1//===- ELF.h - ELF object file implementation -------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the ELFObjectFile template class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_OBJECT_ELF_H
15#define LLVM_OBJECT_ELF_H
16
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/PointerIntPair.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/StringSwitch.h"
21#include "llvm/ADT/Triple.h"
22#include "llvm/Object/ObjectFile.h"
23#include "llvm/Support/Casting.h"
24#include "llvm/Support/ELF.h"
25#include "llvm/Support/Endian.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/MemoryBuffer.h"
28#include "llvm/Support/raw_ostream.h"
29#include <algorithm>
30#include <limits>
31#include <utility>
32
33namespace llvm {
34namespace object {
35
36using support::endianness;
37
38template<endianness target_endianness, std::size_t max_alignment, bool is64Bits>
39struct ELFType {
40  static const endianness TargetEndianness = target_endianness;
41  static const std::size_t MaxAlignment = max_alignment;
42  static const bool Is64Bits = is64Bits;
43};
44
45template<typename T, int max_align>
46struct MaximumAlignment {
47  enum {value = AlignOf<T>::Alignment > max_align ? max_align
48                                                  : AlignOf<T>::Alignment};
49};
50
51// Subclasses of ELFObjectFile may need this for template instantiation
52inline std::pair<unsigned char, unsigned char>
53getElfArchType(MemoryBuffer *Object) {
54  if (Object->getBufferSize() < ELF::EI_NIDENT)
55    return std::make_pair((uint8_t)ELF::ELFCLASSNONE,(uint8_t)ELF::ELFDATANONE);
56  return std::make_pair( (uint8_t)Object->getBufferStart()[ELF::EI_CLASS]
57                       , (uint8_t)Object->getBufferStart()[ELF::EI_DATA]);
58}
59
60// Templates to choose Elf_Addr and Elf_Off depending on is64Bits.
61template<endianness target_endianness, std::size_t max_alignment>
62struct ELFDataTypeTypedefHelperCommon {
63  typedef support::detail::packed_endian_specific_integral
64    <uint16_t, target_endianness,
65     MaximumAlignment<uint16_t, max_alignment>::value> Elf_Half;
66  typedef support::detail::packed_endian_specific_integral
67    <uint32_t, target_endianness,
68     MaximumAlignment<uint32_t, max_alignment>::value> Elf_Word;
69  typedef support::detail::packed_endian_specific_integral
70    <int32_t, target_endianness,
71     MaximumAlignment<int32_t, max_alignment>::value> Elf_Sword;
72  typedef support::detail::packed_endian_specific_integral
73    <uint64_t, target_endianness,
74     MaximumAlignment<uint64_t, max_alignment>::value> Elf_Xword;
75  typedef support::detail::packed_endian_specific_integral
76    <int64_t, target_endianness,
77     MaximumAlignment<int64_t, max_alignment>::value> Elf_Sxword;
78};
79
80template<class ELFT>
81struct ELFDataTypeTypedefHelper;
82
83/// ELF 32bit types.
84template<endianness TargetEndianness, std::size_t MaxAlign>
85struct ELFDataTypeTypedefHelper<ELFType<TargetEndianness, MaxAlign, false> >
86  : ELFDataTypeTypedefHelperCommon<TargetEndianness, MaxAlign> {
87  typedef uint32_t value_type;
88  typedef support::detail::packed_endian_specific_integral
89    <value_type, TargetEndianness,
90     MaximumAlignment<value_type, MaxAlign>::value> Elf_Addr;
91  typedef support::detail::packed_endian_specific_integral
92    <value_type, TargetEndianness,
93     MaximumAlignment<value_type, MaxAlign>::value> Elf_Off;
94};
95
96/// ELF 64bit types.
97template<endianness TargetEndianness, std::size_t MaxAlign>
98struct ELFDataTypeTypedefHelper<ELFType<TargetEndianness, MaxAlign, true> >
99  : ELFDataTypeTypedefHelperCommon<TargetEndianness, MaxAlign> {
100  typedef uint64_t value_type;
101  typedef support::detail::packed_endian_specific_integral
102    <value_type, TargetEndianness,
103     MaximumAlignment<value_type, MaxAlign>::value> Elf_Addr;
104  typedef support::detail::packed_endian_specific_integral
105    <value_type, TargetEndianness,
106     MaximumAlignment<value_type, MaxAlign>::value> Elf_Off;
107};
108
109// I really don't like doing this, but the alternative is copypasta.
110#define LLVM_ELF_IMPORT_TYPES(E, M, W)                                         \
111typedef typename ELFDataTypeTypedefHelper<ELFType<E,M,W> >::Elf_Addr Elf_Addr; \
112typedef typename ELFDataTypeTypedefHelper<ELFType<E,M,W> >::Elf_Off Elf_Off;   \
113typedef typename ELFDataTypeTypedefHelper<ELFType<E,M,W> >::Elf_Half Elf_Half; \
114typedef typename ELFDataTypeTypedefHelper<ELFType<E,M,W> >::Elf_Word Elf_Word; \
115typedef typename                                                               \
116  ELFDataTypeTypedefHelper<ELFType<E,M,W> >::Elf_Sword Elf_Sword;              \
117typedef typename                                                               \
118  ELFDataTypeTypedefHelper<ELFType<E,M,W> >::Elf_Xword Elf_Xword;              \
119typedef typename                                                               \
120  ELFDataTypeTypedefHelper<ELFType<E,M,W> >::Elf_Sxword Elf_Sxword;
121
122#define LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)                                       \
123  LLVM_ELF_IMPORT_TYPES(ELFT::TargetEndianness, ELFT::MaxAlignment,            \
124  ELFT::Is64Bits)
125
126// Section header.
127template<class ELFT>
128struct Elf_Shdr_Base;
129
130template<endianness TargetEndianness, std::size_t MaxAlign>
131struct Elf_Shdr_Base<ELFType<TargetEndianness, MaxAlign, false> > {
132  LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, false)
133  Elf_Word sh_name;     // Section name (index into string table)
134  Elf_Word sh_type;     // Section type (SHT_*)
135  Elf_Word sh_flags;    // Section flags (SHF_*)
136  Elf_Addr sh_addr;     // Address where section is to be loaded
137  Elf_Off  sh_offset;   // File offset of section data, in bytes
138  Elf_Word sh_size;     // Size of section, in bytes
139  Elf_Word sh_link;     // Section type-specific header table index link
140  Elf_Word sh_info;     // Section type-specific extra information
141  Elf_Word sh_addralign;// Section address alignment
142  Elf_Word sh_entsize;  // Size of records contained within the section
143};
144
145template<endianness TargetEndianness, std::size_t MaxAlign>
146struct Elf_Shdr_Base<ELFType<TargetEndianness, MaxAlign, true> > {
147  LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, true)
148  Elf_Word  sh_name;     // Section name (index into string table)
149  Elf_Word  sh_type;     // Section type (SHT_*)
150  Elf_Xword sh_flags;    // Section flags (SHF_*)
151  Elf_Addr  sh_addr;     // Address where section is to be loaded
152  Elf_Off   sh_offset;   // File offset of section data, in bytes
153  Elf_Xword sh_size;     // Size of section, in bytes
154  Elf_Word  sh_link;     // Section type-specific header table index link
155  Elf_Word  sh_info;     // Section type-specific extra information
156  Elf_Xword sh_addralign;// Section address alignment
157  Elf_Xword sh_entsize;  // Size of records contained within the section
158};
159
160template<class ELFT>
161struct Elf_Shdr_Impl : Elf_Shdr_Base<ELFT> {
162  using Elf_Shdr_Base<ELFT>::sh_entsize;
163  using Elf_Shdr_Base<ELFT>::sh_size;
164
165  /// @brief Get the number of entities this section contains if it has any.
166  unsigned getEntityCount() const {
167    if (sh_entsize == 0)
168      return 0;
169    return sh_size / sh_entsize;
170  }
171};
172
173template<class ELFT>
174struct Elf_Sym_Base;
175
176template<endianness TargetEndianness, std::size_t MaxAlign>
177struct Elf_Sym_Base<ELFType<TargetEndianness, MaxAlign, false> > {
178  LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, false)
179  Elf_Word      st_name;  // Symbol name (index into string table)
180  Elf_Addr      st_value; // Value or address associated with the symbol
181  Elf_Word      st_size;  // Size of the symbol
182  unsigned char st_info;  // Symbol's type and binding attributes
183  unsigned char st_other; // Must be zero; reserved
184  Elf_Half      st_shndx; // Which section (header table index) it's defined in
185};
186
187template<endianness TargetEndianness, std::size_t MaxAlign>
188struct Elf_Sym_Base<ELFType<TargetEndianness, MaxAlign, true> > {
189  LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, true)
190  Elf_Word      st_name;  // Symbol name (index into string table)
191  unsigned char st_info;  // Symbol's type and binding attributes
192  unsigned char st_other; // Must be zero; reserved
193  Elf_Half      st_shndx; // Which section (header table index) it's defined in
194  Elf_Addr      st_value; // Value or address associated with the symbol
195  Elf_Xword     st_size;  // Size of the symbol
196};
197
198template<class ELFT>
199struct Elf_Sym_Impl : Elf_Sym_Base<ELFT> {
200  using Elf_Sym_Base<ELFT>::st_info;
201
202  // These accessors and mutators correspond to the ELF32_ST_BIND,
203  // ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification:
204  unsigned char getBinding() const { return st_info >> 4; }
205  unsigned char getType() const { return st_info & 0x0f; }
206  void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
207  void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
208  void setBindingAndType(unsigned char b, unsigned char t) {
209    st_info = (b << 4) + (t & 0x0f);
210  }
211};
212
213/// Elf_Versym: This is the structure of entries in the SHT_GNU_versym section
214/// (.gnu.version). This structure is identical for ELF32 and ELF64.
215template<class ELFT>
216struct Elf_Versym_Impl {
217  LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
218  Elf_Half vs_index;   // Version index with flags (e.g. VERSYM_HIDDEN)
219};
220
221template<class ELFT>
222struct Elf_Verdaux_Impl;
223
224/// Elf_Verdef: This is the structure of entries in the SHT_GNU_verdef section
225/// (.gnu.version_d). This structure is identical for ELF32 and ELF64.
226template<class ELFT>
227struct Elf_Verdef_Impl {
228  LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
229  typedef Elf_Verdaux_Impl<ELFT> Elf_Verdaux;
230  Elf_Half vd_version; // Version of this structure (e.g. VER_DEF_CURRENT)
231  Elf_Half vd_flags;   // Bitwise flags (VER_DEF_*)
232  Elf_Half vd_ndx;     // Version index, used in .gnu.version entries
233  Elf_Half vd_cnt;     // Number of Verdaux entries
234  Elf_Word vd_hash;    // Hash of name
235  Elf_Word vd_aux;     // Offset to the first Verdaux entry (in bytes)
236  Elf_Word vd_next;    // Offset to the next Verdef entry (in bytes)
237
238  /// Get the first Verdaux entry for this Verdef.
239  const Elf_Verdaux *getAux() const {
240    return reinterpret_cast<const Elf_Verdaux*>((const char*)this + vd_aux);
241  }
242};
243
244/// Elf_Verdaux: This is the structure of auxiliary data in the SHT_GNU_verdef
245/// section (.gnu.version_d). This structure is identical for ELF32 and ELF64.
246template<class ELFT>
247struct Elf_Verdaux_Impl {
248  LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
249  Elf_Word vda_name; // Version name (offset in string table)
250  Elf_Word vda_next; // Offset to next Verdaux entry (in bytes)
251};
252
253/// Elf_Verneed: This is the structure of entries in the SHT_GNU_verneed
254/// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
255template<class ELFT>
256struct Elf_Verneed_Impl {
257  LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
258  Elf_Half vn_version; // Version of this structure (e.g. VER_NEED_CURRENT)
259  Elf_Half vn_cnt;     // Number of associated Vernaux entries
260  Elf_Word vn_file;    // Library name (string table offset)
261  Elf_Word vn_aux;     // Offset to first Vernaux entry (in bytes)
262  Elf_Word vn_next;    // Offset to next Verneed entry (in bytes)
263};
264
265/// Elf_Vernaux: This is the structure of auxiliary data in SHT_GNU_verneed
266/// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
267template<class ELFT>
268struct Elf_Vernaux_Impl {
269  LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
270  Elf_Word vna_hash;  // Hash of dependency name
271  Elf_Half vna_flags; // Bitwise Flags (VER_FLAG_*)
272  Elf_Half vna_other; // Version index, used in .gnu.version entries
273  Elf_Word vna_name;  // Dependency name
274  Elf_Word vna_next;  // Offset to next Vernaux entry (in bytes)
275};
276
277/// Elf_Dyn_Base: This structure matches the form of entries in the dynamic
278///               table section (.dynamic) look like.
279template<class ELFT>
280struct Elf_Dyn_Base;
281
282template<endianness TargetEndianness, std::size_t MaxAlign>
283struct Elf_Dyn_Base<ELFType<TargetEndianness, MaxAlign, false> > {
284  LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, false)
285  Elf_Sword d_tag;
286  union {
287    Elf_Word d_val;
288    Elf_Addr d_ptr;
289  } d_un;
290};
291
292template<endianness TargetEndianness, std::size_t MaxAlign>
293struct Elf_Dyn_Base<ELFType<TargetEndianness, MaxAlign, true> > {
294  LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, true)
295  Elf_Sxword d_tag;
296  union {
297    Elf_Xword d_val;
298    Elf_Addr d_ptr;
299  } d_un;
300};
301
302/// Elf_Dyn_Impl: This inherits from Elf_Dyn_Base, adding getters and setters.
303template<class ELFT>
304struct Elf_Dyn_Impl : Elf_Dyn_Base<ELFT> {
305  using Elf_Dyn_Base<ELFT>::d_tag;
306  using Elf_Dyn_Base<ELFT>::d_un;
307  int64_t getTag() const { return d_tag; }
308  uint64_t getVal() const { return d_un.d_val; }
309  uint64_t getPtr() const { return d_un.ptr; }
310};
311
312// Elf_Rel: Elf Relocation
313template<class ELFT, bool isRela>
314struct Elf_Rel_Base;
315
316template<endianness TargetEndianness, std::size_t MaxAlign>
317struct Elf_Rel_Base<ELFType<TargetEndianness, MaxAlign, false>, false> {
318  LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, false)
319  Elf_Addr      r_offset; // Location (file byte offset, or program virtual addr)
320  Elf_Word      r_info;  // Symbol table index and type of relocation to apply
321
322  uint32_t getRInfo(bool isMips64EL) const {
323    assert(!isMips64EL);
324    return r_info;
325  }
326  void setRInfo(uint32_t R) {
327    r_info = R;
328  }
329};
330
331template<endianness TargetEndianness, std::size_t MaxAlign>
332struct Elf_Rel_Base<ELFType<TargetEndianness, MaxAlign, true>, false> {
333  LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, true)
334  Elf_Addr      r_offset; // Location (file byte offset, or program virtual addr)
335  Elf_Xword     r_info;   // Symbol table index and type of relocation to apply
336
337  uint64_t getRInfo(bool isMips64EL) const {
338    uint64_t t = r_info;
339    if (!isMips64EL)
340      return t;
341    // Mip64 little endian has a "special" encoding of r_info. Instead of one
342    // 64 bit little endian number, it is a little ending 32 bit number followed
343    // by a 32 bit big endian number.
344    return (t << 32) | ((t >> 8) & 0xff000000) | ((t >> 24) & 0x00ff0000) |
345      ((t >> 40) & 0x0000ff00) | ((t >> 56) & 0x000000ff);
346    return r_info;
347  }
348  void setRInfo(uint64_t R) {
349    // FIXME: Add mips64el support.
350    r_info = R;
351  }
352};
353
354template<endianness TargetEndianness, std::size_t MaxAlign>
355struct Elf_Rel_Base<ELFType<TargetEndianness, MaxAlign, false>, true> {
356  LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, false)
357  Elf_Addr      r_offset; // Location (file byte offset, or program virtual addr)
358  Elf_Word      r_info;   // Symbol table index and type of relocation to apply
359  Elf_Sword     r_addend; // Compute value for relocatable field by adding this
360
361  uint32_t getRInfo(bool isMips64EL) const {
362    assert(!isMips64EL);
363    return r_info;
364  }
365  void setRInfo(uint32_t R) {
366    r_info = R;
367  }
368};
369
370template<endianness TargetEndianness, std::size_t MaxAlign>
371struct Elf_Rel_Base<ELFType<TargetEndianness, MaxAlign, true>, true> {
372  LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, true)
373  Elf_Addr      r_offset; // Location (file byte offset, or program virtual addr)
374  Elf_Xword     r_info;   // Symbol table index and type of relocation to apply
375  Elf_Sxword    r_addend; // Compute value for relocatable field by adding this.
376
377  uint64_t getRInfo(bool isMips64EL) const {
378    // Mip64 little endian has a "special" encoding of r_info. Instead of one
379    // 64 bit little endian number, it is a little ending 32 bit number followed
380    // by a 32 bit big endian number.
381    uint64_t t = r_info;
382    if (!isMips64EL)
383      return t;
384    return (t << 32) | ((t >> 8) & 0xff000000) | ((t >> 24) & 0x00ff0000) |
385      ((t >> 40) & 0x0000ff00) | ((t >> 56) & 0x000000ff);
386  }
387  void setRInfo(uint64_t R) {
388    // FIXME: Add mips64el support.
389    r_info = R;
390  }
391};
392
393template<class ELFT, bool isRela>
394struct Elf_Rel_Impl;
395
396template<endianness TargetEndianness, std::size_t MaxAlign, bool isRela>
397struct Elf_Rel_Impl<ELFType<TargetEndianness, MaxAlign, true>, isRela>
398       : Elf_Rel_Base<ELFType<TargetEndianness, MaxAlign, true>, isRela> {
399  LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, true)
400
401  // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
402  // and ELF64_R_INFO macros defined in the ELF specification:
403  uint32_t getSymbol(bool isMips64EL) const {
404    return (uint32_t) (this->getRInfo(isMips64EL) >> 32);
405  }
406  uint32_t getType(bool isMips64EL) const {
407    return (uint32_t) (this->getRInfo(isMips64EL) & 0xffffffffL);
408  }
409  void setSymbol(uint32_t s) { setSymbolAndType(s, getType()); }
410  void setType(uint32_t t) { setSymbolAndType(getSymbol(), t); }
411  void setSymbolAndType(uint32_t s, uint32_t t) {
412    this->setRInfo(((uint64_t)s << 32) + (t&0xffffffffL));
413  }
414};
415
416template<endianness TargetEndianness, std::size_t MaxAlign, bool isRela>
417struct Elf_Rel_Impl<ELFType<TargetEndianness, MaxAlign, false>, isRela>
418       : Elf_Rel_Base<ELFType<TargetEndianness, MaxAlign, false>, isRela> {
419  LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, false)
420
421  // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
422  // and ELF32_R_INFO macros defined in the ELF specification:
423  uint32_t getSymbol(bool isMips64EL) const {
424    return this->getRInfo(isMips64EL) >> 8;
425  }
426  unsigned char getType(bool isMips64EL) const {
427    return (unsigned char) (this->getRInfo(isMips64EL) & 0x0ff);
428  }
429  void setSymbol(uint32_t s) { setSymbolAndType(s, getType()); }
430  void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
431  void setSymbolAndType(uint32_t s, unsigned char t) {
432    this->setRInfo((s << 8) + t);
433  }
434};
435
436template<class ELFT>
437struct Elf_Ehdr_Impl {
438  LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
439  unsigned char e_ident[ELF::EI_NIDENT]; // ELF Identification bytes
440  Elf_Half e_type;     // Type of file (see ET_*)
441  Elf_Half e_machine;  // Required architecture for this file (see EM_*)
442  Elf_Word e_version;  // Must be equal to 1
443  Elf_Addr e_entry;    // Address to jump to in order to start program
444  Elf_Off  e_phoff;    // Program header table's file offset, in bytes
445  Elf_Off  e_shoff;    // Section header table's file offset, in bytes
446  Elf_Word e_flags;    // Processor-specific flags
447  Elf_Half e_ehsize;   // Size of ELF header, in bytes
448  Elf_Half e_phentsize;// Size of an entry in the program header table
449  Elf_Half e_phnum;    // Number of entries in the program header table
450  Elf_Half e_shentsize;// Size of an entry in the section header table
451  Elf_Half e_shnum;    // Number of entries in the section header table
452  Elf_Half e_shstrndx; // Section header table index of section name
453                                 // string table
454  bool checkMagic() const {
455    return (memcmp(e_ident, ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
456  }
457   unsigned char getFileClass() const { return e_ident[ELF::EI_CLASS]; }
458   unsigned char getDataEncoding() const { return e_ident[ELF::EI_DATA]; }
459};
460
461template<class ELFT>
462struct Elf_Phdr_Impl;
463
464template<endianness TargetEndianness, std::size_t MaxAlign>
465struct Elf_Phdr_Impl<ELFType<TargetEndianness, MaxAlign, false> > {
466  LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, false)
467  Elf_Word p_type;   // Type of segment
468  Elf_Off  p_offset; // FileOffset where segment is located, in bytes
469  Elf_Addr p_vaddr;  // Virtual Address of beginning of segment
470  Elf_Addr p_paddr;  // Physical address of beginning of segment (OS-specific)
471  Elf_Word p_filesz; // Num. of bytes in file image of segment (may be zero)
472  Elf_Word p_memsz;  // Num. of bytes in mem image of segment (may be zero)
473  Elf_Word p_flags;  // Segment flags
474  Elf_Word p_align;  // Segment alignment constraint
475};
476
477template<endianness TargetEndianness, std::size_t MaxAlign>
478struct Elf_Phdr_Impl<ELFType<TargetEndianness, MaxAlign, true> > {
479  LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, true)
480  Elf_Word p_type;   // Type of segment
481  Elf_Word p_flags;  // Segment flags
482  Elf_Off  p_offset; // FileOffset where segment is located, in bytes
483  Elf_Addr p_vaddr;  // Virtual Address of beginning of segment
484  Elf_Addr p_paddr;  // Physical address of beginning of segment (OS-specific)
485  Elf_Xword p_filesz; // Num. of bytes in file image of segment (may be zero)
486  Elf_Xword p_memsz;  // Num. of bytes in mem image of segment (may be zero)
487  Elf_Xword p_align;  // Segment alignment constraint
488};
489
490template<class ELFT>
491class ELFObjectFile : public ObjectFile {
492  LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
493
494public:
495  /// \brief Iterate over constant sized entities.
496  template<class EntT>
497  class ELFEntityIterator {
498  public:
499    typedef ptrdiff_t difference_type;
500    typedef EntT value_type;
501    typedef std::random_access_iterator_tag iterator_category;
502    typedef value_type &reference;
503    typedef value_type *pointer;
504
505    /// \brief Default construct iterator.
506    ELFEntityIterator() : EntitySize(0), Current(0) {}
507    ELFEntityIterator(uint64_t EntSize, const char *Start)
508      : EntitySize(EntSize)
509      , Current(Start) {}
510
511    reference operator *() {
512      assert(Current && "Attempted to dereference an invalid iterator!");
513      return *reinterpret_cast<pointer>(Current);
514    }
515
516    pointer operator ->() {
517      assert(Current && "Attempted to dereference an invalid iterator!");
518      return reinterpret_cast<pointer>(Current);
519    }
520
521    bool operator ==(const ELFEntityIterator &Other) {
522      return Current == Other.Current;
523    }
524
525    bool operator !=(const ELFEntityIterator &Other) {
526      return !(*this == Other);
527    }
528
529    ELFEntityIterator &operator ++() {
530      assert(Current && "Attempted to increment an invalid iterator!");
531      Current += EntitySize;
532      return *this;
533    }
534
535    ELFEntityIterator operator ++(int) {
536      ELFEntityIterator Tmp = *this;
537      ++*this;
538      return Tmp;
539    }
540
541    ELFEntityIterator &operator =(const ELFEntityIterator &Other) {
542      EntitySize = Other.EntitySize;
543      Current = Other.Current;
544      return *this;
545    }
546
547    difference_type operator -(const ELFEntityIterator &Other) const {
548      assert(EntitySize == Other.EntitySize &&
549             "Subtracting iterators of different EntitiySize!");
550      return (Current - Other.Current) / EntitySize;
551    }
552
553    const char *get() const { return Current; }
554
555  private:
556    uint64_t EntitySize;
557    const char *Current;
558  };
559
560  typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
561  typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
562  typedef Elf_Sym_Impl<ELFT> Elf_Sym;
563  typedef Elf_Dyn_Impl<ELFT> Elf_Dyn;
564  typedef Elf_Phdr_Impl<ELFT> Elf_Phdr;
565  typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
566  typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
567  typedef Elf_Verdef_Impl<ELFT> Elf_Verdef;
568  typedef Elf_Verdaux_Impl<ELFT> Elf_Verdaux;
569  typedef Elf_Verneed_Impl<ELFT> Elf_Verneed;
570  typedef Elf_Vernaux_Impl<ELFT> Elf_Vernaux;
571  typedef Elf_Versym_Impl<ELFT> Elf_Versym;
572  typedef ELFEntityIterator<const Elf_Dyn> Elf_Dyn_iterator;
573  typedef ELFEntityIterator<const Elf_Sym> Elf_Sym_iterator;
574  typedef ELFEntityIterator<const Elf_Rela> Elf_Rela_Iter;
575  typedef ELFEntityIterator<const Elf_Rel> Elf_Rel_Iter;
576
577protected:
578  // This flag is used for classof, to distinguish ELFObjectFile from
579  // its subclass. If more subclasses will be created, this flag will
580  // have to become an enum.
581  bool isDyldELFObject;
582
583private:
584  typedef SmallVector<const Elf_Shdr *, 2> Sections_t;
585  typedef DenseMap<unsigned, unsigned> IndexMap_t;
586  typedef DenseMap<const Elf_Shdr*, SmallVector<uint32_t, 1> > RelocMap_t;
587
588  const Elf_Ehdr *Header;
589  const Elf_Shdr *SectionHeaderTable;
590  const Elf_Shdr *dot_shstrtab_sec; // Section header string table.
591  const Elf_Shdr *dot_strtab_sec;   // Symbol header string table.
592  const Elf_Shdr *dot_dynstr_sec;   // Dynamic symbol string table.
593
594  // SymbolTableSections[0] always points to the dynamic string table section
595  // header, or NULL if there is no dynamic string table.
596  Sections_t SymbolTableSections;
597  IndexMap_t SymbolTableSectionsIndexMap;
598  DenseMap<const Elf_Sym*, ELF::Elf64_Word> ExtendedSymbolTable;
599
600  const Elf_Shdr *dot_dynamic_sec;       // .dynamic
601  const Elf_Shdr *dot_gnu_version_sec;   // .gnu.version
602  const Elf_Shdr *dot_gnu_version_r_sec; // .gnu.version_r
603  const Elf_Shdr *dot_gnu_version_d_sec; // .gnu.version_d
604
605  // Pointer to SONAME entry in dynamic string table
606  // This is set the first time getLoadName is called.
607  mutable const char *dt_soname;
608
609private:
610  uint64_t getROffset(DataRefImpl Rel) const;
611
612  // Records for each version index the corresponding Verdef or Vernaux entry.
613  // This is filled the first time LoadVersionMap() is called.
614  class VersionMapEntry : public PointerIntPair<const void*, 1> {
615    public:
616    // If the integer is 0, this is an Elf_Verdef*.
617    // If the integer is 1, this is an Elf_Vernaux*.
618    VersionMapEntry() : PointerIntPair<const void*, 1>(NULL, 0) { }
619    VersionMapEntry(const Elf_Verdef *verdef)
620        : PointerIntPair<const void*, 1>(verdef, 0) { }
621    VersionMapEntry(const Elf_Vernaux *vernaux)
622        : PointerIntPair<const void*, 1>(vernaux, 1) { }
623    bool isNull() const { return getPointer() == NULL; }
624    bool isVerdef() const { return !isNull() && getInt() == 0; }
625    bool isVernaux() const { return !isNull() && getInt() == 1; }
626    const Elf_Verdef *getVerdef() const {
627      return isVerdef() ? (const Elf_Verdef*)getPointer() : NULL;
628    }
629    const Elf_Vernaux *getVernaux() const {
630      return isVernaux() ? (const Elf_Vernaux*)getPointer() : NULL;
631    }
632  };
633  mutable SmallVector<VersionMapEntry, 16> VersionMap;
634  void LoadVersionDefs(const Elf_Shdr *sec) const;
635  void LoadVersionNeeds(const Elf_Shdr *ec) const;
636  void LoadVersionMap() const;
637
638  /// @brief Map sections to an array of relocation sections that reference
639  ///        them sorted by section index.
640  RelocMap_t SectionRelocMap;
641
642  /// @brief Get the relocation section that contains \a Rel.
643  const Elf_Shdr *getRelSection(DataRefImpl Rel) const {
644    return getSection(Rel.w.b);
645  }
646
647public:
648  bool            isRelocationHasAddend(DataRefImpl Rel) const;
649  template<typename T>
650  const T        *getEntry(uint16_t Section, uint32_t Entry) const;
651  template<typename T>
652  const T        *getEntry(const Elf_Shdr *Section, uint32_t Entry) const;
653  const Elf_Shdr *getSection(DataRefImpl index) const;
654  const Elf_Shdr *getSection(uint32_t index) const;
655  const Elf_Rel  *getRel(DataRefImpl Rel) const;
656  const Elf_Rela *getRela(DataRefImpl Rela) const;
657  const char     *getString(uint32_t section, uint32_t offset) const;
658  const char     *getString(const Elf_Shdr *section, uint32_t offset) const;
659  error_code      getSymbolVersion(const Elf_Shdr *section,
660                                   const Elf_Sym *Symb,
661                                   StringRef &Version,
662                                   bool &IsDefault) const;
663  void VerifyStrTab(const Elf_Shdr *sh) const;
664
665protected:
666  const Elf_Sym  *getSymbol(DataRefImpl Symb) const; // FIXME: Should be private?
667  void            validateSymbol(DataRefImpl Symb) const;
668  StringRef       getRelocationTypeName(uint32_t Type) const;
669
670public:
671  error_code      getSymbolName(const Elf_Shdr *section,
672                                const Elf_Sym *Symb,
673                                StringRef &Res) const;
674  error_code      getSectionName(const Elf_Shdr *section,
675                                 StringRef &Res) const;
676  const Elf_Dyn  *getDyn(DataRefImpl DynData) const;
677  error_code getSymbolVersion(SymbolRef Symb, StringRef &Version,
678                              bool &IsDefault) const;
679  uint64_t getSymbolIndex(const Elf_Sym *sym) const;
680protected:
681  virtual error_code getSymbolNext(DataRefImpl Symb, SymbolRef &Res) const;
682  virtual error_code getSymbolName(DataRefImpl Symb, StringRef &Res) const;
683  virtual error_code getSymbolFileOffset(DataRefImpl Symb, uint64_t &Res) const;
684  virtual error_code getSymbolAddress(DataRefImpl Symb, uint64_t &Res) const;
685  virtual error_code getSymbolAlignment(DataRefImpl Symb, uint32_t &Res) const;
686  virtual error_code getSymbolSize(DataRefImpl Symb, uint64_t &Res) const;
687  virtual error_code getSymbolNMTypeChar(DataRefImpl Symb, char &Res) const;
688  virtual error_code getSymbolFlags(DataRefImpl Symb, uint32_t &Res) const;
689  virtual error_code getSymbolType(DataRefImpl Symb, SymbolRef::Type &Res) const;
690  virtual error_code getSymbolSection(DataRefImpl Symb,
691                                      section_iterator &Res) const;
692  virtual error_code getSymbolValue(DataRefImpl Symb, uint64_t &Val) const;
693
694  virtual error_code getLibraryNext(DataRefImpl Data, LibraryRef &Result) const;
695  virtual error_code getLibraryPath(DataRefImpl Data, StringRef &Res) const;
696
697  virtual error_code getSectionNext(DataRefImpl Sec, SectionRef &Res) const;
698  virtual error_code getSectionName(DataRefImpl Sec, StringRef &Res) const;
699  virtual error_code getSectionAddress(DataRefImpl Sec, uint64_t &Res) const;
700  virtual error_code getSectionSize(DataRefImpl Sec, uint64_t &Res) const;
701  virtual error_code getSectionContents(DataRefImpl Sec, StringRef &Res) const;
702  virtual error_code getSectionAlignment(DataRefImpl Sec, uint64_t &Res) const;
703  virtual error_code isSectionText(DataRefImpl Sec, bool &Res) const;
704  virtual error_code isSectionData(DataRefImpl Sec, bool &Res) const;
705  virtual error_code isSectionBSS(DataRefImpl Sec, bool &Res) const;
706  virtual error_code isSectionRequiredForExecution(DataRefImpl Sec,
707                                                   bool &Res) const;
708  virtual error_code isSectionVirtual(DataRefImpl Sec, bool &Res) const;
709  virtual error_code isSectionZeroInit(DataRefImpl Sec, bool &Res) const;
710  virtual error_code isSectionReadOnlyData(DataRefImpl Sec, bool &Res) const;
711  virtual error_code sectionContainsSymbol(DataRefImpl Sec, DataRefImpl Symb,
712                                           bool &Result) const;
713  virtual relocation_iterator getSectionRelBegin(DataRefImpl Sec) const;
714  virtual relocation_iterator getSectionRelEnd(DataRefImpl Sec) const;
715
716  virtual error_code getRelocationNext(DataRefImpl Rel,
717                                       RelocationRef &Res) const;
718  virtual error_code getRelocationAddress(DataRefImpl Rel,
719                                          uint64_t &Res) const;
720  virtual error_code getRelocationOffset(DataRefImpl Rel,
721                                         uint64_t &Res) const;
722  virtual error_code getRelocationSymbol(DataRefImpl Rel,
723                                         SymbolRef &Res) const;
724  virtual error_code getRelocationType(DataRefImpl Rel,
725                                       uint64_t &Res) const;
726  virtual error_code getRelocationTypeName(DataRefImpl Rel,
727                                           SmallVectorImpl<char> &Result) const;
728  virtual error_code getRelocationAdditionalInfo(DataRefImpl Rel,
729                                                 int64_t &Res) const;
730  virtual error_code getRelocationValueString(DataRefImpl Rel,
731                                           SmallVectorImpl<char> &Result) const;
732
733public:
734  ELFObjectFile(MemoryBuffer *Object, error_code &ec);
735
736  bool isMips64EL() const {
737    return Header->e_machine == ELF::EM_MIPS &&
738      Header->getFileClass() == ELF::ELFCLASS64 &&
739      Header->getDataEncoding() == ELF::ELFDATA2LSB;
740  }
741
742  virtual symbol_iterator begin_symbols() const;
743  virtual symbol_iterator end_symbols() const;
744
745  virtual symbol_iterator begin_dynamic_symbols() const;
746  virtual symbol_iterator end_dynamic_symbols() const;
747
748  virtual section_iterator begin_sections() const;
749  virtual section_iterator end_sections() const;
750
751  virtual library_iterator begin_libraries_needed() const;
752  virtual library_iterator end_libraries_needed() const;
753
754  const Elf_Shdr *getDynamicSymbolTableSectionHeader() const {
755    return SymbolTableSections[0];
756  }
757
758  const Elf_Shdr *getDynamicStringTableSectionHeader() const {
759    return dot_dynstr_sec;
760  }
761
762  Elf_Dyn_iterator begin_dynamic_table() const;
763  /// \param NULLEnd use one past the first DT_NULL entry as the end instead of
764  /// the section size.
765  Elf_Dyn_iterator end_dynamic_table(bool NULLEnd = false) const;
766
767  Elf_Sym_iterator begin_elf_dynamic_symbols() const {
768    const Elf_Shdr *DynSymtab = SymbolTableSections[0];
769    if (DynSymtab)
770      return Elf_Sym_iterator(DynSymtab->sh_entsize,
771                              (const char *)base() + DynSymtab->sh_offset);
772    return Elf_Sym_iterator(0, 0);
773  }
774
775  Elf_Sym_iterator end_elf_dynamic_symbols() const {
776    const Elf_Shdr *DynSymtab = SymbolTableSections[0];
777    if (DynSymtab)
778      return Elf_Sym_iterator(DynSymtab->sh_entsize, (const char *)base() +
779                              DynSymtab->sh_offset + DynSymtab->sh_size);
780    return Elf_Sym_iterator(0, 0);
781  }
782
783  Elf_Rela_Iter beginELFRela(const Elf_Shdr *sec) const {
784    return Elf_Rela_Iter(sec->sh_entsize,
785                         (const char *)(base() + sec->sh_offset));
786  }
787
788  Elf_Rela_Iter endELFRela(const Elf_Shdr *sec) const {
789    return Elf_Rela_Iter(sec->sh_entsize, (const char *)
790                         (base() + sec->sh_offset + sec->sh_size));
791  }
792
793  Elf_Rel_Iter beginELFRel(const Elf_Shdr *sec) const {
794    return Elf_Rel_Iter(sec->sh_entsize,
795                        (const char *)(base() + sec->sh_offset));
796  }
797
798  Elf_Rel_Iter endELFRel(const Elf_Shdr *sec) const {
799    return Elf_Rel_Iter(sec->sh_entsize, (const char *)
800                        (base() + sec->sh_offset + sec->sh_size));
801  }
802
803  /// \brief Iterate over program header table.
804  typedef ELFEntityIterator<const Elf_Phdr> Elf_Phdr_Iter;
805
806  Elf_Phdr_Iter begin_program_headers() const {
807    return Elf_Phdr_Iter(Header->e_phentsize,
808                         (const char*)base() + Header->e_phoff);
809  }
810
811  Elf_Phdr_Iter end_program_headers() const {
812    return Elf_Phdr_Iter(Header->e_phentsize,
813                         (const char*)base() +
814                           Header->e_phoff +
815                           (Header->e_phnum * Header->e_phentsize));
816  }
817
818  virtual uint8_t getBytesInAddress() const;
819  virtual StringRef getFileFormatName() const;
820  virtual StringRef getObjectType() const { return "ELF"; }
821  virtual unsigned getArch() const;
822  virtual StringRef getLoadName() const;
823  virtual error_code getSectionContents(const Elf_Shdr *sec,
824                                        StringRef &Res) const;
825
826  uint64_t getNumSections() const;
827  uint64_t getStringTableIndex() const;
828  ELF::Elf64_Word getSymbolTableIndex(const Elf_Sym *symb) const;
829  const Elf_Ehdr *getElfHeader() const;
830  const Elf_Shdr *getSection(const Elf_Sym *symb) const;
831  const Elf_Shdr *getElfSection(section_iterator &It) const;
832  const Elf_Sym *getElfSymbol(symbol_iterator &It) const;
833  const Elf_Sym *getElfSymbol(uint32_t index) const;
834
835  // Methods for type inquiry through isa, cast, and dyn_cast
836  bool isDyldType() const { return isDyldELFObject; }
837  static inline bool classof(const Binary *v) {
838    return v->getType() == getELFType(ELFT::TargetEndianness == support::little,
839                                      ELFT::Is64Bits);
840  }
841};
842
843// Iterate through the version definitions, and place each Elf_Verdef
844// in the VersionMap according to its index.
845template<class ELFT>
846void ELFObjectFile<ELFT>::LoadVersionDefs(const Elf_Shdr *sec) const {
847  unsigned vd_size = sec->sh_size; // Size of section in bytes
848  unsigned vd_count = sec->sh_info; // Number of Verdef entries
849  const char *sec_start = (const char*)base() + sec->sh_offset;
850  const char *sec_end = sec_start + vd_size;
851  // The first Verdef entry is at the start of the section.
852  const char *p = sec_start;
853  for (unsigned i = 0; i < vd_count; i++) {
854    if (p + sizeof(Elf_Verdef) > sec_end)
855      report_fatal_error("Section ended unexpectedly while scanning "
856                         "version definitions.");
857    const Elf_Verdef *vd = reinterpret_cast<const Elf_Verdef *>(p);
858    if (vd->vd_version != ELF::VER_DEF_CURRENT)
859      report_fatal_error("Unexpected verdef version");
860    size_t index = vd->vd_ndx & ELF::VERSYM_VERSION;
861    if (index >= VersionMap.size())
862      VersionMap.resize(index+1);
863    VersionMap[index] = VersionMapEntry(vd);
864    p += vd->vd_next;
865  }
866}
867
868// Iterate through the versions needed section, and place each Elf_Vernaux
869// in the VersionMap according to its index.
870template<class ELFT>
871void ELFObjectFile<ELFT>::LoadVersionNeeds(const Elf_Shdr *sec) const {
872  unsigned vn_size = sec->sh_size; // Size of section in bytes
873  unsigned vn_count = sec->sh_info; // Number of Verneed entries
874  const char *sec_start = (const char*)base() + sec->sh_offset;
875  const char *sec_end = sec_start + vn_size;
876  // The first Verneed entry is at the start of the section.
877  const char *p = sec_start;
878  for (unsigned i = 0; i < vn_count; i++) {
879    if (p + sizeof(Elf_Verneed) > sec_end)
880      report_fatal_error("Section ended unexpectedly while scanning "
881                         "version needed records.");
882    const Elf_Verneed *vn = reinterpret_cast<const Elf_Verneed *>(p);
883    if (vn->vn_version != ELF::VER_NEED_CURRENT)
884      report_fatal_error("Unexpected verneed version");
885    // Iterate through the Vernaux entries
886    const char *paux = p + vn->vn_aux;
887    for (unsigned j = 0; j < vn->vn_cnt; j++) {
888      if (paux + sizeof(Elf_Vernaux) > sec_end)
889        report_fatal_error("Section ended unexpected while scanning auxiliary "
890                           "version needed records.");
891      const Elf_Vernaux *vna = reinterpret_cast<const Elf_Vernaux *>(paux);
892      size_t index = vna->vna_other & ELF::VERSYM_VERSION;
893      if (index >= VersionMap.size())
894        VersionMap.resize(index+1);
895      VersionMap[index] = VersionMapEntry(vna);
896      paux += vna->vna_next;
897    }
898    p += vn->vn_next;
899  }
900}
901
902template<class ELFT>
903void ELFObjectFile<ELFT>::LoadVersionMap() const {
904  // If there is no dynamic symtab or version table, there is nothing to do.
905  if (SymbolTableSections[0] == NULL || dot_gnu_version_sec == NULL)
906    return;
907
908  // Has the VersionMap already been loaded?
909  if (VersionMap.size() > 0)
910    return;
911
912  // The first two version indexes are reserved.
913  // Index 0 is LOCAL, index 1 is GLOBAL.
914  VersionMap.push_back(VersionMapEntry());
915  VersionMap.push_back(VersionMapEntry());
916
917  if (dot_gnu_version_d_sec)
918    LoadVersionDefs(dot_gnu_version_d_sec);
919
920  if (dot_gnu_version_r_sec)
921    LoadVersionNeeds(dot_gnu_version_r_sec);
922}
923
924template<class ELFT>
925void ELFObjectFile<ELFT>::validateSymbol(DataRefImpl Symb) const {
926#ifndef NDEBUG
927  const Elf_Sym  *symb = getSymbol(Symb);
928  const Elf_Shdr *SymbolTableSection = SymbolTableSections[Symb.d.b];
929  // FIXME: We really need to do proper error handling in the case of an invalid
930  //        input file. Because we don't use exceptions, I think we'll just pass
931  //        an error object around.
932  if (!(  symb
933        && SymbolTableSection
934        && symb >= (const Elf_Sym*)(base()
935                   + SymbolTableSection->sh_offset)
936        && symb <  (const Elf_Sym*)(base()
937                   + SymbolTableSection->sh_offset
938                   + SymbolTableSection->sh_size)))
939    // FIXME: Proper error handling.
940    report_fatal_error("Symb must point to a valid symbol!");
941#endif
942}
943
944template<class ELFT>
945error_code ELFObjectFile<ELFT>::getSymbolNext(DataRefImpl Symb,
946                                              SymbolRef &Result) const {
947  validateSymbol(Symb);
948  const Elf_Shdr *SymbolTableSection = SymbolTableSections[Symb.d.b];
949
950  ++Symb.d.a;
951  // Check to see if we are at the end of this symbol table.
952  if (Symb.d.a >= SymbolTableSection->getEntityCount()) {
953    // We are at the end. If there are other symbol tables, jump to them.
954    // If the symbol table is .dynsym, we are iterating dynamic symbols,
955    // and there is only one table of these.
956    if (Symb.d.b != 0) {
957      ++Symb.d.b;
958      Symb.d.a = 1; // The 0th symbol in ELF is fake.
959    }
960    // Otherwise return the terminator.
961    if (Symb.d.b == 0 || Symb.d.b >= SymbolTableSections.size()) {
962      Symb.d.a = std::numeric_limits<uint32_t>::max();
963      Symb.d.b = std::numeric_limits<uint32_t>::max();
964    }
965  }
966
967  Result = SymbolRef(Symb, this);
968  return object_error::success;
969}
970
971template<class ELFT>
972error_code ELFObjectFile<ELFT>::getSymbolName(DataRefImpl Symb,
973                                              StringRef &Result) const {
974  validateSymbol(Symb);
975  const Elf_Sym *symb = getSymbol(Symb);
976  return getSymbolName(SymbolTableSections[Symb.d.b], symb, Result);
977}
978
979template<class ELFT>
980error_code ELFObjectFile<ELFT>::getSymbolVersion(SymbolRef SymRef,
981                                                 StringRef &Version,
982                                                 bool &IsDefault) const {
983  DataRefImpl Symb = SymRef.getRawDataRefImpl();
984  validateSymbol(Symb);
985  const Elf_Sym *symb = getSymbol(Symb);
986  return getSymbolVersion(SymbolTableSections[Symb.d.b], symb,
987                          Version, IsDefault);
988}
989
990template<class ELFT>
991ELF::Elf64_Word ELFObjectFile<ELFT>
992                             ::getSymbolTableIndex(const Elf_Sym *symb) const {
993  if (symb->st_shndx == ELF::SHN_XINDEX)
994    return ExtendedSymbolTable.lookup(symb);
995  return symb->st_shndx;
996}
997
998template<class ELFT>
999const typename ELFObjectFile<ELFT>::Elf_Shdr *
1000ELFObjectFile<ELFT>::getSection(const Elf_Sym *symb) const {
1001  if (symb->st_shndx == ELF::SHN_XINDEX)
1002    return getSection(ExtendedSymbolTable.lookup(symb));
1003  if (symb->st_shndx >= ELF::SHN_LORESERVE)
1004    return 0;
1005  return getSection(symb->st_shndx);
1006}
1007
1008template<class ELFT>
1009const typename ELFObjectFile<ELFT>::Elf_Ehdr *
1010ELFObjectFile<ELFT>::getElfHeader() const {
1011  return Header;
1012}
1013
1014template<class ELFT>
1015const typename ELFObjectFile<ELFT>::Elf_Shdr *
1016ELFObjectFile<ELFT>::getElfSection(section_iterator &It) const {
1017  llvm::object::DataRefImpl ShdrRef = It->getRawDataRefImpl();
1018  return reinterpret_cast<const Elf_Shdr *>(ShdrRef.p);
1019}
1020
1021template<class ELFT>
1022const typename ELFObjectFile<ELFT>::Elf_Sym *
1023ELFObjectFile<ELFT>::getElfSymbol(symbol_iterator &It) const {
1024  return getSymbol(It->getRawDataRefImpl());
1025}
1026
1027template<class ELFT>
1028const typename ELFObjectFile<ELFT>::Elf_Sym *
1029ELFObjectFile<ELFT>::getElfSymbol(uint32_t index) const {
1030  DataRefImpl SymbolData;
1031  SymbolData.d.a = index;
1032  SymbolData.d.b = 1;
1033  return getSymbol(SymbolData);
1034}
1035
1036template<class ELFT>
1037error_code ELFObjectFile<ELFT>::getSymbolFileOffset(DataRefImpl Symb,
1038                                                    uint64_t &Result) const {
1039  validateSymbol(Symb);
1040  const Elf_Sym  *symb = getSymbol(Symb);
1041  const Elf_Shdr *Section;
1042  switch (getSymbolTableIndex(symb)) {
1043  case ELF::SHN_COMMON:
1044   // Unintialized symbols have no offset in the object file
1045  case ELF::SHN_UNDEF:
1046    Result = UnknownAddressOrSize;
1047    return object_error::success;
1048  case ELF::SHN_ABS:
1049    Result = symb->st_value;
1050    return object_error::success;
1051  default: Section = getSection(symb);
1052  }
1053
1054  switch (symb->getType()) {
1055  case ELF::STT_SECTION:
1056    Result = Section ? Section->sh_offset : UnknownAddressOrSize;
1057    return object_error::success;
1058  case ELF::STT_FUNC:
1059  case ELF::STT_OBJECT:
1060  case ELF::STT_NOTYPE:
1061    Result = symb->st_value +
1062             (Section ? Section->sh_offset : 0);
1063    return object_error::success;
1064  default:
1065    Result = UnknownAddressOrSize;
1066    return object_error::success;
1067  }
1068}
1069
1070template<class ELFT>
1071error_code ELFObjectFile<ELFT>::getSymbolAddress(DataRefImpl Symb,
1072                                                 uint64_t &Result) const {
1073  validateSymbol(Symb);
1074  const Elf_Sym  *symb = getSymbol(Symb);
1075  const Elf_Shdr *Section;
1076  switch (getSymbolTableIndex(symb)) {
1077  case ELF::SHN_COMMON:
1078  case ELF::SHN_UNDEF:
1079    Result = UnknownAddressOrSize;
1080    return object_error::success;
1081  case ELF::SHN_ABS:
1082    Result = symb->st_value;
1083    return object_error::success;
1084  default: Section = getSection(symb);
1085  }
1086
1087  switch (symb->getType()) {
1088  case ELF::STT_SECTION:
1089    Result = Section ? Section->sh_addr : UnknownAddressOrSize;
1090    return object_error::success;
1091  case ELF::STT_FUNC:
1092  case ELF::STT_OBJECT:
1093  case ELF::STT_NOTYPE:
1094    bool IsRelocatable;
1095    switch(Header->e_type) {
1096    case ELF::ET_EXEC:
1097    case ELF::ET_DYN:
1098      IsRelocatable = false;
1099      break;
1100    default:
1101      IsRelocatable = true;
1102    }
1103    Result = symb->st_value;
1104
1105    // Clear the ARM/Thumb indicator flag.
1106    if (Header->e_machine == ELF::EM_ARM)
1107      Result &= ~1;
1108
1109    if (IsRelocatable && Section != 0)
1110      Result += Section->sh_addr;
1111    return object_error::success;
1112  default:
1113    Result = UnknownAddressOrSize;
1114    return object_error::success;
1115  }
1116}
1117
1118template<class ELFT>
1119error_code ELFObjectFile<ELFT>::getSymbolAlignment(DataRefImpl Symb,
1120                                                   uint32_t &Res) const {
1121  uint32_t flags;
1122  getSymbolFlags(Symb, flags);
1123  if (flags & SymbolRef::SF_Common) {
1124    uint64_t Value;
1125    getSymbolValue(Symb, Value);
1126    Res = Value;
1127  } else {
1128    Res = 0;
1129  }
1130  return object_error::success;
1131}
1132
1133template<class ELFT>
1134error_code ELFObjectFile<ELFT>::getSymbolSize(DataRefImpl Symb,
1135                                              uint64_t &Result) const {
1136  validateSymbol(Symb);
1137  const Elf_Sym  *symb = getSymbol(Symb);
1138  if (symb->st_size == 0)
1139    Result = UnknownAddressOrSize;
1140  Result = symb->st_size;
1141  return object_error::success;
1142}
1143
1144template<class ELFT>
1145error_code ELFObjectFile<ELFT>::getSymbolNMTypeChar(DataRefImpl Symb,
1146                                                    char &Result) const {
1147  validateSymbol(Symb);
1148  const Elf_Sym  *symb = getSymbol(Symb);
1149  const Elf_Shdr *Section = getSection(symb);
1150
1151  char ret = '?';
1152
1153  if (Section) {
1154    switch (Section->sh_type) {
1155    case ELF::SHT_PROGBITS:
1156    case ELF::SHT_DYNAMIC:
1157      switch (Section->sh_flags) {
1158      case (ELF::SHF_ALLOC | ELF::SHF_EXECINSTR):
1159        ret = 't'; break;
1160      case (ELF::SHF_ALLOC | ELF::SHF_WRITE):
1161        ret = 'd'; break;
1162      case ELF::SHF_ALLOC:
1163      case (ELF::SHF_ALLOC | ELF::SHF_MERGE):
1164      case (ELF::SHF_ALLOC | ELF::SHF_MERGE | ELF::SHF_STRINGS):
1165        ret = 'r'; break;
1166      }
1167      break;
1168    case ELF::SHT_NOBITS: ret = 'b';
1169    }
1170  }
1171
1172  switch (getSymbolTableIndex(symb)) {
1173  case ELF::SHN_UNDEF:
1174    if (ret == '?')
1175      ret = 'U';
1176    break;
1177  case ELF::SHN_ABS: ret = 'a'; break;
1178  case ELF::SHN_COMMON: ret = 'c'; break;
1179  }
1180
1181  switch (symb->getBinding()) {
1182  case ELF::STB_GLOBAL: ret = ::toupper(ret); break;
1183  case ELF::STB_WEAK:
1184    if (getSymbolTableIndex(symb) == ELF::SHN_UNDEF)
1185      ret = 'w';
1186    else
1187      if (symb->getType() == ELF::STT_OBJECT)
1188        ret = 'V';
1189      else
1190        ret = 'W';
1191  }
1192
1193  if (ret == '?' && symb->getType() == ELF::STT_SECTION) {
1194    StringRef name;
1195    if (error_code ec = getSymbolName(Symb, name))
1196      return ec;
1197    Result = StringSwitch<char>(name)
1198      .StartsWith(".debug", 'N')
1199      .StartsWith(".note", 'n')
1200      .Default('?');
1201    return object_error::success;
1202  }
1203
1204  Result = ret;
1205  return object_error::success;
1206}
1207
1208template<class ELFT>
1209error_code ELFObjectFile<ELFT>::getSymbolType(DataRefImpl Symb,
1210                                              SymbolRef::Type &Result) const {
1211  validateSymbol(Symb);
1212  const Elf_Sym  *symb = getSymbol(Symb);
1213
1214  switch (symb->getType()) {
1215  case ELF::STT_NOTYPE:
1216    Result = SymbolRef::ST_Unknown;
1217    break;
1218  case ELF::STT_SECTION:
1219    Result = SymbolRef::ST_Debug;
1220    break;
1221  case ELF::STT_FILE:
1222    Result = SymbolRef::ST_File;
1223    break;
1224  case ELF::STT_FUNC:
1225    Result = SymbolRef::ST_Function;
1226    break;
1227  case ELF::STT_OBJECT:
1228  case ELF::STT_COMMON:
1229  case ELF::STT_TLS:
1230    Result = SymbolRef::ST_Data;
1231    break;
1232  default:
1233    Result = SymbolRef::ST_Other;
1234    break;
1235  }
1236  return object_error::success;
1237}
1238
1239template<class ELFT>
1240error_code ELFObjectFile<ELFT>::getSymbolFlags(DataRefImpl Symb,
1241                                               uint32_t &Result) const {
1242  validateSymbol(Symb);
1243  const Elf_Sym  *symb = getSymbol(Symb);
1244
1245  Result = SymbolRef::SF_None;
1246
1247  if (symb->getBinding() != ELF::STB_LOCAL)
1248    Result |= SymbolRef::SF_Global;
1249
1250  if (symb->getBinding() == ELF::STB_WEAK)
1251    Result |= SymbolRef::SF_Weak;
1252
1253  if (symb->st_shndx == ELF::SHN_ABS)
1254    Result |= SymbolRef::SF_Absolute;
1255
1256  if (symb->getType() == ELF::STT_FILE ||
1257      symb->getType() == ELF::STT_SECTION)
1258    Result |= SymbolRef::SF_FormatSpecific;
1259
1260  if (getSymbolTableIndex(symb) == ELF::SHN_UNDEF)
1261    Result |= SymbolRef::SF_Undefined;
1262
1263  if (symb->getType() == ELF::STT_COMMON ||
1264      getSymbolTableIndex(symb) == ELF::SHN_COMMON)
1265    Result |= SymbolRef::SF_Common;
1266
1267  if (symb->getType() == ELF::STT_TLS)
1268    Result |= SymbolRef::SF_ThreadLocal;
1269
1270  return object_error::success;
1271}
1272
1273template<class ELFT>
1274error_code ELFObjectFile<ELFT>::getSymbolSection(DataRefImpl Symb,
1275                                                 section_iterator &Res) const {
1276  validateSymbol(Symb);
1277  const Elf_Sym  *symb = getSymbol(Symb);
1278  const Elf_Shdr *sec = getSection(symb);
1279  if (!sec)
1280    Res = end_sections();
1281  else {
1282    DataRefImpl Sec;
1283    Sec.p = reinterpret_cast<intptr_t>(sec);
1284    Res = section_iterator(SectionRef(Sec, this));
1285  }
1286  return object_error::success;
1287}
1288
1289template<class ELFT>
1290error_code ELFObjectFile<ELFT>::getSymbolValue(DataRefImpl Symb,
1291                                               uint64_t &Val) const {
1292  validateSymbol(Symb);
1293  const Elf_Sym *symb = getSymbol(Symb);
1294  Val = symb->st_value;
1295  return object_error::success;
1296}
1297
1298template<class ELFT>
1299error_code ELFObjectFile<ELFT>::getSectionNext(DataRefImpl Sec,
1300                                               SectionRef &Result) const {
1301  const uint8_t *sec = reinterpret_cast<const uint8_t *>(Sec.p);
1302  sec += Header->e_shentsize;
1303  Sec.p = reinterpret_cast<intptr_t>(sec);
1304  Result = SectionRef(Sec, this);
1305  return object_error::success;
1306}
1307
1308template<class ELFT>
1309error_code ELFObjectFile<ELFT>::getSectionName(DataRefImpl Sec,
1310                                               StringRef &Result) const {
1311  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1312  Result = StringRef(getString(dot_shstrtab_sec, sec->sh_name));
1313  return object_error::success;
1314}
1315
1316template<class ELFT>
1317error_code ELFObjectFile<ELFT>::getSectionAddress(DataRefImpl Sec,
1318                                                  uint64_t &Result) const {
1319  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1320  Result = sec->sh_addr;
1321  return object_error::success;
1322}
1323
1324template<class ELFT>
1325error_code ELFObjectFile<ELFT>::getSectionSize(DataRefImpl Sec,
1326                                               uint64_t &Result) const {
1327  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1328  Result = sec->sh_size;
1329  return object_error::success;
1330}
1331
1332template<class ELFT>
1333error_code ELFObjectFile<ELFT>::getSectionContents(DataRefImpl Sec,
1334                                                   StringRef &Result) const {
1335  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1336  const char *start = (const char*)base() + sec->sh_offset;
1337  Result = StringRef(start, sec->sh_size);
1338  return object_error::success;
1339}
1340
1341template<class ELFT>
1342error_code ELFObjectFile<ELFT>::getSectionContents(const Elf_Shdr *Sec,
1343                                                   StringRef &Result) const {
1344  const char *start = (const char*)base() + Sec->sh_offset;
1345  Result = StringRef(start, Sec->sh_size);
1346  return object_error::success;
1347}
1348
1349template<class ELFT>
1350error_code ELFObjectFile<ELFT>::getSectionAlignment(DataRefImpl Sec,
1351                                                    uint64_t &Result) const {
1352  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1353  Result = sec->sh_addralign;
1354  return object_error::success;
1355}
1356
1357template<class ELFT>
1358error_code ELFObjectFile<ELFT>::isSectionText(DataRefImpl Sec,
1359                                              bool &Result) const {
1360  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1361  if (sec->sh_flags & ELF::SHF_EXECINSTR)
1362    Result = true;
1363  else
1364    Result = false;
1365  return object_error::success;
1366}
1367
1368template<class ELFT>
1369error_code ELFObjectFile<ELFT>::isSectionData(DataRefImpl Sec,
1370                                              bool &Result) const {
1371  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1372  if (sec->sh_flags & (ELF::SHF_ALLOC | ELF::SHF_WRITE)
1373      && sec->sh_type == ELF::SHT_PROGBITS)
1374    Result = true;
1375  else
1376    Result = false;
1377  return object_error::success;
1378}
1379
1380template<class ELFT>
1381error_code ELFObjectFile<ELFT>::isSectionBSS(DataRefImpl Sec,
1382                                             bool &Result) const {
1383  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1384  if (sec->sh_flags & (ELF::SHF_ALLOC | ELF::SHF_WRITE)
1385      && sec->sh_type == ELF::SHT_NOBITS)
1386    Result = true;
1387  else
1388    Result = false;
1389  return object_error::success;
1390}
1391
1392template<class ELFT>
1393error_code ELFObjectFile<ELFT>::isSectionRequiredForExecution(
1394    DataRefImpl Sec, bool &Result) const {
1395  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1396  if (sec->sh_flags & ELF::SHF_ALLOC)
1397    Result = true;
1398  else
1399    Result = false;
1400  return object_error::success;
1401}
1402
1403template<class ELFT>
1404error_code ELFObjectFile<ELFT>::isSectionVirtual(DataRefImpl Sec,
1405                                                 bool &Result) const {
1406  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1407  if (sec->sh_type == ELF::SHT_NOBITS)
1408    Result = true;
1409  else
1410    Result = false;
1411  return object_error::success;
1412}
1413
1414template<class ELFT>
1415error_code ELFObjectFile<ELFT>::isSectionZeroInit(DataRefImpl Sec,
1416                                                  bool &Result) const {
1417  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1418  // For ELF, all zero-init sections are virtual (that is, they occupy no space
1419  //   in the object image) and vice versa.
1420  Result = sec->sh_type == ELF::SHT_NOBITS;
1421  return object_error::success;
1422}
1423
1424template<class ELFT>
1425error_code ELFObjectFile<ELFT>::isSectionReadOnlyData(DataRefImpl Sec,
1426                                                      bool &Result) const {
1427  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1428  if (sec->sh_flags & ELF::SHF_WRITE || sec->sh_flags & ELF::SHF_EXECINSTR)
1429    Result = false;
1430  else
1431    Result = true;
1432  return object_error::success;
1433}
1434
1435template<class ELFT>
1436error_code ELFObjectFile<ELFT>::sectionContainsSymbol(DataRefImpl Sec,
1437                                                      DataRefImpl Symb,
1438                                                      bool &Result) const {
1439  validateSymbol(Symb);
1440
1441  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1442  const Elf_Sym  *symb = getSymbol(Symb);
1443
1444  unsigned shndx = symb->st_shndx;
1445  bool Reserved = shndx >= ELF::SHN_LORESERVE
1446               && shndx <= ELF::SHN_HIRESERVE;
1447
1448  Result = !Reserved && (sec == getSection(symb->st_shndx));
1449  return object_error::success;
1450}
1451
1452template<class ELFT>
1453relocation_iterator
1454ELFObjectFile<ELFT>::getSectionRelBegin(DataRefImpl Sec) const {
1455  DataRefImpl RelData;
1456  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1457  typename RelocMap_t::const_iterator ittr = SectionRelocMap.find(sec);
1458  if (sec != 0 && ittr != SectionRelocMap.end()) {
1459    RelData.w.a = getSection(ittr->second[0])->sh_info;
1460    RelData.w.b = ittr->second[0];
1461    RelData.w.c = 0;
1462  }
1463  return relocation_iterator(RelocationRef(RelData, this));
1464}
1465
1466template<class ELFT>
1467relocation_iterator
1468ELFObjectFile<ELFT>::getSectionRelEnd(DataRefImpl Sec) const {
1469  DataRefImpl RelData;
1470  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1471  typename RelocMap_t::const_iterator ittr = SectionRelocMap.find(sec);
1472  if (sec != 0 && ittr != SectionRelocMap.end()) {
1473    // Get the index of the last relocation section for this section.
1474    std::size_t relocsecindex = ittr->second[ittr->second.size() - 1];
1475    const Elf_Shdr *relocsec = getSection(relocsecindex);
1476    RelData.w.a = relocsec->sh_info;
1477    RelData.w.b = relocsecindex;
1478    RelData.w.c = relocsec->sh_size / relocsec->sh_entsize;
1479  }
1480  return relocation_iterator(RelocationRef(RelData, this));
1481}
1482
1483// Relocations
1484template<class ELFT>
1485error_code ELFObjectFile<ELFT>::getRelocationNext(DataRefImpl Rel,
1486                                                  RelocationRef &Result) const {
1487  ++Rel.w.c;
1488  const Elf_Shdr *relocsec = getSection(Rel.w.b);
1489  if (Rel.w.c >= (relocsec->sh_size / relocsec->sh_entsize)) {
1490    // We have reached the end of the relocations for this section. See if there
1491    // is another relocation section.
1492    typename RelocMap_t::mapped_type relocseclist =
1493      SectionRelocMap.lookup(getSection(Rel.w.a));
1494
1495    // Do a binary search for the current reloc section index (which must be
1496    // present). Then get the next one.
1497    typename RelocMap_t::mapped_type::const_iterator loc =
1498      std::lower_bound(relocseclist.begin(), relocseclist.end(), Rel.w.b);
1499    ++loc;
1500
1501    // If there is no next one, don't do anything. The ++Rel.w.c above sets Rel
1502    // to the end iterator.
1503    if (loc != relocseclist.end()) {
1504      Rel.w.b = *loc;
1505      Rel.w.a = 0;
1506    }
1507  }
1508  Result = RelocationRef(Rel, this);
1509  return object_error::success;
1510}
1511
1512template<class ELFT>
1513error_code ELFObjectFile<ELFT>::getRelocationSymbol(DataRefImpl Rel,
1514                                                    SymbolRef &Result) const {
1515  uint32_t symbolIdx;
1516  const Elf_Shdr *sec = getSection(Rel.w.b);
1517  switch (sec->sh_type) {
1518    default :
1519      report_fatal_error("Invalid section type in Rel!");
1520    case ELF::SHT_REL : {
1521      symbolIdx = getRel(Rel)->getSymbol(isMips64EL());
1522      break;
1523    }
1524    case ELF::SHT_RELA : {
1525      symbolIdx = getRela(Rel)->getSymbol(isMips64EL());
1526      break;
1527    }
1528  }
1529  DataRefImpl SymbolData;
1530  IndexMap_t::const_iterator it = SymbolTableSectionsIndexMap.find(sec->sh_link);
1531  if (it == SymbolTableSectionsIndexMap.end())
1532    report_fatal_error("Relocation symbol table not found!");
1533  SymbolData.d.a = symbolIdx;
1534  SymbolData.d.b = it->second;
1535  Result = SymbolRef(SymbolData, this);
1536  return object_error::success;
1537}
1538
1539template<class ELFT>
1540error_code ELFObjectFile<ELFT>::getRelocationAddress(DataRefImpl Rel,
1541                                                     uint64_t &Result) const {
1542  assert((Header->e_type == ELF::ET_EXEC || Header->e_type == ELF::ET_DYN) &&
1543         "Only executable and shared objects files have addresses");
1544  Result = getROffset(Rel);
1545  return object_error::success;
1546}
1547
1548template<class ELFT>
1549error_code ELFObjectFile<ELFT>::getRelocationOffset(DataRefImpl Rel,
1550                                                    uint64_t &Result) const {
1551  assert(Header->e_type == ELF::ET_REL &&
1552         "Only relocatable object files have relocation offsets");
1553  Result = getROffset(Rel);
1554  return object_error::success;
1555}
1556
1557template<class ELFT>
1558uint64_t ELFObjectFile<ELFT>::getROffset(DataRefImpl Rel) const {
1559  const Elf_Shdr *sec = getSection(Rel.w.b);
1560  switch (sec->sh_type) {
1561  default:
1562    report_fatal_error("Invalid section type in Rel!");
1563  case ELF::SHT_REL:
1564    return getRel(Rel)->r_offset;
1565  case ELF::SHT_RELA:
1566    return getRela(Rel)->r_offset;
1567  }
1568}
1569
1570template<class ELFT>
1571error_code ELFObjectFile<ELFT>::getRelocationType(DataRefImpl Rel,
1572                                                  uint64_t &Result) const {
1573  const Elf_Shdr *sec = getSection(Rel.w.b);
1574  switch (sec->sh_type) {
1575    default :
1576      report_fatal_error("Invalid section type in Rel!");
1577    case ELF::SHT_REL : {
1578      Result = getRel(Rel)->getType(isMips64EL());
1579      break;
1580    }
1581    case ELF::SHT_RELA : {
1582      Result = getRela(Rel)->getType(isMips64EL());
1583      break;
1584    }
1585  }
1586  return object_error::success;
1587}
1588
1589#define LLVM_ELF_SWITCH_RELOC_TYPE_NAME(enum) \
1590  case ELF::enum: Res = #enum; break;
1591
1592template<class ELFT>
1593StringRef ELFObjectFile<ELFT>::getRelocationTypeName(uint32_t Type) const {
1594  StringRef Res = "Unknown";
1595  switch (Header->e_machine) {
1596  case ELF::EM_X86_64:
1597    switch (Type) {
1598      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_NONE);
1599      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_64);
1600      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC32);
1601      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOT32);
1602      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PLT32);
1603      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_COPY);
1604      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GLOB_DAT);
1605      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_JUMP_SLOT);
1606      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_RELATIVE);
1607      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPCREL);
1608      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_32);
1609      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_32S);
1610      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_16);
1611      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC16);
1612      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_8);
1613      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC8);
1614      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_DTPMOD64);
1615      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_DTPOFF64);
1616      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TPOFF64);
1617      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSGD);
1618      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSLD);
1619      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_DTPOFF32);
1620      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTTPOFF);
1621      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TPOFF32);
1622      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC64);
1623      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTOFF64);
1624      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPC32);
1625      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOT64);
1626      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPCREL64);
1627      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPC64);
1628      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPLT64);
1629      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PLTOFF64);
1630      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_SIZE32);
1631      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_SIZE64);
1632      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPC32_TLSDESC);
1633      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSDESC_CALL);
1634      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSDESC);
1635      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_IRELATIVE);
1636    default: break;
1637    }
1638    break;
1639  case ELF::EM_386:
1640    switch (Type) {
1641      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_NONE);
1642      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_32);
1643      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PC32);
1644      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GOT32);
1645      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PLT32);
1646      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_COPY);
1647      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GLOB_DAT);
1648      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_JUMP_SLOT);
1649      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_RELATIVE);
1650      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GOTOFF);
1651      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GOTPC);
1652      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_32PLT);
1653      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_TPOFF);
1654      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_IE);
1655      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GOTIE);
1656      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LE);
1657      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD);
1658      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM);
1659      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_16);
1660      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PC16);
1661      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_8);
1662      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PC8);
1663      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_32);
1664      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_PUSH);
1665      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_CALL);
1666      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_POP);
1667      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_32);
1668      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_PUSH);
1669      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_CALL);
1670      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_POP);
1671      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDO_32);
1672      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_IE_32);
1673      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LE_32);
1674      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DTPMOD32);
1675      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DTPOFF32);
1676      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_TPOFF32);
1677      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GOTDESC);
1678      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DESC_CALL);
1679      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DESC);
1680      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_IRELATIVE);
1681    default: break;
1682    }
1683    break;
1684  case ELF::EM_MIPS:
1685    switch (Type) {
1686      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_NONE);
1687      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_16);
1688      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_32);
1689      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_REL32);
1690      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_26);
1691      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_HI16);
1692      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_LO16);
1693      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_GPREL16);
1694      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_LITERAL);
1695      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_GOT16);
1696      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_PC16);
1697      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_CALL16);
1698      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_GPREL32);
1699      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_SHIFT5);
1700      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_SHIFT6);
1701      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_64);
1702      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_GOT_DISP);
1703      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_GOT_PAGE);
1704      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_GOT_OFST);
1705      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_GOT_HI16);
1706      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_GOT_LO16);
1707      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_SUB);
1708      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_INSERT_A);
1709      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_INSERT_B);
1710      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_DELETE);
1711      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_HIGHER);
1712      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_HIGHEST);
1713      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_CALL_HI16);
1714      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_CALL_LO16);
1715      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_SCN_DISP);
1716      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_REL16);
1717      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_ADD_IMMEDIATE);
1718      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_PJUMP);
1719      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_RELGOT);
1720      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_JALR);
1721      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_TLS_DTPMOD32);
1722      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_TLS_DTPREL32);
1723      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_TLS_DTPMOD64);
1724      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_TLS_DTPREL64);
1725      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_TLS_GD);
1726      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_TLS_LDM);
1727      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_TLS_DTPREL_HI16);
1728      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_TLS_DTPREL_LO16);
1729      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_TLS_GOTTPREL);
1730      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_TLS_TPREL32);
1731      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_TLS_TPREL64);
1732      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_TLS_TPREL_HI16);
1733      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_TLS_TPREL_LO16);
1734      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_GLOB_DAT);
1735      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_COPY);
1736      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_JUMP_SLOT);
1737      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_NUM);
1738    default: break;
1739    }
1740    break;
1741  case ELF::EM_AARCH64:
1742    switch (Type) {
1743      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_NONE);
1744      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ABS64);
1745      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ABS32);
1746      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ABS16);
1747      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_PREL64);
1748      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_PREL32);
1749      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_PREL16);
1750      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G0);
1751      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G0_NC);
1752      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G1);
1753      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G1_NC);
1754      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G2);
1755      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G2_NC);
1756      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G3);
1757      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_SABS_G0);
1758      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_SABS_G1);
1759      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_SABS_G2);
1760      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LD_PREL_LO19);
1761      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ADR_PREL_LO21);
1762      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ADR_PREL_PG_HI21);
1763      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ADD_ABS_LO12_NC);
1764      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LDST8_ABS_LO12_NC);
1765      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TSTBR14);
1766      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_CONDBR19);
1767      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_JUMP26);
1768      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_CALL26);
1769      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LDST16_ABS_LO12_NC);
1770      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LDST32_ABS_LO12_NC);
1771      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LDST64_ABS_LO12_NC);
1772      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LDST128_ABS_LO12_NC);
1773      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ADR_GOT_PAGE);
1774      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LD64_GOT_LO12_NC);
1775      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_MOVW_DTPREL_G2);
1776      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_MOVW_DTPREL_G1);
1777      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_MOVW_DTPREL_G1_NC);
1778      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_MOVW_DTPREL_G0);
1779      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC);
1780      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_ADD_DTPREL_HI12);
1781      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_ADD_DTPREL_LO12);
1782      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC);
1783      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST8_DTPREL_LO12);
1784      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC);
1785      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST16_DTPREL_LO12);
1786      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC);
1787      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST32_DTPREL_LO12);
1788      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC);
1789      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST64_DTPREL_LO12);
1790      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC);
1791      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSIE_MOVW_GOTTPREL_G1);
1792      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC);
1793      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
1794      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
1795      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
1796      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_MOVW_TPREL_G2);
1797      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_MOVW_TPREL_G1);
1798      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_MOVW_TPREL_G1_NC);
1799      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_MOVW_TPREL_G0);
1800      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_MOVW_TPREL_G0_NC);
1801      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_ADD_TPREL_HI12);
1802      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_ADD_TPREL_LO12);
1803      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_ADD_TPREL_LO12_NC);
1804      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST8_TPREL_LO12);
1805      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC);
1806      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST16_TPREL_LO12);
1807      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC);
1808      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST32_TPREL_LO12);
1809      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC);
1810      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST64_TPREL_LO12);
1811      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC);
1812      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSDESC_ADR_PAGE);
1813      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSDESC_LD64_LO12_NC);
1814      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSDESC_ADD_LO12_NC);
1815      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSDESC_CALL);
1816    default: break;
1817    }
1818    break;
1819  case ELF::EM_ARM:
1820    switch (Type) {
1821      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_NONE);
1822      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PC24);
1823      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS32);
1824      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_REL32);
1825      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_PC_G0);
1826      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS16);
1827      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS12);
1828      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_ABS5);
1829      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS8);
1830      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_SBREL32);
1831      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_CALL);
1832      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_PC8);
1833      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_BREL_ADJ);
1834      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DESC);
1835      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_SWI8);
1836      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_XPC25);
1837      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_XPC22);
1838      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DTPMOD32);
1839      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DTPOFF32);
1840      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_TPOFF32);
1841      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_COPY);
1842      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GLOB_DAT);
1843      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_JUMP_SLOT);
1844      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_RELATIVE);
1845      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOTOFF32);
1846      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_BASE_PREL);
1847      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_BREL);
1848      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PLT32);
1849      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_CALL);
1850      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_JUMP24);
1851      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP24);
1852      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_BASE_ABS);
1853      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PCREL_7_0);
1854      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PCREL_15_8);
1855      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PCREL_23_15);
1856      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SBREL_11_0_NC);
1857      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SBREL_19_12_NC);
1858      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SBREL_27_20_CK);
1859      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TARGET1);
1860      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_SBREL31);
1861      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_V4BX);
1862      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TARGET2);
1863      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PREL31);
1864      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_ABS_NC);
1865      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVT_ABS);
1866      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_PREL_NC);
1867      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVT_PREL);
1868      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_ABS_NC);
1869      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVT_ABS);
1870      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_PREL_NC);
1871      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVT_PREL);
1872      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP19);
1873      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP6);
1874      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_ALU_PREL_11_0);
1875      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_PC12);
1876      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS32_NOI);
1877      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_REL32_NOI);
1878      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G0_NC);
1879      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G0);
1880      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G1_NC);
1881      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G1);
1882      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G2);
1883      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_PC_G1);
1884      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_PC_G2);
1885      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_PC_G0);
1886      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_PC_G1);
1887      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_PC_G2);
1888      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_PC_G0);
1889      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_PC_G1);
1890      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_PC_G2);
1891      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G0_NC);
1892      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G0);
1893      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G1_NC);
1894      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G1);
1895      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G2);
1896      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SB_G0);
1897      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SB_G1);
1898      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SB_G2);
1899      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_SB_G0);
1900      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_SB_G1);
1901      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_SB_G2);
1902      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_SB_G0);
1903      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_SB_G1);
1904      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_SB_G2);
1905      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_BREL_NC);
1906      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVT_BREL);
1907      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_BREL);
1908      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_BREL_NC);
1909      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVT_BREL);
1910      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_BREL);
1911      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_GOTDESC);
1912      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_CALL);
1913      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DESCSEQ);
1914      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_TLS_CALL);
1915      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PLT32_ABS);
1916      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_ABS);
1917      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_PREL);
1918      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_BREL12);
1919      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOTOFF12);
1920      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOTRELAX);
1921      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GNU_VTENTRY);
1922      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GNU_VTINHERIT);
1923      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP11);
1924      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP8);
1925      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_GD32);
1926      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LDM32);
1927      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LDO32);
1928      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_IE32);
1929      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LE32);
1930      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LDO12);
1931      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LE12);
1932      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_IE12GP);
1933      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_0);
1934      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_1);
1935      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_2);
1936      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_3);
1937      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_4);
1938      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_5);
1939      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_6);
1940      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_7);
1941      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_8);
1942      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_9);
1943      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_10);
1944      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_11);
1945      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_12);
1946      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_13);
1947      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_14);
1948      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_15);
1949      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ME_TOO);
1950      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_TLS_DESCSEQ16);
1951      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_TLS_DESCSEQ32);
1952    default: break;
1953    }
1954    break;
1955  case ELF::EM_HEXAGON:
1956    switch (Type) {
1957      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_NONE);
1958      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B22_PCREL);
1959      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B15_PCREL);
1960      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B7_PCREL);
1961      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_LO16);
1962      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_HI16);
1963      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_32);
1964      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_16);
1965      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_8);
1966      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_0);
1967      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_1);
1968      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_2);
1969      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_3);
1970      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_HL16);
1971      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B13_PCREL);
1972      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B9_PCREL);
1973      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B32_PCREL_X);
1974      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_32_6_X);
1975      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B22_PCREL_X);
1976      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B15_PCREL_X);
1977      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B13_PCREL_X);
1978      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B9_PCREL_X);
1979      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B7_PCREL_X);
1980      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_16_X);
1981      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_12_X);
1982      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_11_X);
1983      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_10_X);
1984      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_9_X);
1985      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_8_X);
1986      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_7_X);
1987      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_6_X);
1988      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_32_PCREL);
1989      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_COPY);
1990      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GLOB_DAT);
1991      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_JMP_SLOT);
1992      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_RELATIVE);
1993      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_PLT_B22_PCREL);
1994      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_LO16);
1995      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_HI16);
1996      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_32);
1997      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_LO16);
1998      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_HI16);
1999      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_32);
2000      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_16);
2001      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPMOD_32);
2002      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_LO16);
2003      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_HI16);
2004      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_32);
2005      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_16);
2006      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_PLT_B22_PCREL);
2007      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_LO16);
2008      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_HI16);
2009      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_32);
2010      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_16);
2011      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_LO16);
2012      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_HI16);
2013      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_32);
2014      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_LO16);
2015      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_HI16);
2016      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_32);
2017      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_16);
2018      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_LO16);
2019      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_HI16);
2020      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_32);
2021      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_16);
2022      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_6_PCREL_X);
2023      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_32_6_X);
2024      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_16_X);
2025      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_11_X);
2026      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_32_6_X);
2027      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_16_X);
2028      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_11_X);
2029      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_32_6_X);
2030      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_16_X);
2031      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_11_X);
2032      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_32_6_X);
2033      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_16_X);
2034      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_11_X);
2035      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_32_6_X);
2036      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_16_X);
2037      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_32_6_X);
2038      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_16_X);
2039      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_11_X);
2040      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_32_6_X);
2041      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_16_X);
2042      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_11_X);
2043    default: break;
2044    }
2045    break;
2046  case ELF::EM_PPC:
2047    switch (Type) {
2048      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_NONE);
2049      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_ADDR32);
2050      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_ADDR24);
2051      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_ADDR16);
2052      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_ADDR16_LO);
2053      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_ADDR16_HI);
2054      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_ADDR16_HA);
2055      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_ADDR14);
2056      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_ADDR14_BRTAKEN);
2057      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_ADDR14_BRNTAKEN);
2058      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_REL24);
2059      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_REL14);
2060      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_REL14_BRTAKEN);
2061      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_REL14_BRNTAKEN);
2062      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_REL32);
2063      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_TPREL16_LO);
2064      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_TPREL16_HA);
2065    default: break;
2066    }
2067    break;
2068  case ELF::EM_PPC64:
2069    switch (Type) {
2070      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_NONE);
2071      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_ADDR32);
2072      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_ADDR16_LO);
2073      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_ADDR16_HI);
2074      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_ADDR14);
2075      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_REL24);
2076      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_REL32);
2077      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_ADDR64);
2078      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_ADDR16_HIGHER);
2079      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_ADDR16_HIGHEST);
2080      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_REL64);
2081      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TOC16);
2082      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TOC16_LO);
2083      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TOC16_HA);
2084      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TOC);
2085      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_ADDR16_DS);
2086      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_ADDR16_LO_DS);
2087      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TOC16_DS);
2088      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TOC16_LO_DS);
2089      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TLS);
2090      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TPREL16_LO);
2091      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TPREL16_HA);
2092      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_DTPREL16_LO);
2093      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_DTPREL16_HA);
2094      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_GOT_TLSGD16_LO);
2095      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_GOT_TLSGD16_HA);
2096      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_GOT_TLSLD16_LO);
2097      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_GOT_TLSLD16_HA);
2098      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_GOT_TPREL16_LO_DS);
2099      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_GOT_TPREL16_HA);
2100      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TLSGD);
2101      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TLSLD);
2102    default: break;
2103    }
2104    break;
2105  case ELF::EM_S390:
2106    switch (Type) {
2107      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_NONE);
2108      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_8);
2109      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_12);
2110      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_16);
2111      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_32);
2112      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_PC32);
2113      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOT12);
2114      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOT32);
2115      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_PLT32);
2116      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_COPY);
2117      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GLOB_DAT);
2118      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_JMP_SLOT);
2119      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_RELATIVE);
2120      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOTOFF);
2121      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOTPC);
2122      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOT16);
2123      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_PC16);
2124      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_PC16DBL);
2125      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_PLT16DBL);
2126      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_PC32DBL);
2127      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_PLT32DBL);
2128      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOTPCDBL);
2129      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_64);
2130      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_PC64);
2131      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOT64);
2132      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_PLT64);
2133      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOTENT);
2134      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOTOFF16);
2135      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOTOFF64);
2136      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOTPLT12);
2137      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOTPLT16);
2138      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOTPLT32);
2139      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOTPLT64);
2140      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOTPLTENT);
2141      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_PLTOFF16);
2142      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_PLTOFF32);
2143      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_PLTOFF64);
2144      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_LOAD);
2145      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_GDCALL);
2146      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_LDCALL);
2147      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_GD32);
2148      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_GD64);
2149      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_GOTIE12);
2150      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_GOTIE32);
2151      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_GOTIE64);
2152      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_LDM32);
2153      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_LDM64);
2154      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_IE32);
2155      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_IE64);
2156      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_IEENT);
2157      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_LE32);
2158      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_LE64);
2159      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_LDO32);
2160      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_LDO64);
2161      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_DTPMOD);
2162      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_DTPOFF);
2163      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_TPOFF);
2164      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_20);
2165      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOT20);
2166      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOTPLT20);
2167      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_GOTIE20);
2168      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_IRELATIVE);
2169    default: break;
2170    }
2171    break;
2172  default: break;
2173  }
2174  return Res;
2175}
2176
2177#undef LLVM_ELF_SWITCH_RELOC_TYPE_NAME
2178
2179template<class ELFT>
2180error_code ELFObjectFile<ELFT>::getRelocationTypeName(
2181    DataRefImpl Rel, SmallVectorImpl<char> &Result) const {
2182  const Elf_Shdr *sec = getSection(Rel.w.b);
2183  uint32_t type;
2184  switch (sec->sh_type) {
2185    default :
2186      return object_error::parse_failed;
2187    case ELF::SHT_REL : {
2188      type = getRel(Rel)->getType(isMips64EL());
2189      break;
2190    }
2191    case ELF::SHT_RELA : {
2192      type = getRela(Rel)->getType(isMips64EL());
2193      break;
2194    }
2195  }
2196
2197  if (!isMips64EL()) {
2198    StringRef Name = getRelocationTypeName(type);
2199    Result.append(Name.begin(), Name.end());
2200  } else {
2201    uint8_t Type1 = (type >>  0) & 0xFF;
2202    uint8_t Type2 = (type >>  8) & 0xFF;
2203    uint8_t Type3 = (type >> 16) & 0xFF;
2204
2205    // Concat all three relocation type names.
2206    StringRef Name = getRelocationTypeName(Type1);
2207    Result.append(Name.begin(), Name.end());
2208
2209    Name = getRelocationTypeName(Type2);
2210    Result.append(1, '/');
2211    Result.append(Name.begin(), Name.end());
2212
2213    Name = getRelocationTypeName(Type3);
2214    Result.append(1, '/');
2215    Result.append(Name.begin(), Name.end());
2216  }
2217
2218  return object_error::success;
2219}
2220
2221template<class ELFT>
2222error_code ELFObjectFile<ELFT>::getRelocationAdditionalInfo(
2223    DataRefImpl Rel, int64_t &Result) const {
2224  const Elf_Shdr *sec = getSection(Rel.w.b);
2225  switch (sec->sh_type) {
2226    default :
2227      report_fatal_error("Invalid section type in Rel!");
2228    case ELF::SHT_REL : {
2229      Result = 0;
2230      return object_error::success;
2231    }
2232    case ELF::SHT_RELA : {
2233      Result = getRela(Rel)->r_addend;
2234      return object_error::success;
2235    }
2236  }
2237}
2238
2239template<class ELFT>
2240error_code ELFObjectFile<ELFT>::getRelocationValueString(
2241    DataRefImpl Rel, SmallVectorImpl<char> &Result) const {
2242  const Elf_Shdr *sec = getSection(Rel.w.b);
2243  uint8_t type;
2244  StringRef res;
2245  int64_t addend = 0;
2246  uint16_t symbol_index = 0;
2247  switch (sec->sh_type) {
2248    default:
2249      return object_error::parse_failed;
2250    case ELF::SHT_REL: {
2251      type = getRel(Rel)->getType(isMips64EL());
2252      symbol_index = getRel(Rel)->getSymbol(isMips64EL());
2253      // TODO: Read implicit addend from section data.
2254      break;
2255    }
2256    case ELF::SHT_RELA: {
2257      type = getRela(Rel)->getType(isMips64EL());
2258      symbol_index = getRela(Rel)->getSymbol(isMips64EL());
2259      addend = getRela(Rel)->r_addend;
2260      break;
2261    }
2262  }
2263  const Elf_Sym *symb = getEntry<Elf_Sym>(sec->sh_link, symbol_index);
2264  StringRef symname;
2265  if (error_code ec = getSymbolName(getSection(sec->sh_link), symb, symname))
2266    return ec;
2267  switch (Header->e_machine) {
2268  case ELF::EM_X86_64:
2269    switch (type) {
2270    case ELF::R_X86_64_PC8:
2271    case ELF::R_X86_64_PC16:
2272    case ELF::R_X86_64_PC32: {
2273        std::string fmtbuf;
2274        raw_string_ostream fmt(fmtbuf);
2275        fmt << symname << (addend < 0 ? "" : "+") << addend << "-P";
2276        fmt.flush();
2277        Result.append(fmtbuf.begin(), fmtbuf.end());
2278      }
2279      break;
2280    case ELF::R_X86_64_8:
2281    case ELF::R_X86_64_16:
2282    case ELF::R_X86_64_32:
2283    case ELF::R_X86_64_32S:
2284    case ELF::R_X86_64_64: {
2285        std::string fmtbuf;
2286        raw_string_ostream fmt(fmtbuf);
2287        fmt << symname << (addend < 0 ? "" : "+") << addend;
2288        fmt.flush();
2289        Result.append(fmtbuf.begin(), fmtbuf.end());
2290      }
2291      break;
2292    default:
2293      res = "Unknown";
2294    }
2295    break;
2296  case ELF::EM_AARCH64:
2297  case ELF::EM_ARM:
2298  case ELF::EM_HEXAGON:
2299    res = symname;
2300    break;
2301  default:
2302    res = "Unknown";
2303  }
2304  if (Result.empty())
2305    Result.append(res.begin(), res.end());
2306  return object_error::success;
2307}
2308
2309// Verify that the last byte in the string table in a null.
2310template<class ELFT>
2311void ELFObjectFile<ELFT>::VerifyStrTab(const Elf_Shdr *sh) const {
2312  const char *strtab = (const char*)base() + sh->sh_offset;
2313  if (strtab[sh->sh_size - 1] != 0)
2314    // FIXME: Proper error handling.
2315    report_fatal_error("String table must end with a null terminator!");
2316}
2317
2318template<class ELFT>
2319ELFObjectFile<ELFT>::ELFObjectFile(MemoryBuffer *Object, error_code &ec)
2320  : ObjectFile(getELFType(
2321      static_cast<endianness>(ELFT::TargetEndianness) == support::little,
2322      ELFT::Is64Bits),
2323      Object)
2324  , isDyldELFObject(false)
2325  , SectionHeaderTable(0)
2326  , dot_shstrtab_sec(0)
2327  , dot_strtab_sec(0)
2328  , dot_dynstr_sec(0)
2329  , dot_dynamic_sec(0)
2330  , dot_gnu_version_sec(0)
2331  , dot_gnu_version_r_sec(0)
2332  , dot_gnu_version_d_sec(0)
2333  , dt_soname(0)
2334 {
2335
2336  const uint64_t FileSize = Data->getBufferSize();
2337
2338  if (sizeof(Elf_Ehdr) > FileSize)
2339    // FIXME: Proper error handling.
2340    report_fatal_error("File too short!");
2341
2342  Header = reinterpret_cast<const Elf_Ehdr *>(base());
2343
2344  if (Header->e_shoff == 0)
2345    return;
2346
2347  const uint64_t SectionTableOffset = Header->e_shoff;
2348
2349  if (SectionTableOffset + sizeof(Elf_Shdr) > FileSize)
2350    // FIXME: Proper error handling.
2351    report_fatal_error("Section header table goes past end of file!");
2352
2353  // The getNumSections() call below depends on SectionHeaderTable being set.
2354  SectionHeaderTable =
2355    reinterpret_cast<const Elf_Shdr *>(base() + SectionTableOffset);
2356  const uint64_t SectionTableSize = getNumSections() * Header->e_shentsize;
2357
2358  if (SectionTableOffset + SectionTableSize > FileSize)
2359    // FIXME: Proper error handling.
2360    report_fatal_error("Section table goes past end of file!");
2361
2362  // To find the symbol tables we walk the section table to find SHT_SYMTAB.
2363  const Elf_Shdr* SymbolTableSectionHeaderIndex = 0;
2364  const Elf_Shdr* sh = SectionHeaderTable;
2365
2366  // Reserve SymbolTableSections[0] for .dynsym
2367  SymbolTableSections.push_back(NULL);
2368
2369  for (uint64_t i = 0, e = getNumSections(); i != e; ++i) {
2370    switch (sh->sh_type) {
2371    case ELF::SHT_SYMTAB_SHNDX: {
2372      if (SymbolTableSectionHeaderIndex)
2373        // FIXME: Proper error handling.
2374        report_fatal_error("More than one .symtab_shndx!");
2375      SymbolTableSectionHeaderIndex = sh;
2376      break;
2377    }
2378    case ELF::SHT_SYMTAB: {
2379      SymbolTableSectionsIndexMap[i] = SymbolTableSections.size();
2380      SymbolTableSections.push_back(sh);
2381      break;
2382    }
2383    case ELF::SHT_DYNSYM: {
2384      if (SymbolTableSections[0] != NULL)
2385        // FIXME: Proper error handling.
2386        report_fatal_error("More than one .dynsym!");
2387      SymbolTableSectionsIndexMap[i] = 0;
2388      SymbolTableSections[0] = sh;
2389      break;
2390    }
2391    case ELF::SHT_REL:
2392    case ELF::SHT_RELA: {
2393      SectionRelocMap[getSection(sh->sh_info)].push_back(i);
2394      break;
2395    }
2396    case ELF::SHT_DYNAMIC: {
2397      if (dot_dynamic_sec != NULL)
2398        // FIXME: Proper error handling.
2399        report_fatal_error("More than one .dynamic!");
2400      dot_dynamic_sec = sh;
2401      break;
2402    }
2403    case ELF::SHT_GNU_versym: {
2404      if (dot_gnu_version_sec != NULL)
2405        // FIXME: Proper error handling.
2406        report_fatal_error("More than one .gnu.version section!");
2407      dot_gnu_version_sec = sh;
2408      break;
2409    }
2410    case ELF::SHT_GNU_verdef: {
2411      if (dot_gnu_version_d_sec != NULL)
2412        // FIXME: Proper error handling.
2413        report_fatal_error("More than one .gnu.version_d section!");
2414      dot_gnu_version_d_sec = sh;
2415      break;
2416    }
2417    case ELF::SHT_GNU_verneed: {
2418      if (dot_gnu_version_r_sec != NULL)
2419        // FIXME: Proper error handling.
2420        report_fatal_error("More than one .gnu.version_r section!");
2421      dot_gnu_version_r_sec = sh;
2422      break;
2423    }
2424    }
2425    ++sh;
2426  }
2427
2428  // Sort section relocation lists by index.
2429  for (typename RelocMap_t::iterator i = SectionRelocMap.begin(),
2430                                     e = SectionRelocMap.end(); i != e; ++i) {
2431    std::sort(i->second.begin(), i->second.end());
2432  }
2433
2434  // Get string table sections.
2435  dot_shstrtab_sec = getSection(getStringTableIndex());
2436  if (dot_shstrtab_sec) {
2437    // Verify that the last byte in the string table in a null.
2438    VerifyStrTab(dot_shstrtab_sec);
2439  }
2440
2441  // Merge this into the above loop.
2442  for (const char *i = reinterpret_cast<const char *>(SectionHeaderTable),
2443                  *e = i + getNumSections() * Header->e_shentsize;
2444                   i != e; i += Header->e_shentsize) {
2445    const Elf_Shdr *sh = reinterpret_cast<const Elf_Shdr*>(i);
2446    if (sh->sh_type == ELF::SHT_STRTAB) {
2447      StringRef SectionName(getString(dot_shstrtab_sec, sh->sh_name));
2448      if (SectionName == ".strtab") {
2449        if (dot_strtab_sec != 0)
2450          // FIXME: Proper error handling.
2451          report_fatal_error("Already found section named .strtab!");
2452        dot_strtab_sec = sh;
2453        VerifyStrTab(dot_strtab_sec);
2454      } else if (SectionName == ".dynstr") {
2455        if (dot_dynstr_sec != 0)
2456          // FIXME: Proper error handling.
2457          report_fatal_error("Already found section named .dynstr!");
2458        dot_dynstr_sec = sh;
2459        VerifyStrTab(dot_dynstr_sec);
2460      }
2461    }
2462  }
2463
2464  // Build symbol name side-mapping if there is one.
2465  if (SymbolTableSectionHeaderIndex) {
2466    const Elf_Word *ShndxTable = reinterpret_cast<const Elf_Word*>(base() +
2467                                      SymbolTableSectionHeaderIndex->sh_offset);
2468    error_code ec;
2469    for (symbol_iterator si = begin_symbols(),
2470                         se = end_symbols(); si != se; si.increment(ec)) {
2471      if (ec)
2472        report_fatal_error("Fewer extended symbol table entries than symbols!");
2473      if (*ShndxTable != ELF::SHN_UNDEF)
2474        ExtendedSymbolTable[getSymbol(si->getRawDataRefImpl())] = *ShndxTable;
2475      ++ShndxTable;
2476    }
2477  }
2478}
2479
2480// Get the symbol table index in the symtab section given a symbol
2481template<class ELFT>
2482uint64_t ELFObjectFile<ELFT>::getSymbolIndex(const Elf_Sym *Sym) const {
2483  assert(SymbolTableSections.size() == 1 && "Only one symbol table supported!");
2484  const Elf_Shdr *SymTab = *SymbolTableSections.begin();
2485  uintptr_t SymLoc = uintptr_t(Sym);
2486  uintptr_t SymTabLoc = uintptr_t(base() + SymTab->sh_offset);
2487  assert(SymLoc > SymTabLoc && "Symbol not in symbol table!");
2488  uint64_t SymOffset = SymLoc - SymTabLoc;
2489  assert(SymOffset % SymTab->sh_entsize == 0 &&
2490         "Symbol not multiple of symbol size!");
2491  return SymOffset / SymTab->sh_entsize;
2492}
2493
2494template<class ELFT>
2495symbol_iterator ELFObjectFile<ELFT>::begin_symbols() const {
2496  DataRefImpl SymbolData;
2497  if (SymbolTableSections.size() <= 1) {
2498    SymbolData.d.a = std::numeric_limits<uint32_t>::max();
2499    SymbolData.d.b = std::numeric_limits<uint32_t>::max();
2500  } else {
2501    SymbolData.d.a = 1; // The 0th symbol in ELF is fake.
2502    SymbolData.d.b = 1; // The 0th table is .dynsym
2503  }
2504  return symbol_iterator(SymbolRef(SymbolData, this));
2505}
2506
2507template<class ELFT>
2508symbol_iterator ELFObjectFile<ELFT>::end_symbols() const {
2509  DataRefImpl SymbolData;
2510  SymbolData.d.a = std::numeric_limits<uint32_t>::max();
2511  SymbolData.d.b = std::numeric_limits<uint32_t>::max();
2512  return symbol_iterator(SymbolRef(SymbolData, this));
2513}
2514
2515template<class ELFT>
2516symbol_iterator ELFObjectFile<ELFT>::begin_dynamic_symbols() const {
2517  DataRefImpl SymbolData;
2518  if (SymbolTableSections[0] == NULL) {
2519    SymbolData.d.a = std::numeric_limits<uint32_t>::max();
2520    SymbolData.d.b = std::numeric_limits<uint32_t>::max();
2521  } else {
2522    SymbolData.d.a = 1; // The 0th symbol in ELF is fake.
2523    SymbolData.d.b = 0; // The 0th table is .dynsym
2524  }
2525  return symbol_iterator(SymbolRef(SymbolData, this));
2526}
2527
2528template<class ELFT>
2529symbol_iterator ELFObjectFile<ELFT>::end_dynamic_symbols() const {
2530  DataRefImpl SymbolData;
2531  SymbolData.d.a = std::numeric_limits<uint32_t>::max();
2532  SymbolData.d.b = std::numeric_limits<uint32_t>::max();
2533  return symbol_iterator(SymbolRef(SymbolData, this));
2534}
2535
2536template<class ELFT>
2537section_iterator ELFObjectFile<ELFT>::begin_sections() const {
2538  DataRefImpl ret;
2539  ret.p = reinterpret_cast<intptr_t>(base() + Header->e_shoff);
2540  return section_iterator(SectionRef(ret, this));
2541}
2542
2543template<class ELFT>
2544section_iterator ELFObjectFile<ELFT>::end_sections() const {
2545  DataRefImpl ret;
2546  ret.p = reinterpret_cast<intptr_t>(base()
2547                                     + Header->e_shoff
2548                                     + (Header->e_shentsize*getNumSections()));
2549  return section_iterator(SectionRef(ret, this));
2550}
2551
2552template<class ELFT>
2553typename ELFObjectFile<ELFT>::Elf_Dyn_iterator
2554ELFObjectFile<ELFT>::begin_dynamic_table() const {
2555  if (dot_dynamic_sec)
2556    return Elf_Dyn_iterator(dot_dynamic_sec->sh_entsize,
2557                            (const char *)base() + dot_dynamic_sec->sh_offset);
2558  return Elf_Dyn_iterator(0, 0);
2559}
2560
2561template<class ELFT>
2562typename ELFObjectFile<ELFT>::Elf_Dyn_iterator
2563ELFObjectFile<ELFT>::end_dynamic_table(bool NULLEnd) const {
2564  if (dot_dynamic_sec) {
2565    Elf_Dyn_iterator Ret(dot_dynamic_sec->sh_entsize,
2566                         (const char *)base() + dot_dynamic_sec->sh_offset +
2567                         dot_dynamic_sec->sh_size);
2568
2569    if (NULLEnd) {
2570      Elf_Dyn_iterator Start = begin_dynamic_table();
2571      while (Start != Ret && Start->getTag() != ELF::DT_NULL)
2572        ++Start;
2573
2574      // Include the DT_NULL.
2575      if (Start != Ret)
2576        ++Start;
2577      Ret = Start;
2578    }
2579    return Ret;
2580  }
2581  return Elf_Dyn_iterator(0, 0);
2582}
2583
2584template<class ELFT>
2585StringRef ELFObjectFile<ELFT>::getLoadName() const {
2586  if (!dt_soname) {
2587    // Find the DT_SONAME entry
2588    Elf_Dyn_iterator it = begin_dynamic_table();
2589    Elf_Dyn_iterator ie = end_dynamic_table();
2590    while (it != ie && it->getTag() != ELF::DT_SONAME)
2591      ++it;
2592
2593    if (it != ie) {
2594      if (dot_dynstr_sec == NULL)
2595        report_fatal_error("Dynamic string table is missing");
2596      dt_soname = getString(dot_dynstr_sec, it->getVal());
2597    } else {
2598      dt_soname = "";
2599    }
2600  }
2601  return dt_soname;
2602}
2603
2604template<class ELFT>
2605library_iterator ELFObjectFile<ELFT>::begin_libraries_needed() const {
2606  // Find the first DT_NEEDED entry
2607  Elf_Dyn_iterator i = begin_dynamic_table();
2608  Elf_Dyn_iterator e = end_dynamic_table();
2609  while (i != e && i->getTag() != ELF::DT_NEEDED)
2610    ++i;
2611
2612  DataRefImpl DRI;
2613  DRI.p = reinterpret_cast<uintptr_t>(i.get());
2614  return library_iterator(LibraryRef(DRI, this));
2615}
2616
2617template<class ELFT>
2618error_code ELFObjectFile<ELFT>::getLibraryNext(DataRefImpl Data,
2619                                               LibraryRef &Result) const {
2620  // Use the same DataRefImpl format as DynRef.
2621  Elf_Dyn_iterator i = Elf_Dyn_iterator(dot_dynamic_sec->sh_entsize,
2622                                        reinterpret_cast<const char *>(Data.p));
2623  Elf_Dyn_iterator e = end_dynamic_table();
2624
2625  // Skip the current dynamic table entry and find the next DT_NEEDED entry.
2626  do
2627    ++i;
2628  while (i != e && i->getTag() != ELF::DT_NEEDED);
2629
2630  DataRefImpl DRI;
2631  DRI.p = reinterpret_cast<uintptr_t>(i.get());
2632  Result = LibraryRef(DRI, this);
2633  return object_error::success;
2634}
2635
2636template<class ELFT>
2637error_code ELFObjectFile<ELFT>::getLibraryPath(DataRefImpl Data,
2638                                               StringRef &Res) const {
2639  Elf_Dyn_iterator i = Elf_Dyn_iterator(dot_dynamic_sec->sh_entsize,
2640                                        reinterpret_cast<const char *>(Data.p));
2641  if (i == end_dynamic_table())
2642    report_fatal_error("getLibraryPath() called on iterator end");
2643
2644  if (i->getTag() != ELF::DT_NEEDED)
2645    report_fatal_error("Invalid library_iterator");
2646
2647  // This uses .dynstr to lookup the name of the DT_NEEDED entry.
2648  // THis works as long as DT_STRTAB == .dynstr. This is true most of
2649  // the time, but the specification allows exceptions.
2650  // TODO: This should really use DT_STRTAB instead. Doing this requires
2651  // reading the program headers.
2652  if (dot_dynstr_sec == NULL)
2653    report_fatal_error("Dynamic string table is missing");
2654  Res = getString(dot_dynstr_sec, i->getVal());
2655  return object_error::success;
2656}
2657
2658template<class ELFT>
2659library_iterator ELFObjectFile<ELFT>::end_libraries_needed() const {
2660  Elf_Dyn_iterator e = end_dynamic_table();
2661  DataRefImpl DRI;
2662  DRI.p = reinterpret_cast<uintptr_t>(e.get());
2663  return library_iterator(LibraryRef(DRI, this));
2664}
2665
2666template<class ELFT>
2667uint8_t ELFObjectFile<ELFT>::getBytesInAddress() const {
2668  return ELFT::Is64Bits ? 8 : 4;
2669}
2670
2671template<class ELFT>
2672StringRef ELFObjectFile<ELFT>::getFileFormatName() const {
2673  switch(Header->e_ident[ELF::EI_CLASS]) {
2674  case ELF::ELFCLASS32:
2675    switch(Header->e_machine) {
2676    case ELF::EM_386:
2677      return "ELF32-i386";
2678    case ELF::EM_X86_64:
2679      return "ELF32-x86-64";
2680    case ELF::EM_ARM:
2681      return "ELF32-arm";
2682    case ELF::EM_HEXAGON:
2683      return "ELF32-hexagon";
2684    case ELF::EM_MIPS:
2685      return "ELF32-mips";
2686    default:
2687      return "ELF32-unknown";
2688    }
2689  case ELF::ELFCLASS64:
2690    switch(Header->e_machine) {
2691    case ELF::EM_386:
2692      return "ELF64-i386";
2693    case ELF::EM_X86_64:
2694      return "ELF64-x86-64";
2695    case ELF::EM_AARCH64:
2696      return "ELF64-aarch64";
2697    case ELF::EM_PPC64:
2698      return "ELF64-ppc64";
2699    case ELF::EM_S390:
2700      return "ELF64-s390";
2701    default:
2702      return "ELF64-unknown";
2703    }
2704  default:
2705    // FIXME: Proper error handling.
2706    report_fatal_error("Invalid ELFCLASS!");
2707  }
2708}
2709
2710template<class ELFT>
2711unsigned ELFObjectFile<ELFT>::getArch() const {
2712  switch(Header->e_machine) {
2713  case ELF::EM_386:
2714    return Triple::x86;
2715  case ELF::EM_X86_64:
2716    return Triple::x86_64;
2717  case ELF::EM_AARCH64:
2718    return Triple::aarch64;
2719  case ELF::EM_ARM:
2720    return Triple::arm;
2721  case ELF::EM_HEXAGON:
2722    return Triple::hexagon;
2723  case ELF::EM_MIPS:
2724    return (ELFT::TargetEndianness == support::little) ?
2725           Triple::mipsel : Triple::mips;
2726  case ELF::EM_PPC64:
2727    return Triple::ppc64;
2728  case ELF::EM_S390:
2729    return Triple::systemz;
2730  default:
2731    return Triple::UnknownArch;
2732  }
2733}
2734
2735template<class ELFT>
2736uint64_t ELFObjectFile<ELFT>::getNumSections() const {
2737  assert(Header && "Header not initialized!");
2738  if (Header->e_shnum == ELF::SHN_UNDEF) {
2739    assert(SectionHeaderTable && "SectionHeaderTable not initialized!");
2740    return SectionHeaderTable->sh_size;
2741  }
2742  return Header->e_shnum;
2743}
2744
2745template<class ELFT>
2746uint64_t
2747ELFObjectFile<ELFT>::getStringTableIndex() const {
2748  if (Header->e_shnum == ELF::SHN_UNDEF) {
2749    if (Header->e_shstrndx == ELF::SHN_HIRESERVE)
2750      return SectionHeaderTable->sh_link;
2751    if (Header->e_shstrndx >= getNumSections())
2752      return 0;
2753  }
2754  return Header->e_shstrndx;
2755}
2756
2757template<class ELFT>
2758template<typename T>
2759inline const T *
2760ELFObjectFile<ELFT>::getEntry(uint16_t Section, uint32_t Entry) const {
2761  return getEntry<T>(getSection(Section), Entry);
2762}
2763
2764template<class ELFT>
2765template<typename T>
2766inline const T *
2767ELFObjectFile<ELFT>::getEntry(const Elf_Shdr * Section, uint32_t Entry) const {
2768  return reinterpret_cast<const T *>(
2769           base()
2770           + Section->sh_offset
2771           + (Entry * Section->sh_entsize));
2772}
2773
2774template<class ELFT>
2775const typename ELFObjectFile<ELFT>::Elf_Sym *
2776ELFObjectFile<ELFT>::getSymbol(DataRefImpl Symb) const {
2777  return getEntry<Elf_Sym>(SymbolTableSections[Symb.d.b], Symb.d.a);
2778}
2779
2780template<class ELFT>
2781const typename ELFObjectFile<ELFT>::Elf_Rel *
2782ELFObjectFile<ELFT>::getRel(DataRefImpl Rel) const {
2783  return getEntry<Elf_Rel>(Rel.w.b, Rel.w.c);
2784}
2785
2786template<class ELFT>
2787const typename ELFObjectFile<ELFT>::Elf_Rela *
2788ELFObjectFile<ELFT>::getRela(DataRefImpl Rela) const {
2789  return getEntry<Elf_Rela>(Rela.w.b, Rela.w.c);
2790}
2791
2792template<class ELFT>
2793const typename ELFObjectFile<ELFT>::Elf_Shdr *
2794ELFObjectFile<ELFT>::getSection(DataRefImpl Symb) const {
2795  const Elf_Shdr *sec = getSection(Symb.d.b);
2796  if (sec->sh_type != ELF::SHT_SYMTAB || sec->sh_type != ELF::SHT_DYNSYM)
2797    // FIXME: Proper error handling.
2798    report_fatal_error("Invalid symbol table section!");
2799  return sec;
2800}
2801
2802template<class ELFT>
2803const typename ELFObjectFile<ELFT>::Elf_Shdr *
2804ELFObjectFile<ELFT>::getSection(uint32_t index) const {
2805  if (index == 0)
2806    return 0;
2807  if (!SectionHeaderTable || index >= getNumSections())
2808    // FIXME: Proper error handling.
2809    report_fatal_error("Invalid section index!");
2810
2811  return reinterpret_cast<const Elf_Shdr *>(
2812         reinterpret_cast<const char *>(SectionHeaderTable)
2813         + (index * Header->e_shentsize));
2814}
2815
2816template<class ELFT>
2817const char *ELFObjectFile<ELFT>::getString(uint32_t section,
2818                                           ELF::Elf32_Word offset) const {
2819  return getString(getSection(section), offset);
2820}
2821
2822template<class ELFT>
2823const char *ELFObjectFile<ELFT>::getString(const Elf_Shdr *section,
2824                                           ELF::Elf32_Word offset) const {
2825  assert(section && section->sh_type == ELF::SHT_STRTAB && "Invalid section!");
2826  if (offset >= section->sh_size)
2827    // FIXME: Proper error handling.
2828    report_fatal_error("Symbol name offset outside of string table!");
2829  return (const char *)base() + section->sh_offset + offset;
2830}
2831
2832template<class ELFT>
2833error_code ELFObjectFile<ELFT>::getSymbolName(const Elf_Shdr *section,
2834                                              const Elf_Sym *symb,
2835                                              StringRef &Result) const {
2836  if (symb->st_name == 0) {
2837    const Elf_Shdr *section = getSection(symb);
2838    if (!section)
2839      Result = "";
2840    else
2841      Result = getString(dot_shstrtab_sec, section->sh_name);
2842    return object_error::success;
2843  }
2844
2845  if (section == SymbolTableSections[0]) {
2846    // Symbol is in .dynsym, use .dynstr string table
2847    Result = getString(dot_dynstr_sec, symb->st_name);
2848  } else {
2849    // Use the default symbol table name section.
2850    Result = getString(dot_strtab_sec, symb->st_name);
2851  }
2852  return object_error::success;
2853}
2854
2855template<class ELFT>
2856error_code ELFObjectFile<ELFT>::getSectionName(const Elf_Shdr *section,
2857                                               StringRef &Result) const {
2858  Result = StringRef(getString(dot_shstrtab_sec, section->sh_name));
2859  return object_error::success;
2860}
2861
2862template<class ELFT>
2863error_code ELFObjectFile<ELFT>::getSymbolVersion(const Elf_Shdr *section,
2864                                                 const Elf_Sym *symb,
2865                                                 StringRef &Version,
2866                                                 bool &IsDefault) const {
2867  // Handle non-dynamic symbols.
2868  if (section != SymbolTableSections[0]) {
2869    // Non-dynamic symbols can have versions in their names
2870    // A name of the form 'foo@V1' indicates version 'V1', non-default.
2871    // A name of the form 'foo@@V2' indicates version 'V2', default version.
2872    StringRef Name;
2873    error_code ec = getSymbolName(section, symb, Name);
2874    if (ec != object_error::success)
2875      return ec;
2876    size_t atpos = Name.find('@');
2877    if (atpos == StringRef::npos) {
2878      Version = "";
2879      IsDefault = false;
2880      return object_error::success;
2881    }
2882    ++atpos;
2883    if (atpos < Name.size() && Name[atpos] == '@') {
2884      IsDefault = true;
2885      ++atpos;
2886    } else {
2887      IsDefault = false;
2888    }
2889    Version = Name.substr(atpos);
2890    return object_error::success;
2891  }
2892
2893  // This is a dynamic symbol. Look in the GNU symbol version table.
2894  if (dot_gnu_version_sec == NULL) {
2895    // No version table.
2896    Version = "";
2897    IsDefault = false;
2898    return object_error::success;
2899  }
2900
2901  // Determine the position in the symbol table of this entry.
2902  const char *sec_start = (const char*)base() + section->sh_offset;
2903  size_t entry_index = ((const char*)symb - sec_start)/section->sh_entsize;
2904
2905  // Get the corresponding version index entry
2906  const Elf_Versym *vs = getEntry<Elf_Versym>(dot_gnu_version_sec, entry_index);
2907  size_t version_index = vs->vs_index & ELF::VERSYM_VERSION;
2908
2909  // Special markers for unversioned symbols.
2910  if (version_index == ELF::VER_NDX_LOCAL ||
2911      version_index == ELF::VER_NDX_GLOBAL) {
2912    Version = "";
2913    IsDefault = false;
2914    return object_error::success;
2915  }
2916
2917  // Lookup this symbol in the version table
2918  LoadVersionMap();
2919  if (version_index >= VersionMap.size() || VersionMap[version_index].isNull())
2920    report_fatal_error("Symbol has version index without corresponding "
2921                       "define or reference entry");
2922  const VersionMapEntry &entry = VersionMap[version_index];
2923
2924  // Get the version name string
2925  size_t name_offset;
2926  if (entry.isVerdef()) {
2927    // The first Verdaux entry holds the name.
2928    name_offset = entry.getVerdef()->getAux()->vda_name;
2929  } else {
2930    name_offset = entry.getVernaux()->vna_name;
2931  }
2932  Version = getString(dot_dynstr_sec, name_offset);
2933
2934  // Set IsDefault
2935  if (entry.isVerdef()) {
2936    IsDefault = !(vs->vs_index & ELF::VERSYM_HIDDEN);
2937  } else {
2938    IsDefault = false;
2939  }
2940
2941  return object_error::success;
2942}
2943
2944/// This is a generic interface for retrieving GNU symbol version
2945/// information from an ELFObjectFile.
2946static inline error_code GetELFSymbolVersion(const ObjectFile *Obj,
2947                                             const SymbolRef &Sym,
2948                                             StringRef &Version,
2949                                             bool &IsDefault) {
2950  // Little-endian 32-bit
2951  if (const ELFObjectFile<ELFType<support::little, 4, false> > *ELFObj =
2952          dyn_cast<ELFObjectFile<ELFType<support::little, 4, false> > >(Obj))
2953    return ELFObj->getSymbolVersion(Sym, Version, IsDefault);
2954
2955  // Big-endian 32-bit
2956  if (const ELFObjectFile<ELFType<support::big, 4, false> > *ELFObj =
2957          dyn_cast<ELFObjectFile<ELFType<support::big, 4, false> > >(Obj))
2958    return ELFObj->getSymbolVersion(Sym, Version, IsDefault);
2959
2960  // Little-endian 64-bit
2961  if (const ELFObjectFile<ELFType<support::little, 8, true> > *ELFObj =
2962          dyn_cast<ELFObjectFile<ELFType<support::little, 8, true> > >(Obj))
2963    return ELFObj->getSymbolVersion(Sym, Version, IsDefault);
2964
2965  // Big-endian 64-bit
2966  if (const ELFObjectFile<ELFType<support::big, 8, true> > *ELFObj =
2967          dyn_cast<ELFObjectFile<ELFType<support::big, 8, true> > >(Obj))
2968    return ELFObj->getSymbolVersion(Sym, Version, IsDefault);
2969
2970  llvm_unreachable("Object passed to GetELFSymbolVersion() is not ELF");
2971}
2972
2973/// This function returns the hash value for a symbol in the .dynsym section
2974/// Name of the API remains consistent as specified in the libelf
2975/// REF : http://www.sco.com/developers/gabi/latest/ch5.dynamic.html#hash
2976static inline unsigned elf_hash(StringRef &symbolName) {
2977  unsigned h = 0, g;
2978  for (unsigned i = 0, j = symbolName.size(); i < j; i++) {
2979    h = (h << 4) + symbolName[i];
2980    g = h & 0xf0000000L;
2981    if (g != 0)
2982      h ^= g >> 24;
2983    h &= ~g;
2984  }
2985  return h;
2986}
2987
2988}
2989}
2990
2991#endif
2992