1//===- InstCombineShifts.cpp ----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitShl, visitLShr, and visitAShr functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Analysis/ConstantFolding.h"
16#include "llvm/Analysis/InstructionSimplify.h"
17#include "llvm/IR/IntrinsicInst.h"
18#include "llvm/Support/PatternMatch.h"
19using namespace llvm;
20using namespace PatternMatch;
21
22Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
23  assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
24  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
25
26  // See if we can fold away this shift.
27  if (SimplifyDemandedInstructionBits(I))
28    return &I;
29
30  // Try to fold constant and into select arguments.
31  if (isa<Constant>(Op0))
32    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
33      if (Instruction *R = FoldOpIntoSelect(I, SI))
34        return R;
35
36  if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
37    if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
38      return Res;
39
40  // X shift (A srem B) -> X shift (A and B-1) iff B is a power of 2.
41  // Because shifts by negative values (which could occur if A were negative)
42  // are undefined.
43  Value *A; const APInt *B;
44  if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Power2(B)))) {
45    // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
46    // demand the sign bit (and many others) here??
47    Value *Rem = Builder->CreateAnd(A, ConstantInt::get(I.getType(), *B-1),
48                                    Op1->getName());
49    I.setOperand(1, Rem);
50    return &I;
51  }
52
53  return 0;
54}
55
56/// CanEvaluateShifted - See if we can compute the specified value, but shifted
57/// logically to the left or right by some number of bits.  This should return
58/// true if the expression can be computed for the same cost as the current
59/// expression tree.  This is used to eliminate extraneous shifting from things
60/// like:
61///      %C = shl i128 %A, 64
62///      %D = shl i128 %B, 96
63///      %E = or i128 %C, %D
64///      %F = lshr i128 %E, 64
65/// where the client will ask if E can be computed shifted right by 64-bits.  If
66/// this succeeds, the GetShiftedValue function will be called to produce the
67/// value.
68static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift,
69                               InstCombiner &IC) {
70  // We can always evaluate constants shifted.
71  if (isa<Constant>(V))
72    return true;
73
74  Instruction *I = dyn_cast<Instruction>(V);
75  if (!I) return false;
76
77  // If this is the opposite shift, we can directly reuse the input of the shift
78  // if the needed bits are already zero in the input.  This allows us to reuse
79  // the value which means that we don't care if the shift has multiple uses.
80  //  TODO:  Handle opposite shift by exact value.
81  ConstantInt *CI = 0;
82  if ((isLeftShift && match(I, m_LShr(m_Value(), m_ConstantInt(CI)))) ||
83      (!isLeftShift && match(I, m_Shl(m_Value(), m_ConstantInt(CI))))) {
84    if (CI->getZExtValue() == NumBits) {
85      // TODO: Check that the input bits are already zero with MaskedValueIsZero
86#if 0
87      // If this is a truncate of a logical shr, we can truncate it to a smaller
88      // lshr iff we know that the bits we would otherwise be shifting in are
89      // already zeros.
90      uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
91      uint32_t BitWidth = Ty->getScalarSizeInBits();
92      if (MaskedValueIsZero(I->getOperand(0),
93            APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
94          CI->getLimitedValue(BitWidth) < BitWidth) {
95        return CanEvaluateTruncated(I->getOperand(0), Ty);
96      }
97#endif
98
99    }
100  }
101
102  // We can't mutate something that has multiple uses: doing so would
103  // require duplicating the instruction in general, which isn't profitable.
104  if (!I->hasOneUse()) return false;
105
106  switch (I->getOpcode()) {
107  default: return false;
108  case Instruction::And:
109  case Instruction::Or:
110  case Instruction::Xor:
111    // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
112    return CanEvaluateShifted(I->getOperand(0), NumBits, isLeftShift, IC) &&
113           CanEvaluateShifted(I->getOperand(1), NumBits, isLeftShift, IC);
114
115  case Instruction::Shl: {
116    // We can often fold the shift into shifts-by-a-constant.
117    CI = dyn_cast<ConstantInt>(I->getOperand(1));
118    if (CI == 0) return false;
119
120    // We can always fold shl(c1)+shl(c2) -> shl(c1+c2).
121    if (isLeftShift) return true;
122
123    // We can always turn shl(c)+shr(c) -> and(c2).
124    if (CI->getValue() == NumBits) return true;
125
126    unsigned TypeWidth = I->getType()->getScalarSizeInBits();
127
128    // We can turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but it isn't
129    // profitable unless we know the and'd out bits are already zero.
130    if (CI->getZExtValue() > NumBits) {
131      unsigned LowBits = TypeWidth - CI->getZExtValue();
132      if (MaskedValueIsZero(I->getOperand(0),
133                       APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits))
134        return true;
135    }
136
137    return false;
138  }
139  case Instruction::LShr: {
140    // We can often fold the shift into shifts-by-a-constant.
141    CI = dyn_cast<ConstantInt>(I->getOperand(1));
142    if (CI == 0) return false;
143
144    // We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
145    if (!isLeftShift) return true;
146
147    // We can always turn lshr(c)+shl(c) -> and(c2).
148    if (CI->getValue() == NumBits) return true;
149
150    unsigned TypeWidth = I->getType()->getScalarSizeInBits();
151
152    // We can always turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but it isn't
153    // profitable unless we know the and'd out bits are already zero.
154    if (CI->getValue().ult(TypeWidth) && CI->getZExtValue() > NumBits) {
155      unsigned LowBits = CI->getZExtValue() - NumBits;
156      if (MaskedValueIsZero(I->getOperand(0),
157                          APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits))
158        return true;
159    }
160
161    return false;
162  }
163  case Instruction::Select: {
164    SelectInst *SI = cast<SelectInst>(I);
165    return CanEvaluateShifted(SI->getTrueValue(), NumBits, isLeftShift, IC) &&
166           CanEvaluateShifted(SI->getFalseValue(), NumBits, isLeftShift, IC);
167  }
168  case Instruction::PHI: {
169    // We can change a phi if we can change all operands.  Note that we never
170    // get into trouble with cyclic PHIs here because we only consider
171    // instructions with a single use.
172    PHINode *PN = cast<PHINode>(I);
173    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
174      if (!CanEvaluateShifted(PN->getIncomingValue(i), NumBits, isLeftShift,IC))
175        return false;
176    return true;
177  }
178  }
179}
180
181/// GetShiftedValue - When CanEvaluateShifted returned true for an expression,
182/// this value inserts the new computation that produces the shifted value.
183static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
184                              InstCombiner &IC) {
185  // We can always evaluate constants shifted.
186  if (Constant *C = dyn_cast<Constant>(V)) {
187    if (isLeftShift)
188      V = IC.Builder->CreateShl(C, NumBits);
189    else
190      V = IC.Builder->CreateLShr(C, NumBits);
191    // If we got a constantexpr back, try to simplify it with TD info.
192    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
193      V = ConstantFoldConstantExpression(CE, IC.getDataLayout(),
194                                         IC.getTargetLibraryInfo());
195    return V;
196  }
197
198  Instruction *I = cast<Instruction>(V);
199  IC.Worklist.Add(I);
200
201  switch (I->getOpcode()) {
202  default: llvm_unreachable("Inconsistency with CanEvaluateShifted");
203  case Instruction::And:
204  case Instruction::Or:
205  case Instruction::Xor:
206    // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
207    I->setOperand(0, GetShiftedValue(I->getOperand(0), NumBits,isLeftShift,IC));
208    I->setOperand(1, GetShiftedValue(I->getOperand(1), NumBits,isLeftShift,IC));
209    return I;
210
211  case Instruction::Shl: {
212    BinaryOperator *BO = cast<BinaryOperator>(I);
213    unsigned TypeWidth = BO->getType()->getScalarSizeInBits();
214
215    // We only accept shifts-by-a-constant in CanEvaluateShifted.
216    ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
217
218    // We can always fold shl(c1)+shl(c2) -> shl(c1+c2).
219    if (isLeftShift) {
220      // If this is oversized composite shift, then unsigned shifts get 0.
221      unsigned NewShAmt = NumBits+CI->getZExtValue();
222      if (NewShAmt >= TypeWidth)
223        return Constant::getNullValue(I->getType());
224
225      BO->setOperand(1, ConstantInt::get(BO->getType(), NewShAmt));
226      BO->setHasNoUnsignedWrap(false);
227      BO->setHasNoSignedWrap(false);
228      return I;
229    }
230
231    // We turn shl(c)+lshr(c) -> and(c2) if the input doesn't already have
232    // zeros.
233    if (CI->getValue() == NumBits) {
234      APInt Mask(APInt::getLowBitsSet(TypeWidth, TypeWidth - NumBits));
235      V = IC.Builder->CreateAnd(BO->getOperand(0),
236                                ConstantInt::get(BO->getContext(), Mask));
237      if (Instruction *VI = dyn_cast<Instruction>(V)) {
238        VI->moveBefore(BO);
239        VI->takeName(BO);
240      }
241      return V;
242    }
243
244    // We turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but only when we know that
245    // the and won't be needed.
246    assert(CI->getZExtValue() > NumBits);
247    BO->setOperand(1, ConstantInt::get(BO->getType(),
248                                       CI->getZExtValue() - NumBits));
249    BO->setHasNoUnsignedWrap(false);
250    BO->setHasNoSignedWrap(false);
251    return BO;
252  }
253  case Instruction::LShr: {
254    BinaryOperator *BO = cast<BinaryOperator>(I);
255    unsigned TypeWidth = BO->getType()->getScalarSizeInBits();
256    // We only accept shifts-by-a-constant in CanEvaluateShifted.
257    ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
258
259    // We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
260    if (!isLeftShift) {
261      // If this is oversized composite shift, then unsigned shifts get 0.
262      unsigned NewShAmt = NumBits+CI->getZExtValue();
263      if (NewShAmt >= TypeWidth)
264        return Constant::getNullValue(BO->getType());
265
266      BO->setOperand(1, ConstantInt::get(BO->getType(), NewShAmt));
267      BO->setIsExact(false);
268      return I;
269    }
270
271    // We turn lshr(c)+shl(c) -> and(c2) if the input doesn't already have
272    // zeros.
273    if (CI->getValue() == NumBits) {
274      APInt Mask(APInt::getHighBitsSet(TypeWidth, TypeWidth - NumBits));
275      V = IC.Builder->CreateAnd(I->getOperand(0),
276                                ConstantInt::get(BO->getContext(), Mask));
277      if (Instruction *VI = dyn_cast<Instruction>(V)) {
278        VI->moveBefore(I);
279        VI->takeName(I);
280      }
281      return V;
282    }
283
284    // We turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but only when we know that
285    // the and won't be needed.
286    assert(CI->getZExtValue() > NumBits);
287    BO->setOperand(1, ConstantInt::get(BO->getType(),
288                                       CI->getZExtValue() - NumBits));
289    BO->setIsExact(false);
290    return BO;
291  }
292
293  case Instruction::Select:
294    I->setOperand(1, GetShiftedValue(I->getOperand(1), NumBits,isLeftShift,IC));
295    I->setOperand(2, GetShiftedValue(I->getOperand(2), NumBits,isLeftShift,IC));
296    return I;
297  case Instruction::PHI: {
298    // We can change a phi if we can change all operands.  Note that we never
299    // get into trouble with cyclic PHIs here because we only consider
300    // instructions with a single use.
301    PHINode *PN = cast<PHINode>(I);
302    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
303      PN->setIncomingValue(i, GetShiftedValue(PN->getIncomingValue(i),
304                                              NumBits, isLeftShift, IC));
305    return PN;
306  }
307  }
308}
309
310
311
312Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
313                                               BinaryOperator &I) {
314  bool isLeftShift = I.getOpcode() == Instruction::Shl;
315
316
317  // See if we can propagate this shift into the input, this covers the trivial
318  // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
319  if (I.getOpcode() != Instruction::AShr &&
320      CanEvaluateShifted(Op0, Op1->getZExtValue(), isLeftShift, *this)) {
321    DEBUG(dbgs() << "ICE: GetShiftedValue propagating shift through expression"
322              " to eliminate shift:\n  IN: " << *Op0 << "\n  SH: " << I <<"\n");
323
324    return ReplaceInstUsesWith(I,
325                 GetShiftedValue(Op0, Op1->getZExtValue(), isLeftShift, *this));
326  }
327
328
329  // See if we can simplify any instructions used by the instruction whose sole
330  // purpose is to compute bits we don't care about.
331  uint32_t TypeBits = Op0->getType()->getScalarSizeInBits();
332
333  // shl i32 X, 32 = 0 and srl i8 Y, 9 = 0, ... just don't eliminate
334  // a signed shift.
335  //
336  if (Op1->uge(TypeBits)) {
337    if (I.getOpcode() != Instruction::AShr)
338      return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
339    // ashr i32 X, 32 --> ashr i32 X, 31
340    I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
341    return &I;
342  }
343
344  // ((X*C1) << C2) == (X * (C1 << C2))
345  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
346    if (BO->getOpcode() == Instruction::Mul && isLeftShift)
347      if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
348        return BinaryOperator::CreateMul(BO->getOperand(0),
349                                        ConstantExpr::getShl(BOOp, Op1));
350
351  // Try to fold constant and into select arguments.
352  if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
353    if (Instruction *R = FoldOpIntoSelect(I, SI))
354      return R;
355  if (isa<PHINode>(Op0))
356    if (Instruction *NV = FoldOpIntoPhi(I))
357      return NV;
358
359  // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
360  if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
361    Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
362    // If 'shift2' is an ashr, we would have to get the sign bit into a funny
363    // place.  Don't try to do this transformation in this case.  Also, we
364    // require that the input operand is a shift-by-constant so that we have
365    // confidence that the shifts will get folded together.  We could do this
366    // xform in more cases, but it is unlikely to be profitable.
367    if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
368        isa<ConstantInt>(TrOp->getOperand(1))) {
369      // Okay, we'll do this xform.  Make the shift of shift.
370      Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
371      // (shift2 (shift1 & 0x00FF), c2)
372      Value *NSh = Builder->CreateBinOp(I.getOpcode(), TrOp, ShAmt,I.getName());
373
374      // For logical shifts, the truncation has the effect of making the high
375      // part of the register be zeros.  Emulate this by inserting an AND to
376      // clear the top bits as needed.  This 'and' will usually be zapped by
377      // other xforms later if dead.
378      unsigned SrcSize = TrOp->getType()->getScalarSizeInBits();
379      unsigned DstSize = TI->getType()->getScalarSizeInBits();
380      APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
381
382      // The mask we constructed says what the trunc would do if occurring
383      // between the shifts.  We want to know the effect *after* the second
384      // shift.  We know that it is a logical shift by a constant, so adjust the
385      // mask as appropriate.
386      if (I.getOpcode() == Instruction::Shl)
387        MaskV <<= Op1->getZExtValue();
388      else {
389        assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
390        MaskV = MaskV.lshr(Op1->getZExtValue());
391      }
392
393      // shift1 & 0x00FF
394      Value *And = Builder->CreateAnd(NSh,
395                                      ConstantInt::get(I.getContext(), MaskV),
396                                      TI->getName());
397
398      // Return the value truncated to the interesting size.
399      return new TruncInst(And, I.getType());
400    }
401  }
402
403  if (Op0->hasOneUse()) {
404    if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
405      // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
406      Value *V1, *V2;
407      ConstantInt *CC;
408      switch (Op0BO->getOpcode()) {
409      default: break;
410      case Instruction::Add:
411      case Instruction::And:
412      case Instruction::Or:
413      case Instruction::Xor: {
414        // These operators commute.
415        // Turn (Y + (X >> C)) << C  ->  (X + (Y << C)) & (~0 << C)
416        if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
417            match(Op0BO->getOperand(1), m_Shr(m_Value(V1),
418                  m_Specific(Op1)))) {
419          Value *YS =         // (Y << C)
420            Builder->CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
421          // (X + (Y << C))
422          Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), YS, V1,
423                                          Op0BO->getOperand(1)->getName());
424          uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
425          return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(),
426                     APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
427        }
428
429        // Turn (Y + ((X >> C) & CC)) << C  ->  ((X & (CC << C)) + (Y << C))
430        Value *Op0BOOp1 = Op0BO->getOperand(1);
431        if (isLeftShift && Op0BOOp1->hasOneUse() &&
432            match(Op0BOOp1,
433                  m_And(m_OneUse(m_Shr(m_Value(V1), m_Specific(Op1))),
434                        m_ConstantInt(CC)))) {
435          Value *YS =   // (Y << C)
436            Builder->CreateShl(Op0BO->getOperand(0), Op1,
437                                         Op0BO->getName());
438          // X & (CC << C)
439          Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
440                                         V1->getName()+".mask");
441          return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
442        }
443      }
444
445      // FALL THROUGH.
446      case Instruction::Sub: {
447        // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
448        if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
449            match(Op0BO->getOperand(0), m_Shr(m_Value(V1),
450                  m_Specific(Op1)))) {
451          Value *YS =  // (Y << C)
452            Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
453          // (X + (Y << C))
454          Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), V1, YS,
455                                          Op0BO->getOperand(0)->getName());
456          uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
457          return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(),
458                     APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
459        }
460
461        // Turn (((X >> C)&CC) + Y) << C  ->  (X + (Y << C)) & (CC << C)
462        if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
463            match(Op0BO->getOperand(0),
464                  m_And(m_OneUse(m_Shr(m_Value(V1), m_Value(V2))),
465                        m_ConstantInt(CC))) && V2 == Op1) {
466          Value *YS = // (Y << C)
467            Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
468          // X & (CC << C)
469          Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
470                                         V1->getName()+".mask");
471
472          return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
473        }
474
475        break;
476      }
477      }
478
479
480      // If the operand is an bitwise operator with a constant RHS, and the
481      // shift is the only use, we can pull it out of the shift.
482      if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
483        bool isValid = true;     // Valid only for And, Or, Xor
484        bool highBitSet = false; // Transform if high bit of constant set?
485
486        switch (Op0BO->getOpcode()) {
487        default: isValid = false; break;   // Do not perform transform!
488        case Instruction::Add:
489          isValid = isLeftShift;
490          break;
491        case Instruction::Or:
492        case Instruction::Xor:
493          highBitSet = false;
494          break;
495        case Instruction::And:
496          highBitSet = true;
497          break;
498        }
499
500        // If this is a signed shift right, and the high bit is modified
501        // by the logical operation, do not perform the transformation.
502        // The highBitSet boolean indicates the value of the high bit of
503        // the constant which would cause it to be modified for this
504        // operation.
505        //
506        if (isValid && I.getOpcode() == Instruction::AShr)
507          isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
508
509        if (isValid) {
510          Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
511
512          Value *NewShift =
513            Builder->CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
514          NewShift->takeName(Op0BO);
515
516          return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
517                                        NewRHS);
518        }
519      }
520    }
521  }
522
523  // Find out if this is a shift of a shift by a constant.
524  BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
525  if (ShiftOp && !ShiftOp->isShift())
526    ShiftOp = 0;
527
528  if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
529
530    // This is a constant shift of a constant shift. Be careful about hiding
531    // shl instructions behind bit masks. They are used to represent multiplies
532    // by a constant, and it is important that simple arithmetic expressions
533    // are still recognizable by scalar evolution.
534    //
535    // The transforms applied to shl are very similar to the transforms applied
536    // to mul by constant. We can be more aggressive about optimizing right
537    // shifts.
538    //
539    // Combinations of right and left shifts will still be optimized in
540    // DAGCombine where scalar evolution no longer applies.
541
542    ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
543    uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
544    uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits);
545    assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
546    if (ShiftAmt1 == 0) return 0;  // Will be simplified in the future.
547    Value *X = ShiftOp->getOperand(0);
548
549    IntegerType *Ty = cast<IntegerType>(I.getType());
550
551    // Check for (X << c1) << c2  and  (X >> c1) >> c2
552    if (I.getOpcode() == ShiftOp->getOpcode()) {
553      uint32_t AmtSum = ShiftAmt1+ShiftAmt2;   // Fold into one big shift.
554      // If this is oversized composite shift, then unsigned shifts get 0, ashr
555      // saturates.
556      if (AmtSum >= TypeBits) {
557        if (I.getOpcode() != Instruction::AShr)
558          return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
559        AmtSum = TypeBits-1;  // Saturate to 31 for i32 ashr.
560      }
561
562      return BinaryOperator::Create(I.getOpcode(), X,
563                                    ConstantInt::get(Ty, AmtSum));
564    }
565
566    if (ShiftAmt1 == ShiftAmt2) {
567      // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
568      if (I.getOpcode() == Instruction::LShr &&
569          ShiftOp->getOpcode() == Instruction::Shl) {
570        APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
571        return BinaryOperator::CreateAnd(X,
572                                        ConstantInt::get(I.getContext(), Mask));
573      }
574    } else if (ShiftAmt1 < ShiftAmt2) {
575      uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
576
577      // (X >>?,exact C1) << C2 --> X << (C2-C1)
578      // The inexact version is deferred to DAGCombine so we don't hide shl
579      // behind a bit mask.
580      if (I.getOpcode() == Instruction::Shl &&
581          ShiftOp->getOpcode() != Instruction::Shl &&
582          ShiftOp->isExact()) {
583        assert(ShiftOp->getOpcode() == Instruction::LShr ||
584               ShiftOp->getOpcode() == Instruction::AShr);
585        ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
586        BinaryOperator *NewShl = BinaryOperator::Create(Instruction::Shl,
587                                                        X, ShiftDiffCst);
588        NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
589        NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
590        return NewShl;
591      }
592
593      // (X << C1) >>u C2  --> X >>u (C2-C1) & (-1 >> C2)
594      if (I.getOpcode() == Instruction::LShr &&
595          ShiftOp->getOpcode() == Instruction::Shl) {
596        ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
597        // (X <<nuw C1) >>u C2 --> X >>u (C2-C1)
598        if (ShiftOp->hasNoUnsignedWrap()) {
599          BinaryOperator *NewLShr = BinaryOperator::Create(Instruction::LShr,
600                                                           X, ShiftDiffCst);
601          NewLShr->setIsExact(I.isExact());
602          return NewLShr;
603        }
604        Value *Shift = Builder->CreateLShr(X, ShiftDiffCst);
605
606        APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
607        return BinaryOperator::CreateAnd(Shift,
608                                         ConstantInt::get(I.getContext(),Mask));
609      }
610
611      // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in. However,
612      // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
613      if (I.getOpcode() == Instruction::AShr &&
614          ShiftOp->getOpcode() == Instruction::Shl) {
615        if (ShiftOp->hasNoSignedWrap()) {
616          // (X <<nsw C1) >>s C2 --> X >>s (C2-C1)
617          ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
618          BinaryOperator *NewAShr = BinaryOperator::Create(Instruction::AShr,
619                                                           X, ShiftDiffCst);
620          NewAShr->setIsExact(I.isExact());
621          return NewAShr;
622        }
623      }
624    } else {
625      assert(ShiftAmt2 < ShiftAmt1);
626      uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
627
628      // (X >>?exact C1) << C2 --> X >>?exact (C1-C2)
629      // The inexact version is deferred to DAGCombine so we don't hide shl
630      // behind a bit mask.
631      if (I.getOpcode() == Instruction::Shl &&
632          ShiftOp->getOpcode() != Instruction::Shl &&
633          ShiftOp->isExact()) {
634        ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
635        BinaryOperator *NewShr = BinaryOperator::Create(ShiftOp->getOpcode(),
636                                                        X, ShiftDiffCst);
637        NewShr->setIsExact(true);
638        return NewShr;
639      }
640
641      // (X << C1) >>u C2  --> X << (C1-C2) & (-1 >> C2)
642      if (I.getOpcode() == Instruction::LShr &&
643          ShiftOp->getOpcode() == Instruction::Shl) {
644        ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
645        if (ShiftOp->hasNoUnsignedWrap()) {
646          // (X <<nuw C1) >>u C2 --> X <<nuw (C1-C2)
647          BinaryOperator *NewShl = BinaryOperator::Create(Instruction::Shl,
648                                                          X, ShiftDiffCst);
649          NewShl->setHasNoUnsignedWrap(true);
650          return NewShl;
651        }
652        Value *Shift = Builder->CreateShl(X, ShiftDiffCst);
653
654        APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
655        return BinaryOperator::CreateAnd(Shift,
656                                         ConstantInt::get(I.getContext(),Mask));
657      }
658
659      // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in. However,
660      // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
661      if (I.getOpcode() == Instruction::AShr &&
662          ShiftOp->getOpcode() == Instruction::Shl) {
663        if (ShiftOp->hasNoSignedWrap()) {
664          // (X <<nsw C1) >>s C2 --> X <<nsw (C1-C2)
665          ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
666          BinaryOperator *NewShl = BinaryOperator::Create(Instruction::Shl,
667                                                          X, ShiftDiffCst);
668          NewShl->setHasNoSignedWrap(true);
669          return NewShl;
670        }
671      }
672    }
673  }
674  return 0;
675}
676
677Instruction *InstCombiner::visitShl(BinaryOperator &I) {
678  if (Value *V = SimplifyShlInst(I.getOperand(0), I.getOperand(1),
679                                 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
680                                 TD))
681    return ReplaceInstUsesWith(I, V);
682
683  if (Instruction *V = commonShiftTransforms(I))
684    return V;
685
686  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(I.getOperand(1))) {
687    unsigned ShAmt = Op1C->getZExtValue();
688
689    // If the shifted-out value is known-zero, then this is a NUW shift.
690    if (!I.hasNoUnsignedWrap() &&
691        MaskedValueIsZero(I.getOperand(0),
692                          APInt::getHighBitsSet(Op1C->getBitWidth(), ShAmt))) {
693          I.setHasNoUnsignedWrap();
694          return &I;
695        }
696
697    // If the shifted out value is all signbits, this is a NSW shift.
698    if (!I.hasNoSignedWrap() &&
699        ComputeNumSignBits(I.getOperand(0)) > ShAmt) {
700      I.setHasNoSignedWrap();
701      return &I;
702    }
703  }
704
705  // (C1 << A) << C2 -> (C1 << C2) << A
706  Constant *C1, *C2;
707  Value *A;
708  if (match(I.getOperand(0), m_OneUse(m_Shl(m_Constant(C1), m_Value(A)))) &&
709      match(I.getOperand(1), m_Constant(C2)))
710    return BinaryOperator::CreateShl(ConstantExpr::getShl(C1, C2), A);
711
712  return 0;
713}
714
715Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
716  if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1),
717                                  I.isExact(), TD))
718    return ReplaceInstUsesWith(I, V);
719
720  if (Instruction *R = commonShiftTransforms(I))
721    return R;
722
723  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
724
725  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
726    unsigned ShAmt = Op1C->getZExtValue();
727
728    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op0)) {
729      unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
730      // ctlz.i32(x)>>5  --> zext(x == 0)
731      // cttz.i32(x)>>5  --> zext(x == 0)
732      // ctpop.i32(x)>>5 --> zext(x == -1)
733      if ((II->getIntrinsicID() == Intrinsic::ctlz ||
734           II->getIntrinsicID() == Intrinsic::cttz ||
735           II->getIntrinsicID() == Intrinsic::ctpop) &&
736          isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmt) {
737        bool isCtPop = II->getIntrinsicID() == Intrinsic::ctpop;
738        Constant *RHS = ConstantInt::getSigned(Op0->getType(), isCtPop ? -1:0);
739        Value *Cmp = Builder->CreateICmpEQ(II->getArgOperand(0), RHS);
740        return new ZExtInst(Cmp, II->getType());
741      }
742    }
743
744    // If the shifted-out value is known-zero, then this is an exact shift.
745    if (!I.isExact() &&
746        MaskedValueIsZero(Op0,APInt::getLowBitsSet(Op1C->getBitWidth(),ShAmt))){
747      I.setIsExact();
748      return &I;
749    }
750  }
751
752  return 0;
753}
754
755Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
756  if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1),
757                                  I.isExact(), TD))
758    return ReplaceInstUsesWith(I, V);
759
760  if (Instruction *R = commonShiftTransforms(I))
761    return R;
762
763  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
764
765  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
766    unsigned ShAmt = Op1C->getZExtValue();
767
768    // If the input is a SHL by the same constant (ashr (shl X, C), C), then we
769    // have a sign-extend idiom.
770    Value *X;
771    if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1)))) {
772      // If the left shift is just shifting out partial signbits, delete the
773      // extension.
774      if (cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
775        return ReplaceInstUsesWith(I, X);
776
777      // If the input is an extension from the shifted amount value, e.g.
778      //   %x = zext i8 %A to i32
779      //   %y = shl i32 %x, 24
780      //   %z = ashr %y, 24
781      // then turn this into "z = sext i8 A to i32".
782      if (ZExtInst *ZI = dyn_cast<ZExtInst>(X)) {
783        uint32_t SrcBits = ZI->getOperand(0)->getType()->getScalarSizeInBits();
784        uint32_t DestBits = ZI->getType()->getScalarSizeInBits();
785        if (Op1C->getZExtValue() == DestBits-SrcBits)
786          return new SExtInst(ZI->getOperand(0), ZI->getType());
787      }
788    }
789
790    // If the shifted-out value is known-zero, then this is an exact shift.
791    if (!I.isExact() &&
792        MaskedValueIsZero(Op0,APInt::getLowBitsSet(Op1C->getBitWidth(),ShAmt))){
793      I.setIsExact();
794      return &I;
795    }
796  }
797
798  // See if we can turn a signed shr into an unsigned shr.
799  if (MaskedValueIsZero(Op0,
800                        APInt::getSignBit(I.getType()->getScalarSizeInBits())))
801    return BinaryOperator::CreateLShr(Op0, Op1);
802
803  // Arithmetic shifting an all-sign-bit value is a no-op.
804  unsigned NumSignBits = ComputeNumSignBits(Op0);
805  if (NumSignBits == Op0->getType()->getScalarSizeInBits())
806    return ReplaceInstUsesWith(I, Op0);
807
808  return 0;
809}
810
811