1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/CodeGen/Analysis.h"
18#include "llvm/CodeGen/MachineFrameInfo.h"
19#include "llvm/CodeGen/MachineFunction.h"
20#include "llvm/CodeGen/MachineJumpTableInfo.h"
21#include "llvm/CodeGen/SelectionDAG.h"
22#include "llvm/IR/DataLayout.h"
23#include "llvm/IR/DerivedTypes.h"
24#include "llvm/IR/GlobalVariable.h"
25#include "llvm/MC/MCAsmInfo.h"
26#include "llvm/MC/MCExpr.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Target/TargetLoweringObjectFile.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/Target/TargetRegisterInfo.h"
33#include <cctype>
34using namespace llvm;
35
36/// NOTE: The constructor takes ownership of TLOF.
37TargetLowering::TargetLowering(const TargetMachine &tm,
38                               const TargetLoweringObjectFile *tlof)
39  : TargetLoweringBase(tm, tlof) {}
40
41const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42  return NULL;
43}
44
45/// Check whether a given call node is in tail position within its function. If
46/// so, it sets Chain to the input chain of the tail call.
47bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
48                                          SDValue &Chain) const {
49  const Function *F = DAG.getMachineFunction().getFunction();
50
51  // Conservatively require the attributes of the call to match those of
52  // the return. Ignore noalias because it doesn't affect the call sequence.
53  AttributeSet CallerAttrs = F->getAttributes();
54  if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex)
55      .removeAttribute(Attribute::NoAlias).hasAttributes())
56    return false;
57
58  // It's not safe to eliminate the sign / zero extension of the return value.
59  if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
60      CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
61    return false;
62
63  // Check if the only use is a function return node.
64  return isUsedByReturnOnly(Node, Chain);
65}
66
67
68/// Generate a libcall taking the given operands as arguments and returning a
69/// result of type RetVT.
70SDValue TargetLowering::makeLibCall(SelectionDAG &DAG,
71                                    RTLIB::Libcall LC, EVT RetVT,
72                                    const SDValue *Ops, unsigned NumOps,
73                                    bool isSigned, DebugLoc dl) const {
74  TargetLowering::ArgListTy Args;
75  Args.reserve(NumOps);
76
77  TargetLowering::ArgListEntry Entry;
78  for (unsigned i = 0; i != NumOps; ++i) {
79    Entry.Node = Ops[i];
80    Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
81    Entry.isSExt = isSigned;
82    Entry.isZExt = !isSigned;
83    Args.push_back(Entry);
84  }
85  SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), getPointerTy());
86
87  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
88  TargetLowering::
89  CallLoweringInfo CLI(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
90                    false, 0, getLibcallCallingConv(LC),
91                    /*isTailCall=*/false,
92                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
93                    Callee, Args, DAG, dl);
94  std::pair<SDValue,SDValue> CallInfo = LowerCallTo(CLI);
95
96  return CallInfo.first;
97}
98
99
100/// SoftenSetCCOperands - Soften the operands of a comparison.  This code is
101/// shared among BR_CC, SELECT_CC, and SETCC handlers.
102void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
103                                         SDValue &NewLHS, SDValue &NewRHS,
104                                         ISD::CondCode &CCCode,
105                                         DebugLoc dl) const {
106  assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
107         && "Unsupported setcc type!");
108
109  // Expand into one or more soft-fp libcall(s).
110  RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
111  switch (CCCode) {
112  case ISD::SETEQ:
113  case ISD::SETOEQ:
114    LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
115          (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128;
116    break;
117  case ISD::SETNE:
118  case ISD::SETUNE:
119    LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
120          (VT == MVT::f64) ? RTLIB::UNE_F64 : RTLIB::UNE_F128;
121    break;
122  case ISD::SETGE:
123  case ISD::SETOGE:
124    LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
125          (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128;
126    break;
127  case ISD::SETLT:
128  case ISD::SETOLT:
129    LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
130          (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
131    break;
132  case ISD::SETLE:
133  case ISD::SETOLE:
134    LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
135          (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128;
136    break;
137  case ISD::SETGT:
138  case ISD::SETOGT:
139    LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
140          (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128;
141    break;
142  case ISD::SETUO:
143    LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
144          (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128;
145    break;
146  case ISD::SETO:
147    LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
148          (VT == MVT::f64) ? RTLIB::O_F64 : RTLIB::O_F128;
149    break;
150  default:
151    LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
152          (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128;
153    switch (CCCode) {
154    case ISD::SETONE:
155      // SETONE = SETOLT | SETOGT
156      LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
157            (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
158      // Fallthrough
159    case ISD::SETUGT:
160      LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
161            (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128;
162      break;
163    case ISD::SETUGE:
164      LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
165            (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128;
166      break;
167    case ISD::SETULT:
168      LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
169            (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
170      break;
171    case ISD::SETULE:
172      LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
173            (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128;
174      break;
175    case ISD::SETUEQ:
176      LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
177            (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128;
178      break;
179    default: llvm_unreachable("Do not know how to soften this setcc!");
180    }
181  }
182
183  // Use the target specific return value for comparions lib calls.
184  EVT RetVT = getCmpLibcallReturnType();
185  SDValue Ops[2] = { NewLHS, NewRHS };
186  NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, 2, false/*sign irrelevant*/, dl);
187  NewRHS = DAG.getConstant(0, RetVT);
188  CCCode = getCmpLibcallCC(LC1);
189  if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
190    SDValue Tmp = DAG.getNode(ISD::SETCC, dl, getSetCCResultType(RetVT),
191                              NewLHS, NewRHS, DAG.getCondCode(CCCode));
192    NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, 2, false/*sign irrelevant*/, dl);
193    NewLHS = DAG.getNode(ISD::SETCC, dl, getSetCCResultType(RetVT), NewLHS,
194                         NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
195    NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
196    NewRHS = SDValue();
197  }
198}
199
200/// getJumpTableEncoding - Return the entry encoding for a jump table in the
201/// current function.  The returned value is a member of the
202/// MachineJumpTableInfo::JTEntryKind enum.
203unsigned TargetLowering::getJumpTableEncoding() const {
204  // In non-pic modes, just use the address of a block.
205  if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
206    return MachineJumpTableInfo::EK_BlockAddress;
207
208  // In PIC mode, if the target supports a GPRel32 directive, use it.
209  if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
210    return MachineJumpTableInfo::EK_GPRel32BlockAddress;
211
212  // Otherwise, use a label difference.
213  return MachineJumpTableInfo::EK_LabelDifference32;
214}
215
216SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
217                                                 SelectionDAG &DAG) const {
218  // If our PIC model is GP relative, use the global offset table as the base.
219  unsigned JTEncoding = getJumpTableEncoding();
220
221  if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
222      (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
223    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(0));
224
225  return Table;
226}
227
228/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
229/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
230/// MCExpr.
231const MCExpr *
232TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
233                                             unsigned JTI,MCContext &Ctx) const{
234  // The normal PIC reloc base is the label at the start of the jump table.
235  return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
236}
237
238bool
239TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
240  // Assume that everything is safe in static mode.
241  if (getTargetMachine().getRelocationModel() == Reloc::Static)
242    return true;
243
244  // In dynamic-no-pic mode, assume that known defined values are safe.
245  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
246      GA &&
247      !GA->getGlobal()->isDeclaration() &&
248      !GA->getGlobal()->isWeakForLinker())
249    return true;
250
251  // Otherwise assume nothing is safe.
252  return false;
253}
254
255//===----------------------------------------------------------------------===//
256//  Optimization Methods
257//===----------------------------------------------------------------------===//
258
259/// ShrinkDemandedConstant - Check to see if the specified operand of the
260/// specified instruction is a constant integer.  If so, check to see if there
261/// are any bits set in the constant that are not demanded.  If so, shrink the
262/// constant and return true.
263bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
264                                                        const APInt &Demanded) {
265  DebugLoc dl = Op.getDebugLoc();
266
267  // FIXME: ISD::SELECT, ISD::SELECT_CC
268  switch (Op.getOpcode()) {
269  default: break;
270  case ISD::XOR:
271  case ISD::AND:
272  case ISD::OR: {
273    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
274    if (!C) return false;
275
276    if (Op.getOpcode() == ISD::XOR &&
277        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
278      return false;
279
280    // if we can expand it to have all bits set, do it
281    if (C->getAPIntValue().intersects(~Demanded)) {
282      EVT VT = Op.getValueType();
283      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
284                                DAG.getConstant(Demanded &
285                                                C->getAPIntValue(),
286                                                VT));
287      return CombineTo(Op, New);
288    }
289
290    break;
291  }
292  }
293
294  return false;
295}
296
297/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
298/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
299/// cast, but it could be generalized for targets with other types of
300/// implicit widening casts.
301bool
302TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
303                                                    unsigned BitWidth,
304                                                    const APInt &Demanded,
305                                                    DebugLoc dl) {
306  assert(Op.getNumOperands() == 2 &&
307         "ShrinkDemandedOp only supports binary operators!");
308  assert(Op.getNode()->getNumValues() == 1 &&
309         "ShrinkDemandedOp only supports nodes with one result!");
310
311  // Don't do this if the node has another user, which may require the
312  // full value.
313  if (!Op.getNode()->hasOneUse())
314    return false;
315
316  // Search for the smallest integer type with free casts to and from
317  // Op's type. For expedience, just check power-of-2 integer types.
318  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
319  unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros();
320  unsigned SmallVTBits = DemandedSize;
321  if (!isPowerOf2_32(SmallVTBits))
322    SmallVTBits = NextPowerOf2(SmallVTBits);
323  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
324    EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
325    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
326        TLI.isZExtFree(SmallVT, Op.getValueType())) {
327      // We found a type with free casts.
328      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
329                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
330                                          Op.getNode()->getOperand(0)),
331                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
332                                          Op.getNode()->getOperand(1)));
333      bool NeedZext = DemandedSize > SmallVTBits;
334      SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND,
335                              dl, Op.getValueType(), X);
336      return CombineTo(Op, Z);
337    }
338  }
339  return false;
340}
341
342/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
343/// DemandedMask bits of the result of Op are ever used downstream.  If we can
344/// use this information to simplify Op, create a new simplified DAG node and
345/// return true, returning the original and new nodes in Old and New. Otherwise,
346/// analyze the expression and return a mask of KnownOne and KnownZero bits for
347/// the expression (used to simplify the caller).  The KnownZero/One bits may
348/// only be accurate for those bits in the DemandedMask.
349bool TargetLowering::SimplifyDemandedBits(SDValue Op,
350                                          const APInt &DemandedMask,
351                                          APInt &KnownZero,
352                                          APInt &KnownOne,
353                                          TargetLoweringOpt &TLO,
354                                          unsigned Depth) const {
355  unsigned BitWidth = DemandedMask.getBitWidth();
356  assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
357         "Mask size mismatches value type size!");
358  APInt NewMask = DemandedMask;
359  DebugLoc dl = Op.getDebugLoc();
360
361  // Don't know anything.
362  KnownZero = KnownOne = APInt(BitWidth, 0);
363
364  // Other users may use these bits.
365  if (!Op.getNode()->hasOneUse()) {
366    if (Depth != 0) {
367      // If not at the root, Just compute the KnownZero/KnownOne bits to
368      // simplify things downstream.
369      TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
370      return false;
371    }
372    // If this is the root being simplified, allow it to have multiple uses,
373    // just set the NewMask to all bits.
374    NewMask = APInt::getAllOnesValue(BitWidth);
375  } else if (DemandedMask == 0) {
376    // Not demanding any bits from Op.
377    if (Op.getOpcode() != ISD::UNDEF)
378      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
379    return false;
380  } else if (Depth == 6) {        // Limit search depth.
381    return false;
382  }
383
384  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
385  switch (Op.getOpcode()) {
386  case ISD::Constant:
387    // We know all of the bits for a constant!
388    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
389    KnownZero = ~KnownOne;
390    return false;   // Don't fall through, will infinitely loop.
391  case ISD::AND:
392    // If the RHS is a constant, check to see if the LHS would be zero without
393    // using the bits from the RHS.  Below, we use knowledge about the RHS to
394    // simplify the LHS, here we're using information from the LHS to simplify
395    // the RHS.
396    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
397      APInt LHSZero, LHSOne;
398      // Do not increment Depth here; that can cause an infinite loop.
399      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), LHSZero, LHSOne, Depth);
400      // If the LHS already has zeros where RHSC does, this and is dead.
401      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
402        return TLO.CombineTo(Op, Op.getOperand(0));
403      // If any of the set bits in the RHS are known zero on the LHS, shrink
404      // the constant.
405      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
406        return true;
407    }
408
409    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
410                             KnownOne, TLO, Depth+1))
411      return true;
412    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
413    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
414                             KnownZero2, KnownOne2, TLO, Depth+1))
415      return true;
416    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
417
418    // If all of the demanded bits are known one on one side, return the other.
419    // These bits cannot contribute to the result of the 'and'.
420    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
421      return TLO.CombineTo(Op, Op.getOperand(0));
422    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
423      return TLO.CombineTo(Op, Op.getOperand(1));
424    // If all of the demanded bits in the inputs are known zeros, return zero.
425    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
426      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
427    // If the RHS is a constant, see if we can simplify it.
428    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
429      return true;
430    // If the operation can be done in a smaller type, do so.
431    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
432      return true;
433
434    // Output known-1 bits are only known if set in both the LHS & RHS.
435    KnownOne &= KnownOne2;
436    // Output known-0 are known to be clear if zero in either the LHS | RHS.
437    KnownZero |= KnownZero2;
438    break;
439  case ISD::OR:
440    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
441                             KnownOne, TLO, Depth+1))
442      return true;
443    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
444    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
445                             KnownZero2, KnownOne2, TLO, Depth+1))
446      return true;
447    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
448
449    // If all of the demanded bits are known zero on one side, return the other.
450    // These bits cannot contribute to the result of the 'or'.
451    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
452      return TLO.CombineTo(Op, Op.getOperand(0));
453    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
454      return TLO.CombineTo(Op, Op.getOperand(1));
455    // If all of the potentially set bits on one side are known to be set on
456    // the other side, just use the 'other' side.
457    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
458      return TLO.CombineTo(Op, Op.getOperand(0));
459    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
460      return TLO.CombineTo(Op, Op.getOperand(1));
461    // If the RHS is a constant, see if we can simplify it.
462    if (TLO.ShrinkDemandedConstant(Op, NewMask))
463      return true;
464    // If the operation can be done in a smaller type, do so.
465    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
466      return true;
467
468    // Output known-0 bits are only known if clear in both the LHS & RHS.
469    KnownZero &= KnownZero2;
470    // Output known-1 are known to be set if set in either the LHS | RHS.
471    KnownOne |= KnownOne2;
472    break;
473  case ISD::XOR:
474    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
475                             KnownOne, TLO, Depth+1))
476      return true;
477    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
478    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
479                             KnownOne2, TLO, Depth+1))
480      return true;
481    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
482
483    // If all of the demanded bits are known zero on one side, return the other.
484    // These bits cannot contribute to the result of the 'xor'.
485    if ((KnownZero & NewMask) == NewMask)
486      return TLO.CombineTo(Op, Op.getOperand(0));
487    if ((KnownZero2 & NewMask) == NewMask)
488      return TLO.CombineTo(Op, Op.getOperand(1));
489    // If the operation can be done in a smaller type, do so.
490    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
491      return true;
492
493    // If all of the unknown bits are known to be zero on one side or the other
494    // (but not both) turn this into an *inclusive* or.
495    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
496    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
497      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
498                                               Op.getOperand(0),
499                                               Op.getOperand(1)));
500
501    // Output known-0 bits are known if clear or set in both the LHS & RHS.
502    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
503    // Output known-1 are known to be set if set in only one of the LHS, RHS.
504    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
505
506    // If all of the demanded bits on one side are known, and all of the set
507    // bits on that side are also known to be set on the other side, turn this
508    // into an AND, as we know the bits will be cleared.
509    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
510    // NB: it is okay if more bits are known than are requested
511    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side
512      if (KnownOne == KnownOne2) { // set bits are the same on both sides
513        EVT VT = Op.getValueType();
514        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
515        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
516                                                 Op.getOperand(0), ANDC));
517      }
518    }
519
520    // If the RHS is a constant, see if we can simplify it.
521    // for XOR, we prefer to force bits to 1 if they will make a -1.
522    // if we can't force bits, try to shrink constant
523    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
524      APInt Expanded = C->getAPIntValue() | (~NewMask);
525      // if we can expand it to have all bits set, do it
526      if (Expanded.isAllOnesValue()) {
527        if (Expanded != C->getAPIntValue()) {
528          EVT VT = Op.getValueType();
529          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
530                                          TLO.DAG.getConstant(Expanded, VT));
531          return TLO.CombineTo(Op, New);
532        }
533        // if it already has all the bits set, nothing to change
534        // but don't shrink either!
535      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
536        return true;
537      }
538    }
539
540    KnownZero = KnownZeroOut;
541    KnownOne  = KnownOneOut;
542    break;
543  case ISD::SELECT:
544    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
545                             KnownOne, TLO, Depth+1))
546      return true;
547    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
548                             KnownOne2, TLO, Depth+1))
549      return true;
550    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
551    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
552
553    // If the operands are constants, see if we can simplify them.
554    if (TLO.ShrinkDemandedConstant(Op, NewMask))
555      return true;
556
557    // Only known if known in both the LHS and RHS.
558    KnownOne &= KnownOne2;
559    KnownZero &= KnownZero2;
560    break;
561  case ISD::SELECT_CC:
562    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
563                             KnownOne, TLO, Depth+1))
564      return true;
565    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
566                             KnownOne2, TLO, Depth+1))
567      return true;
568    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
569    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
570
571    // If the operands are constants, see if we can simplify them.
572    if (TLO.ShrinkDemandedConstant(Op, NewMask))
573      return true;
574
575    // Only known if known in both the LHS and RHS.
576    KnownOne &= KnownOne2;
577    KnownZero &= KnownZero2;
578    break;
579  case ISD::SHL:
580    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
581      unsigned ShAmt = SA->getZExtValue();
582      SDValue InOp = Op.getOperand(0);
583
584      // If the shift count is an invalid immediate, don't do anything.
585      if (ShAmt >= BitWidth)
586        break;
587
588      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
589      // single shift.  We can do this if the bottom bits (which are shifted
590      // out) are never demanded.
591      if (InOp.getOpcode() == ISD::SRL &&
592          isa<ConstantSDNode>(InOp.getOperand(1))) {
593        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
594          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
595          unsigned Opc = ISD::SHL;
596          int Diff = ShAmt-C1;
597          if (Diff < 0) {
598            Diff = -Diff;
599            Opc = ISD::SRL;
600          }
601
602          SDValue NewSA =
603            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
604          EVT VT = Op.getValueType();
605          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
606                                                   InOp.getOperand(0), NewSA));
607        }
608      }
609
610      if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
611                               KnownZero, KnownOne, TLO, Depth+1))
612        return true;
613
614      // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
615      // are not demanded. This will likely allow the anyext to be folded away.
616      if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
617        SDValue InnerOp = InOp.getNode()->getOperand(0);
618        EVT InnerVT = InnerOp.getValueType();
619        unsigned InnerBits = InnerVT.getSizeInBits();
620        if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 &&
621            isTypeDesirableForOp(ISD::SHL, InnerVT)) {
622          EVT ShTy = getShiftAmountTy(InnerVT);
623          if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
624            ShTy = InnerVT;
625          SDValue NarrowShl =
626            TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
627                            TLO.DAG.getConstant(ShAmt, ShTy));
628          return
629            TLO.CombineTo(Op,
630                          TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
631                                          NarrowShl));
632        }
633      }
634
635      KnownZero <<= SA->getZExtValue();
636      KnownOne  <<= SA->getZExtValue();
637      // low bits known zero.
638      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
639    }
640    break;
641  case ISD::SRL:
642    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
643      EVT VT = Op.getValueType();
644      unsigned ShAmt = SA->getZExtValue();
645      unsigned VTSize = VT.getSizeInBits();
646      SDValue InOp = Op.getOperand(0);
647
648      // If the shift count is an invalid immediate, don't do anything.
649      if (ShAmt >= BitWidth)
650        break;
651
652      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
653      // single shift.  We can do this if the top bits (which are shifted out)
654      // are never demanded.
655      if (InOp.getOpcode() == ISD::SHL &&
656          isa<ConstantSDNode>(InOp.getOperand(1))) {
657        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
658          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
659          unsigned Opc = ISD::SRL;
660          int Diff = ShAmt-C1;
661          if (Diff < 0) {
662            Diff = -Diff;
663            Opc = ISD::SHL;
664          }
665
666          SDValue NewSA =
667            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
668          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
669                                                   InOp.getOperand(0), NewSA));
670        }
671      }
672
673      // Compute the new bits that are at the top now.
674      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
675                               KnownZero, KnownOne, TLO, Depth+1))
676        return true;
677      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
678      KnownZero = KnownZero.lshr(ShAmt);
679      KnownOne  = KnownOne.lshr(ShAmt);
680
681      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
682      KnownZero |= HighBits;  // High bits known zero.
683    }
684    break;
685  case ISD::SRA:
686    // If this is an arithmetic shift right and only the low-bit is set, we can
687    // always convert this into a logical shr, even if the shift amount is
688    // variable.  The low bit of the shift cannot be an input sign bit unless
689    // the shift amount is >= the size of the datatype, which is undefined.
690    if (NewMask == 1)
691      return TLO.CombineTo(Op,
692                           TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
693                                           Op.getOperand(0), Op.getOperand(1)));
694
695    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
696      EVT VT = Op.getValueType();
697      unsigned ShAmt = SA->getZExtValue();
698
699      // If the shift count is an invalid immediate, don't do anything.
700      if (ShAmt >= BitWidth)
701        break;
702
703      APInt InDemandedMask = (NewMask << ShAmt);
704
705      // If any of the demanded bits are produced by the sign extension, we also
706      // demand the input sign bit.
707      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
708      if (HighBits.intersects(NewMask))
709        InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
710
711      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
712                               KnownZero, KnownOne, TLO, Depth+1))
713        return true;
714      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
715      KnownZero = KnownZero.lshr(ShAmt);
716      KnownOne  = KnownOne.lshr(ShAmt);
717
718      // Handle the sign bit, adjusted to where it is now in the mask.
719      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
720
721      // If the input sign bit is known to be zero, or if none of the top bits
722      // are demanded, turn this into an unsigned shift right.
723      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
724        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
725                                                 Op.getOperand(0),
726                                                 Op.getOperand(1)));
727      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
728        KnownOne |= HighBits;
729      }
730    }
731    break;
732  case ISD::SIGN_EXTEND_INREG: {
733    EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
734
735    APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1);
736    // If we only care about the highest bit, don't bother shifting right.
737    if (MsbMask == DemandedMask) {
738      unsigned ShAmt = ExVT.getScalarType().getSizeInBits();
739      SDValue InOp = Op.getOperand(0);
740
741      // Compute the correct shift amount type, which must be getShiftAmountTy
742      // for scalar types after legalization.
743      EVT ShiftAmtTy = Op.getValueType();
744      if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
745        ShiftAmtTy = getShiftAmountTy(ShiftAmtTy);
746
747      SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, ShiftAmtTy);
748      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
749                                            Op.getValueType(), InOp, ShiftAmt));
750    }
751
752    // Sign extension.  Compute the demanded bits in the result that are not
753    // present in the input.
754    APInt NewBits =
755      APInt::getHighBitsSet(BitWidth,
756                            BitWidth - ExVT.getScalarType().getSizeInBits());
757
758    // If none of the extended bits are demanded, eliminate the sextinreg.
759    if ((NewBits & NewMask) == 0)
760      return TLO.CombineTo(Op, Op.getOperand(0));
761
762    APInt InSignBit =
763      APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth);
764    APInt InputDemandedBits =
765      APInt::getLowBitsSet(BitWidth,
766                           ExVT.getScalarType().getSizeInBits()) &
767      NewMask;
768
769    // Since the sign extended bits are demanded, we know that the sign
770    // bit is demanded.
771    InputDemandedBits |= InSignBit;
772
773    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
774                             KnownZero, KnownOne, TLO, Depth+1))
775      return true;
776    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
777
778    // If the sign bit of the input is known set or clear, then we know the
779    // top bits of the result.
780
781    // If the input sign bit is known zero, convert this into a zero extension.
782    if (KnownZero.intersects(InSignBit))
783      return TLO.CombineTo(Op,
784                          TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT));
785
786    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
787      KnownOne |= NewBits;
788      KnownZero &= ~NewBits;
789    } else {                       // Input sign bit unknown
790      KnownZero &= ~NewBits;
791      KnownOne &= ~NewBits;
792    }
793    break;
794  }
795  case ISD::ZERO_EXTEND: {
796    unsigned OperandBitWidth =
797      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
798    APInt InMask = NewMask.trunc(OperandBitWidth);
799
800    // If none of the top bits are demanded, convert this into an any_extend.
801    APInt NewBits =
802      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
803    if (!NewBits.intersects(NewMask))
804      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
805                                               Op.getValueType(),
806                                               Op.getOperand(0)));
807
808    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
809                             KnownZero, KnownOne, TLO, Depth+1))
810      return true;
811    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
812    KnownZero = KnownZero.zext(BitWidth);
813    KnownOne = KnownOne.zext(BitWidth);
814    KnownZero |= NewBits;
815    break;
816  }
817  case ISD::SIGN_EXTEND: {
818    EVT InVT = Op.getOperand(0).getValueType();
819    unsigned InBits = InVT.getScalarType().getSizeInBits();
820    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
821    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
822    APInt NewBits   = ~InMask & NewMask;
823
824    // If none of the top bits are demanded, convert this into an any_extend.
825    if (NewBits == 0)
826      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
827                                              Op.getValueType(),
828                                              Op.getOperand(0)));
829
830    // Since some of the sign extended bits are demanded, we know that the sign
831    // bit is demanded.
832    APInt InDemandedBits = InMask & NewMask;
833    InDemandedBits |= InSignBit;
834    InDemandedBits = InDemandedBits.trunc(InBits);
835
836    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
837                             KnownOne, TLO, Depth+1))
838      return true;
839    KnownZero = KnownZero.zext(BitWidth);
840    KnownOne = KnownOne.zext(BitWidth);
841
842    // If the sign bit is known zero, convert this to a zero extend.
843    if (KnownZero.intersects(InSignBit))
844      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
845                                               Op.getValueType(),
846                                               Op.getOperand(0)));
847
848    // If the sign bit is known one, the top bits match.
849    if (KnownOne.intersects(InSignBit)) {
850      KnownOne |= NewBits;
851      assert((KnownZero & NewBits) == 0);
852    } else {   // Otherwise, top bits aren't known.
853      assert((KnownOne & NewBits) == 0);
854      assert((KnownZero & NewBits) == 0);
855    }
856    break;
857  }
858  case ISD::ANY_EXTEND: {
859    unsigned OperandBitWidth =
860      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
861    APInt InMask = NewMask.trunc(OperandBitWidth);
862    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
863                             KnownZero, KnownOne, TLO, Depth+1))
864      return true;
865    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
866    KnownZero = KnownZero.zext(BitWidth);
867    KnownOne = KnownOne.zext(BitWidth);
868    break;
869  }
870  case ISD::TRUNCATE: {
871    // Simplify the input, using demanded bit information, and compute the known
872    // zero/one bits live out.
873    unsigned OperandBitWidth =
874      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
875    APInt TruncMask = NewMask.zext(OperandBitWidth);
876    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
877                             KnownZero, KnownOne, TLO, Depth+1))
878      return true;
879    KnownZero = KnownZero.trunc(BitWidth);
880    KnownOne = KnownOne.trunc(BitWidth);
881
882    // If the input is only used by this truncate, see if we can shrink it based
883    // on the known demanded bits.
884    if (Op.getOperand(0).getNode()->hasOneUse()) {
885      SDValue In = Op.getOperand(0);
886      switch (In.getOpcode()) {
887      default: break;
888      case ISD::SRL:
889        // Shrink SRL by a constant if none of the high bits shifted in are
890        // demanded.
891        if (TLO.LegalTypes() &&
892            !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
893          // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
894          // undesirable.
895          break;
896        ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
897        if (!ShAmt)
898          break;
899        SDValue Shift = In.getOperand(1);
900        if (TLO.LegalTypes()) {
901          uint64_t ShVal = ShAmt->getZExtValue();
902          Shift =
903            TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType()));
904        }
905
906        APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
907                                               OperandBitWidth - BitWidth);
908        HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
909
910        if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
911          // None of the shifted in bits are needed.  Add a truncate of the
912          // shift input, then shift it.
913          SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
914                                             Op.getValueType(),
915                                             In.getOperand(0));
916          return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
917                                                   Op.getValueType(),
918                                                   NewTrunc,
919                                                   Shift));
920        }
921        break;
922      }
923    }
924
925    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
926    break;
927  }
928  case ISD::AssertZext: {
929    // AssertZext demands all of the high bits, plus any of the low bits
930    // demanded by its users.
931    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
932    APInt InMask = APInt::getLowBitsSet(BitWidth,
933                                        VT.getSizeInBits());
934    if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
935                             KnownZero, KnownOne, TLO, Depth+1))
936      return true;
937    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
938
939    KnownZero |= ~InMask & NewMask;
940    break;
941  }
942  case ISD::BITCAST:
943    // If this is an FP->Int bitcast and if the sign bit is the only
944    // thing demanded, turn this into a FGETSIGN.
945    if (!TLO.LegalOperations() &&
946        !Op.getValueType().isVector() &&
947        !Op.getOperand(0).getValueType().isVector() &&
948        NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
949        Op.getOperand(0).getValueType().isFloatingPoint()) {
950      bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
951      bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
952      if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) {
953        EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
954        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
955        // place.  We expect the SHL to be eliminated by other optimizations.
956        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
957        unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits();
958        if (!OpVTLegal && OpVTSizeInBits > 32)
959          Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
960        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
961        SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType());
962        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
963                                                 Op.getValueType(),
964                                                 Sign, ShAmt));
965      }
966    }
967    break;
968  case ISD::ADD:
969  case ISD::MUL:
970  case ISD::SUB: {
971    // Add, Sub, and Mul don't demand any bits in positions beyond that
972    // of the highest bit demanded of them.
973    APInt LoMask = APInt::getLowBitsSet(BitWidth,
974                                        BitWidth - NewMask.countLeadingZeros());
975    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
976                             KnownOne2, TLO, Depth+1))
977      return true;
978    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
979                             KnownOne2, TLO, Depth+1))
980      return true;
981    // See if the operation should be performed at a smaller bit width.
982    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
983      return true;
984  }
985  // FALL THROUGH
986  default:
987    // Just use ComputeMaskedBits to compute output bits.
988    TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
989    break;
990  }
991
992  // If we know the value of all of the demanded bits, return this as a
993  // constant.
994  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
995    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
996
997  return false;
998}
999
1000/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1001/// in Mask are known to be either zero or one and return them in the
1002/// KnownZero/KnownOne bitsets.
1003void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1004                                                    APInt &KnownZero,
1005                                                    APInt &KnownOne,
1006                                                    const SelectionDAG &DAG,
1007                                                    unsigned Depth) const {
1008  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1009          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1010          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1011          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1012         "Should use MaskedValueIsZero if you don't know whether Op"
1013         " is a target node!");
1014  KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
1015}
1016
1017/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1018/// targets that want to expose additional information about sign bits to the
1019/// DAG Combiner.
1020unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1021                                                         unsigned Depth) const {
1022  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1023          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1024          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1025          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1026         "Should use ComputeNumSignBits if you don't know whether Op"
1027         " is a target node!");
1028  return 1;
1029}
1030
1031/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1032/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1033/// determine which bit is set.
1034///
1035static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1036  // A left-shift of a constant one will have exactly one bit set, because
1037  // shifting the bit off the end is undefined.
1038  if (Val.getOpcode() == ISD::SHL)
1039    if (ConstantSDNode *C =
1040         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1041      if (C->getAPIntValue() == 1)
1042        return true;
1043
1044  // Similarly, a right-shift of a constant sign-bit will have exactly
1045  // one bit set.
1046  if (Val.getOpcode() == ISD::SRL)
1047    if (ConstantSDNode *C =
1048         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1049      if (C->getAPIntValue().isSignBit())
1050        return true;
1051
1052  // More could be done here, though the above checks are enough
1053  // to handle some common cases.
1054
1055  // Fall back to ComputeMaskedBits to catch other known cases.
1056  EVT OpVT = Val.getValueType();
1057  unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1058  APInt KnownZero, KnownOne;
1059  DAG.ComputeMaskedBits(Val, KnownZero, KnownOne);
1060  return (KnownZero.countPopulation() == BitWidth - 1) &&
1061         (KnownOne.countPopulation() == 1);
1062}
1063
1064/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1065/// and cc. If it is unable to simplify it, return a null SDValue.
1066SDValue
1067TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1068                              ISD::CondCode Cond, bool foldBooleans,
1069                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1070  SelectionDAG &DAG = DCI.DAG;
1071
1072  // These setcc operations always fold.
1073  switch (Cond) {
1074  default: break;
1075  case ISD::SETFALSE:
1076  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1077  case ISD::SETTRUE:
1078  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1079  }
1080
1081  // Ensure that the constant occurs on the RHS, and fold constant
1082  // comparisons.
1083  if (isa<ConstantSDNode>(N0.getNode()))
1084    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1085
1086  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1087    const APInt &C1 = N1C->getAPIntValue();
1088
1089    // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1090    // equality comparison, then we're just comparing whether X itself is
1091    // zero.
1092    if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1093        N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1094        N0.getOperand(1).getOpcode() == ISD::Constant) {
1095      const APInt &ShAmt
1096        = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1097      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1098          ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1099        if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1100          // (srl (ctlz x), 5) == 0  -> X != 0
1101          // (srl (ctlz x), 5) != 1  -> X != 0
1102          Cond = ISD::SETNE;
1103        } else {
1104          // (srl (ctlz x), 5) != 0  -> X == 0
1105          // (srl (ctlz x), 5) == 1  -> X == 0
1106          Cond = ISD::SETEQ;
1107        }
1108        SDValue Zero = DAG.getConstant(0, N0.getValueType());
1109        return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1110                            Zero, Cond);
1111      }
1112    }
1113
1114    SDValue CTPOP = N0;
1115    // Look through truncs that don't change the value of a ctpop.
1116    if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1117      CTPOP = N0.getOperand(0);
1118
1119    if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1120        (N0 == CTPOP || N0.getValueType().getSizeInBits() >
1121                        Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
1122      EVT CTVT = CTPOP.getValueType();
1123      SDValue CTOp = CTPOP.getOperand(0);
1124
1125      // (ctpop x) u< 2 -> (x & x-1) == 0
1126      // (ctpop x) u> 1 -> (x & x-1) != 0
1127      if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1128        SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1129                                  DAG.getConstant(1, CTVT));
1130        SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1131        ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1132        return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC);
1133      }
1134
1135      // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1136    }
1137
1138    // (zext x) == C --> x == (trunc C)
1139    if (DCI.isBeforeLegalize() && N0->hasOneUse() &&
1140        (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1141      unsigned MinBits = N0.getValueSizeInBits();
1142      SDValue PreZExt;
1143      if (N0->getOpcode() == ISD::ZERO_EXTEND) {
1144        // ZExt
1145        MinBits = N0->getOperand(0).getValueSizeInBits();
1146        PreZExt = N0->getOperand(0);
1147      } else if (N0->getOpcode() == ISD::AND) {
1148        // DAGCombine turns costly ZExts into ANDs
1149        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
1150          if ((C->getAPIntValue()+1).isPowerOf2()) {
1151            MinBits = C->getAPIntValue().countTrailingOnes();
1152            PreZExt = N0->getOperand(0);
1153          }
1154      } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) {
1155        // ZEXTLOAD
1156        if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
1157          MinBits = LN0->getMemoryVT().getSizeInBits();
1158          PreZExt = N0;
1159        }
1160      }
1161
1162      // Make sure we're not losing bits from the constant.
1163      if (MinBits < C1.getBitWidth() && MinBits > C1.getActiveBits()) {
1164        EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
1165        if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
1166          // Will get folded away.
1167          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt);
1168          SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT);
1169          return DAG.getSetCC(dl, VT, Trunc, C, Cond);
1170        }
1171      }
1172    }
1173
1174    // If the LHS is '(and load, const)', the RHS is 0,
1175    // the test is for equality or unsigned, and all 1 bits of the const are
1176    // in the same partial word, see if we can shorten the load.
1177    if (DCI.isBeforeLegalize() &&
1178        N0.getOpcode() == ISD::AND && C1 == 0 &&
1179        N0.getNode()->hasOneUse() &&
1180        isa<LoadSDNode>(N0.getOperand(0)) &&
1181        N0.getOperand(0).getNode()->hasOneUse() &&
1182        isa<ConstantSDNode>(N0.getOperand(1))) {
1183      LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1184      APInt bestMask;
1185      unsigned bestWidth = 0, bestOffset = 0;
1186      if (!Lod->isVolatile() && Lod->isUnindexed()) {
1187        unsigned origWidth = N0.getValueType().getSizeInBits();
1188        unsigned maskWidth = origWidth;
1189        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1190        // 8 bits, but have to be careful...
1191        if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1192          origWidth = Lod->getMemoryVT().getSizeInBits();
1193        const APInt &Mask =
1194          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1195        for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1196          APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1197          for (unsigned offset=0; offset<origWidth/width; offset++) {
1198            if ((newMask & Mask) == Mask) {
1199              if (!getDataLayout()->isLittleEndian())
1200                bestOffset = (origWidth/width - offset - 1) * (width/8);
1201              else
1202                bestOffset = (uint64_t)offset * (width/8);
1203              bestMask = Mask.lshr(offset * (width/8) * 8);
1204              bestWidth = width;
1205              break;
1206            }
1207            newMask = newMask << width;
1208          }
1209        }
1210      }
1211      if (bestWidth) {
1212        EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
1213        if (newVT.isRound()) {
1214          EVT PtrType = Lod->getOperand(1).getValueType();
1215          SDValue Ptr = Lod->getBasePtr();
1216          if (bestOffset != 0)
1217            Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1218                              DAG.getConstant(bestOffset, PtrType));
1219          unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1220          SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1221                                Lod->getPointerInfo().getWithOffset(bestOffset),
1222                                        false, false, false, NewAlign);
1223          return DAG.getSetCC(dl, VT,
1224                              DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1225                                      DAG.getConstant(bestMask.trunc(bestWidth),
1226                                                      newVT)),
1227                              DAG.getConstant(0LL, newVT), Cond);
1228        }
1229      }
1230    }
1231
1232    // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1233    if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1234      unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1235
1236      // If the comparison constant has bits in the upper part, the
1237      // zero-extended value could never match.
1238      if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1239                                              C1.getBitWidth() - InSize))) {
1240        switch (Cond) {
1241        case ISD::SETUGT:
1242        case ISD::SETUGE:
1243        case ISD::SETEQ: return DAG.getConstant(0, VT);
1244        case ISD::SETULT:
1245        case ISD::SETULE:
1246        case ISD::SETNE: return DAG.getConstant(1, VT);
1247        case ISD::SETGT:
1248        case ISD::SETGE:
1249          // True if the sign bit of C1 is set.
1250          return DAG.getConstant(C1.isNegative(), VT);
1251        case ISD::SETLT:
1252        case ISD::SETLE:
1253          // True if the sign bit of C1 isn't set.
1254          return DAG.getConstant(C1.isNonNegative(), VT);
1255        default:
1256          break;
1257        }
1258      }
1259
1260      // Otherwise, we can perform the comparison with the low bits.
1261      switch (Cond) {
1262      case ISD::SETEQ:
1263      case ISD::SETNE:
1264      case ISD::SETUGT:
1265      case ISD::SETUGE:
1266      case ISD::SETULT:
1267      case ISD::SETULE: {
1268        EVT newVT = N0.getOperand(0).getValueType();
1269        if (DCI.isBeforeLegalizeOps() ||
1270            (isOperationLegal(ISD::SETCC, newVT) &&
1271             getCondCodeAction(Cond, newVT.getSimpleVT())==Legal))
1272          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1273                              DAG.getConstant(C1.trunc(InSize), newVT),
1274                              Cond);
1275        break;
1276      }
1277      default:
1278        break;   // todo, be more careful with signed comparisons
1279      }
1280    } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1281               (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1282      EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1283      unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1284      EVT ExtDstTy = N0.getValueType();
1285      unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1286
1287      // If the constant doesn't fit into the number of bits for the source of
1288      // the sign extension, it is impossible for both sides to be equal.
1289      if (C1.getMinSignedBits() > ExtSrcTyBits)
1290        return DAG.getConstant(Cond == ISD::SETNE, VT);
1291
1292      SDValue ZextOp;
1293      EVT Op0Ty = N0.getOperand(0).getValueType();
1294      if (Op0Ty == ExtSrcTy) {
1295        ZextOp = N0.getOperand(0);
1296      } else {
1297        APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1298        ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1299                              DAG.getConstant(Imm, Op0Ty));
1300      }
1301      if (!DCI.isCalledByLegalizer())
1302        DCI.AddToWorklist(ZextOp.getNode());
1303      // Otherwise, make this a use of a zext.
1304      return DAG.getSetCC(dl, VT, ZextOp,
1305                          DAG.getConstant(C1 & APInt::getLowBitsSet(
1306                                                              ExtDstTyBits,
1307                                                              ExtSrcTyBits),
1308                                          ExtDstTy),
1309                          Cond);
1310    } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1311                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1312      // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1313      if (N0.getOpcode() == ISD::SETCC &&
1314          isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
1315        bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
1316        if (TrueWhenTrue)
1317          return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
1318        // Invert the condition.
1319        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1320        CC = ISD::getSetCCInverse(CC,
1321                                  N0.getOperand(0).getValueType().isInteger());
1322        return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1323      }
1324
1325      if ((N0.getOpcode() == ISD::XOR ||
1326           (N0.getOpcode() == ISD::AND &&
1327            N0.getOperand(0).getOpcode() == ISD::XOR &&
1328            N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1329          isa<ConstantSDNode>(N0.getOperand(1)) &&
1330          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1331        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1332        // can only do this if the top bits are known zero.
1333        unsigned BitWidth = N0.getValueSizeInBits();
1334        if (DAG.MaskedValueIsZero(N0,
1335                                  APInt::getHighBitsSet(BitWidth,
1336                                                        BitWidth-1))) {
1337          // Okay, get the un-inverted input value.
1338          SDValue Val;
1339          if (N0.getOpcode() == ISD::XOR)
1340            Val = N0.getOperand(0);
1341          else {
1342            assert(N0.getOpcode() == ISD::AND &&
1343                    N0.getOperand(0).getOpcode() == ISD::XOR);
1344            // ((X^1)&1)^1 -> X & 1
1345            Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1346                              N0.getOperand(0).getOperand(0),
1347                              N0.getOperand(1));
1348          }
1349
1350          return DAG.getSetCC(dl, VT, Val, N1,
1351                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1352        }
1353      } else if (N1C->getAPIntValue() == 1 &&
1354                 (VT == MVT::i1 ||
1355                  getBooleanContents(false) == ZeroOrOneBooleanContent)) {
1356        SDValue Op0 = N0;
1357        if (Op0.getOpcode() == ISD::TRUNCATE)
1358          Op0 = Op0.getOperand(0);
1359
1360        if ((Op0.getOpcode() == ISD::XOR) &&
1361            Op0.getOperand(0).getOpcode() == ISD::SETCC &&
1362            Op0.getOperand(1).getOpcode() == ISD::SETCC) {
1363          // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
1364          Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
1365          return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
1366                              Cond);
1367        }
1368        if (Op0.getOpcode() == ISD::AND &&
1369            isa<ConstantSDNode>(Op0.getOperand(1)) &&
1370            cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
1371          // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
1372          if (Op0.getValueType().bitsGT(VT))
1373            Op0 = DAG.getNode(ISD::AND, dl, VT,
1374                          DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
1375                          DAG.getConstant(1, VT));
1376          else if (Op0.getValueType().bitsLT(VT))
1377            Op0 = DAG.getNode(ISD::AND, dl, VT,
1378                        DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
1379                        DAG.getConstant(1, VT));
1380
1381          return DAG.getSetCC(dl, VT, Op0,
1382                              DAG.getConstant(0, Op0.getValueType()),
1383                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1384        }
1385        if (Op0.getOpcode() == ISD::AssertZext &&
1386            cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
1387          return DAG.getSetCC(dl, VT, Op0,
1388                              DAG.getConstant(0, Op0.getValueType()),
1389                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1390      }
1391    }
1392
1393    APInt MinVal, MaxVal;
1394    unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1395    if (ISD::isSignedIntSetCC(Cond)) {
1396      MinVal = APInt::getSignedMinValue(OperandBitSize);
1397      MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1398    } else {
1399      MinVal = APInt::getMinValue(OperandBitSize);
1400      MaxVal = APInt::getMaxValue(OperandBitSize);
1401    }
1402
1403    // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1404    if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1405      if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1406      // X >= C0 --> X > (C0-1)
1407      return DAG.getSetCC(dl, VT, N0,
1408                          DAG.getConstant(C1-1, N1.getValueType()),
1409                          (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1410    }
1411
1412    if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1413      if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1414      // X <= C0 --> X < (C0+1)
1415      return DAG.getSetCC(dl, VT, N0,
1416                          DAG.getConstant(C1+1, N1.getValueType()),
1417                          (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1418    }
1419
1420    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1421      return DAG.getConstant(0, VT);      // X < MIN --> false
1422    if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1423      return DAG.getConstant(1, VT);      // X >= MIN --> true
1424    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1425      return DAG.getConstant(0, VT);      // X > MAX --> false
1426    if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1427      return DAG.getConstant(1, VT);      // X <= MAX --> true
1428
1429    // Canonicalize setgt X, Min --> setne X, Min
1430    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1431      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1432    // Canonicalize setlt X, Max --> setne X, Max
1433    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1434      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1435
1436    // If we have setult X, 1, turn it into seteq X, 0
1437    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1438      return DAG.getSetCC(dl, VT, N0,
1439                          DAG.getConstant(MinVal, N0.getValueType()),
1440                          ISD::SETEQ);
1441    // If we have setugt X, Max-1, turn it into seteq X, Max
1442    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1443      return DAG.getSetCC(dl, VT, N0,
1444                          DAG.getConstant(MaxVal, N0.getValueType()),
1445                          ISD::SETEQ);
1446
1447    // If we have "setcc X, C0", check to see if we can shrink the immediate
1448    // by changing cc.
1449
1450    // SETUGT X, SINTMAX  -> SETLT X, 0
1451    if (Cond == ISD::SETUGT &&
1452        C1 == APInt::getSignedMaxValue(OperandBitSize))
1453      return DAG.getSetCC(dl, VT, N0,
1454                          DAG.getConstant(0, N1.getValueType()),
1455                          ISD::SETLT);
1456
1457    // SETULT X, SINTMIN  -> SETGT X, -1
1458    if (Cond == ISD::SETULT &&
1459        C1 == APInt::getSignedMinValue(OperandBitSize)) {
1460      SDValue ConstMinusOne =
1461          DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
1462                          N1.getValueType());
1463      return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1464    }
1465
1466    // Fold bit comparisons when we can.
1467    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1468        (VT == N0.getValueType() ||
1469         (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
1470        N0.getOpcode() == ISD::AND)
1471      if (ConstantSDNode *AndRHS =
1472                  dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1473        EVT ShiftTy = DCI.isBeforeLegalizeOps() ?
1474          getPointerTy() : getShiftAmountTy(N0.getValueType());
1475        if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1476          // Perform the xform if the AND RHS is a single bit.
1477          if (AndRHS->getAPIntValue().isPowerOf2()) {
1478            return DAG.getNode(ISD::TRUNCATE, dl, VT,
1479                              DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1480                   DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
1481          }
1482        } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
1483          // (X & 8) == 8  -->  (X & 8) >> 3
1484          // Perform the xform if C1 is a single bit.
1485          if (C1.isPowerOf2()) {
1486            return DAG.getNode(ISD::TRUNCATE, dl, VT,
1487                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1488                                      DAG.getConstant(C1.logBase2(), ShiftTy)));
1489          }
1490        }
1491      }
1492
1493    if (C1.getMinSignedBits() <= 64 &&
1494        !isLegalICmpImmediate(C1.getSExtValue())) {
1495      // (X & -256) == 256 -> (X >> 8) == 1
1496      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1497          N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
1498        if (ConstantSDNode *AndRHS =
1499            dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1500          const APInt &AndRHSC = AndRHS->getAPIntValue();
1501          if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
1502            unsigned ShiftBits = AndRHSC.countTrailingZeros();
1503            EVT ShiftTy = DCI.isBeforeLegalizeOps() ?
1504              getPointerTy() : getShiftAmountTy(N0.getValueType());
1505            EVT CmpTy = N0.getValueType();
1506            SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
1507                                        DAG.getConstant(ShiftBits, ShiftTy));
1508            SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), CmpTy);
1509            return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
1510          }
1511        }
1512      } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
1513                 Cond == ISD::SETULE || Cond == ISD::SETUGT) {
1514        bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
1515        // X <  0x100000000 -> (X >> 32) <  1
1516        // X >= 0x100000000 -> (X >> 32) >= 1
1517        // X <= 0x0ffffffff -> (X >> 32) <  1
1518        // X >  0x0ffffffff -> (X >> 32) >= 1
1519        unsigned ShiftBits;
1520        APInt NewC = C1;
1521        ISD::CondCode NewCond = Cond;
1522        if (AdjOne) {
1523          ShiftBits = C1.countTrailingOnes();
1524          NewC = NewC + 1;
1525          NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1526        } else {
1527          ShiftBits = C1.countTrailingZeros();
1528        }
1529        NewC = NewC.lshr(ShiftBits);
1530        if (ShiftBits && isLegalICmpImmediate(NewC.getSExtValue())) {
1531          EVT ShiftTy = DCI.isBeforeLegalizeOps() ?
1532            getPointerTy() : getShiftAmountTy(N0.getValueType());
1533          EVT CmpTy = N0.getValueType();
1534          SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
1535                                      DAG.getConstant(ShiftBits, ShiftTy));
1536          SDValue CmpRHS = DAG.getConstant(NewC, CmpTy);
1537          return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
1538        }
1539      }
1540    }
1541  }
1542
1543  if (isa<ConstantFPSDNode>(N0.getNode())) {
1544    // Constant fold or commute setcc.
1545    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1546    if (O.getNode()) return O;
1547  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1548    // If the RHS of an FP comparison is a constant, simplify it away in
1549    // some cases.
1550    if (CFP->getValueAPF().isNaN()) {
1551      // If an operand is known to be a nan, we can fold it.
1552      switch (ISD::getUnorderedFlavor(Cond)) {
1553      default: llvm_unreachable("Unknown flavor!");
1554      case 0:  // Known false.
1555        return DAG.getConstant(0, VT);
1556      case 1:  // Known true.
1557        return DAG.getConstant(1, VT);
1558      case 2:  // Undefined.
1559        return DAG.getUNDEF(VT);
1560      }
1561    }
1562
1563    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1564    // constant if knowing that the operand is non-nan is enough.  We prefer to
1565    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1566    // materialize 0.0.
1567    if (Cond == ISD::SETO || Cond == ISD::SETUO)
1568      return DAG.getSetCC(dl, VT, N0, N0, Cond);
1569
1570    // If the condition is not legal, see if we can find an equivalent one
1571    // which is legal.
1572    if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
1573      // If the comparison was an awkward floating-point == or != and one of
1574      // the comparison operands is infinity or negative infinity, convert the
1575      // condition to a less-awkward <= or >=.
1576      if (CFP->getValueAPF().isInfinity()) {
1577        if (CFP->getValueAPF().isNegative()) {
1578          if (Cond == ISD::SETOEQ &&
1579              isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
1580            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
1581          if (Cond == ISD::SETUEQ &&
1582              isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
1583            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
1584          if (Cond == ISD::SETUNE &&
1585              isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
1586            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
1587          if (Cond == ISD::SETONE &&
1588              isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
1589            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
1590        } else {
1591          if (Cond == ISD::SETOEQ &&
1592              isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
1593            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
1594          if (Cond == ISD::SETUEQ &&
1595              isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
1596            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
1597          if (Cond == ISD::SETUNE &&
1598              isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
1599            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
1600          if (Cond == ISD::SETONE &&
1601              isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
1602            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
1603        }
1604      }
1605    }
1606  }
1607
1608  if (N0 == N1) {
1609    // The sext(setcc()) => setcc() optimization relies on the appropriate
1610    // constant being emitted.
1611    uint64_t EqVal = 0;
1612    switch (getBooleanContents(N0.getValueType().isVector())) {
1613    case UndefinedBooleanContent:
1614    case ZeroOrOneBooleanContent:
1615      EqVal = ISD::isTrueWhenEqual(Cond);
1616      break;
1617    case ZeroOrNegativeOneBooleanContent:
1618      EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0;
1619      break;
1620    }
1621
1622    // We can always fold X == X for integer setcc's.
1623    if (N0.getValueType().isInteger()) {
1624      return DAG.getConstant(EqVal, VT);
1625    }
1626    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1627    if (UOF == 2)   // FP operators that are undefined on NaNs.
1628      return DAG.getConstant(EqVal, VT);
1629    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1630      return DAG.getConstant(EqVal, VT);
1631    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1632    // if it is not already.
1633    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1634    if (NewCond != Cond && (DCI.isBeforeLegalizeOps() ||
1635          getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal))
1636      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
1637  }
1638
1639  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1640      N0.getValueType().isInteger()) {
1641    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1642        N0.getOpcode() == ISD::XOR) {
1643      // Simplify (X+Y) == (X+Z) -->  Y == Z
1644      if (N0.getOpcode() == N1.getOpcode()) {
1645        if (N0.getOperand(0) == N1.getOperand(0))
1646          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
1647        if (N0.getOperand(1) == N1.getOperand(1))
1648          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
1649        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1650          // If X op Y == Y op X, try other combinations.
1651          if (N0.getOperand(0) == N1.getOperand(1))
1652            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
1653                                Cond);
1654          if (N0.getOperand(1) == N1.getOperand(0))
1655            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
1656                                Cond);
1657        }
1658      }
1659
1660      // If RHS is a legal immediate value for a compare instruction, we need
1661      // to be careful about increasing register pressure needlessly.
1662      bool LegalRHSImm = false;
1663
1664      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1665        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1666          // Turn (X+C1) == C2 --> X == C2-C1
1667          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
1668            return DAG.getSetCC(dl, VT, N0.getOperand(0),
1669                                DAG.getConstant(RHSC->getAPIntValue()-
1670                                                LHSR->getAPIntValue(),
1671                                N0.getValueType()), Cond);
1672          }
1673
1674          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1675          if (N0.getOpcode() == ISD::XOR)
1676            // If we know that all of the inverted bits are zero, don't bother
1677            // performing the inversion.
1678            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1679              return
1680                DAG.getSetCC(dl, VT, N0.getOperand(0),
1681                             DAG.getConstant(LHSR->getAPIntValue() ^
1682                                               RHSC->getAPIntValue(),
1683                                             N0.getValueType()),
1684                             Cond);
1685        }
1686
1687        // Turn (C1-X) == C2 --> X == C1-C2
1688        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1689          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
1690            return
1691              DAG.getSetCC(dl, VT, N0.getOperand(1),
1692                           DAG.getConstant(SUBC->getAPIntValue() -
1693                                             RHSC->getAPIntValue(),
1694                                           N0.getValueType()),
1695                           Cond);
1696          }
1697        }
1698
1699        // Could RHSC fold directly into a compare?
1700        if (RHSC->getValueType(0).getSizeInBits() <= 64)
1701          LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
1702      }
1703
1704      // Simplify (X+Z) == X -->  Z == 0
1705      // Don't do this if X is an immediate that can fold into a cmp
1706      // instruction and X+Z has other uses. It could be an induction variable
1707      // chain, and the transform would increase register pressure.
1708      if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
1709        if (N0.getOperand(0) == N1)
1710          return DAG.getSetCC(dl, VT, N0.getOperand(1),
1711                              DAG.getConstant(0, N0.getValueType()), Cond);
1712        if (N0.getOperand(1) == N1) {
1713          if (DAG.isCommutativeBinOp(N0.getOpcode()))
1714            return DAG.getSetCC(dl, VT, N0.getOperand(0),
1715                                DAG.getConstant(0, N0.getValueType()), Cond);
1716          if (N0.getNode()->hasOneUse()) {
1717            assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1718            // (Z-X) == X  --> Z == X<<1
1719            SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N1,
1720                       DAG.getConstant(1, getShiftAmountTy(N1.getValueType())));
1721            if (!DCI.isCalledByLegalizer())
1722              DCI.AddToWorklist(SH.getNode());
1723            return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
1724          }
1725        }
1726      }
1727    }
1728
1729    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1730        N1.getOpcode() == ISD::XOR) {
1731      // Simplify  X == (X+Z) -->  Z == 0
1732      if (N1.getOperand(0) == N0)
1733        return DAG.getSetCC(dl, VT, N1.getOperand(1),
1734                        DAG.getConstant(0, N1.getValueType()), Cond);
1735      if (N1.getOperand(1) == N0) {
1736        if (DAG.isCommutativeBinOp(N1.getOpcode()))
1737          return DAG.getSetCC(dl, VT, N1.getOperand(0),
1738                          DAG.getConstant(0, N1.getValueType()), Cond);
1739        if (N1.getNode()->hasOneUse()) {
1740          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1741          // X == (Z-X)  --> X<<1 == Z
1742          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
1743                       DAG.getConstant(1, getShiftAmountTy(N0.getValueType())));
1744          if (!DCI.isCalledByLegalizer())
1745            DCI.AddToWorklist(SH.getNode());
1746          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
1747        }
1748      }
1749    }
1750
1751    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
1752    // Note that where y is variable and is known to have at most
1753    // one bit set (for example, if it is z&1) we cannot do this;
1754    // the expressions are not equivalent when y==0.
1755    if (N0.getOpcode() == ISD::AND)
1756      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
1757        if (ValueHasExactlyOneBitSet(N1, DAG)) {
1758          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1759          SDValue Zero = DAG.getConstant(0, N1.getValueType());
1760          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
1761        }
1762      }
1763    if (N1.getOpcode() == ISD::AND)
1764      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
1765        if (ValueHasExactlyOneBitSet(N0, DAG)) {
1766          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1767          SDValue Zero = DAG.getConstant(0, N0.getValueType());
1768          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
1769        }
1770      }
1771  }
1772
1773  // Fold away ALL boolean setcc's.
1774  SDValue Temp;
1775  if (N0.getValueType() == MVT::i1 && foldBooleans) {
1776    switch (Cond) {
1777    default: llvm_unreachable("Unknown integer setcc!");
1778    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
1779      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
1780      N0 = DAG.getNOT(dl, Temp, MVT::i1);
1781      if (!DCI.isCalledByLegalizer())
1782        DCI.AddToWorklist(Temp.getNode());
1783      break;
1784    case ISD::SETNE:  // X != Y   -->  (X^Y)
1785      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
1786      break;
1787    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
1788    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
1789      Temp = DAG.getNOT(dl, N0, MVT::i1);
1790      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
1791      if (!DCI.isCalledByLegalizer())
1792        DCI.AddToWorklist(Temp.getNode());
1793      break;
1794    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
1795    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
1796      Temp = DAG.getNOT(dl, N1, MVT::i1);
1797      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
1798      if (!DCI.isCalledByLegalizer())
1799        DCI.AddToWorklist(Temp.getNode());
1800      break;
1801    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
1802    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
1803      Temp = DAG.getNOT(dl, N0, MVT::i1);
1804      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
1805      if (!DCI.isCalledByLegalizer())
1806        DCI.AddToWorklist(Temp.getNode());
1807      break;
1808    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
1809    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
1810      Temp = DAG.getNOT(dl, N1, MVT::i1);
1811      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
1812      break;
1813    }
1814    if (VT != MVT::i1) {
1815      if (!DCI.isCalledByLegalizer())
1816        DCI.AddToWorklist(N0.getNode());
1817      // FIXME: If running after legalize, we probably can't do this.
1818      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
1819    }
1820    return N0;
1821  }
1822
1823  // Could not fold it.
1824  return SDValue();
1825}
1826
1827/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
1828/// node is a GlobalAddress + offset.
1829bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
1830                                    int64_t &Offset) const {
1831  if (isa<GlobalAddressSDNode>(N)) {
1832    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
1833    GA = GASD->getGlobal();
1834    Offset += GASD->getOffset();
1835    return true;
1836  }
1837
1838  if (N->getOpcode() == ISD::ADD) {
1839    SDValue N1 = N->getOperand(0);
1840    SDValue N2 = N->getOperand(1);
1841    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
1842      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
1843      if (V) {
1844        Offset += V->getSExtValue();
1845        return true;
1846      }
1847    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
1848      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
1849      if (V) {
1850        Offset += V->getSExtValue();
1851        return true;
1852      }
1853    }
1854  }
1855
1856  return false;
1857}
1858
1859
1860SDValue TargetLowering::
1861PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1862  // Default implementation: no optimization.
1863  return SDValue();
1864}
1865
1866//===----------------------------------------------------------------------===//
1867//  Inline Assembler Implementation Methods
1868//===----------------------------------------------------------------------===//
1869
1870
1871TargetLowering::ConstraintType
1872TargetLowering::getConstraintType(const std::string &Constraint) const {
1873  unsigned S = Constraint.size();
1874
1875  if (S == 1) {
1876    switch (Constraint[0]) {
1877    default: break;
1878    case 'r': return C_RegisterClass;
1879    case 'm':    // memory
1880    case 'o':    // offsetable
1881    case 'V':    // not offsetable
1882      return C_Memory;
1883    case 'i':    // Simple Integer or Relocatable Constant
1884    case 'n':    // Simple Integer
1885    case 'E':    // Floating Point Constant
1886    case 'F':    // Floating Point Constant
1887    case 's':    // Relocatable Constant
1888    case 'p':    // Address.
1889    case 'X':    // Allow ANY value.
1890    case 'I':    // Target registers.
1891    case 'J':
1892    case 'K':
1893    case 'L':
1894    case 'M':
1895    case 'N':
1896    case 'O':
1897    case 'P':
1898    case '<':
1899    case '>':
1900      return C_Other;
1901    }
1902  }
1903
1904  if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
1905    if (S == 8 && !Constraint.compare(1, 6, "memory", 6))  // "{memory}"
1906      return C_Memory;
1907    return C_Register;
1908  }
1909  return C_Unknown;
1910}
1911
1912/// LowerXConstraint - try to replace an X constraint, which matches anything,
1913/// with another that has more specific requirements based on the type of the
1914/// corresponding operand.
1915const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
1916  if (ConstraintVT.isInteger())
1917    return "r";
1918  if (ConstraintVT.isFloatingPoint())
1919    return "f";      // works for many targets
1920  return 0;
1921}
1922
1923/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1924/// vector.  If it is invalid, don't add anything to Ops.
1925void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
1926                                                  std::string &Constraint,
1927                                                  std::vector<SDValue> &Ops,
1928                                                  SelectionDAG &DAG) const {
1929
1930  if (Constraint.length() > 1) return;
1931
1932  char ConstraintLetter = Constraint[0];
1933  switch (ConstraintLetter) {
1934  default: break;
1935  case 'X':     // Allows any operand; labels (basic block) use this.
1936    if (Op.getOpcode() == ISD::BasicBlock) {
1937      Ops.push_back(Op);
1938      return;
1939    }
1940    // fall through
1941  case 'i':    // Simple Integer or Relocatable Constant
1942  case 'n':    // Simple Integer
1943  case 's': {  // Relocatable Constant
1944    // These operands are interested in values of the form (GV+C), where C may
1945    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
1946    // is possible and fine if either GV or C are missing.
1947    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1948    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1949
1950    // If we have "(add GV, C)", pull out GV/C
1951    if (Op.getOpcode() == ISD::ADD) {
1952      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1953      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
1954      if (C == 0 || GA == 0) {
1955        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1956        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
1957      }
1958      if (C == 0 || GA == 0)
1959        C = 0, GA = 0;
1960    }
1961
1962    // If we find a valid operand, map to the TargetXXX version so that the
1963    // value itself doesn't get selected.
1964    if (GA) {   // Either &GV   or   &GV+C
1965      if (ConstraintLetter != 'n') {
1966        int64_t Offs = GA->getOffset();
1967        if (C) Offs += C->getZExtValue();
1968        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
1969                                                 C ? C->getDebugLoc() : DebugLoc(),
1970                                                 Op.getValueType(), Offs));
1971        return;
1972      }
1973    }
1974    if (C) {   // just C, no GV.
1975      // Simple constants are not allowed for 's'.
1976      if (ConstraintLetter != 's') {
1977        // gcc prints these as sign extended.  Sign extend value to 64 bits
1978        // now; without this it would get ZExt'd later in
1979        // ScheduleDAGSDNodes::EmitNode, which is very generic.
1980        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
1981                                            MVT::i64));
1982        return;
1983      }
1984    }
1985    break;
1986  }
1987  }
1988}
1989
1990std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
1991getRegForInlineAsmConstraint(const std::string &Constraint,
1992                             EVT VT) const {
1993  if (Constraint[0] != '{')
1994    return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
1995  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
1996
1997  // Remove the braces from around the name.
1998  StringRef RegName(Constraint.data()+1, Constraint.size()-2);
1999
2000  std::pair<unsigned, const TargetRegisterClass*> R =
2001    std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2002
2003  // Figure out which register class contains this reg.
2004  const TargetRegisterInfo *RI = getTargetMachine().getRegisterInfo();
2005  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2006       E = RI->regclass_end(); RCI != E; ++RCI) {
2007    const TargetRegisterClass *RC = *RCI;
2008
2009    // If none of the value types for this register class are valid, we
2010    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2011    if (!isLegalRC(RC))
2012      continue;
2013
2014    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2015         I != E; ++I) {
2016      if (RegName.equals_lower(RI->getName(*I))) {
2017        std::pair<unsigned, const TargetRegisterClass*> S =
2018          std::make_pair(*I, RC);
2019
2020        // If this register class has the requested value type, return it,
2021        // otherwise keep searching and return the first class found
2022        // if no other is found which explicitly has the requested type.
2023        if (RC->hasType(VT))
2024          return S;
2025        else if (!R.second)
2026          R = S;
2027      }
2028    }
2029  }
2030
2031  return R;
2032}
2033
2034//===----------------------------------------------------------------------===//
2035// Constraint Selection.
2036
2037/// isMatchingInputConstraint - Return true of this is an input operand that is
2038/// a matching constraint like "4".
2039bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2040  assert(!ConstraintCode.empty() && "No known constraint!");
2041  return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
2042}
2043
2044/// getMatchedOperand - If this is an input matching constraint, this method
2045/// returns the output operand it matches.
2046unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2047  assert(!ConstraintCode.empty() && "No known constraint!");
2048  return atoi(ConstraintCode.c_str());
2049}
2050
2051
2052/// ParseConstraints - Split up the constraint string from the inline
2053/// assembly value into the specific constraints and their prefixes,
2054/// and also tie in the associated operand values.
2055/// If this returns an empty vector, and if the constraint string itself
2056/// isn't empty, there was an error parsing.
2057TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
2058    ImmutableCallSite CS) const {
2059  /// ConstraintOperands - Information about all of the constraints.
2060  AsmOperandInfoVector ConstraintOperands;
2061  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2062  unsigned maCount = 0; // Largest number of multiple alternative constraints.
2063
2064  // Do a prepass over the constraints, canonicalizing them, and building up the
2065  // ConstraintOperands list.
2066  InlineAsm::ConstraintInfoVector
2067    ConstraintInfos = IA->ParseConstraints();
2068
2069  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
2070  unsigned ResNo = 0;   // ResNo - The result number of the next output.
2071
2072  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
2073    ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
2074    AsmOperandInfo &OpInfo = ConstraintOperands.back();
2075
2076    // Update multiple alternative constraint count.
2077    if (OpInfo.multipleAlternatives.size() > maCount)
2078      maCount = OpInfo.multipleAlternatives.size();
2079
2080    OpInfo.ConstraintVT = MVT::Other;
2081
2082    // Compute the value type for each operand.
2083    switch (OpInfo.Type) {
2084    case InlineAsm::isOutput:
2085      // Indirect outputs just consume an argument.
2086      if (OpInfo.isIndirect) {
2087        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2088        break;
2089      }
2090
2091      // The return value of the call is this value.  As such, there is no
2092      // corresponding argument.
2093      assert(!CS.getType()->isVoidTy() &&
2094             "Bad inline asm!");
2095      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
2096        OpInfo.ConstraintVT = getSimpleValueType(STy->getElementType(ResNo));
2097      } else {
2098        assert(ResNo == 0 && "Asm only has one result!");
2099        OpInfo.ConstraintVT = getSimpleValueType(CS.getType());
2100      }
2101      ++ResNo;
2102      break;
2103    case InlineAsm::isInput:
2104      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2105      break;
2106    case InlineAsm::isClobber:
2107      // Nothing to do.
2108      break;
2109    }
2110
2111    if (OpInfo.CallOperandVal) {
2112      llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2113      if (OpInfo.isIndirect) {
2114        llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2115        if (!PtrTy)
2116          report_fatal_error("Indirect operand for inline asm not a pointer!");
2117        OpTy = PtrTy->getElementType();
2118      }
2119
2120      // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
2121      if (StructType *STy = dyn_cast<StructType>(OpTy))
2122        if (STy->getNumElements() == 1)
2123          OpTy = STy->getElementType(0);
2124
2125      // If OpTy is not a single value, it may be a struct/union that we
2126      // can tile with integers.
2127      if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2128        unsigned BitSize = getDataLayout()->getTypeSizeInBits(OpTy);
2129        switch (BitSize) {
2130        default: break;
2131        case 1:
2132        case 8:
2133        case 16:
2134        case 32:
2135        case 64:
2136        case 128:
2137          OpInfo.ConstraintVT =
2138            MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2139          break;
2140        }
2141      } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
2142        OpInfo.ConstraintVT = MVT::getIntegerVT(
2143            8*getDataLayout()->getPointerSize(PT->getAddressSpace()));
2144      } else {
2145        OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
2146      }
2147    }
2148  }
2149
2150  // If we have multiple alternative constraints, select the best alternative.
2151  if (ConstraintInfos.size()) {
2152    if (maCount) {
2153      unsigned bestMAIndex = 0;
2154      int bestWeight = -1;
2155      // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
2156      int weight = -1;
2157      unsigned maIndex;
2158      // Compute the sums of the weights for each alternative, keeping track
2159      // of the best (highest weight) one so far.
2160      for (maIndex = 0; maIndex < maCount; ++maIndex) {
2161        int weightSum = 0;
2162        for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2163            cIndex != eIndex; ++cIndex) {
2164          AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2165          if (OpInfo.Type == InlineAsm::isClobber)
2166            continue;
2167
2168          // If this is an output operand with a matching input operand,
2169          // look up the matching input. If their types mismatch, e.g. one
2170          // is an integer, the other is floating point, or their sizes are
2171          // different, flag it as an maCantMatch.
2172          if (OpInfo.hasMatchingInput()) {
2173            AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2174            if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2175              if ((OpInfo.ConstraintVT.isInteger() !=
2176                   Input.ConstraintVT.isInteger()) ||
2177                  (OpInfo.ConstraintVT.getSizeInBits() !=
2178                   Input.ConstraintVT.getSizeInBits())) {
2179                weightSum = -1;  // Can't match.
2180                break;
2181              }
2182            }
2183          }
2184          weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2185          if (weight == -1) {
2186            weightSum = -1;
2187            break;
2188          }
2189          weightSum += weight;
2190        }
2191        // Update best.
2192        if (weightSum > bestWeight) {
2193          bestWeight = weightSum;
2194          bestMAIndex = maIndex;
2195        }
2196      }
2197
2198      // Now select chosen alternative in each constraint.
2199      for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2200          cIndex != eIndex; ++cIndex) {
2201        AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
2202        if (cInfo.Type == InlineAsm::isClobber)
2203          continue;
2204        cInfo.selectAlternative(bestMAIndex);
2205      }
2206    }
2207  }
2208
2209  // Check and hook up tied operands, choose constraint code to use.
2210  for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2211      cIndex != eIndex; ++cIndex) {
2212    AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2213
2214    // If this is an output operand with a matching input operand, look up the
2215    // matching input. If their types mismatch, e.g. one is an integer, the
2216    // other is floating point, or their sizes are different, flag it as an
2217    // error.
2218    if (OpInfo.hasMatchingInput()) {
2219      AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2220
2221      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2222        std::pair<unsigned, const TargetRegisterClass*> MatchRC =
2223          getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
2224                                       OpInfo.ConstraintVT);
2225        std::pair<unsigned, const TargetRegisterClass*> InputRC =
2226          getRegForInlineAsmConstraint(Input.ConstraintCode,
2227                                       Input.ConstraintVT);
2228        if ((OpInfo.ConstraintVT.isInteger() !=
2229             Input.ConstraintVT.isInteger()) ||
2230            (MatchRC.second != InputRC.second)) {
2231          report_fatal_error("Unsupported asm: input constraint"
2232                             " with a matching output constraint of"
2233                             " incompatible type!");
2234        }
2235      }
2236
2237    }
2238  }
2239
2240  return ConstraintOperands;
2241}
2242
2243
2244/// getConstraintGenerality - Return an integer indicating how general CT
2245/// is.
2246static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2247  switch (CT) {
2248  case TargetLowering::C_Other:
2249  case TargetLowering::C_Unknown:
2250    return 0;
2251  case TargetLowering::C_Register:
2252    return 1;
2253  case TargetLowering::C_RegisterClass:
2254    return 2;
2255  case TargetLowering::C_Memory:
2256    return 3;
2257  }
2258  llvm_unreachable("Invalid constraint type");
2259}
2260
2261/// Examine constraint type and operand type and determine a weight value.
2262/// This object must already have been set up with the operand type
2263/// and the current alternative constraint selected.
2264TargetLowering::ConstraintWeight
2265  TargetLowering::getMultipleConstraintMatchWeight(
2266    AsmOperandInfo &info, int maIndex) const {
2267  InlineAsm::ConstraintCodeVector *rCodes;
2268  if (maIndex >= (int)info.multipleAlternatives.size())
2269    rCodes = &info.Codes;
2270  else
2271    rCodes = &info.multipleAlternatives[maIndex].Codes;
2272  ConstraintWeight BestWeight = CW_Invalid;
2273
2274  // Loop over the options, keeping track of the most general one.
2275  for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
2276    ConstraintWeight weight =
2277      getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
2278    if (weight > BestWeight)
2279      BestWeight = weight;
2280  }
2281
2282  return BestWeight;
2283}
2284
2285/// Examine constraint type and operand type and determine a weight value.
2286/// This object must already have been set up with the operand type
2287/// and the current alternative constraint selected.
2288TargetLowering::ConstraintWeight
2289  TargetLowering::getSingleConstraintMatchWeight(
2290    AsmOperandInfo &info, const char *constraint) const {
2291  ConstraintWeight weight = CW_Invalid;
2292  Value *CallOperandVal = info.CallOperandVal;
2293    // If we don't have a value, we can't do a match,
2294    // but allow it at the lowest weight.
2295  if (CallOperandVal == NULL)
2296    return CW_Default;
2297  // Look at the constraint type.
2298  switch (*constraint) {
2299    case 'i': // immediate integer.
2300    case 'n': // immediate integer with a known value.
2301      if (isa<ConstantInt>(CallOperandVal))
2302        weight = CW_Constant;
2303      break;
2304    case 's': // non-explicit intregal immediate.
2305      if (isa<GlobalValue>(CallOperandVal))
2306        weight = CW_Constant;
2307      break;
2308    case 'E': // immediate float if host format.
2309    case 'F': // immediate float.
2310      if (isa<ConstantFP>(CallOperandVal))
2311        weight = CW_Constant;
2312      break;
2313    case '<': // memory operand with autodecrement.
2314    case '>': // memory operand with autoincrement.
2315    case 'm': // memory operand.
2316    case 'o': // offsettable memory operand
2317    case 'V': // non-offsettable memory operand
2318      weight = CW_Memory;
2319      break;
2320    case 'r': // general register.
2321    case 'g': // general register, memory operand or immediate integer.
2322              // note: Clang converts "g" to "imr".
2323      if (CallOperandVal->getType()->isIntegerTy())
2324        weight = CW_Register;
2325      break;
2326    case 'X': // any operand.
2327    default:
2328      weight = CW_Default;
2329      break;
2330  }
2331  return weight;
2332}
2333
2334/// ChooseConstraint - If there are multiple different constraints that we
2335/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2336/// This is somewhat tricky: constraints fall into four classes:
2337///    Other         -> immediates and magic values
2338///    Register      -> one specific register
2339///    RegisterClass -> a group of regs
2340///    Memory        -> memory
2341/// Ideally, we would pick the most specific constraint possible: if we have
2342/// something that fits into a register, we would pick it.  The problem here
2343/// is that if we have something that could either be in a register or in
2344/// memory that use of the register could cause selection of *other*
2345/// operands to fail: they might only succeed if we pick memory.  Because of
2346/// this the heuristic we use is:
2347///
2348///  1) If there is an 'other' constraint, and if the operand is valid for
2349///     that constraint, use it.  This makes us take advantage of 'i'
2350///     constraints when available.
2351///  2) Otherwise, pick the most general constraint present.  This prefers
2352///     'm' over 'r', for example.
2353///
2354static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2355                             const TargetLowering &TLI,
2356                             SDValue Op, SelectionDAG *DAG) {
2357  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2358  unsigned BestIdx = 0;
2359  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2360  int BestGenerality = -1;
2361
2362  // Loop over the options, keeping track of the most general one.
2363  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2364    TargetLowering::ConstraintType CType =
2365      TLI.getConstraintType(OpInfo.Codes[i]);
2366
2367    // If this is an 'other' constraint, see if the operand is valid for it.
2368    // For example, on X86 we might have an 'rI' constraint.  If the operand
2369    // is an integer in the range [0..31] we want to use I (saving a load
2370    // of a register), otherwise we must use 'r'.
2371    if (CType == TargetLowering::C_Other && Op.getNode()) {
2372      assert(OpInfo.Codes[i].size() == 1 &&
2373             "Unhandled multi-letter 'other' constraint");
2374      std::vector<SDValue> ResultOps;
2375      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
2376                                       ResultOps, *DAG);
2377      if (!ResultOps.empty()) {
2378        BestType = CType;
2379        BestIdx = i;
2380        break;
2381      }
2382    }
2383
2384    // Things with matching constraints can only be registers, per gcc
2385    // documentation.  This mainly affects "g" constraints.
2386    if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
2387      continue;
2388
2389    // This constraint letter is more general than the previous one, use it.
2390    int Generality = getConstraintGenerality(CType);
2391    if (Generality > BestGenerality) {
2392      BestType = CType;
2393      BestIdx = i;
2394      BestGenerality = Generality;
2395    }
2396  }
2397
2398  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2399  OpInfo.ConstraintType = BestType;
2400}
2401
2402/// ComputeConstraintToUse - Determines the constraint code and constraint
2403/// type to use for the specific AsmOperandInfo, setting
2404/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2405void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2406                                            SDValue Op,
2407                                            SelectionDAG *DAG) const {
2408  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2409
2410  // Single-letter constraints ('r') are very common.
2411  if (OpInfo.Codes.size() == 1) {
2412    OpInfo.ConstraintCode = OpInfo.Codes[0];
2413    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2414  } else {
2415    ChooseConstraint(OpInfo, *this, Op, DAG);
2416  }
2417
2418  // 'X' matches anything.
2419  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2420    // Labels and constants are handled elsewhere ('X' is the only thing
2421    // that matches labels).  For Functions, the type here is the type of
2422    // the result, which is not what we want to look at; leave them alone.
2423    Value *v = OpInfo.CallOperandVal;
2424    if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2425      OpInfo.CallOperandVal = v;
2426      return;
2427    }
2428
2429    // Otherwise, try to resolve it to something we know about by looking at
2430    // the actual operand type.
2431    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2432      OpInfo.ConstraintCode = Repl;
2433      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2434    }
2435  }
2436}
2437
2438/// BuildExactDiv - Given an exact SDIV by a constant, create a multiplication
2439/// with the multiplicative inverse of the constant.
2440SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
2441                                       SelectionDAG &DAG) const {
2442  ConstantSDNode *C = cast<ConstantSDNode>(Op2);
2443  APInt d = C->getAPIntValue();
2444  assert(d != 0 && "Division by zero!");
2445
2446  // Shift the value upfront if it is even, so the LSB is one.
2447  unsigned ShAmt = d.countTrailingZeros();
2448  if (ShAmt) {
2449    // TODO: For UDIV use SRL instead of SRA.
2450    SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType()));
2451    Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt);
2452    d = d.ashr(ShAmt);
2453  }
2454
2455  // Calculate the multiplicative inverse, using Newton's method.
2456  APInt t, xn = d;
2457  while ((t = d*xn) != 1)
2458    xn *= APInt(d.getBitWidth(), 2) - t;
2459
2460  Op2 = DAG.getConstant(xn, Op1.getValueType());
2461  return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
2462}
2463
2464/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2465/// return a DAG expression to select that will generate the same value by
2466/// multiplying by a magic number.  See:
2467/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2468SDValue TargetLowering::
2469BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
2470          std::vector<SDNode*> *Created) const {
2471  EVT VT = N->getValueType(0);
2472  DebugLoc dl= N->getDebugLoc();
2473
2474  // Check to see if we can do this.
2475  // FIXME: We should be more aggressive here.
2476  if (!isTypeLegal(VT))
2477    return SDValue();
2478
2479  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2480  APInt::ms magics = d.magic();
2481
2482  // Multiply the numerator (operand 0) by the magic value
2483  // FIXME: We should support doing a MUL in a wider type
2484  SDValue Q;
2485  if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
2486                            isOperationLegalOrCustom(ISD::MULHS, VT))
2487    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2488                    DAG.getConstant(magics.m, VT));
2489  else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
2490                                 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2491    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2492                              N->getOperand(0),
2493                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2494  else
2495    return SDValue();       // No mulhs or equvialent
2496  // If d > 0 and m < 0, add the numerator
2497  if (d.isStrictlyPositive() && magics.m.isNegative()) {
2498    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2499    if (Created)
2500      Created->push_back(Q.getNode());
2501  }
2502  // If d < 0 and m > 0, subtract the numerator.
2503  if (d.isNegative() && magics.m.isStrictlyPositive()) {
2504    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2505    if (Created)
2506      Created->push_back(Q.getNode());
2507  }
2508  // Shift right algebraic if shift value is nonzero
2509  if (magics.s > 0) {
2510    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
2511                 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
2512    if (Created)
2513      Created->push_back(Q.getNode());
2514  }
2515  // Extract the sign bit and add it to the quotient
2516  SDValue T =
2517    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2518                                           getShiftAmountTy(Q.getValueType())));
2519  if (Created)
2520    Created->push_back(T.getNode());
2521  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2522}
2523
2524/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2525/// return a DAG expression to select that will generate the same value by
2526/// multiplying by a magic number.  See:
2527/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2528SDValue TargetLowering::
2529BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
2530          std::vector<SDNode*> *Created) const {
2531  EVT VT = N->getValueType(0);
2532  DebugLoc dl = N->getDebugLoc();
2533
2534  // Check to see if we can do this.
2535  // FIXME: We should be more aggressive here.
2536  if (!isTypeLegal(VT))
2537    return SDValue();
2538
2539  // FIXME: We should use a narrower constant when the upper
2540  // bits are known to be zero.
2541  const APInt &N1C = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2542  APInt::mu magics = N1C.magicu();
2543
2544  SDValue Q = N->getOperand(0);
2545
2546  // If the divisor is even, we can avoid using the expensive fixup by shifting
2547  // the divided value upfront.
2548  if (magics.a != 0 && !N1C[0]) {
2549    unsigned Shift = N1C.countTrailingZeros();
2550    Q = DAG.getNode(ISD::SRL, dl, VT, Q,
2551                    DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType())));
2552    if (Created)
2553      Created->push_back(Q.getNode());
2554
2555    // Get magic number for the shifted divisor.
2556    magics = N1C.lshr(Shift).magicu(Shift);
2557    assert(magics.a == 0 && "Should use cheap fixup now");
2558  }
2559
2560  // Multiply the numerator (operand 0) by the magic value
2561  // FIXME: We should support doing a MUL in a wider type
2562  if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
2563                            isOperationLegalOrCustom(ISD::MULHU, VT))
2564    Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT));
2565  else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
2566                                 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2567    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
2568                            DAG.getConstant(magics.m, VT)).getNode(), 1);
2569  else
2570    return SDValue();       // No mulhu or equvialent
2571  if (Created)
2572    Created->push_back(Q.getNode());
2573
2574  if (magics.a == 0) {
2575    assert(magics.s < N1C.getBitWidth() &&
2576           "We shouldn't generate an undefined shift!");
2577    return DAG.getNode(ISD::SRL, dl, VT, Q,
2578                 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
2579  } else {
2580    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2581    if (Created)
2582      Created->push_back(NPQ.getNode());
2583    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
2584                      DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType())));
2585    if (Created)
2586      Created->push_back(NPQ.getNode());
2587    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2588    if (Created)
2589      Created->push_back(NPQ.getNode());
2590    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
2591             DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType())));
2592  }
2593}
2594