1//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAGInstrs class, which implements re-scheduling
11// of MachineInstrs.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "misched"
16#include "llvm/CodeGen/ScheduleDAGInstrs.h"
17#include "llvm/ADT/MapVector.h"
18#include "llvm/ADT/SmallPtrSet.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ValueTracking.h"
22#include "llvm/CodeGen/LiveIntervalAnalysis.h"
23#include "llvm/CodeGen/MachineFunctionPass.h"
24#include "llvm/CodeGen/MachineMemOperand.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/CodeGen/RegisterPressure.h"
28#include "llvm/CodeGen/ScheduleDFS.h"
29#include "llvm/IR/Operator.h"
30#include "llvm/MC/MCInstrItineraries.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/Format.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetRegisterInfo.h"
38#include "llvm/Target/TargetSubtargetInfo.h"
39using namespace llvm;
40
41static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
42    cl::ZeroOrMore, cl::init(false),
43    cl::desc("Enable use of AA during MI GAD construction"));
44
45ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
46                                     const MachineLoopInfo &mli,
47                                     const MachineDominatorTree &mdt,
48                                     bool IsPostRAFlag,
49                                     LiveIntervals *lis)
50  : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()), LIS(lis),
51    IsPostRA(IsPostRAFlag), CanHandleTerminators(false), FirstDbgValue(0) {
52  assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals");
53  DbgValues.clear();
54  assert(!(IsPostRA && MRI.getNumVirtRegs()) &&
55         "Virtual registers must be removed prior to PostRA scheduling");
56
57  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
58  SchedModel.init(*ST.getSchedModel(), &ST, TII);
59}
60
61/// getUnderlyingObjectFromInt - This is the function that does the work of
62/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
63static const Value *getUnderlyingObjectFromInt(const Value *V) {
64  do {
65    if (const Operator *U = dyn_cast<Operator>(V)) {
66      // If we find a ptrtoint, we can transfer control back to the
67      // regular getUnderlyingObjectFromInt.
68      if (U->getOpcode() == Instruction::PtrToInt)
69        return U->getOperand(0);
70      // If we find an add of a constant, a multiplied value, or a phi, it's
71      // likely that the other operand will lead us to the base
72      // object. We don't have to worry about the case where the
73      // object address is somehow being computed by the multiply,
74      // because our callers only care when the result is an
75      // identifiable object.
76      if (U->getOpcode() != Instruction::Add ||
77          (!isa<ConstantInt>(U->getOperand(1)) &&
78           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
79           !isa<PHINode>(U->getOperand(1))))
80        return V;
81      V = U->getOperand(0);
82    } else {
83      return V;
84    }
85    assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
86  } while (1);
87}
88
89/// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects
90/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
91static void getUnderlyingObjects(const Value *V,
92                                 SmallVectorImpl<Value *> &Objects) {
93  SmallPtrSet<const Value*, 16> Visited;
94  SmallVector<const Value *, 4> Working(1, V);
95  do {
96    V = Working.pop_back_val();
97
98    SmallVector<Value *, 4> Objs;
99    GetUnderlyingObjects(const_cast<Value *>(V), Objs);
100
101    for (SmallVector<Value *, 4>::iterator I = Objs.begin(), IE = Objs.end();
102         I != IE; ++I) {
103      V = *I;
104      if (!Visited.insert(V))
105        continue;
106      if (Operator::getOpcode(V) == Instruction::IntToPtr) {
107        const Value *O =
108          getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
109        if (O->getType()->isPointerTy()) {
110          Working.push_back(O);
111          continue;
112        }
113      }
114      Objects.push_back(const_cast<Value *>(V));
115    }
116  } while (!Working.empty());
117}
118
119/// getUnderlyingObjectsForInstr - If this machine instr has memory reference
120/// information and it can be tracked to a normal reference to a known
121/// object, return the Value for that object.
122static void getUnderlyingObjectsForInstr(const MachineInstr *MI,
123              const MachineFrameInfo *MFI,
124              SmallVectorImpl<std::pair<const Value *, bool> > &Objects) {
125  if (!MI->hasOneMemOperand() ||
126      !(*MI->memoperands_begin())->getValue() ||
127      (*MI->memoperands_begin())->isVolatile())
128    return;
129
130  const Value *V = (*MI->memoperands_begin())->getValue();
131  if (!V)
132    return;
133
134  SmallVector<Value *, 4> Objs;
135  getUnderlyingObjects(V, Objs);
136
137  for (SmallVector<Value *, 4>::iterator I = Objs.begin(), IE = Objs.end();
138       I != IE; ++I) {
139    bool MayAlias = true;
140    V = *I;
141
142    if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
143      // For now, ignore PseudoSourceValues which may alias LLVM IR values
144      // because the code that uses this function has no way to cope with
145      // such aliases.
146
147      if (PSV->isAliased(MFI)) {
148        Objects.clear();
149        return;
150      }
151
152      MayAlias = PSV->mayAlias(MFI);
153    } else if (!isIdentifiedObject(V)) {
154      Objects.clear();
155      return;
156    }
157
158    Objects.push_back(std::make_pair(V, MayAlias));
159  }
160}
161
162void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
163  BB = bb;
164}
165
166void ScheduleDAGInstrs::finishBlock() {
167  // Subclasses should no longer refer to the old block.
168  BB = 0;
169}
170
171/// Initialize the DAG and common scheduler state for the current scheduling
172/// region. This does not actually create the DAG, only clears it. The
173/// scheduling driver may call BuildSchedGraph multiple times per scheduling
174/// region.
175void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
176                                    MachineBasicBlock::iterator begin,
177                                    MachineBasicBlock::iterator end,
178                                    unsigned endcount) {
179  assert(bb == BB && "startBlock should set BB");
180  RegionBegin = begin;
181  RegionEnd = end;
182  EndIndex = endcount;
183  MISUnitMap.clear();
184
185  ScheduleDAG::clearDAG();
186}
187
188/// Close the current scheduling region. Don't clear any state in case the
189/// driver wants to refer to the previous scheduling region.
190void ScheduleDAGInstrs::exitRegion() {
191  // Nothing to do.
192}
193
194/// addSchedBarrierDeps - Add dependencies from instructions in the current
195/// list of instructions being scheduled to scheduling barrier by adding
196/// the exit SU to the register defs and use list. This is because we want to
197/// make sure instructions which define registers that are either used by
198/// the terminator or are live-out are properly scheduled. This is
199/// especially important when the definition latency of the return value(s)
200/// are too high to be hidden by the branch or when the liveout registers
201/// used by instructions in the fallthrough block.
202void ScheduleDAGInstrs::addSchedBarrierDeps() {
203  MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : 0;
204  ExitSU.setInstr(ExitMI);
205  bool AllDepKnown = ExitMI &&
206    (ExitMI->isCall() || ExitMI->isBarrier());
207  if (ExitMI && AllDepKnown) {
208    // If it's a call or a barrier, add dependencies on the defs and uses of
209    // instruction.
210    for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
211      const MachineOperand &MO = ExitMI->getOperand(i);
212      if (!MO.isReg() || MO.isDef()) continue;
213      unsigned Reg = MO.getReg();
214      if (Reg == 0) continue;
215
216      if (TRI->isPhysicalRegister(Reg))
217        Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
218      else {
219        assert(!IsPostRA && "Virtual register encountered after regalloc.");
220        if (MO.readsReg()) // ignore undef operands
221          addVRegUseDeps(&ExitSU, i);
222      }
223    }
224  } else {
225    // For others, e.g. fallthrough, conditional branch, assume the exit
226    // uses all the registers that are livein to the successor blocks.
227    assert(Uses.empty() && "Uses in set before adding deps?");
228    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
229           SE = BB->succ_end(); SI != SE; ++SI)
230      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
231             E = (*SI)->livein_end(); I != E; ++I) {
232        unsigned Reg = *I;
233        if (!Uses.contains(Reg))
234          Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
235      }
236  }
237}
238
239/// MO is an operand of SU's instruction that defines a physical register. Add
240/// data dependencies from SU to any uses of the physical register.
241void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
242  const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
243  assert(MO.isDef() && "expect physreg def");
244
245  // Ask the target if address-backscheduling is desirable, and if so how much.
246  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
247
248  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
249       Alias.isValid(); ++Alias) {
250    if (!Uses.contains(*Alias))
251      continue;
252    for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
253      SUnit *UseSU = I->SU;
254      if (UseSU == SU)
255        continue;
256
257      // Adjust the dependence latency using operand def/use information,
258      // then allow the target to perform its own adjustments.
259      int UseOp = I->OpIdx;
260      MachineInstr *RegUse = 0;
261      SDep Dep;
262      if (UseOp < 0)
263        Dep = SDep(SU, SDep::Artificial);
264      else {
265        // Set the hasPhysRegDefs only for physreg defs that have a use within
266        // the scheduling region.
267        SU->hasPhysRegDefs = true;
268        Dep = SDep(SU, SDep::Data, *Alias);
269        RegUse = UseSU->getInstr();
270        Dep.setMinLatency(
271          SchedModel.computeOperandLatency(SU->getInstr(), OperIdx,
272                                           RegUse, UseOp, /*FindMin=*/true));
273      }
274      Dep.setLatency(
275        SchedModel.computeOperandLatency(SU->getInstr(), OperIdx,
276                                         RegUse, UseOp, /*FindMin=*/false));
277
278      ST.adjustSchedDependency(SU, UseSU, Dep);
279      UseSU->addPred(Dep);
280    }
281  }
282}
283
284/// addPhysRegDeps - Add register dependencies (data, anti, and output) from
285/// this SUnit to following instructions in the same scheduling region that
286/// depend the physical register referenced at OperIdx.
287void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
288  const MachineInstr *MI = SU->getInstr();
289  const MachineOperand &MO = MI->getOperand(OperIdx);
290
291  // Optionally add output and anti dependencies. For anti
292  // dependencies we use a latency of 0 because for a multi-issue
293  // target we want to allow the defining instruction to issue
294  // in the same cycle as the using instruction.
295  // TODO: Using a latency of 1 here for output dependencies assumes
296  //       there's no cost for reusing registers.
297  SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
298  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
299       Alias.isValid(); ++Alias) {
300    if (!Defs.contains(*Alias))
301      continue;
302    for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
303      SUnit *DefSU = I->SU;
304      if (DefSU == &ExitSU)
305        continue;
306      if (DefSU != SU &&
307          (Kind != SDep::Output || !MO.isDead() ||
308           !DefSU->getInstr()->registerDefIsDead(*Alias))) {
309        if (Kind == SDep::Anti)
310          DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias));
311        else {
312          SDep Dep(SU, Kind, /*Reg=*/*Alias);
313          unsigned OutLatency =
314            SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr());
315          Dep.setMinLatency(OutLatency);
316          Dep.setLatency(OutLatency);
317          DefSU->addPred(Dep);
318        }
319      }
320    }
321  }
322
323  if (!MO.isDef()) {
324    SU->hasPhysRegUses = true;
325    // Either insert a new Reg2SUnits entry with an empty SUnits list, or
326    // retrieve the existing SUnits list for this register's uses.
327    // Push this SUnit on the use list.
328    Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg()));
329  }
330  else {
331    addPhysRegDataDeps(SU, OperIdx);
332    unsigned Reg = MO.getReg();
333
334    // clear this register's use list
335    if (Uses.contains(Reg))
336      Uses.eraseAll(Reg);
337
338    if (!MO.isDead()) {
339      Defs.eraseAll(Reg);
340    } else if (SU->isCall) {
341      // Calls will not be reordered because of chain dependencies (see
342      // below). Since call operands are dead, calls may continue to be added
343      // to the DefList making dependence checking quadratic in the size of
344      // the block. Instead, we leave only one call at the back of the
345      // DefList.
346      Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
347      Reg2SUnitsMap::iterator B = P.first;
348      Reg2SUnitsMap::iterator I = P.second;
349      for (bool isBegin = I == B; !isBegin; /* empty */) {
350        isBegin = (--I) == B;
351        if (!I->SU->isCall)
352          break;
353        I = Defs.erase(I);
354      }
355    }
356
357    // Defs are pushed in the order they are visited and never reordered.
358    Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
359  }
360}
361
362/// addVRegDefDeps - Add register output and data dependencies from this SUnit
363/// to instructions that occur later in the same scheduling region if they read
364/// from or write to the virtual register defined at OperIdx.
365///
366/// TODO: Hoist loop induction variable increments. This has to be
367/// reevaluated. Generally, IV scheduling should be done before coalescing.
368void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
369  const MachineInstr *MI = SU->getInstr();
370  unsigned Reg = MI->getOperand(OperIdx).getReg();
371
372  // Singly defined vregs do not have output/anti dependencies.
373  // The current operand is a def, so we have at least one.
374  // Check here if there are any others...
375  if (MRI.hasOneDef(Reg))
376    return;
377
378  // Add output dependence to the next nearest def of this vreg.
379  //
380  // Unless this definition is dead, the output dependence should be
381  // transitively redundant with antidependencies from this definition's
382  // uses. We're conservative for now until we have a way to guarantee the uses
383  // are not eliminated sometime during scheduling. The output dependence edge
384  // is also useful if output latency exceeds def-use latency.
385  VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
386  if (DefI == VRegDefs.end())
387    VRegDefs.insert(VReg2SUnit(Reg, SU));
388  else {
389    SUnit *DefSU = DefI->SU;
390    if (DefSU != SU && DefSU != &ExitSU) {
391      SDep Dep(SU, SDep::Output, Reg);
392      unsigned OutLatency =
393        SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr());
394      Dep.setMinLatency(OutLatency);
395      Dep.setLatency(OutLatency);
396      DefSU->addPred(Dep);
397    }
398    DefI->SU = SU;
399  }
400}
401
402/// addVRegUseDeps - Add a register data dependency if the instruction that
403/// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
404/// register antidependency from this SUnit to instructions that occur later in
405/// the same scheduling region if they write the virtual register.
406///
407/// TODO: Handle ExitSU "uses" properly.
408void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
409  MachineInstr *MI = SU->getInstr();
410  unsigned Reg = MI->getOperand(OperIdx).getReg();
411
412  // Lookup this operand's reaching definition.
413  assert(LIS && "vreg dependencies requires LiveIntervals");
414  LiveRangeQuery LRQ(LIS->getInterval(Reg), LIS->getInstructionIndex(MI));
415  VNInfo *VNI = LRQ.valueIn();
416
417  // VNI will be valid because MachineOperand::readsReg() is checked by caller.
418  assert(VNI && "No value to read by operand");
419  MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def);
420  // Phis and other noninstructions (after coalescing) have a NULL Def.
421  if (Def) {
422    SUnit *DefSU = getSUnit(Def);
423    if (DefSU) {
424      // The reaching Def lives within this scheduling region.
425      // Create a data dependence.
426      SDep dep(DefSU, SDep::Data, Reg);
427      // Adjust the dependence latency using operand def/use information, then
428      // allow the target to perform its own adjustments.
429      int DefOp = Def->findRegisterDefOperandIdx(Reg);
430      dep.setLatency(
431        SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx, false));
432      dep.setMinLatency(
433        SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx, true));
434
435      const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
436      ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep));
437      SU->addPred(dep);
438    }
439  }
440
441  // Add antidependence to the following def of the vreg it uses.
442  VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
443  if (DefI != VRegDefs.end() && DefI->SU != SU)
444    DefI->SU->addPred(SDep(SU, SDep::Anti, Reg));
445}
446
447/// Return true if MI is an instruction we are unable to reason about
448/// (like a call or something with unmodeled side effects).
449static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
450  if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
451      (MI->hasOrderedMemoryRef() &&
452       (!MI->mayLoad() || !MI->isInvariantLoad(AA))))
453    return true;
454  return false;
455}
456
457// This MI might have either incomplete info, or known to be unsafe
458// to deal with (i.e. volatile object).
459static inline bool isUnsafeMemoryObject(MachineInstr *MI,
460                                        const MachineFrameInfo *MFI) {
461  if (!MI || MI->memoperands_empty())
462    return true;
463  // We purposefully do no check for hasOneMemOperand() here
464  // in hope to trigger an assert downstream in order to
465  // finish implementation.
466  if ((*MI->memoperands_begin())->isVolatile() ||
467       MI->hasUnmodeledSideEffects())
468    return true;
469  const Value *V = (*MI->memoperands_begin())->getValue();
470  if (!V)
471    return true;
472
473  SmallVector<Value *, 4> Objs;
474  getUnderlyingObjects(V, Objs);
475  for (SmallVector<Value *, 4>::iterator I = Objs.begin(),
476       IE = Objs.end(); I != IE; ++I) {
477    V = *I;
478
479    if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
480      // Similarly to getUnderlyingObjectForInstr:
481      // For now, ignore PseudoSourceValues which may alias LLVM IR values
482      // because the code that uses this function has no way to cope with
483      // such aliases.
484      if (PSV->isAliased(MFI))
485        return true;
486    }
487
488    // Does this pointer refer to a distinct and identifiable object?
489    if (!isIdentifiedObject(V))
490      return true;
491  }
492
493  return false;
494}
495
496/// This returns true if the two MIs need a chain edge betwee them.
497/// If these are not even memory operations, we still may need
498/// chain deps between them. The question really is - could
499/// these two MIs be reordered during scheduling from memory dependency
500/// point of view.
501static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
502                             MachineInstr *MIa,
503                             MachineInstr *MIb) {
504  // Cover a trivial case - no edge is need to itself.
505  if (MIa == MIb)
506    return false;
507
508  if (isUnsafeMemoryObject(MIa, MFI) || isUnsafeMemoryObject(MIb, MFI))
509    return true;
510
511  // If we are dealing with two "normal" loads, we do not need an edge
512  // between them - they could be reordered.
513  if (!MIa->mayStore() && !MIb->mayStore())
514    return false;
515
516  // To this point analysis is generic. From here on we do need AA.
517  if (!AA)
518    return true;
519
520  MachineMemOperand *MMOa = *MIa->memoperands_begin();
521  MachineMemOperand *MMOb = *MIb->memoperands_begin();
522
523  // FIXME: Need to handle multiple memory operands to support all targets.
524  if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand())
525    llvm_unreachable("Multiple memory operands.");
526
527  // The following interface to AA is fashioned after DAGCombiner::isAlias
528  // and operates with MachineMemOperand offset with some important
529  // assumptions:
530  //   - LLVM fundamentally assumes flat address spaces.
531  //   - MachineOperand offset can *only* result from legalization and
532  //     cannot affect queries other than the trivial case of overlap
533  //     checking.
534  //   - These offsets never wrap and never step outside
535  //     of allocated objects.
536  //   - There should never be any negative offsets here.
537  //
538  // FIXME: Modify API to hide this math from "user"
539  // FIXME: Even before we go to AA we can reason locally about some
540  // memory objects. It can save compile time, and possibly catch some
541  // corner cases not currently covered.
542
543  assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
544  assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
545
546  int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
547  int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
548  int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
549
550  AliasAnalysis::AliasResult AAResult = AA->alias(
551  AliasAnalysis::Location(MMOa->getValue(), Overlapa,
552                          MMOa->getTBAAInfo()),
553  AliasAnalysis::Location(MMOb->getValue(), Overlapb,
554                          MMOb->getTBAAInfo()));
555
556  return (AAResult != AliasAnalysis::NoAlias);
557}
558
559/// This recursive function iterates over chain deps of SUb looking for
560/// "latest" node that needs a chain edge to SUa.
561static unsigned
562iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI,
563                 SUnit *SUa, SUnit *SUb, SUnit *ExitSU, unsigned *Depth,
564                 SmallPtrSet<const SUnit*, 16> &Visited) {
565  if (!SUa || !SUb || SUb == ExitSU)
566    return *Depth;
567
568  // Remember visited nodes.
569  if (!Visited.insert(SUb))
570      return *Depth;
571  // If there is _some_ dependency already in place, do not
572  // descend any further.
573  // TODO: Need to make sure that if that dependency got eliminated or ignored
574  // for any reason in the future, we would not violate DAG topology.
575  // Currently it does not happen, but makes an implicit assumption about
576  // future implementation.
577  //
578  // Independently, if we encounter node that is some sort of global
579  // object (like a call) we already have full set of dependencies to it
580  // and we can stop descending.
581  if (SUa->isSucc(SUb) ||
582      isGlobalMemoryObject(AA, SUb->getInstr()))
583    return *Depth;
584
585  // If we do need an edge, or we have exceeded depth budget,
586  // add that edge to the predecessors chain of SUb,
587  // and stop descending.
588  if (*Depth > 200 ||
589      MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
590    SUb->addPred(SDep(SUa, SDep::MayAliasMem));
591    return *Depth;
592  }
593  // Track current depth.
594  (*Depth)++;
595  // Iterate over chain dependencies only.
596  for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end();
597       I != E; ++I)
598    if (I->isCtrl())
599      iterateChainSucc (AA, MFI, SUa, I->getSUnit(), ExitSU, Depth, Visited);
600  return *Depth;
601}
602
603/// This function assumes that "downward" from SU there exist
604/// tail/leaf of already constructed DAG. It iterates downward and
605/// checks whether SU can be aliasing any node dominated
606/// by it.
607static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI,
608                            SUnit *SU, SUnit *ExitSU, std::set<SUnit *> &CheckList,
609                            unsigned LatencyToLoad) {
610  if (!SU)
611    return;
612
613  SmallPtrSet<const SUnit*, 16> Visited;
614  unsigned Depth = 0;
615
616  for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end();
617       I != IE; ++I) {
618    if (SU == *I)
619      continue;
620    if (MIsNeedChainEdge(AA, MFI, SU->getInstr(), (*I)->getInstr())) {
621      SDep Dep(SU, SDep::MayAliasMem);
622      Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0);
623      (*I)->addPred(Dep);
624    }
625    // Now go through all the chain successors and iterate from them.
626    // Keep track of visited nodes.
627    for (SUnit::const_succ_iterator J = (*I)->Succs.begin(),
628         JE = (*I)->Succs.end(); J != JE; ++J)
629      if (J->isCtrl())
630        iterateChainSucc (AA, MFI, SU, J->getSUnit(),
631                          ExitSU, &Depth, Visited);
632  }
633}
634
635/// Check whether two objects need a chain edge, if so, add it
636/// otherwise remember the rejected SU.
637static inline
638void addChainDependency (AliasAnalysis *AA, const MachineFrameInfo *MFI,
639                         SUnit *SUa, SUnit *SUb,
640                         std::set<SUnit *> &RejectList,
641                         unsigned TrueMemOrderLatency = 0,
642                         bool isNormalMemory = false) {
643  // If this is a false dependency,
644  // do not add the edge, but rememeber the rejected node.
645  if (!EnableAASchedMI ||
646      MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
647    SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier);
648    Dep.setLatency(TrueMemOrderLatency);
649    SUb->addPred(Dep);
650  }
651  else {
652    // Duplicate entries should be ignored.
653    RejectList.insert(SUb);
654    DEBUG(dbgs() << "\tReject chain dep between SU("
655          << SUa->NodeNum << ") and SU("
656          << SUb->NodeNum << ")\n");
657  }
658}
659
660/// Create an SUnit for each real instruction, numbered in top-down toplological
661/// order. The instruction order A < B, implies that no edge exists from B to A.
662///
663/// Map each real instruction to its SUnit.
664///
665/// After initSUnits, the SUnits vector cannot be resized and the scheduler may
666/// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
667/// instead of pointers.
668///
669/// MachineScheduler relies on initSUnits numbering the nodes by their order in
670/// the original instruction list.
671void ScheduleDAGInstrs::initSUnits() {
672  // We'll be allocating one SUnit for each real instruction in the region,
673  // which is contained within a basic block.
674  SUnits.reserve(BB->size());
675
676  for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) {
677    MachineInstr *MI = I;
678    if (MI->isDebugValue())
679      continue;
680
681    SUnit *SU = newSUnit(MI);
682    MISUnitMap[MI] = SU;
683
684    SU->isCall = MI->isCall();
685    SU->isCommutable = MI->isCommutable();
686
687    // Assign the Latency field of SU using target-provided information.
688    SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
689  }
690}
691
692/// If RegPressure is non null, compute register pressure as a side effect. The
693/// DAG builder is an efficient place to do it because it already visits
694/// operands.
695void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
696                                        RegPressureTracker *RPTracker) {
697  // Create an SUnit for each real instruction.
698  initSUnits();
699
700  // We build scheduling units by walking a block's instruction list from bottom
701  // to top.
702
703  // Remember where a generic side-effecting instruction is as we procede.
704  SUnit *BarrierChain = 0, *AliasChain = 0;
705
706  // Memory references to specific known memory locations are tracked
707  // so that they can be given more precise dependencies. We track
708  // separately the known memory locations that may alias and those
709  // that are known not to alias
710  MapVector<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
711  MapVector<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
712  std::set<SUnit*> RejectMemNodes;
713
714  // Remove any stale debug info; sometimes BuildSchedGraph is called again
715  // without emitting the info from the previous call.
716  DbgValues.clear();
717  FirstDbgValue = NULL;
718
719  assert(Defs.empty() && Uses.empty() &&
720         "Only BuildGraph should update Defs/Uses");
721  Defs.setUniverse(TRI->getNumRegs());
722  Uses.setUniverse(TRI->getNumRegs());
723
724  assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs");
725  // FIXME: Allow SparseSet to reserve space for the creation of virtual
726  // registers during scheduling. Don't artificially inflate the Universe
727  // because we want to assert that vregs are not created during DAG building.
728  VRegDefs.setUniverse(MRI.getNumVirtRegs());
729
730  // Model data dependencies between instructions being scheduled and the
731  // ExitSU.
732  addSchedBarrierDeps();
733
734  // Walk the list of instructions, from bottom moving up.
735  MachineInstr *DbgMI = NULL;
736  for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
737       MII != MIE; --MII) {
738    MachineInstr *MI = prior(MII);
739    if (MI && DbgMI) {
740      DbgValues.push_back(std::make_pair(DbgMI, MI));
741      DbgMI = NULL;
742    }
743
744    if (MI->isDebugValue()) {
745      DbgMI = MI;
746      continue;
747    }
748    if (RPTracker) {
749      RPTracker->recede();
750      assert(RPTracker->getPos() == prior(MII) && "RPTracker can't find MI");
751    }
752
753    assert((CanHandleTerminators || (!MI->isTerminator() && !MI->isLabel())) &&
754           "Cannot schedule terminators or labels!");
755
756    SUnit *SU = MISUnitMap[MI];
757    assert(SU && "No SUnit mapped to this MI");
758
759    // Add register-based dependencies (data, anti, and output).
760    bool HasVRegDef = false;
761    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
762      const MachineOperand &MO = MI->getOperand(j);
763      if (!MO.isReg()) continue;
764      unsigned Reg = MO.getReg();
765      if (Reg == 0) continue;
766
767      if (TRI->isPhysicalRegister(Reg))
768        addPhysRegDeps(SU, j);
769      else {
770        assert(!IsPostRA && "Virtual register encountered!");
771        if (MO.isDef()) {
772          HasVRegDef = true;
773          addVRegDefDeps(SU, j);
774        }
775        else if (MO.readsReg()) // ignore undef operands
776          addVRegUseDeps(SU, j);
777      }
778    }
779    // If we haven't seen any uses in this scheduling region, create a
780    // dependence edge to ExitSU to model the live-out latency. This is required
781    // for vreg defs with no in-region use, and prefetches with no vreg def.
782    //
783    // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
784    // check currently relies on being called before adding chain deps.
785    if (SU->NumSuccs == 0 && SU->Latency > 1
786        && (HasVRegDef || MI->mayLoad())) {
787      SDep Dep(SU, SDep::Artificial);
788      Dep.setLatency(SU->Latency - 1);
789      ExitSU.addPred(Dep);
790    }
791
792    // Add chain dependencies.
793    // Chain dependencies used to enforce memory order should have
794    // latency of 0 (except for true dependency of Store followed by
795    // aliased Load... we estimate that with a single cycle of latency
796    // assuming the hardware will bypass)
797    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
798    // after stack slots are lowered to actual addresses.
799    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
800    // produce more precise dependence information.
801    unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0;
802    if (isGlobalMemoryObject(AA, MI)) {
803      // Be conservative with these and add dependencies on all memory
804      // references, even those that are known to not alias.
805      for (MapVector<const Value *, SUnit *>::iterator I =
806             NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
807        I->second->addPred(SDep(SU, SDep::Barrier));
808      }
809      for (MapVector<const Value *, std::vector<SUnit *> >::iterator I =
810             NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
811        for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
812          SDep Dep(SU, SDep::Barrier);
813          Dep.setLatency(TrueMemOrderLatency);
814          I->second[i]->addPred(Dep);
815        }
816      }
817      // Add SU to the barrier chain.
818      if (BarrierChain)
819        BarrierChain->addPred(SDep(SU, SDep::Barrier));
820      BarrierChain = SU;
821      // This is a barrier event that acts as a pivotal node in the DAG,
822      // so it is safe to clear list of exposed nodes.
823      adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
824                      TrueMemOrderLatency);
825      RejectMemNodes.clear();
826      NonAliasMemDefs.clear();
827      NonAliasMemUses.clear();
828
829      // fall-through
830    new_alias_chain:
831      // Chain all possibly aliasing memory references though SU.
832      if (AliasChain) {
833        unsigned ChainLatency = 0;
834        if (AliasChain->getInstr()->mayLoad())
835          ChainLatency = TrueMemOrderLatency;
836        addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes,
837                           ChainLatency);
838      }
839      AliasChain = SU;
840      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
841        addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes,
842                           TrueMemOrderLatency);
843      for (MapVector<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
844           E = AliasMemDefs.end(); I != E; ++I)
845        addChainDependency(AA, MFI, SU, I->second, RejectMemNodes);
846      for (MapVector<const Value *, std::vector<SUnit *> >::iterator I =
847           AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
848        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
849          addChainDependency(AA, MFI, SU, I->second[i], RejectMemNodes,
850                             TrueMemOrderLatency);
851      }
852      adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
853                      TrueMemOrderLatency);
854      PendingLoads.clear();
855      AliasMemDefs.clear();
856      AliasMemUses.clear();
857    } else if (MI->mayStore()) {
858      SmallVector<std::pair<const Value *, bool>, 4> Objs;
859      getUnderlyingObjectsForInstr(MI, MFI, Objs);
860
861      if (Objs.empty()) {
862        // Treat all other stores conservatively.
863        goto new_alias_chain;
864      }
865
866      bool MayAlias = false;
867      for (SmallVector<std::pair<const Value *, bool>, 4>::iterator
868           K = Objs.begin(), KE = Objs.end(); K != KE; ++K) {
869        const Value *V = K->first;
870        bool ThisMayAlias = K->second;
871        if (ThisMayAlias)
872          MayAlias = true;
873
874        // A store to a specific PseudoSourceValue. Add precise dependencies.
875        // Record the def in MemDefs, first adding a dep if there is
876        // an existing def.
877        MapVector<const Value *, SUnit *>::iterator I =
878          ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
879        MapVector<const Value *, SUnit *>::iterator IE =
880          ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
881        if (I != IE) {
882          addChainDependency(AA, MFI, SU, I->second, RejectMemNodes, 0, true);
883          I->second = SU;
884        } else {
885          if (ThisMayAlias)
886            AliasMemDefs[V] = SU;
887          else
888            NonAliasMemDefs[V] = SU;
889        }
890        // Handle the uses in MemUses, if there are any.
891        MapVector<const Value *, std::vector<SUnit *> >::iterator J =
892          ((ThisMayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
893        MapVector<const Value *, std::vector<SUnit *> >::iterator JE =
894          ((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
895        if (J != JE) {
896          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
897            addChainDependency(AA, MFI, SU, J->second[i], RejectMemNodes,
898                               TrueMemOrderLatency, true);
899          J->second.clear();
900        }
901      }
902      if (MayAlias) {
903        // Add dependencies from all the PendingLoads, i.e. loads
904        // with no underlying object.
905        for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
906          addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes,
907                             TrueMemOrderLatency);
908        // Add dependence on alias chain, if needed.
909        if (AliasChain)
910          addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes);
911        // But we also should check dependent instructions for the
912        // SU in question.
913        adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
914                        TrueMemOrderLatency);
915      }
916      // Add dependence on barrier chain, if needed.
917      // There is no point to check aliasing on barrier event. Even if
918      // SU and barrier _could_ be reordered, they should not. In addition,
919      // we have lost all RejectMemNodes below barrier.
920      if (BarrierChain)
921        BarrierChain->addPred(SDep(SU, SDep::Barrier));
922
923      if (!ExitSU.isPred(SU))
924        // Push store's up a bit to avoid them getting in between cmp
925        // and branches.
926        ExitSU.addPred(SDep(SU, SDep::Artificial));
927    } else if (MI->mayLoad()) {
928      bool MayAlias = true;
929      if (MI->isInvariantLoad(AA)) {
930        // Invariant load, no chain dependencies needed!
931      } else {
932        SmallVector<std::pair<const Value *, bool>, 4> Objs;
933        getUnderlyingObjectsForInstr(MI, MFI, Objs);
934
935        if (Objs.empty()) {
936          // A load with no underlying object. Depend on all
937          // potentially aliasing stores.
938          for (MapVector<const Value *, SUnit *>::iterator I =
939                 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
940            addChainDependency(AA, MFI, SU, I->second, RejectMemNodes);
941
942          PendingLoads.push_back(SU);
943          MayAlias = true;
944        } else {
945          MayAlias = false;
946        }
947
948        for (SmallVector<std::pair<const Value *, bool>, 4>::iterator
949             J = Objs.begin(), JE = Objs.end(); J != JE; ++J) {
950          const Value *V = J->first;
951          bool ThisMayAlias = J->second;
952
953          if (ThisMayAlias)
954            MayAlias = true;
955
956          // A load from a specific PseudoSourceValue. Add precise dependencies.
957          MapVector<const Value *, SUnit *>::iterator I =
958            ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
959          MapVector<const Value *, SUnit *>::iterator IE =
960            ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
961          if (I != IE)
962            addChainDependency(AA, MFI, SU, I->second, RejectMemNodes, 0, true);
963          if (ThisMayAlias)
964            AliasMemUses[V].push_back(SU);
965          else
966            NonAliasMemUses[V].push_back(SU);
967        }
968        if (MayAlias)
969          adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, /*Latency=*/0);
970        // Add dependencies on alias and barrier chains, if needed.
971        if (MayAlias && AliasChain)
972          addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes);
973        if (BarrierChain)
974          BarrierChain->addPred(SDep(SU, SDep::Barrier));
975      }
976    }
977  }
978  if (DbgMI)
979    FirstDbgValue = DbgMI;
980
981  Defs.clear();
982  Uses.clear();
983  VRegDefs.clear();
984  PendingLoads.clear();
985}
986
987void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
988#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
989  SU->getInstr()->dump();
990#endif
991}
992
993std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
994  std::string s;
995  raw_string_ostream oss(s);
996  if (SU == &EntrySU)
997    oss << "<entry>";
998  else if (SU == &ExitSU)
999    oss << "<exit>";
1000  else
1001    SU->getInstr()->print(oss, &TM, /*SkipOpers=*/true);
1002  return oss.str();
1003}
1004
1005/// Return the basic block label. It is not necessarilly unique because a block
1006/// contains multiple scheduling regions. But it is fine for visualization.
1007std::string ScheduleDAGInstrs::getDAGName() const {
1008  return "dag." + BB->getFullName();
1009}
1010
1011//===----------------------------------------------------------------------===//
1012// SchedDFSResult Implementation
1013//===----------------------------------------------------------------------===//
1014
1015namespace llvm {
1016/// \brief Internal state used to compute SchedDFSResult.
1017class SchedDFSImpl {
1018  SchedDFSResult &R;
1019
1020  /// Join DAG nodes into equivalence classes by their subtree.
1021  IntEqClasses SubtreeClasses;
1022  /// List PredSU, SuccSU pairs that represent data edges between subtrees.
1023  std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs;
1024
1025  struct RootData {
1026    unsigned NodeID;
1027    unsigned ParentNodeID;  // Parent node (member of the parent subtree).
1028    unsigned SubInstrCount; // Instr count in this tree only, not children.
1029
1030    RootData(unsigned id): NodeID(id),
1031                           ParentNodeID(SchedDFSResult::InvalidSubtreeID),
1032                           SubInstrCount(0) {}
1033
1034    unsigned getSparseSetIndex() const { return NodeID; }
1035  };
1036
1037  SparseSet<RootData> RootSet;
1038
1039public:
1040  SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
1041    RootSet.setUniverse(R.DFSNodeData.size());
1042  }
1043
1044  /// Return true if this node been visited by the DFS traversal.
1045  ///
1046  /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
1047  /// ID. Later, SubtreeID is updated but remains valid.
1048  bool isVisited(const SUnit *SU) const {
1049    return R.DFSNodeData[SU->NodeNum].SubtreeID
1050      != SchedDFSResult::InvalidSubtreeID;
1051  }
1052
1053  /// Initialize this node's instruction count. We don't need to flag the node
1054  /// visited until visitPostorder because the DAG cannot have cycles.
1055  void visitPreorder(const SUnit *SU) {
1056    R.DFSNodeData[SU->NodeNum].InstrCount =
1057      SU->getInstr()->isTransient() ? 0 : 1;
1058  }
1059
1060  /// Called once for each node after all predecessors are visited. Revisit this
1061  /// node's predecessors and potentially join them now that we know the ILP of
1062  /// the other predecessors.
1063  void visitPostorderNode(const SUnit *SU) {
1064    // Mark this node as the root of a subtree. It may be joined with its
1065    // successors later.
1066    R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
1067    RootData RData(SU->NodeNum);
1068    RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
1069
1070    // If any predecessors are still in their own subtree, they either cannot be
1071    // joined or are large enough to remain separate. If this parent node's
1072    // total instruction count is not greater than a child subtree by at least
1073    // the subtree limit, then try to join it now since splitting subtrees is
1074    // only useful if multiple high-pressure paths are possible.
1075    unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
1076    for (SUnit::const_pred_iterator
1077           PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
1078      if (PI->getKind() != SDep::Data)
1079        continue;
1080      unsigned PredNum = PI->getSUnit()->NodeNum;
1081      if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
1082        joinPredSubtree(*PI, SU, /*CheckLimit=*/false);
1083
1084      // Either link or merge the TreeData entry from the child to the parent.
1085      if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
1086        // If the predecessor's parent is invalid, this is a tree edge and the
1087        // current node is the parent.
1088        if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
1089          RootSet[PredNum].ParentNodeID = SU->NodeNum;
1090      }
1091      else if (RootSet.count(PredNum)) {
1092        // The predecessor is not a root, but is still in the root set. This
1093        // must be the new parent that it was just joined to. Note that
1094        // RootSet[PredNum].ParentNodeID may either be invalid or may still be
1095        // set to the original parent.
1096        RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
1097        RootSet.erase(PredNum);
1098      }
1099    }
1100    RootSet[SU->NodeNum] = RData;
1101  }
1102
1103  /// Called once for each tree edge after calling visitPostOrderNode on the
1104  /// predecessor. Increment the parent node's instruction count and
1105  /// preemptively join this subtree to its parent's if it is small enough.
1106  void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
1107    R.DFSNodeData[Succ->NodeNum].InstrCount
1108      += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
1109    joinPredSubtree(PredDep, Succ);
1110  }
1111
1112  /// Add a connection for cross edges.
1113  void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
1114    ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
1115  }
1116
1117  /// Set each node's subtree ID to the representative ID and record connections
1118  /// between trees.
1119  void finalize() {
1120    SubtreeClasses.compress();
1121    R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
1122    assert(SubtreeClasses.getNumClasses() == RootSet.size()
1123           && "number of roots should match trees");
1124    for (SparseSet<RootData>::const_iterator
1125           RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) {
1126      unsigned TreeID = SubtreeClasses[RI->NodeID];
1127      if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID)
1128        R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID];
1129      R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount;
1130      // Note that SubInstrCount may be greater than InstrCount if we joined
1131      // subtrees across a cross edge. InstrCount will be attributed to the
1132      // original parent, while SubInstrCount will be attributed to the joined
1133      // parent.
1134    }
1135    R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
1136    R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
1137    DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
1138    for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
1139      R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
1140      DEBUG(dbgs() << "  SU(" << Idx << ") in tree "
1141            << R.DFSNodeData[Idx].SubtreeID << '\n');
1142    }
1143    for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator
1144           I = ConnectionPairs.begin(), E = ConnectionPairs.end();
1145         I != E; ++I) {
1146      unsigned PredTree = SubtreeClasses[I->first->NodeNum];
1147      unsigned SuccTree = SubtreeClasses[I->second->NodeNum];
1148      if (PredTree == SuccTree)
1149        continue;
1150      unsigned Depth = I->first->getDepth();
1151      addConnection(PredTree, SuccTree, Depth);
1152      addConnection(SuccTree, PredTree, Depth);
1153    }
1154  }
1155
1156protected:
1157  /// Join the predecessor subtree with the successor that is its DFS
1158  /// parent. Apply some heuristics before joining.
1159  bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
1160                       bool CheckLimit = true) {
1161    assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
1162
1163    // Check if the predecessor is already joined.
1164    const SUnit *PredSU = PredDep.getSUnit();
1165    unsigned PredNum = PredSU->NodeNum;
1166    if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
1167      return false;
1168
1169    // Four is the magic number of successors before a node is considered a
1170    // pinch point.
1171    unsigned NumDataSucs = 0;
1172    for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(),
1173           SE = PredSU->Succs.end(); SI != SE; ++SI) {
1174      if (SI->getKind() == SDep::Data) {
1175        if (++NumDataSucs >= 4)
1176          return false;
1177      }
1178    }
1179    if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
1180      return false;
1181    R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
1182    SubtreeClasses.join(Succ->NodeNum, PredNum);
1183    return true;
1184  }
1185
1186  /// Called by finalize() to record a connection between trees.
1187  void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
1188    if (!Depth)
1189      return;
1190
1191    do {
1192      SmallVectorImpl<SchedDFSResult::Connection> &Connections =
1193        R.SubtreeConnections[FromTree];
1194      for (SmallVectorImpl<SchedDFSResult::Connection>::iterator
1195             I = Connections.begin(), E = Connections.end(); I != E; ++I) {
1196        if (I->TreeID == ToTree) {
1197          I->Level = std::max(I->Level, Depth);
1198          return;
1199        }
1200      }
1201      Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
1202      FromTree = R.DFSTreeData[FromTree].ParentTreeID;
1203    } while (FromTree != SchedDFSResult::InvalidSubtreeID);
1204  }
1205};
1206} // namespace llvm
1207
1208namespace {
1209/// \brief Manage the stack used by a reverse depth-first search over the DAG.
1210class SchedDAGReverseDFS {
1211  std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack;
1212public:
1213  bool isComplete() const { return DFSStack.empty(); }
1214
1215  void follow(const SUnit *SU) {
1216    DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
1217  }
1218  void advance() { ++DFSStack.back().second; }
1219
1220  const SDep *backtrack() {
1221    DFSStack.pop_back();
1222    return DFSStack.empty() ? 0 : llvm::prior(DFSStack.back().second);
1223  }
1224
1225  const SUnit *getCurr() const { return DFSStack.back().first; }
1226
1227  SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
1228
1229  SUnit::const_pred_iterator getPredEnd() const {
1230    return getCurr()->Preds.end();
1231  }
1232};
1233} // anonymous
1234
1235static bool hasDataSucc(const SUnit *SU) {
1236  for (SUnit::const_succ_iterator
1237         SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) {
1238    if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode())
1239      return true;
1240  }
1241  return false;
1242}
1243
1244/// Compute an ILP metric for all nodes in the subDAG reachable via depth-first
1245/// search from this root.
1246void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
1247  if (!IsBottomUp)
1248    llvm_unreachable("Top-down ILP metric is unimplemnted");
1249
1250  SchedDFSImpl Impl(*this);
1251  for (ArrayRef<SUnit>::const_iterator
1252         SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) {
1253    const SUnit *SU = &*SI;
1254    if (Impl.isVisited(SU) || hasDataSucc(SU))
1255      continue;
1256
1257    SchedDAGReverseDFS DFS;
1258    Impl.visitPreorder(SU);
1259    DFS.follow(SU);
1260    for (;;) {
1261      // Traverse the leftmost path as far as possible.
1262      while (DFS.getPred() != DFS.getPredEnd()) {
1263        const SDep &PredDep = *DFS.getPred();
1264        DFS.advance();
1265        // Ignore non-data edges.
1266        if (PredDep.getKind() != SDep::Data
1267            || PredDep.getSUnit()->isBoundaryNode()) {
1268          continue;
1269        }
1270        // An already visited edge is a cross edge, assuming an acyclic DAG.
1271        if (Impl.isVisited(PredDep.getSUnit())) {
1272          Impl.visitCrossEdge(PredDep, DFS.getCurr());
1273          continue;
1274        }
1275        Impl.visitPreorder(PredDep.getSUnit());
1276        DFS.follow(PredDep.getSUnit());
1277      }
1278      // Visit the top of the stack in postorder and backtrack.
1279      const SUnit *Child = DFS.getCurr();
1280      const SDep *PredDep = DFS.backtrack();
1281      Impl.visitPostorderNode(Child);
1282      if (PredDep)
1283        Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
1284      if (DFS.isComplete())
1285        break;
1286    }
1287  }
1288  Impl.finalize();
1289}
1290
1291/// The root of the given SubtreeID was just scheduled. For all subtrees
1292/// connected to this tree, record the depth of the connection so that the
1293/// nearest connected subtrees can be prioritized.
1294void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
1295  for (SmallVectorImpl<Connection>::const_iterator
1296         I = SubtreeConnections[SubtreeID].begin(),
1297         E = SubtreeConnections[SubtreeID].end(); I != E; ++I) {
1298    SubtreeConnectLevels[I->TreeID] =
1299      std::max(SubtreeConnectLevels[I->TreeID], I->Level);
1300    DEBUG(dbgs() << "  Tree: " << I->TreeID
1301          << " @" << SubtreeConnectLevels[I->TreeID] << '\n');
1302  }
1303}
1304
1305#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1306void ILPValue::print(raw_ostream &OS) const {
1307  OS << InstrCount << " / " << Length << " = ";
1308  if (!Length)
1309    OS << "BADILP";
1310  else
1311    OS << format("%g", ((double)InstrCount / Length));
1312}
1313
1314void ILPValue::dump() const {
1315  dbgs() << *this << '\n';
1316}
1317
1318namespace llvm {
1319
1320raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
1321  Val.print(OS);
1322  return OS;
1323}
1324
1325} // namespace llvm
1326#endif // !NDEBUG || LLVM_ENABLE_DUMP
1327