
688  // We take care to not change anything if the new expression will be the same
689  // as the original.  If more than trivial changes (like commuting operands)
690  // were made then we are obliged to clear out any optional subclass data like
691  // nsw flags.
692
693  /// NodesToRewrite - Nodes from the original expression available for writing
694  /// the new expression into.
695  SmallVector<BinaryOperator*, 8> NodesToRewrite;
696  unsigned Opcode = I->getOpcode();
697  BinaryOperator *Op = I;
698
699  /// NotRewritable - The operands being written will be the leaves of the new
700  /// expression and must not be used as inner nodes (via NodesToRewrite) by
701  /// mistake.  Inner nodes are always reassociable, and usually leaves are not
702  /// (if they were they would have been incorporated into the expression and so
703  /// would not be leaves), so most of the time there is no danger of this.  But
704  /// in rare cases a leaf may become reassociable if an optimization kills uses
705  /// of it, or it may momentarily become reassociable during rewriting (below)
706  /// due it being removed as an operand of one of its uses.  Ensure that misuse
707  /// of leaf nodes as inner nodes cannot occur by remembering all of the future
708  /// leaves and refusing to reuse any of them as inner nodes.
709  SmallPtrSet<Value*, 8> NotRewritable;
710  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
711    NotRewritable.insert(Ops[i].Op);
712
713  // ExpressionChanged - Non-null if the rewritten expression differs from the
714  // original in some non-trivial way, requiring the clearing of optional flags.
715  // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
716  BinaryOperator *ExpressionChanged = 0;
717  for (unsigned i = 0; ; ++i) {
718    // The last operation (which comes earliest in the IR) is special as both
719    // operands will come from Ops, rather than just one with the other being
720    // a subexpression.
721    if (i+2 == Ops.size()) {
722      Value *NewLHS = Ops[i].Op;
723      Value *NewRHS = Ops[i+1].Op;
724      Value *OldLHS = Op->getOperand(0);
725      Value *OldRHS = Op->getOperand(1);
726
727      if (NewLHS == OldLHS && NewRHS == OldRHS)
728        // Nothing changed, leave it alone.
729        break;
730
731      if (NewLHS == OldRHS && NewRHS == OldLHS) {
732        // The order of the operands was reversed.  Swap them.
733        DEBUG(dbgs() << "RA: " << *Op << '\n');
734        Op->swapOperands();
735        DEBUG(dbgs() << "TO: " << *Op << '\n');
736        MadeChange = true;
737        ++NumChanged;
738        break;
739      }
740
741      // The new operation differs non-trivially from the original. Overwrite
742      // the old operands with the new ones.
743      DEBUG(dbgs() << "RA: " << *Op << '\n');
744      if (NewLHS != OldLHS) {
745        BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
746        if (BO && !NotRewritable.count(BO))
747          NodesToRewrite.push_back(BO);
748        Op->setOperand(0, NewLHS);
749      }
750      if (NewRHS != OldRHS) {
751        BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
752        if (BO && !NotRewritable.count(BO))
753          NodesToRewrite.push_back(BO);
754        Op->setOperand(1, NewRHS);
755      }
756      DEBUG(dbgs() << "TO: " << *Op << '\n');
757
758      ExpressionChanged = Op;
759      MadeChange = true;
760      ++NumChanged;
761
762      break;
763    }
764
765    // Not the last operation.  The left-hand side will be a sub-expression
766    // while the right-hand side will be the current element of Ops.
767    Value *NewRHS = Ops[i].Op;
768    if (NewRHS != Op->getOperand(1)) {
769      DEBUG(dbgs() << "RA: " << *Op << '\n');
770      if (NewRHS == Op->getOperand(0)) {
771        // The new right-hand side was already present as the left operand.  If
772        // we are lucky then swapping the operands will sort out both of them.
773        Op->swapOperands();
774      } else {
775        // Overwrite with the new right-hand side.
776        BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
777        if (BO && !NotRewritable.count(BO))
778          NodesToRewrite.push_back(BO);
779        Op->setOperand(1, NewRHS);
780        ExpressionChanged = Op;
781      }
782      DEBUG(dbgs() << "TO: " << *Op << '\n');
783      MadeChange = true;
784      ++NumChanged;
785    }
786
787    // Now deal with the left-hand side.  If this is already an operation node
788    // from the original expression then just rewrite the rest of the expression
789    // into it.
790    BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
791    if (BO && !NotRewritable.count(BO)) {
792      Op = BO;
793      continue;
794    }
795
796    // Otherwise, grab a spare node from the original expression and use that as
797    // the left-hand side.  If there are no nodes left then the optimizers made
798    // an expression with more nodes than the original!  This usually means that
799    // they did something stupid but it might mean that the problem was just too
800    // hard (finding the mimimal number of multiplications needed to realize a
801    // multiplication expression is NP-complete).  Whatever the reason, smart or
802    // stupid, create a new node if there are none left.
803    BinaryOperator *NewOp;
804    if (NodesToRewrite.empty()) {
805      Constant *Undef = UndefValue::get(I->getType());
806      NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
807                                     Undef, Undef, "", I);
808    } else {
809      NewOp = NodesToRewrite.pop_back_val();
810    }
811
812    DEBUG(dbgs() << "RA: " << *Op << '\n');
813    Op->setOperand(0, NewOp);
814    DEBUG(dbgs() << "TO: " << *Op << '\n');
815    ExpressionChanged = Op;
816    MadeChange = true;
817    ++NumChanged;
818    Op = NewOp;
819  }
820
821  // If the expression changed non-trivially then clear out all subclass data
822  // starting from the operator specified in ExpressionChanged, and compactify
823  // the operators to just before the expression root to guarantee that the
824  // expression tree is dominated by all of Ops.
825  if (ExpressionChanged)
826    do {
827      ExpressionChanged->clearSubclassOptionalData();
828      if (ExpressionChanged == I)
829        break;
830      ExpressionChanged->moveBefore(I);
831      ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->use_begin());
832    } while (1);
833
834  // Throw away any left over nodes from the original expression.
835  for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
836    RedoInsts.insert(NodesToRewrite[i]);
837}
838
839/// NegateValue - Insert instructions before the instruction pointed to by BI,
840/// that computes the negative version of the value specified.  The negative
841/// version of the value is returned, and BI is left pointing at the instruction
842/// that should be processed next by the reassociation pass.
843static Value *NegateValue(Value *V, Instruction *BI) {
844  if (Constant *C = dyn_cast<Constant>(V))
845    return ConstantExpr::getNeg(C);
846
847  // We are trying to expose opportunity for reassociation.  One of the things
848  // that we want to do to achieve this is to push a negation as deep into an
849  // expression chain as possible, to expose the add instructions.  In practice,
850  // this means that we turn this:
851  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
852  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
853  // the constants.  We assume that instcombine will clean up the mess later if
854  // we introduce tons of unnecessary negation instructions.
855  //
856  if (BinaryOperator *I = isReassociableOp(V, Instruction::Add)) {
857    // Push the negates through the add.
858    I->setOperand(0, NegateValue(I->getOperand(0), BI));
859    I->setOperand(1, NegateValue(I->getOperand(1), BI));
860
861    // We must move the add instruction here, because the neg instructions do
862    // not dominate the old add instruction in general.  By moving it, we are
863    // assured that the neg instructions we just inserted dominate the
864    // instruction we are about to insert after them.
865    //
866    I->moveBefore(BI);
867    I->setName(I->getName()+".neg");
868    return I;
869  }
870
871  // Okay, we need to materialize a negated version of V with an instruction.
872  // Scan the use lists of V to see if we have one already.
873  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
874    User *U = *UI;
875    if (!BinaryOperator::isNeg(U)) continue;
876
877    // We found one!  Now we have to make sure that the definition dominates
878    // this use.  We do this by moving it to the entry block (if it is a
879    // non-instruction value) or right after the definition.  These negates will
880    // be zapped by reassociate later, so we don't need much finesse here.
881    BinaryOperator *TheNeg = cast<BinaryOperator>(U);
882
883    // Verify that the negate is in this function, V might be a constant expr.
884    if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
885      continue;
886
887    BasicBlock::iterator InsertPt;
888    if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
889      if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
890        InsertPt = II->getNormalDest()->begin();
891      } else {
892        InsertPt = InstInput;
893        ++InsertPt;
894      }
895      while (isa<PHINode>(InsertPt)) ++InsertPt;
896    } else {
897      InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
898    }
899    TheNeg->moveBefore(InsertPt);
900    return TheNeg;
901  }
902
903  // Insert a 'neg' instruction that subtracts the value from zero to get the
904  // negation.
905  return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
906}
907
908/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
909/// X-Y into (X + -Y).
910static bool ShouldBreakUpSubtract(Instruction *Sub) {
911  // If this is a negation, we can't split it up!
912  if (BinaryOperator::isNeg(Sub))
913    return false;
914
915  // Don't bother to break this up unless either the LHS is an associable add or
916  // subtract or if this is only used by one.
917  if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
918      isReassociableOp(Sub->getOperand(0), Instruction::Sub))
919    return true;
920  if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
921      isReassociableOp(Sub->getOperand(1), Instruction::Sub))
922    return true;
923  if (Sub->hasOneUse() &&
924      (isReassociableOp(Sub->use_back(), Instruction::Add) ||
925       isReassociableOp(Sub->use_back(), Instruction::Sub)))
926    return true;
927
928  return false;
929}
930
931/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
932/// only used by an add, transform this into (X+(0-Y)) to promote better
933/// reassociation.
934static BinaryOperator *BreakUpSubtract(Instruction *Sub) {
935  // Convert a subtract into an add and a neg instruction. This allows sub
936  // instructions to be commuted with other add instructions.
937  //
938  // Calculate the negative value of Operand 1 of the sub instruction,
939  // and set it as the RHS of the add instruction we just made.
940  //
941  Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
942  BinaryOperator *New =
943    BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
944  Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
945  Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
946  New->takeName(Sub);
947
948  // Everyone now refers to the add instruction.
949  Sub->replaceAllUsesWith(New);
950  New->setDebugLoc(Sub->getDebugLoc());
951
952  DEBUG(dbgs() << "Negated: " << *New << '\n');
953  return New;
954}
955
956/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
957/// by one, change this into a multiply by a constant to assist with further
958/// reassociation.
959static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
960  Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
961  MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
962
963  BinaryOperator *Mul =
964    BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
965  Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
966  Mul->takeName(Shl);
967  Shl->replaceAllUsesWith(Mul);
968  Mul->setDebugLoc(Shl->getDebugLoc());
969  return Mul;
970}
971
972/// FindInOperandList - Scan backwards and forwards among values with the same
973/// rank as element i to see if X exists.  If X does not exist, return i.  This
974/// is useful when scanning for 'x' when we see '-x' because they both get the
975/// same rank.
976static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
977                                  Value *X) {
978  unsigned XRank = Ops[i].Rank;
979  unsigned e = Ops.size();
980  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
981    if (Ops[j].Op == X)
982      return j;
983  // Scan backwards.
984  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
985    if (Ops[j].Op == X)
986      return j;
987  return i;
988}
989
990/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
991/// and returning the result.  Insert the tree before I.
992static Value *EmitAddTreeOfValues(Instruction *I,
993                                  SmallVectorImpl<WeakVH> &Ops){
994  if (Ops.size() == 1) return Ops.back();
995
996  Value *V1 = Ops.back();
997  Ops.pop_back();
998  Value *V2 = EmitAddTreeOfValues(I, Ops);
999  return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
1000}
1001
1002/// RemoveFactorFromExpression - If V is an expression tree that is a
1003/// multiplication sequence, and if this sequence contains a multiply by Factor,
1004/// remove Factor from the tree and return the new tree.
1005Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
1006  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
1007  if (!BO) return 0;
1008
1009  SmallVector<RepeatedValue, 8> Tree;
1010  MadeChange |= LinearizeExprTree(BO, Tree);
1011  SmallVector<ValueEntry, 8> Factors;
1012  Factors.reserve(Tree.size());
1013  for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1014    RepeatedValue E = Tree[i];
1015    Factors.append(E.second.getZExtValue(),
1016                   ValueEntry(getRank(E.first), E.first));
1017  }
1018
1019  bool FoundFactor = false;
1020  bool NeedsNegate = false;
1021  for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1022    if (Factors[i].Op == Factor) {
1023      FoundFactor = true;
1024      Factors.erase(Factors.begin()+i);
1025      break;
1026    }
1027
1028    // If this is a negative version of this factor, remove it.
1029    if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
1030      if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1031        if (FC1->getValue() == -FC2->getValue()) {
1032          FoundFactor = NeedsNegate = true;
1033          Factors.erase(Factors.begin()+i);
1034          break;
1035        }
1036  }
1037
1038  if (!FoundFactor) {
1039    // Make sure to restore the operands to the expression tree.
1040    RewriteExprTree(BO, Factors);
1041    return 0;
1042  }
1043
1044  BasicBlock::iterator InsertPt = BO; ++InsertPt;
1045
1046  // If this was just a single multiply, remove the multiply and return the only
1047  // remaining operand.
1048  if (Factors.size() == 1) {
1049    RedoInsts.insert(BO);
1050    V = Factors[0].Op;
1051  } else {
1052    RewriteExprTree(BO, Factors);
1053    V = BO;
1054  }
1055
1056  if (NeedsNegate)
1057    V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
1058
1059  return V;
1060}
1061
1062/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
1063/// add its operands as factors, otherwise add V to the list of factors.
1064///
1065/// Ops is the top-level list of add operands we're trying to factor.
1066static void FindSingleUseMultiplyFactors(Value *V,
1067                                         SmallVectorImpl<Value*> &Factors,
1068                                       const SmallVectorImpl<ValueEntry> &Ops) {
1069  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
1070  if (!BO) {
1071    Factors.push_back(V);
1072    return;
1073  }
1074
1075  // Otherwise, add the LHS and RHS to the list of factors.
1076  FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
1077  FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
1078}
1079
1080/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
1081/// instruction.  This optimizes based on identities.  If it can be reduced to
1082/// a single Value, it is returned, otherwise the Ops list is mutated as
1083/// necessary.
1084static Value *OptimizeAndOrXor(unsigned Opcode,
1085                               SmallVectorImpl<ValueEntry> &Ops) {
1086  // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1087  // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1088  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1089    // First, check for X and ~X in the operand list.
1090    assert(i < Ops.size());
1091    if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
1092      Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1093      unsigned FoundX = FindInOperandList(Ops, i, X);
1094      if (FoundX != i) {
1095        if (Opcode == Instruction::And)   // ...&X&~X = 0
1096          return Constant::getNullValue(X->getType());
1097
1098        if (Opcode == Instruction::Or)    // ...|X|~X = -1
1099          return Constant::getAllOnesValue(X->getType());
1100      }
1101    }
1102
1103    // Next, check for duplicate pairs of values, which we assume are next to
1104    // each other, due to our sorting criteria.
1105    assert(i < Ops.size());
1106    if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1107      if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1108        // Drop duplicate values for And and Or.
1109        Ops.erase(Ops.begin()+i);
1110        --i; --e;
1111        ++NumAnnihil;
1112        continue;
1113      }
1114
1115      // Drop pairs of values for Xor.
1116      assert(Opcode == Instruction::Xor);
1117      if (e == 2)
1118        return Constant::getNullValue(Ops[0].Op->getType());
1119
1120      // Y ^ X^X -> Y
1121      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1122      i -= 1; e -= 2;
1123      ++NumAnnihil;
1124    }
1125  }
1126  return 0;
1127}
1128
1129/// Helper funciton of CombineXorOpnd(). It creates a bitwise-and
1130/// instruction with the given two operands, and return the resulting
1131/// instruction. There are two special cases: 1) if the constant operand is 0,
1132/// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1133/// be returned.
1134static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1135                             const APInt &ConstOpnd) {
1136  if (ConstOpnd != 0) {
1137    if (!ConstOpnd.isAllOnesValue()) {
1138      LLVMContext &Ctx = Opnd->getType()->getContext();
1139      Instruction *I;
1140      I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
1141                                    "and.ra", InsertBefore);
1142      I->setDebugLoc(InsertBefore->getDebugLoc());
1143      return I;
1144    }
1145    return Opnd;
1146  }
1147  return 0;
1148}
1149
1150// Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1151// into "R ^ C", where C would be 0, and R is a symbolic value.
1152//
1153// If it was successful, true is returned, and the "R" and "C" is returned
1154// via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1155// and both "Res" and "ConstOpnd" remain unchanged.
1156//
1157bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1158                                 APInt &ConstOpnd, Value *&Res) {
1159  // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1160  //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
1161  //                       = (x & ~c1) ^ (c1 ^ c2)
1162  // It is useful only when c1 == c2.
1163  if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
1164    if (!Opnd1->getValue()->hasOneUse())
1165      return false;
1166
1167    const APInt &C1 = Opnd1->getConstPart();
1168    if (C1 != ConstOpnd)
1169      return false;
1170
1171    Value *X = Opnd1->getSymbolicPart();
1172    Res = createAndInstr(I, X, ~C1);
1173    // ConstOpnd was C2, now C1 ^ C2.
1174    ConstOpnd ^= C1;
1175
1176    if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1177      RedoInsts.insert(T);
1178    return true;
1179  }
1180  return false;
1181}
1182
1183
1184// Helper function of OptimizeXor(). It tries to simplify
1185// "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1186// symbolic value.
1187//
1188// If it was successful, true is returned, and the "R" and "C" is returned
1189// via "Res" and "ConstOpnd", respectively (If the entire expression is
1190// evaluated to a constant, the Res is set to NULL); otherwise, false is
1191// returned, and both "Res" and "ConstOpnd" remain unchanged.
1192bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
1193                                 APInt &ConstOpnd, Value *&Res) {
1194  Value *X = Opnd1->getSymbolicPart();
1195  if (X != Opnd2->getSymbolicPart())
1196    return false;
1197
1198  // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1199  int DeadInstNum = 1;
1200  if (Opnd1->getValue()->hasOneUse())
1201    DeadInstNum++;
1202  if (Opnd2->getValue()->hasOneUse())
1203    DeadInstNum++;
1204
1205  // Xor-Rule 2:
1206  //  (x | c1) ^ (x & c2)
1207  //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1208  //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
1209  //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
1210  //
1211  if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1212    if (Opnd2->isOrExpr())
1213      std::swap(Opnd1, Opnd2);
1214
1215    const APInt &C1 = Opnd1->getConstPart();
1216    const APInt &C2 = Opnd2->getConstPart();
1217    APInt C3((~C1) ^ C2);
1218
1219    // Do not increase code size!
1220    if (C3 != 0 && !C3.isAllOnesValue()) {
1221      int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1222      if (NewInstNum > DeadInstNum)
1223        return false;
1224    }
1225
1226    Res = createAndInstr(I, X, C3);
1227    ConstOpnd ^= C1;
1228
1229  } else if (Opnd1->isOrExpr()) {
1230    // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1231    //
1232    const APInt &C1 = Opnd1->getConstPart();
1233    const APInt &C2 = Opnd2->getConstPart();
1234    APInt C3 = C1 ^ C2;
1235
1236    // Do not increase code size
1237    if (C3 != 0 && !C3.isAllOnesValue()) {
1238      int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1239      if (NewInstNum > DeadInstNum)
1240        return false;
1241    }
1242
1243    Res = createAndInstr(I, X, C3);
1244    ConstOpnd ^= C3;
1245  } else {
1246    // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1247    //
1248    const APInt &C1 = Opnd1->getConstPart();
1249    const APInt &C2 = Opnd2->getConstPart();
1250    APInt C3 = C1 ^ C2;
1251    Res = createAndInstr(I, X, C3);
1252  }
1253
1254  // Put the original operands in the Redo list; hope they will be deleted
1255  // as dead code.
1256  if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1257    RedoInsts.insert(T);
1258  if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1259    RedoInsts.insert(T);
1260
1261  return true;
1262}
1263
1264/// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1265/// to a single Value, it is returned, otherwise the Ops list is mutated as
1266/// necessary.
1267Value *Reassociate::OptimizeXor(Instruction *I,
1268                                SmallVectorImpl<ValueEntry> &Ops) {
1269  if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1270    return V;
1271
1272  if (Ops.size() == 1)
1273    return 0;
1274
1275  SmallVector<XorOpnd, 8> Opnds;
1276  SmallVector<XorOpnd*, 8> OpndPtrs;
1277  Type *Ty = Ops[0].Op->getType();
1278  APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
1279
1280  // Step 1: Convert ValueEntry to XorOpnd
1281  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1282    Value *V = Ops[i].Op;
1283    if (!isa<ConstantInt>(V)) {
1284      XorOpnd O(V);
1285      O.setSymbolicRank(getRank(O.getSymbolicPart()));
1286      Opnds.push_back(O);
1287    } else
1288      ConstOpnd ^= cast<ConstantInt>(V)->getValue();
1289  }
1290
1291  // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1292  //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1293  //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1294  //  with the previous loop --- the iterator of the "Opnds" may be invalidated
1295  //  when new elements are added to the vector.
1296  for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1297    OpndPtrs.push_back(&Opnds[i]);
1298
1299  // Step 2: Sort the Xor-Operands in a way such that the operands containing
1300  //  the same symbolic value cluster together. For instance, the input operand
1301  //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1302  //  ("x | 123", "x & 789", "y & 456").
1303  std::sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor());
1304
1305  // Step 3: Combine adjacent operands
1306  XorOpnd *PrevOpnd = 0;
1307  bool Changed = false;
1308  for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
1309    XorOpnd *CurrOpnd = OpndPtrs[i];
1310    // The combined value
1311    Value *CV;
1312
1313    // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1314    if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1315      Changed = true;
1316      if (CV)
1317        *CurrOpnd = XorOpnd(CV);
1318      else {
1319        CurrOpnd->Invalidate();
1320        continue;
1321      }
1322    }
1323
1324    if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1325      PrevOpnd = CurrOpnd;
1326      continue;
1327    }
1328
1329    // step 3.2: When previous and current operands share the same symbolic
1330    //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1331    //
1332    if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1333      // Remove previous operand
1334      PrevOpnd->Invalidate();
1335      if (CV) {
1336        *CurrOpnd = XorOpnd(CV);
1337        PrevOpnd = CurrOpnd;
1338      } else {
1339        CurrOpnd->Invalidate();
1340        PrevOpnd = 0;
1341      }
1342      Changed = true;
1343    }
1344  }
1345
1346  // Step 4: Reassemble the Ops
1347  if (Changed) {
1348    Ops.clear();
1349    for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1350      XorOpnd &O = Opnds[i];
1351      if (O.isInvalid())
1352        continue;
1353      ValueEntry VE(getRank(O.getValue()), O.getValue());
1354      Ops.push_back(VE);
1355    }
1356    if (ConstOpnd != 0) {
1357      Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
1358      ValueEntry VE(getRank(C), C);
1359      Ops.push_back(VE);
1360    }
1361    int Sz = Ops.size();
1362    if (Sz == 1)
1363      return Ops.back().Op;
1364    else if (Sz == 0) {
1365      assert(ConstOpnd == 0);
1366      return ConstantInt::get(Ty->getContext(), ConstOpnd);
1367    }
1368  }
1369
1370  return 0;
1371}
1372
1373/// OptimizeAdd - Optimize a series of operands to an 'add' instruction.  This
1374/// optimizes based on identities.  If it can be reduced to a single Value, it
1375/// is returned, otherwise the Ops list is mutated as necessary.
1376Value *Reassociate::OptimizeAdd(Instruction *I,
1377                                SmallVectorImpl<ValueEntry> &Ops) {
1378  // Scan the operand lists looking for X and -X pairs.  If we find any, we
1379  // can simplify the expression. X+-X == 0.  While we're at it, scan for any
1380  // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1381  //
1382  // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
1383  //
1384  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1385    Value *TheOp = Ops[i].Op;
1386    // Check to see if we've seen this operand before.  If so, we factor all
1387    // instances of the operand together.  Due to our sorting criteria, we know
1388    // that these need to be next to each other in the vector.
1389    if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1390      // Rescan the list, remove all instances of this operand from the expr.
1391      unsigned NumFound = 0;
1392      do {
1393        Ops.erase(Ops.begin()+i);
1394        ++NumFound;
1395      } while (i != Ops.size() && Ops[i].Op == TheOp);
1396
1397      DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
1398      ++NumFactor;
1399
1400      // Insert a new multiply.
1401      Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
1402      Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
1403
1404      // Now that we have inserted a multiply, optimize it. This allows us to
1405      // handle cases that require multiple factoring steps, such as this:
1406      // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1407      RedoInsts.insert(cast<Instruction>(Mul));
1408
1409      // If every add operand was a duplicate, return the multiply.
1410      if (Ops.empty())
1411        return Mul;
1412
1413      // Otherwise, we had some input that didn't have the dupe, such as
1414      // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
1415      // things being added by this operation.
1416      Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1417
1418      --i;
1419      e = Ops.size();
1420      continue;
1421    }
1422
1423    // Check for X and -X in the operand list.
1424    if (!BinaryOperator::isNeg(TheOp))
1425      continue;
1426
1427    Value *X = BinaryOperator::getNegArgument(TheOp);
1428    unsigned FoundX = FindInOperandList(Ops, i, X);
1429    if (FoundX == i)
1430      continue;
1431
1432    // Remove X and -X from the operand list.
1433    if (Ops.size() == 2)
1434      return Constant::getNullValue(X->getType());
1435
1436    Ops.erase(Ops.begin()+i);
1437    if (i < FoundX)
1438      --FoundX;
1439    else
1440      --i;   // Need to back up an extra one.
1441    Ops.erase(Ops.begin()+FoundX);
1442    ++NumAnnihil;
1443    --i;     // Revisit element.
1444    e -= 2;  // Removed two elements.
1445  }
1446
1447  // Scan the operand list, checking to see if there are any common factors
1448  // between operands.  Consider something like A*A+A*B*C+D.  We would like to
1449  // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1450  // To efficiently find this, we count the number of times a factor occurs
1451  // for any ADD operands that are MULs.
1452  DenseMap<Value*, unsigned> FactorOccurrences;
1453
1454  // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1455  // where they are actually the same multiply.
1456  unsigned MaxOcc = 0;
1457  Value *MaxOccVal = 0;
1458  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1459    BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1460    if (!BOp)
1461      continue;
1462
1463    // Compute all of the factors of this added value.
1464    SmallVector<Value*, 8> Factors;
1465    FindSingleUseMultiplyFactors(BOp, Factors, Ops);
1466    assert(Factors.size() > 1 && "Bad linearize!");
1467
1468    // Add one to FactorOccurrences for each unique factor in this op.
1469    SmallPtrSet<Value*, 8> Duplicates;
1470    for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1471      Value *Factor = Factors[i];
1472      if (!Duplicates.insert(Factor)) continue;
1473
1474      unsigned Occ = ++FactorOccurrences[Factor];
1475      if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
1476
1477      // If Factor is a negative constant, add the negated value as a factor
1478      // because we can percolate the negate out.  Watch for minint, which
1479      // cannot be positivified.
1480      if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
1481        if (CI->isNegative() && !CI->isMinValue(true)) {
1482          Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1483          assert(!Duplicates.count(Factor) &&
1484                 "Shouldn't have two constant factors, missed a canonicalize");
1485
1486          unsigned Occ = ++FactorOccurrences[Factor];
1487          if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
1488        }
1489    }
1490  }
1491
1492  // If any factor occurred more than one time, we can pull it out.
1493  if (MaxOcc > 1) {
1494    DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
1495    ++NumFactor;
1496
1497    // Create a new instruction that uses the MaxOccVal twice.  If we don't do
1498    // this, we could otherwise run into situations where removing a factor
1499    // from an expression will drop a use of maxocc, and this can cause
1500    // RemoveFactorFromExpression on successive values to behave differently.
1501    Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
1502    SmallVector<WeakVH, 4> NewMulOps;
1503    for (unsigned i = 0; i != Ops.size(); ++i) {
1504      // Only try to remove factors from expressions we're allowed to.
1505      BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1506      if (!BOp)
1507        continue;
1508
1509      if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1510        // The factorized operand may occur several times.  Convert them all in
1511        // one fell swoop.
1512        for (unsigned j = Ops.size(); j != i;) {
1513          --j;
1514          if (Ops[j].Op == Ops[i].Op) {
1515            NewMulOps.push_back(V);
1516            Ops.erase(Ops.begin()+j);
1517          }
1518        }
1519        --i;
1520      }
1521    }
1522
1523    // No need for extra uses anymore.
1524    delete DummyInst;
1525
1526    unsigned NumAddedValues = NewMulOps.size();
1527    Value *V = EmitAddTreeOfValues(I, NewMulOps);
1528
1529    // Now that we have inserted the add tree, optimize it. This allows us to
1530    // handle cases that require multiple factoring steps, such as this:
1531    // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
1532    assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1533    (void)NumAddedValues;
1534    if (Instruction *VI = dyn_cast<Instruction>(V))
1535      RedoInsts.insert(VI);
1536
1537    // Create the multiply.
1538    Instruction *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
1539
1540    // Rerun associate on the multiply in case the inner expression turned into
1541    // a multiply.  We want to make sure that we keep things in canonical form.
1542    RedoInsts.insert(V2);
1543
1544    // If every add operand included the factor (e.g. "A*B + A*C"), then the
1545    // entire result expression is just the multiply "A*(B+C)".
1546    if (Ops.empty())
1547      return V2;
1548
1549    // Otherwise, we had some input that didn't have the factor, such as
1550    // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
1551    // things being added by this operation.
1552    Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1553  }
1554
1555  return 0;
1556}
1557
1558namespace {
1559  /// \brief Predicate tests whether a ValueEntry's op is in a map.
1560  struct IsValueInMap {
1561    const DenseMap<Value *, unsigned> &Map;
1562
1563    IsValueInMap(const DenseMap<Value *, unsigned> &Map) : Map(Map) {}
1564
1565    bool operator()(const ValueEntry &Entry) {
1566      return Map.find(Entry.Op) != Map.end();
1567    }
1568  };
1569}
1570
1571/// \brief Build up a vector of value/power pairs factoring a product.
1572///
1573/// Given a series of multiplication operands, build a vector of factors and
1574/// the powers each is raised to when forming the final product. Sort them in
1575/// the order of descending power.
1576///
1577///      (x*x)          -> [(x, 2)]
1578///     ((x*x)*x)       -> [(x, 3)]
1579///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1580///
1581/// \returns Whether any factors have a power greater than one.
1582bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1583                                         SmallVectorImpl<Factor> &Factors) {
1584  // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1585  // Compute the sum of powers of simplifiable factors.
1586  unsigned FactorPowerSum = 0;
1587  for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1588    Value *Op = Ops[Idx-1].Op;
1589
1590    // Count the number of occurrences of this value.
1591    unsigned Count = 1;
1592    for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1593      ++Count;
1594    // Track for simplification all factors which occur 2 or more times.
1595    if (Count > 1)
1596      FactorPowerSum += Count;
1597  }
1598
1599  // We can only simplify factors if the sum of the powers of our simplifiable
1600  // factors is 4 or higher. When that is the case, we will *always* have
1601  // a simplification. This is an important invariant to prevent cyclicly
1602  // trying to simplify already minimal formations.
1603  if (FactorPowerSum < 4)
1604    return false;
1605
1606  // Now gather the simplifiable factors, removing them from Ops.
1607  FactorPowerSum = 0;
1608  for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1609    Value *Op = Ops[Idx-1].Op;
1610
1611    // Count the number of occurrences of this value.
1612    unsigned Count = 1;
1613    for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1614      ++Count;
1615    if (Count == 1)
1616      continue;
1617    // Move an even number of occurrences to Factors.
1618    Count &= ~1U;
1619    Idx -= Count;
1620    FactorPowerSum += Count;
1621    Factors.push_back(Factor(Op, Count));
1622    Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1623  }
1624
1625  // None of the adjustments above should have reduced the sum of factor powers
1626  // below our mininum of '4'.
1627  assert(FactorPowerSum >= 4);
1628
1629  std::sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
1630  return true;
1631}
1632
1633/// \brief Build a tree of multiplies, computing the product of Ops.
1634static Value *buildMultiplyTree(IRBuilder<> &Builder,
1635                                SmallVectorImpl<Value*> &Ops) {
1636  if (Ops.size() == 1)
1637    return Ops.back();
1638
1639  Value *LHS = Ops.pop_back_val();
1640  do {
1641    LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1642  } while (!Ops.empty());
1643
1644  return LHS;
1645}
1646
1647/// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1648///
1649/// Given a vector of values raised to various powers, where no two values are
1650/// equal and the powers are sorted in decreasing order, compute the minimal
1651/// DAG of multiplies to compute the final product, and return that product
1652/// value.
1653Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1654                                            SmallVectorImpl<Factor> &Factors) {
1655  assert(Factors[0].Power);
1656  SmallVector<Value *, 4> OuterProduct;
1657  for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1658       Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1659    if (Factors[Idx].Power != Factors[LastIdx].Power) {
1660      LastIdx = Idx;
1661      continue;
1662    }
1663
1664    // We want to multiply across all the factors with the same power so that
1665    // we can raise them to that power as a single entity. Build a mini tree
1666    // for that.
1667    SmallVector<Value *, 4> InnerProduct;
1668    InnerProduct.push_back(Factors[LastIdx].Base);
1669    do {
1670      InnerProduct.push_back(Factors[Idx].Base);
1671      ++Idx;
1672    } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1673
1674    // Reset the base value of the first factor to the new expression tree.
1675    // We'll remove all the factors with the same power in a second pass.
1676    Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1677    if (Instruction *MI = dyn_cast<Instruction>(M))
1678      RedoInsts.insert(MI);
1679
1680    LastIdx = Idx;
1681  }
1682  // Unique factors with equal powers -- we've folded them into the first one's
1683  // base.
1684  Factors.erase(std::unique(Factors.begin(), Factors.end(),
1685                            Factor::PowerEqual()),
1686                Factors.end());
1687
1688  // Iteratively collect the base of each factor with an add power into the
1689  // outer product, and halve each power in preparation for squaring the
1690  // expression.
1691  for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1692    if (Factors[Idx].Power & 1)
1693      OuterProduct.push_back(Factors[Idx].Base);
1694    Factors[Idx].Power >>= 1;
1695  }
1696  if (Factors[0].Power) {
1697    Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1698    OuterProduct.push_back(SquareRoot);
1699    OuterProduct.push_back(SquareRoot);
1700  }
1701  if (OuterProduct.size() == 1)
1702    return OuterProduct.front();
1703
1704  Value *V = buildMultiplyTree(Builder, OuterProduct);
1705  return V;
1706}
1707
1708Value *Reassociate::OptimizeMul(BinaryOperator *I,
1709                                SmallVectorImpl<ValueEntry> &Ops) {
1710  // We can only optimize the multiplies when there is a chain of more than
1711  // three, such that a balanced tree might require fewer total multiplies.
1712  if (Ops.size() < 4)
1713    return 0;
1714
1715  // Try to turn linear trees of multiplies without other uses of the
1716  // intermediate stages into minimal multiply DAGs with perfect sub-expression
1717  // re-use.
1718  SmallVector<Factor, 4> Factors;
1719  if (!collectMultiplyFactors(Ops, Factors))
1720    return 0; // All distinct factors, so nothing left for us to do.
1721
1722  IRBuilder<> Builder(I);
1723  Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1724  if (Ops.empty())
1725    return V;
1726
1727  ValueEntry NewEntry = ValueEntry(getRank(V), V);
1728  Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
1729  return 0;
1730}
1731
1732Value *Reassociate::OptimizeExpression(BinaryOperator *I,
1733                                       SmallVectorImpl<ValueEntry> &Ops) {
1734  // Now that we have the linearized expression tree, try to optimize it.
1735  // Start by folding any constants that we found.
1736  Constant *Cst = 0;
1737  unsigned Opcode = I->getOpcode();
1738  while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1739    Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1740    Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1741  }
1742  // If there was nothing but constants then we are done.
1743  if (Ops.empty())
1744    return Cst;
1745
1746  // Put the combined constant back at the end of the operand list, except if
1747  // there is no point.  For example, an add of 0 gets dropped here, while a
1748  // multiplication by zero turns the whole expression into zero.
1749  if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1750    if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1751      return Cst;
1752    Ops.push_back(ValueEntry(0, Cst));
1753  }
1754
1755  if (Ops.size() == 1) return Ops[0].Op;
1756
1757  // Handle destructive annihilation due to identities between elements in the
1758  // argument list here.
1759  unsigned NumOps = Ops.size();
1760  switch (Opcode) {
1761  default: break;
1762  case Instruction::And:
1763  case Instruction::Or:
1764    if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1765      return Result;
1766    break;
1767
1768  case Instruction::Xor:
1769    if (Value *Result = OptimizeXor(I, Ops))
1770      return Result;
1771    break;
1772
1773  case Instruction::Add:
1774    if (Value *Result = OptimizeAdd(I, Ops))
1775      return Result;
1776    break;
1777
1778  case Instruction::Mul:
1779    if (Value *Result = OptimizeMul(I, Ops))
1780      return Result;
1781    break;
1782  }
1783
1784  if (Ops.size() != NumOps)
1785    return OptimizeExpression(I, Ops);
1786  return 0;
1787}
1788
1789/// EraseInst - Zap the given instruction, adding interesting operands to the
1790/// work list.
1791void Reassociate::EraseInst(Instruction *I) {
1792  assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1793  SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1794  // Erase the dead instruction.
1795  ValueRankMap.erase(I);
1796  RedoInsts.remove(I);
1797  I->eraseFromParent();
1798  // Optimize its operands.
1799  SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
1800  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1801    if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1802      // If this is a node in an expression tree, climb to the expression root
1803      // and add that since that's where optimization actually happens.
1804      unsigned Opcode = Op->getOpcode();
1805      while (Op->hasOneUse() && Op->use_back()->getOpcode() == Opcode &&
1806             Visited.insert(Op))
1807        Op = Op->use_back();
1808      RedoInsts.insert(Op);
1809    }
1810}
1811
1812/// OptimizeInst - Inspect and optimize the given instruction. Note that erasing
1813/// instructions is not allowed.
1814void Reassociate::OptimizeInst(Instruction *I) {
1815  // Only consider operations that we understand.
1816  if (!isa<BinaryOperator>(I))
1817    return;
1818
1819  if (I->getOpcode() == Instruction::Shl &&
1820      isa<ConstantInt>(I->getOperand(1)))
1821    // If an operand of this shift is a reassociable multiply, or if the shift
1822    // is used by a reassociable multiply or add, turn into a multiply.
1823    if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
1824        (I->hasOneUse() &&
1825         (isReassociableOp(I->use_back(), Instruction::Mul) ||
1826          isReassociableOp(I->use_back(), Instruction::Add)))) {
1827      Instruction *NI = ConvertShiftToMul(I);
1828      RedoInsts.insert(I);
1829      MadeChange = true;
1830      I = NI;
1831    }
1832
1833  // Floating point binary operators are not associative, but we can still
1834  // commute (some) of them, to canonicalize the order of their operands.
1835  // This can potentially expose more CSE opportunities, and makes writing
1836  // other transformations simpler.
1837  if ((I->getType()->isFloatingPointTy() || I->getType()->isVectorTy())) {
1838    // FAdd and FMul can be commuted.
1839    if (I->getOpcode() != Instruction::FMul &&
1840        I->getOpcode() != Instruction::FAdd)
1841      return;
1842
1843    Value *LHS = I->getOperand(0);
1844    Value *RHS = I->getOperand(1);
1845    unsigned LHSRank = getRank(LHS);
1846    unsigned RHSRank = getRank(RHS);
1847
1848    // Sort the operands by rank.
1849    if (RHSRank < LHSRank) {
1850      I->setOperand(0, RHS);
1851      I->setOperand(1, LHS);
1852    }
1853
1854    return;
1855  }
1856
1857  // Do not reassociate boolean (i1) expressions.  We want to preserve the
1858  // original order of evaluation for short-circuited comparisons that
1859  // SimplifyCFG has folded to AND/OR expressions.  If the expression
1860  // is not further optimized, it is likely to be transformed back to a
1861  // short-circuited form for code gen, and the source order may have been
1862  // optimized for the most likely conditions.
1863  if (I->getType()->isIntegerTy(1))
1864    return;
1865
1866  // If this is a subtract instruction which is not already in negate form,
1867  // see if we can convert it to X+-Y.
1868  if (I->getOpcode() == Instruction::Sub) {
1869    if (ShouldBreakUpSubtract(I)) {
1870      Instruction *NI = BreakUpSubtract(I);
1871      RedoInsts.insert(I);
1872      MadeChange = true;
1873      I = NI;
1874    } else if (BinaryOperator::isNeg(I)) {
1875      // Otherwise, this is a negation.  See if the operand is a multiply tree
1876      // and if this is not an inner node of a multiply tree.
1877      if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
1878          (!I->hasOneUse() ||
1879           !isReassociableOp(I->use_back(), Instruction::Mul))) {
1880        Instruction *NI = LowerNegateToMultiply(I);
1881        RedoInsts.insert(I);
1882        MadeChange = true;
1883        I = NI;
1884      }
1885    }
1886  }
1887
1888  // If this instruction is an associative binary operator, process it.
1889  if (!I->isAssociative()) return;
1890  BinaryOperator *BO = cast<BinaryOperator>(I);
1891
1892  // If this is an interior node of a reassociable tree, ignore it until we
1893  // get to the root of the tree, to avoid N^2 analysis.
1894  unsigned Opcode = BO->getOpcode();
1895  if (BO->hasOneUse() && BO->use_back()->getOpcode() == Opcode)
1896    return;
1897
1898  // If this is an add tree that is used by a sub instruction, ignore it
1899  // until we process the subtract.
1900  if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
1901      cast<Instruction>(BO->use_back())->getOpcode() == Instruction::Sub)
1902    return;
1903
1904  ReassociateExpression(BO);
1905}
1906
1907void Reassociate::ReassociateExpression(BinaryOperator *I) {
1908
1909  // First, walk the expression tree, linearizing the tree, collecting the
1910  // operand information.
1911  SmallVector<RepeatedValue, 8> Tree;
1912  MadeChange |= LinearizeExprTree(I, Tree);
1913  SmallVector<ValueEntry, 8> Ops;
1914  Ops.reserve(Tree.size());
1915  for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1916    RepeatedValue E = Tree[i];
1917    Ops.append(E.second.getZExtValue(),
1918               ValueEntry(getRank(E.first), E.first));
1919  }
1920
1921  DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
1922
1923  // Now that we have linearized the tree to a list and have gathered all of
1924  // the operands and their ranks, sort the operands by their rank.  Use a
1925  // stable_sort so that values with equal ranks will have their relative
1926  // positions maintained (and so the compiler is deterministic).  Note that
1927  // this sorts so that the highest ranking values end up at the beginning of
1928  // the vector.
1929  std::stable_sort(Ops.begin(), Ops.end());
1930
1931  // OptimizeExpression - Now that we have the expression tree in a convenient
1932  // sorted form, optimize it globally if possible.
1933  if (Value *V = OptimizeExpression(I, Ops)) {
1934    if (V == I)
1935      // Self-referential expression in unreachable code.
1936      return;
1937    // This expression tree simplified to something that isn't a tree,
1938    // eliminate it.
1939    DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
1940    I->replaceAllUsesWith(V);
1941    if (Instruction *VI = dyn_cast<Instruction>(V))
1942      VI->setDebugLoc(I->getDebugLoc());
1943    RedoInsts.insert(I);
1944    ++NumAnnihil;
1945    return;
1946  }
1947
1948  // We want to sink immediates as deeply as possible except in the case where
1949  // this is a multiply tree used only by an add, and the immediate is a -1.
1950  // In this case we reassociate to put the negation on the outside so that we
1951  // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1952  if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
1953      cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
1954      isa<ConstantInt>(Ops.back().Op) &&
1955      cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
1956    ValueEntry Tmp = Ops.pop_back_val();
1957    Ops.insert(Ops.begin(), Tmp);
1958  }
1959
1960  DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
1961
1962  if (Ops.size() == 1) {
1963    if (Ops[0].Op == I)
1964      // Self-referential expression in unreachable code.
1965      return;
1966
1967    // This expression tree simplified to something that isn't a tree,
1968    // eliminate it.
1969    I->replaceAllUsesWith(Ops[0].Op);
1970    if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
1971      OI->setDebugLoc(I->getDebugLoc());
1972    RedoInsts.insert(I);
1973    return;
1974  }
1975
1976  // Now that we ordered and optimized the expressions, splat them back into
1977  // the expression tree, removing any unneeded nodes.
1978  RewriteExprTree(I, Ops);
1979}
1980
1981bool Reassociate::runOnFunction(Function &F) {
1982  // Calculate the rank map for F
1983  BuildRankMap(F);
1984
1985  MadeChange = false;
1986  for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
1987    // Optimize every instruction in the basic block.
1988    for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
1989      if (isInstructionTriviallyDead(II)) {
1990        EraseInst(II++);
1991      } else {
1992        OptimizeInst(II);
1993        assert(II->getParent() == BI && "Moved to a different block!");
1994        ++II;
1995      }
1996
1997    // If this produced extra instructions to optimize, handle them now.
1998    while (!RedoInsts.empty()) {
1999      Instruction *I = RedoInsts.pop_back_val();
2000      if (isInstructionTriviallyDead(I))
2001        EraseInst(I);
2002      else
2003        OptimizeInst(I);
2004    }
2005  }
2006
2007  // We are done with the rank map.
2008  RankMap.clear();
2009  ValueRankMap.clear();
2010
2011  return MadeChange;
2012}
2013