1//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveVariable analysis pass.  For each machine
11// instruction in the function, this pass calculates the set of registers that
12// are immediately dead after the instruction (i.e., the instruction calculates
13// the value, but it is never used) and the set of registers that are used by
14// the instruction, but are never used after the instruction (i.e., they are
15// killed).
16//
17// This class computes live variables using a sparse implementation based on
18// the machine code SSA form.  This class computes live variable information for
19// each virtual and _register allocatable_ physical register in a function.  It
20// uses the dominance properties of SSA form to efficiently compute live
21// variables for virtual registers, and assumes that physical registers are only
22// live within a single basic block (allowing it to do a single local analysis
23// to resolve physical register lifetimes in each basic block).  If a physical
24// register is not register allocatable, it is not tracked.  This is useful for
25// things like the stack pointer and condition codes.
26//
27//===----------------------------------------------------------------------===//
28
29#include "llvm/CodeGen/LiveVariables.h"
30#include "llvm/ADT/DepthFirstIterator.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallSet.h"
34#include "llvm/CodeGen/MachineInstr.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/Passes.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Target/TargetInstrInfo.h"
40#include "llvm/Target/TargetMachine.h"
41#include <algorithm>
42using namespace llvm;
43
44char LiveVariables::ID = 0;
45char &llvm::LiveVariablesID = LiveVariables::ID;
46INITIALIZE_PASS_BEGIN(LiveVariables, "livevars",
47                "Live Variable Analysis", false, false)
48INITIALIZE_PASS_DEPENDENCY(UnreachableMachineBlockElim)
49INITIALIZE_PASS_END(LiveVariables, "livevars",
50                "Live Variable Analysis", false, false)
51
52
53void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const {
54  AU.addRequiredID(UnreachableMachineBlockElimID);
55  AU.setPreservesAll();
56  MachineFunctionPass::getAnalysisUsage(AU);
57}
58
59MachineInstr *
60LiveVariables::VarInfo::findKill(const MachineBasicBlock *MBB) const {
61  for (unsigned i = 0, e = Kills.size(); i != e; ++i)
62    if (Kills[i]->getParent() == MBB)
63      return Kills[i];
64  return NULL;
65}
66
67void LiveVariables::VarInfo::dump() const {
68#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
69  dbgs() << "  Alive in blocks: ";
70  for (SparseBitVector<>::iterator I = AliveBlocks.begin(),
71           E = AliveBlocks.end(); I != E; ++I)
72    dbgs() << *I << ", ";
73  dbgs() << "\n  Killed by:";
74  if (Kills.empty())
75    dbgs() << " No instructions.\n";
76  else {
77    for (unsigned i = 0, e = Kills.size(); i != e; ++i)
78      dbgs() << "\n    #" << i << ": " << *Kills[i];
79    dbgs() << "\n";
80  }
81#endif
82}
83
84/// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg.
85LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
86  assert(TargetRegisterInfo::isVirtualRegister(RegIdx) &&
87         "getVarInfo: not a virtual register!");
88  VirtRegInfo.grow(RegIdx);
89  return VirtRegInfo[RegIdx];
90}
91
92void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo,
93                                            MachineBasicBlock *DefBlock,
94                                            MachineBasicBlock *MBB,
95                                    std::vector<MachineBasicBlock*> &WorkList) {
96  unsigned BBNum = MBB->getNumber();
97
98  // Check to see if this basic block is one of the killing blocks.  If so,
99  // remove it.
100  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
101    if (VRInfo.Kills[i]->getParent() == MBB) {
102      VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry
103      break;
104    }
105
106  if (MBB == DefBlock) return;  // Terminate recursion
107
108  if (VRInfo.AliveBlocks.test(BBNum))
109    return;  // We already know the block is live
110
111  // Mark the variable known alive in this bb
112  VRInfo.AliveBlocks.set(BBNum);
113
114  assert(MBB != &MF->front() && "Can't find reaching def for virtreg");
115  WorkList.insert(WorkList.end(), MBB->pred_rbegin(), MBB->pred_rend());
116}
117
118void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
119                                            MachineBasicBlock *DefBlock,
120                                            MachineBasicBlock *MBB) {
121  std::vector<MachineBasicBlock*> WorkList;
122  MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList);
123
124  while (!WorkList.empty()) {
125    MachineBasicBlock *Pred = WorkList.back();
126    WorkList.pop_back();
127    MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList);
128  }
129}
130
131void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB,
132                                     MachineInstr *MI) {
133  assert(MRI->getVRegDef(reg) && "Register use before def!");
134
135  unsigned BBNum = MBB->getNumber();
136
137  VarInfo& VRInfo = getVarInfo(reg);
138
139  // Check to see if this basic block is already a kill block.
140  if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
141    // Yes, this register is killed in this basic block already. Increase the
142    // live range by updating the kill instruction.
143    VRInfo.Kills.back() = MI;
144    return;
145  }
146
147#ifndef NDEBUG
148  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
149    assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
150#endif
151
152  // This situation can occur:
153  //
154  //     ,------.
155  //     |      |
156  //     |      v
157  //     |   t2 = phi ... t1 ...
158  //     |      |
159  //     |      v
160  //     |   t1 = ...
161  //     |  ... = ... t1 ...
162  //     |      |
163  //     `------'
164  //
165  // where there is a use in a PHI node that's a predecessor to the defining
166  // block. We don't want to mark all predecessors as having the value "alive"
167  // in this case.
168  if (MBB == MRI->getVRegDef(reg)->getParent()) return;
169
170  // Add a new kill entry for this basic block. If this virtual register is
171  // already marked as alive in this basic block, that means it is alive in at
172  // least one of the successor blocks, it's not a kill.
173  if (!VRInfo.AliveBlocks.test(BBNum))
174    VRInfo.Kills.push_back(MI);
175
176  // Update all dominating blocks to mark them as "known live".
177  for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
178         E = MBB->pred_end(); PI != E; ++PI)
179    MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI);
180}
181
182void LiveVariables::HandleVirtRegDef(unsigned Reg, MachineInstr *MI) {
183  VarInfo &VRInfo = getVarInfo(Reg);
184
185  if (VRInfo.AliveBlocks.empty())
186    // If vr is not alive in any block, then defaults to dead.
187    VRInfo.Kills.push_back(MI);
188}
189
190/// FindLastPartialDef - Return the last partial def of the specified register.
191/// Also returns the sub-registers that're defined by the instruction.
192MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg,
193                                            SmallSet<unsigned,4> &PartDefRegs) {
194  unsigned LastDefReg = 0;
195  unsigned LastDefDist = 0;
196  MachineInstr *LastDef = NULL;
197  for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
198    unsigned SubReg = *SubRegs;
199    MachineInstr *Def = PhysRegDef[SubReg];
200    if (!Def)
201      continue;
202    unsigned Dist = DistanceMap[Def];
203    if (Dist > LastDefDist) {
204      LastDefReg  = SubReg;
205      LastDef     = Def;
206      LastDefDist = Dist;
207    }
208  }
209
210  if (!LastDef)
211    return 0;
212
213  PartDefRegs.insert(LastDefReg);
214  for (unsigned i = 0, e = LastDef->getNumOperands(); i != e; ++i) {
215    MachineOperand &MO = LastDef->getOperand(i);
216    if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
217      continue;
218    unsigned DefReg = MO.getReg();
219    if (TRI->isSubRegister(Reg, DefReg)) {
220      PartDefRegs.insert(DefReg);
221      for (MCSubRegIterator SubRegs(DefReg, TRI); SubRegs.isValid(); ++SubRegs)
222        PartDefRegs.insert(*SubRegs);
223    }
224  }
225  return LastDef;
226}
227
228/// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add
229/// implicit defs to a machine instruction if there was an earlier def of its
230/// super-register.
231void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
232  MachineInstr *LastDef = PhysRegDef[Reg];
233  // If there was a previous use or a "full" def all is well.
234  if (!LastDef && !PhysRegUse[Reg]) {
235    // Otherwise, the last sub-register def implicitly defines this register.
236    // e.g.
237    // AH =
238    // AL = ... <imp-def EAX>, <imp-kill AH>
239    //    = AH
240    // ...
241    //    = EAX
242    // All of the sub-registers must have been defined before the use of Reg!
243    SmallSet<unsigned, 4> PartDefRegs;
244    MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefRegs);
245    // If LastPartialDef is NULL, it must be using a livein register.
246    if (LastPartialDef) {
247      LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/,
248                                                           true/*IsImp*/));
249      PhysRegDef[Reg] = LastPartialDef;
250      SmallSet<unsigned, 8> Processed;
251      for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
252        unsigned SubReg = *SubRegs;
253        if (Processed.count(SubReg))
254          continue;
255        if (PartDefRegs.count(SubReg))
256          continue;
257        // This part of Reg was defined before the last partial def. It's killed
258        // here.
259        LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg,
260                                                             false/*IsDef*/,
261                                                             true/*IsImp*/));
262        PhysRegDef[SubReg] = LastPartialDef;
263        for (MCSubRegIterator SS(SubReg, TRI); SS.isValid(); ++SS)
264          Processed.insert(*SS);
265      }
266    }
267  } else if (LastDef && !PhysRegUse[Reg] &&
268             !LastDef->findRegisterDefOperand(Reg))
269    // Last def defines the super register, add an implicit def of reg.
270    LastDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/,
271                                                  true/*IsImp*/));
272
273  // Remember this use.
274  PhysRegUse[Reg]  = MI;
275  for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
276    PhysRegUse[*SubRegs] =  MI;
277}
278
279/// FindLastRefOrPartRef - Return the last reference or partial reference of
280/// the specified register.
281MachineInstr *LiveVariables::FindLastRefOrPartRef(unsigned Reg) {
282  MachineInstr *LastDef = PhysRegDef[Reg];
283  MachineInstr *LastUse = PhysRegUse[Reg];
284  if (!LastDef && !LastUse)
285    return 0;
286
287  MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef;
288  unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
289  unsigned LastPartDefDist = 0;
290  for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
291    unsigned SubReg = *SubRegs;
292    MachineInstr *Def = PhysRegDef[SubReg];
293    if (Def && Def != LastDef) {
294      // There was a def of this sub-register in between. This is a partial
295      // def, keep track of the last one.
296      unsigned Dist = DistanceMap[Def];
297      if (Dist > LastPartDefDist)
298        LastPartDefDist = Dist;
299    } else if (MachineInstr *Use = PhysRegUse[SubReg]) {
300      unsigned Dist = DistanceMap[Use];
301      if (Dist > LastRefOrPartRefDist) {
302        LastRefOrPartRefDist = Dist;
303        LastRefOrPartRef = Use;
304      }
305    }
306  }
307
308  return LastRefOrPartRef;
309}
310
311bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *MI) {
312  MachineInstr *LastDef = PhysRegDef[Reg];
313  MachineInstr *LastUse = PhysRegUse[Reg];
314  if (!LastDef && !LastUse)
315    return false;
316
317  MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef;
318  unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
319  // The whole register is used.
320  // AL =
321  // AH =
322  //
323  //    = AX
324  //    = AL, AX<imp-use, kill>
325  // AX =
326  //
327  // Or whole register is defined, but not used at all.
328  // AX<dead> =
329  // ...
330  // AX =
331  //
332  // Or whole register is defined, but only partly used.
333  // AX<dead> = AL<imp-def>
334  //    = AL<kill>
335  // AX =
336  MachineInstr *LastPartDef = 0;
337  unsigned LastPartDefDist = 0;
338  SmallSet<unsigned, 8> PartUses;
339  for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
340    unsigned SubReg = *SubRegs;
341    MachineInstr *Def = PhysRegDef[SubReg];
342    if (Def && Def != LastDef) {
343      // There was a def of this sub-register in between. This is a partial
344      // def, keep track of the last one.
345      unsigned Dist = DistanceMap[Def];
346      if (Dist > LastPartDefDist) {
347        LastPartDefDist = Dist;
348        LastPartDef = Def;
349      }
350      continue;
351    }
352    if (MachineInstr *Use = PhysRegUse[SubReg]) {
353      PartUses.insert(SubReg);
354      for (MCSubRegIterator SS(SubReg, TRI); SS.isValid(); ++SS)
355        PartUses.insert(*SS);
356      unsigned Dist = DistanceMap[Use];
357      if (Dist > LastRefOrPartRefDist) {
358        LastRefOrPartRefDist = Dist;
359        LastRefOrPartRef = Use;
360      }
361    }
362  }
363
364  if (!PhysRegUse[Reg]) {
365    // Partial uses. Mark register def dead and add implicit def of
366    // sub-registers which are used.
367    // EAX<dead>  = op  AL<imp-def>
368    // That is, EAX def is dead but AL def extends pass it.
369    PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true);
370    for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
371      unsigned SubReg = *SubRegs;
372      if (!PartUses.count(SubReg))
373        continue;
374      bool NeedDef = true;
375      if (PhysRegDef[Reg] == PhysRegDef[SubReg]) {
376        MachineOperand *MO = PhysRegDef[Reg]->findRegisterDefOperand(SubReg);
377        if (MO) {
378          NeedDef = false;
379          assert(!MO->isDead());
380        }
381      }
382      if (NeedDef)
383        PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg,
384                                                 true/*IsDef*/, true/*IsImp*/));
385      MachineInstr *LastSubRef = FindLastRefOrPartRef(SubReg);
386      if (LastSubRef)
387        LastSubRef->addRegisterKilled(SubReg, TRI, true);
388      else {
389        LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true);
390        PhysRegUse[SubReg] = LastRefOrPartRef;
391        for (MCSubRegIterator SS(SubReg, TRI); SS.isValid(); ++SS)
392          PhysRegUse[*SS] = LastRefOrPartRef;
393      }
394      for (MCSubRegIterator SS(SubReg, TRI); SS.isValid(); ++SS)
395        PartUses.erase(*SS);
396    }
397  } else if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI) {
398    if (LastPartDef)
399      // The last partial def kills the register.
400      LastPartDef->addOperand(MachineOperand::CreateReg(Reg, false/*IsDef*/,
401                                                true/*IsImp*/, true/*IsKill*/));
402    else {
403      MachineOperand *MO =
404        LastRefOrPartRef->findRegisterDefOperand(Reg, false, TRI);
405      bool NeedEC = MO->isEarlyClobber() && MO->getReg() != Reg;
406      // If the last reference is the last def, then it's not used at all.
407      // That is, unless we are currently processing the last reference itself.
408      LastRefOrPartRef->addRegisterDead(Reg, TRI, true);
409      if (NeedEC) {
410        // If we are adding a subreg def and the superreg def is marked early
411        // clobber, add an early clobber marker to the subreg def.
412        MO = LastRefOrPartRef->findRegisterDefOperand(Reg);
413        if (MO)
414          MO->setIsEarlyClobber();
415      }
416    }
417  } else
418    LastRefOrPartRef->addRegisterKilled(Reg, TRI, true);
419  return true;
420}
421
422void LiveVariables::HandleRegMask(const MachineOperand &MO) {
423  // Call HandlePhysRegKill() for all live registers clobbered by Mask.
424  // Clobbered registers are always dead, sp there is no need to use
425  // HandlePhysRegDef().
426  for (unsigned Reg = 1, NumRegs = TRI->getNumRegs(); Reg != NumRegs; ++Reg) {
427    // Skip dead regs.
428    if (!PhysRegDef[Reg] && !PhysRegUse[Reg])
429      continue;
430    // Skip mask-preserved regs.
431    if (!MO.clobbersPhysReg(Reg))
432      continue;
433    // Kill the largest clobbered super-register.
434    // This avoids needless implicit operands.
435    unsigned Super = Reg;
436    for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR)
437      if ((PhysRegDef[*SR] || PhysRegUse[*SR]) && MO.clobbersPhysReg(*SR))
438        Super = *SR;
439    HandlePhysRegKill(Super, 0);
440  }
441}
442
443void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI,
444                                     SmallVector<unsigned, 4> &Defs) {
445  // What parts of the register are previously defined?
446  SmallSet<unsigned, 32> Live;
447  if (PhysRegDef[Reg] || PhysRegUse[Reg]) {
448    Live.insert(Reg);
449    for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
450      Live.insert(*SubRegs);
451  } else {
452    for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
453      unsigned SubReg = *SubRegs;
454      // If a register isn't itself defined, but all parts that make up of it
455      // are defined, then consider it also defined.
456      // e.g.
457      // AL =
458      // AH =
459      //    = AX
460      if (Live.count(SubReg))
461        continue;
462      if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) {
463        Live.insert(SubReg);
464        for (MCSubRegIterator SS(SubReg, TRI); SS.isValid(); ++SS)
465          Live.insert(*SS);
466      }
467    }
468  }
469
470  // Start from the largest piece, find the last time any part of the register
471  // is referenced.
472  HandlePhysRegKill(Reg, MI);
473  // Only some of the sub-registers are used.
474  for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
475    unsigned SubReg = *SubRegs;
476    if (!Live.count(SubReg))
477      // Skip if this sub-register isn't defined.
478      continue;
479    HandlePhysRegKill(SubReg, MI);
480  }
481
482  if (MI)
483    Defs.push_back(Reg);  // Remember this def.
484}
485
486void LiveVariables::UpdatePhysRegDefs(MachineInstr *MI,
487                                      SmallVector<unsigned, 4> &Defs) {
488  while (!Defs.empty()) {
489    unsigned Reg = Defs.back();
490    Defs.pop_back();
491    PhysRegDef[Reg]  = MI;
492    PhysRegUse[Reg]  = NULL;
493    for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
494      unsigned SubReg = *SubRegs;
495      PhysRegDef[SubReg]  = MI;
496      PhysRegUse[SubReg]  = NULL;
497    }
498  }
499}
500
501bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
502  MF = &mf;
503  MRI = &mf.getRegInfo();
504  TRI = MF->getTarget().getRegisterInfo();
505
506  unsigned NumRegs = TRI->getNumRegs();
507  PhysRegDef  = new MachineInstr*[NumRegs];
508  PhysRegUse  = new MachineInstr*[NumRegs];
509  PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()];
510  std::fill(PhysRegDef,  PhysRegDef  + NumRegs, (MachineInstr*)0);
511  std::fill(PhysRegUse,  PhysRegUse  + NumRegs, (MachineInstr*)0);
512  PHIJoins.clear();
513
514  // FIXME: LiveIntervals will be updated to remove its dependence on
515  // LiveVariables to improve compilation time and eliminate bizarre pass
516  // dependencies. Until then, we can't change much in -O0.
517  if (!MRI->isSSA())
518    report_fatal_error("regalloc=... not currently supported with -O0");
519
520  analyzePHINodes(mf);
521
522  // Calculate live variable information in depth first order on the CFG of the
523  // function.  This guarantees that we will see the definition of a virtual
524  // register before its uses due to dominance properties of SSA (except for PHI
525  // nodes, which are treated as a special case).
526  MachineBasicBlock *Entry = MF->begin();
527  SmallPtrSet<MachineBasicBlock*,16> Visited;
528
529  for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
530         DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
531       DFI != E; ++DFI) {
532    MachineBasicBlock *MBB = *DFI;
533
534    // Mark live-in registers as live-in.
535    SmallVector<unsigned, 4> Defs;
536    for (MachineBasicBlock::livein_iterator II = MBB->livein_begin(),
537           EE = MBB->livein_end(); II != EE; ++II) {
538      assert(TargetRegisterInfo::isPhysicalRegister(*II) &&
539             "Cannot have a live-in virtual register!");
540      HandlePhysRegDef(*II, 0, Defs);
541    }
542
543    // Loop over all of the instructions, processing them.
544    DistanceMap.clear();
545    unsigned Dist = 0;
546    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
547         I != E; ++I) {
548      MachineInstr *MI = I;
549      if (MI->isDebugValue())
550        continue;
551      DistanceMap.insert(std::make_pair(MI, Dist++));
552
553      // Process all of the operands of the instruction...
554      unsigned NumOperandsToProcess = MI->getNumOperands();
555
556      // Unless it is a PHI node.  In this case, ONLY process the DEF, not any
557      // of the uses.  They will be handled in other basic blocks.
558      if (MI->isPHI())
559        NumOperandsToProcess = 1;
560
561      // Clear kill and dead markers. LV will recompute them.
562      SmallVector<unsigned, 4> UseRegs;
563      SmallVector<unsigned, 4> DefRegs;
564      SmallVector<unsigned, 1> RegMasks;
565      for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
566        MachineOperand &MO = MI->getOperand(i);
567        if (MO.isRegMask()) {
568          RegMasks.push_back(i);
569          continue;
570        }
571        if (!MO.isReg() || MO.getReg() == 0)
572          continue;
573        unsigned MOReg = MO.getReg();
574        if (MO.isUse()) {
575          MO.setIsKill(false);
576          if (MO.readsReg())
577            UseRegs.push_back(MOReg);
578        } else /*MO.isDef()*/ {
579          MO.setIsDead(false);
580          DefRegs.push_back(MOReg);
581        }
582      }
583
584      // Process all uses.
585      for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) {
586        unsigned MOReg = UseRegs[i];
587        if (TargetRegisterInfo::isVirtualRegister(MOReg))
588          HandleVirtRegUse(MOReg, MBB, MI);
589        else if (!MRI->isReserved(MOReg))
590          HandlePhysRegUse(MOReg, MI);
591      }
592
593      // Process all masked registers. (Call clobbers).
594      for (unsigned i = 0, e = RegMasks.size(); i != e; ++i)
595        HandleRegMask(MI->getOperand(RegMasks[i]));
596
597      // Process all defs.
598      for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) {
599        unsigned MOReg = DefRegs[i];
600        if (TargetRegisterInfo::isVirtualRegister(MOReg))
601          HandleVirtRegDef(MOReg, MI);
602        else if (!MRI->isReserved(MOReg))
603          HandlePhysRegDef(MOReg, MI, Defs);
604      }
605      UpdatePhysRegDefs(MI, Defs);
606    }
607
608    // Handle any virtual assignments from PHI nodes which might be at the
609    // bottom of this basic block.  We check all of our successor blocks to see
610    // if they have PHI nodes, and if so, we simulate an assignment at the end
611    // of the current block.
612    if (!PHIVarInfo[MBB->getNumber()].empty()) {
613      SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()];
614
615      for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(),
616             E = VarInfoVec.end(); I != E; ++I)
617        // Mark it alive only in the block we are representing.
618        MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(),
619                                MBB);
620    }
621
622    // MachineCSE may CSE instructions which write to non-allocatable physical
623    // registers across MBBs. Remember if any reserved register is liveout.
624    SmallSet<unsigned, 4> LiveOuts;
625    for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
626           SE = MBB->succ_end(); SI != SE; ++SI) {
627      MachineBasicBlock *SuccMBB = *SI;
628      if (SuccMBB->isLandingPad())
629        continue;
630      for (MachineBasicBlock::livein_iterator LI = SuccMBB->livein_begin(),
631             LE = SuccMBB->livein_end(); LI != LE; ++LI) {
632        unsigned LReg = *LI;
633        if (!TRI->isInAllocatableClass(LReg))
634          // Ignore other live-ins, e.g. those that are live into landing pads.
635          LiveOuts.insert(LReg);
636      }
637    }
638
639    // Loop over PhysRegDef / PhysRegUse, killing any registers that are
640    // available at the end of the basic block.
641    for (unsigned i = 0; i != NumRegs; ++i)
642      if ((PhysRegDef[i] || PhysRegUse[i]) && !LiveOuts.count(i))
643        HandlePhysRegDef(i, 0, Defs);
644
645    std::fill(PhysRegDef,  PhysRegDef  + NumRegs, (MachineInstr*)0);
646    std::fill(PhysRegUse,  PhysRegUse  + NumRegs, (MachineInstr*)0);
647  }
648
649  // Convert and transfer the dead / killed information we have gathered into
650  // VirtRegInfo onto MI's.
651  for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i) {
652    const unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
653    for (unsigned j = 0, e2 = VirtRegInfo[Reg].Kills.size(); j != e2; ++j)
654      if (VirtRegInfo[Reg].Kills[j] == MRI->getVRegDef(Reg))
655        VirtRegInfo[Reg].Kills[j]->addRegisterDead(Reg, TRI);
656      else
657        VirtRegInfo[Reg].Kills[j]->addRegisterKilled(Reg, TRI);
658  }
659
660  // Check to make sure there are no unreachable blocks in the MC CFG for the
661  // function.  If so, it is due to a bug in the instruction selector or some
662  // other part of the code generator if this happens.
663#ifndef NDEBUG
664  for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i)
665    assert(Visited.count(&*i) != 0 && "unreachable basic block found");
666#endif
667
668  delete[] PhysRegDef;
669  delete[] PhysRegUse;
670  delete[] PHIVarInfo;
671
672  return false;
673}
674
675/// replaceKillInstruction - Update register kill info by replacing a kill
676/// instruction with a new one.
677void LiveVariables::replaceKillInstruction(unsigned Reg, MachineInstr *OldMI,
678                                           MachineInstr *NewMI) {
679  VarInfo &VI = getVarInfo(Reg);
680  std::replace(VI.Kills.begin(), VI.Kills.end(), OldMI, NewMI);
681}
682
683/// removeVirtualRegistersKilled - Remove all killed info for the specified
684/// instruction.
685void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) {
686  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
687    MachineOperand &MO = MI->getOperand(i);
688    if (MO.isReg() && MO.isKill()) {
689      MO.setIsKill(false);
690      unsigned Reg = MO.getReg();
691      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
692        bool removed = getVarInfo(Reg).removeKill(MI);
693        assert(removed && "kill not in register's VarInfo?");
694        (void)removed;
695      }
696    }
697  }
698}
699
700/// analyzePHINodes - Gather information about the PHI nodes in here. In
701/// particular, we want to map the variable information of a virtual register
702/// which is used in a PHI node. We map that to the BB the vreg is coming from.
703///
704void LiveVariables::analyzePHINodes(const MachineFunction& Fn) {
705  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
706       I != E; ++I)
707    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
708         BBI != BBE && BBI->isPHI(); ++BBI)
709      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
710        if (BBI->getOperand(i).readsReg())
711          PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()]
712            .push_back(BBI->getOperand(i).getReg());
713}
714
715bool LiveVariables::VarInfo::isLiveIn(const MachineBasicBlock &MBB,
716                                      unsigned Reg,
717                                      MachineRegisterInfo &MRI) {
718  unsigned Num = MBB.getNumber();
719
720  // Reg is live-through.
721  if (AliveBlocks.test(Num))
722    return true;
723
724  // Registers defined in MBB cannot be live in.
725  const MachineInstr *Def = MRI.getVRegDef(Reg);
726  if (Def && Def->getParent() == &MBB)
727    return false;
728
729 // Reg was not defined in MBB, was it killed here?
730  return findKill(&MBB);
731}
732
733bool LiveVariables::isLiveOut(unsigned Reg, const MachineBasicBlock &MBB) {
734  LiveVariables::VarInfo &VI = getVarInfo(Reg);
735
736  // Loop over all of the successors of the basic block, checking to see if
737  // the value is either live in the block, or if it is killed in the block.
738  SmallVector<MachineBasicBlock*, 8> OpSuccBlocks;
739  for (MachineBasicBlock::const_succ_iterator SI = MBB.succ_begin(),
740         E = MBB.succ_end(); SI != E; ++SI) {
741    MachineBasicBlock *SuccMBB = *SI;
742
743    // Is it alive in this successor?
744    unsigned SuccIdx = SuccMBB->getNumber();
745    if (VI.AliveBlocks.test(SuccIdx))
746      return true;
747    OpSuccBlocks.push_back(SuccMBB);
748  }
749
750  // Check to see if this value is live because there is a use in a successor
751  // that kills it.
752  switch (OpSuccBlocks.size()) {
753  case 1: {
754    MachineBasicBlock *SuccMBB = OpSuccBlocks[0];
755    for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
756      if (VI.Kills[i]->getParent() == SuccMBB)
757        return true;
758    break;
759  }
760  case 2: {
761    MachineBasicBlock *SuccMBB1 = OpSuccBlocks[0], *SuccMBB2 = OpSuccBlocks[1];
762    for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
763      if (VI.Kills[i]->getParent() == SuccMBB1 ||
764          VI.Kills[i]->getParent() == SuccMBB2)
765        return true;
766    break;
767  }
768  default:
769    std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end());
770    for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
771      if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(),
772                             VI.Kills[i]->getParent()))
773        return true;
774  }
775  return false;
776}
777
778/// addNewBlock - Add a new basic block BB as an empty succcessor to DomBB. All
779/// variables that are live out of DomBB will be marked as passing live through
780/// BB.
781void LiveVariables::addNewBlock(MachineBasicBlock *BB,
782                                MachineBasicBlock *DomBB,
783                                MachineBasicBlock *SuccBB) {
784  const unsigned NumNew = BB->getNumber();
785
786  SmallSet<unsigned, 16> Defs, Kills;
787
788  MachineBasicBlock::iterator BBI = SuccBB->begin(), BBE = SuccBB->end();
789  for (; BBI != BBE && BBI->isPHI(); ++BBI) {
790    // Record the def of the PHI node.
791    Defs.insert(BBI->getOperand(0).getReg());
792
793    // All registers used by PHI nodes in SuccBB must be live through BB.
794    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
795      if (BBI->getOperand(i+1).getMBB() == BB)
796        getVarInfo(BBI->getOperand(i).getReg()).AliveBlocks.set(NumNew);
797  }
798
799  // Record all vreg defs and kills of all instructions in SuccBB.
800  for (; BBI != BBE; ++BBI) {
801    for (MachineInstr::mop_iterator I = BBI->operands_begin(),
802         E = BBI->operands_end(); I != E; ++I) {
803      if (I->isReg() && TargetRegisterInfo::isVirtualRegister(I->getReg())) {
804        if (I->isDef())
805          Defs.insert(I->getReg());
806        else if (I->isKill())
807          Kills.insert(I->getReg());
808      }
809    }
810  }
811
812  // Update info for all live variables
813  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
814    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
815
816    // If the Defs is defined in the successor it can't be live in BB.
817    if (Defs.count(Reg))
818      continue;
819
820    // If the register is either killed in or live through SuccBB it's also live
821    // through BB.
822    VarInfo &VI = getVarInfo(Reg);
823    if (Kills.count(Reg) || VI.AliveBlocks.test(SuccBB->getNumber()))
824      VI.AliveBlocks.set(NumNew);
825  }
826}
827