1//===-- llvm/CodeGen/MachineInstr.h - MachineInstr class --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the declaration of the MachineInstr class, which is the
11// basic representation for all target dependent machine instructions used by
12// the back end.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_CODEGEN_MACHINEINSTR_H
17#define LLVM_CODEGEN_MACHINEINSTR_H
18
19#include "llvm/ADT/ArrayRef.h"
20#include "llvm/ADT/DenseMapInfo.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/StringRef.h"
23#include "llvm/ADT/ilist.h"
24#include "llvm/ADT/ilist_node.h"
25#include "llvm/CodeGen/MachineOperand.h"
26#include "llvm/IR/InlineAsm.h"
27#include "llvm/MC/MCInstrDesc.h"
28#include "llvm/Support/ArrayRecycler.h"
29#include "llvm/Support/DebugLoc.h"
30#include "llvm/Target/TargetOpcodes.h"
31#include <vector>
32
33namespace llvm {
34
35template <typename T> class SmallVectorImpl;
36class AliasAnalysis;
37class TargetInstrInfo;
38class TargetRegisterClass;
39class TargetRegisterInfo;
40class MachineFunction;
41class MachineMemOperand;
42
43//===----------------------------------------------------------------------===//
44/// MachineInstr - Representation of each machine instruction.
45///
46/// This class isn't a POD type, but it must have a trivial destructor. When a
47/// MachineFunction is deleted, all the contained MachineInstrs are deallocated
48/// without having their destructor called.
49///
50class MachineInstr : public ilist_node<MachineInstr> {
51public:
52  typedef MachineMemOperand **mmo_iterator;
53
54  /// Flags to specify different kinds of comments to output in
55  /// assembly code.  These flags carry semantic information not
56  /// otherwise easily derivable from the IR text.
57  ///
58  enum CommentFlag {
59    ReloadReuse = 0x1
60  };
61
62  enum MIFlag {
63    NoFlags      = 0,
64    FrameSetup   = 1 << 0,              // Instruction is used as a part of
65                                        // function frame setup code.
66    BundledPred  = 1 << 1,              // Instruction has bundled predecessors.
67    BundledSucc  = 1 << 2               // Instruction has bundled successors.
68  };
69private:
70  const MCInstrDesc *MCID;              // Instruction descriptor.
71  MachineBasicBlock *Parent;            // Pointer to the owning basic block.
72
73  // Operands are allocated by an ArrayRecycler.
74  MachineOperand *Operands;             // Pointer to the first operand.
75  unsigned NumOperands;                 // Number of operands on instruction.
76  typedef ArrayRecycler<MachineOperand>::Capacity OperandCapacity;
77  OperandCapacity CapOperands;          // Capacity of the Operands array.
78
79  uint8_t Flags;                        // Various bits of additional
80                                        // information about machine
81                                        // instruction.
82
83  uint8_t AsmPrinterFlags;              // Various bits of information used by
84                                        // the AsmPrinter to emit helpful
85                                        // comments.  This is *not* semantic
86                                        // information.  Do not use this for
87                                        // anything other than to convey comment
88                                        // information to AsmPrinter.
89
90  uint8_t NumMemRefs;                   // Information on memory references.
91  mmo_iterator MemRefs;
92
93  DebugLoc debugLoc;                    // Source line information.
94
95  MachineInstr(const MachineInstr&) LLVM_DELETED_FUNCTION;
96  void operator=(const MachineInstr&) LLVM_DELETED_FUNCTION;
97  // Use MachineFunction::DeleteMachineInstr() instead.
98  ~MachineInstr() LLVM_DELETED_FUNCTION;
99
100  // Intrusive list support
101  friend struct ilist_traits<MachineInstr>;
102  friend struct ilist_traits<MachineBasicBlock>;
103  void setParent(MachineBasicBlock *P) { Parent = P; }
104
105  /// MachineInstr ctor - This constructor creates a copy of the given
106  /// MachineInstr in the given MachineFunction.
107  MachineInstr(MachineFunction &, const MachineInstr &);
108
109  /// MachineInstr ctor - This constructor create a MachineInstr and add the
110  /// implicit operands.  It reserves space for number of operands specified by
111  /// MCInstrDesc.  An explicit DebugLoc is supplied.
112  MachineInstr(MachineFunction&, const MCInstrDesc &MCID,
113               const DebugLoc dl, bool NoImp = false);
114
115  // MachineInstrs are pool-allocated and owned by MachineFunction.
116  friend class MachineFunction;
117
118public:
119  const MachineBasicBlock* getParent() const { return Parent; }
120  MachineBasicBlock* getParent() { return Parent; }
121
122  /// getAsmPrinterFlags - Return the asm printer flags bitvector.
123  ///
124  uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
125
126  /// clearAsmPrinterFlags - clear the AsmPrinter bitvector
127  ///
128  void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
129
130  /// getAsmPrinterFlag - Return whether an AsmPrinter flag is set.
131  ///
132  bool getAsmPrinterFlag(CommentFlag Flag) const {
133    return AsmPrinterFlags & Flag;
134  }
135
136  /// setAsmPrinterFlag - Set a flag for the AsmPrinter.
137  ///
138  void setAsmPrinterFlag(CommentFlag Flag) {
139    AsmPrinterFlags |= (uint8_t)Flag;
140  }
141
142  /// clearAsmPrinterFlag - clear specific AsmPrinter flags
143  ///
144  void clearAsmPrinterFlag(CommentFlag Flag) {
145    AsmPrinterFlags &= ~Flag;
146  }
147
148  /// getFlags - Return the MI flags bitvector.
149  uint8_t getFlags() const {
150    return Flags;
151  }
152
153  /// getFlag - Return whether an MI flag is set.
154  bool getFlag(MIFlag Flag) const {
155    return Flags & Flag;
156  }
157
158  /// setFlag - Set a MI flag.
159  void setFlag(MIFlag Flag) {
160    Flags |= (uint8_t)Flag;
161  }
162
163  void setFlags(unsigned flags) {
164    // Filter out the automatically maintained flags.
165    unsigned Mask = BundledPred | BundledSucc;
166    Flags = (Flags & Mask) | (flags & ~Mask);
167  }
168
169  /// clearFlag - Clear a MI flag.
170  void clearFlag(MIFlag Flag) {
171    Flags &= ~((uint8_t)Flag);
172  }
173
174  /// isInsideBundle - Return true if MI is in a bundle (but not the first MI
175  /// in a bundle).
176  ///
177  /// A bundle looks like this before it's finalized:
178  ///   ----------------
179  ///   |      MI      |
180  ///   ----------------
181  ///          |
182  ///   ----------------
183  ///   |      MI    * |
184  ///   ----------------
185  ///          |
186  ///   ----------------
187  ///   |      MI    * |
188  ///   ----------------
189  /// In this case, the first MI starts a bundle but is not inside a bundle, the
190  /// next 2 MIs are considered "inside" the bundle.
191  ///
192  /// After a bundle is finalized, it looks like this:
193  ///   ----------------
194  ///   |    Bundle    |
195  ///   ----------------
196  ///          |
197  ///   ----------------
198  ///   |      MI    * |
199  ///   ----------------
200  ///          |
201  ///   ----------------
202  ///   |      MI    * |
203  ///   ----------------
204  ///          |
205  ///   ----------------
206  ///   |      MI    * |
207  ///   ----------------
208  /// The first instruction has the special opcode "BUNDLE". It's not "inside"
209  /// a bundle, but the next three MIs are.
210  bool isInsideBundle() const {
211    return getFlag(BundledPred);
212  }
213
214  /// isBundled - Return true if this instruction part of a bundle. This is true
215  /// if either itself or its following instruction is marked "InsideBundle".
216  bool isBundled() const {
217    return isBundledWithPred() || isBundledWithSucc();
218  }
219
220  /// Return true if this instruction is part of a bundle, and it is not the
221  /// first instruction in the bundle.
222  bool isBundledWithPred() const { return getFlag(BundledPred); }
223
224  /// Return true if this instruction is part of a bundle, and it is not the
225  /// last instruction in the bundle.
226  bool isBundledWithSucc() const { return getFlag(BundledSucc); }
227
228  /// Bundle this instruction with its predecessor. This can be an unbundled
229  /// instruction, or it can be the first instruction in a bundle.
230  void bundleWithPred();
231
232  /// Bundle this instruction with its successor. This can be an unbundled
233  /// instruction, or it can be the last instruction in a bundle.
234  void bundleWithSucc();
235
236  /// Break bundle above this instruction.
237  void unbundleFromPred();
238
239  /// Break bundle below this instruction.
240  void unbundleFromSucc();
241
242  /// getDebugLoc - Returns the debug location id of this MachineInstr.
243  ///
244  DebugLoc getDebugLoc() const { return debugLoc; }
245
246  /// emitError - Emit an error referring to the source location of this
247  /// instruction. This should only be used for inline assembly that is somehow
248  /// impossible to compile. Other errors should have been handled much
249  /// earlier.
250  ///
251  /// If this method returns, the caller should try to recover from the error.
252  ///
253  void emitError(StringRef Msg) const;
254
255  /// getDesc - Returns the target instruction descriptor of this
256  /// MachineInstr.
257  const MCInstrDesc &getDesc() const { return *MCID; }
258
259  /// getOpcode - Returns the opcode of this MachineInstr.
260  ///
261  int getOpcode() const { return MCID->Opcode; }
262
263  /// Access to explicit operands of the instruction.
264  ///
265  unsigned getNumOperands() const { return NumOperands; }
266
267  const MachineOperand& getOperand(unsigned i) const {
268    assert(i < getNumOperands() && "getOperand() out of range!");
269    return Operands[i];
270  }
271  MachineOperand& getOperand(unsigned i) {
272    assert(i < getNumOperands() && "getOperand() out of range!");
273    return Operands[i];
274  }
275
276  /// getNumExplicitOperands - Returns the number of non-implicit operands.
277  ///
278  unsigned getNumExplicitOperands() const;
279
280  /// iterator/begin/end - Iterate over all operands of a machine instruction.
281  typedef MachineOperand *mop_iterator;
282  typedef const MachineOperand *const_mop_iterator;
283
284  mop_iterator operands_begin() { return Operands; }
285  mop_iterator operands_end() { return Operands + NumOperands; }
286
287  const_mop_iterator operands_begin() const { return Operands; }
288  const_mop_iterator operands_end() const { return Operands + NumOperands; }
289
290  /// Access to memory operands of the instruction
291  mmo_iterator memoperands_begin() const { return MemRefs; }
292  mmo_iterator memoperands_end() const { return MemRefs + NumMemRefs; }
293  bool memoperands_empty() const { return NumMemRefs == 0; }
294
295  /// hasOneMemOperand - Return true if this instruction has exactly one
296  /// MachineMemOperand.
297  bool hasOneMemOperand() const {
298    return NumMemRefs == 1;
299  }
300
301  /// API for querying MachineInstr properties. They are the same as MCInstrDesc
302  /// queries but they are bundle aware.
303
304  enum QueryType {
305    IgnoreBundle,    // Ignore bundles
306    AnyInBundle,     // Return true if any instruction in bundle has property
307    AllInBundle      // Return true if all instructions in bundle have property
308  };
309
310  /// hasProperty - Return true if the instruction (or in the case of a bundle,
311  /// the instructions inside the bundle) has the specified property.
312  /// The first argument is the property being queried.
313  /// The second argument indicates whether the query should look inside
314  /// instruction bundles.
315  bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
316    // Inline the fast path for unbundled or bundle-internal instructions.
317    if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
318      return getDesc().getFlags() & (1 << MCFlag);
319
320    // If this is the first instruction in a bundle, take the slow path.
321    return hasPropertyInBundle(1 << MCFlag, Type);
322  }
323
324  /// isVariadic - Return true if this instruction can have a variable number of
325  /// operands.  In this case, the variable operands will be after the normal
326  /// operands but before the implicit definitions and uses (if any are
327  /// present).
328  bool isVariadic(QueryType Type = IgnoreBundle) const {
329    return hasProperty(MCID::Variadic, Type);
330  }
331
332  /// hasOptionalDef - Set if this instruction has an optional definition, e.g.
333  /// ARM instructions which can set condition code if 's' bit is set.
334  bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
335    return hasProperty(MCID::HasOptionalDef, Type);
336  }
337
338  /// isPseudo - Return true if this is a pseudo instruction that doesn't
339  /// correspond to a real machine instruction.
340  ///
341  bool isPseudo(QueryType Type = IgnoreBundle) const {
342    return hasProperty(MCID::Pseudo, Type);
343  }
344
345  bool isReturn(QueryType Type = AnyInBundle) const {
346    return hasProperty(MCID::Return, Type);
347  }
348
349  bool isCall(QueryType Type = AnyInBundle) const {
350    return hasProperty(MCID::Call, Type);
351  }
352
353  /// isBarrier - Returns true if the specified instruction stops control flow
354  /// from executing the instruction immediately following it.  Examples include
355  /// unconditional branches and return instructions.
356  bool isBarrier(QueryType Type = AnyInBundle) const {
357    return hasProperty(MCID::Barrier, Type);
358  }
359
360  /// isTerminator - Returns true if this instruction part of the terminator for
361  /// a basic block.  Typically this is things like return and branch
362  /// instructions.
363  ///
364  /// Various passes use this to insert code into the bottom of a basic block,
365  /// but before control flow occurs.
366  bool isTerminator(QueryType Type = AnyInBundle) const {
367    return hasProperty(MCID::Terminator, Type);
368  }
369
370  /// isBranch - Returns true if this is a conditional, unconditional, or
371  /// indirect branch.  Predicates below can be used to discriminate between
372  /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
373  /// get more information.
374  bool isBranch(QueryType Type = AnyInBundle) const {
375    return hasProperty(MCID::Branch, Type);
376  }
377
378  /// isIndirectBranch - Return true if this is an indirect branch, such as a
379  /// branch through a register.
380  bool isIndirectBranch(QueryType Type = AnyInBundle) const {
381    return hasProperty(MCID::IndirectBranch, Type);
382  }
383
384  /// isConditionalBranch - Return true if this is a branch which may fall
385  /// through to the next instruction or may transfer control flow to some other
386  /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
387  /// information about this branch.
388  bool isConditionalBranch(QueryType Type = AnyInBundle) const {
389    return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type);
390  }
391
392  /// isUnconditionalBranch - Return true if this is a branch which always
393  /// transfers control flow to some other block.  The
394  /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
395  /// about this branch.
396  bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
397    return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type);
398  }
399
400  // isPredicable - Return true if this instruction has a predicate operand that
401  // controls execution.  It may be set to 'always', or may be set to other
402  /// values.   There are various methods in TargetInstrInfo that can be used to
403  /// control and modify the predicate in this instruction.
404  bool isPredicable(QueryType Type = AllInBundle) const {
405    // If it's a bundle than all bundled instructions must be predicable for this
406    // to return true.
407    return hasProperty(MCID::Predicable, Type);
408  }
409
410  /// isCompare - Return true if this instruction is a comparison.
411  bool isCompare(QueryType Type = IgnoreBundle) const {
412    return hasProperty(MCID::Compare, Type);
413  }
414
415  /// isMoveImmediate - Return true if this instruction is a move immediate
416  /// (including conditional moves) instruction.
417  bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
418    return hasProperty(MCID::MoveImm, Type);
419  }
420
421  /// isBitcast - Return true if this instruction is a bitcast instruction.
422  ///
423  bool isBitcast(QueryType Type = IgnoreBundle) const {
424    return hasProperty(MCID::Bitcast, Type);
425  }
426
427  /// isSelect - Return true if this instruction is a select instruction.
428  ///
429  bool isSelect(QueryType Type = IgnoreBundle) const {
430    return hasProperty(MCID::Select, Type);
431  }
432
433  /// isNotDuplicable - Return true if this instruction cannot be safely
434  /// duplicated.  For example, if the instruction has a unique labels attached
435  /// to it, duplicating it would cause multiple definition errors.
436  bool isNotDuplicable(QueryType Type = AnyInBundle) const {
437    return hasProperty(MCID::NotDuplicable, Type);
438  }
439
440  /// hasDelaySlot - Returns true if the specified instruction has a delay slot
441  /// which must be filled by the code generator.
442  bool hasDelaySlot(QueryType Type = AnyInBundle) const {
443    return hasProperty(MCID::DelaySlot, Type);
444  }
445
446  /// canFoldAsLoad - Return true for instructions that can be folded as
447  /// memory operands in other instructions. The most common use for this
448  /// is instructions that are simple loads from memory that don't modify
449  /// the loaded value in any way, but it can also be used for instructions
450  /// that can be expressed as constant-pool loads, such as V_SETALLONES
451  /// on x86, to allow them to be folded when it is beneficial.
452  /// This should only be set on instructions that return a value in their
453  /// only virtual register definition.
454  bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
455    return hasProperty(MCID::FoldableAsLoad, Type);
456  }
457
458  //===--------------------------------------------------------------------===//
459  // Side Effect Analysis
460  //===--------------------------------------------------------------------===//
461
462  /// mayLoad - Return true if this instruction could possibly read memory.
463  /// Instructions with this flag set are not necessarily simple load
464  /// instructions, they may load a value and modify it, for example.
465  bool mayLoad(QueryType Type = AnyInBundle) const {
466    if (isInlineAsm()) {
467      unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
468      if (ExtraInfo & InlineAsm::Extra_MayLoad)
469        return true;
470    }
471    return hasProperty(MCID::MayLoad, Type);
472  }
473
474
475  /// mayStore - Return true if this instruction could possibly modify memory.
476  /// Instructions with this flag set are not necessarily simple store
477  /// instructions, they may store a modified value based on their operands, or
478  /// may not actually modify anything, for example.
479  bool mayStore(QueryType Type = AnyInBundle) const {
480    if (isInlineAsm()) {
481      unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
482      if (ExtraInfo & InlineAsm::Extra_MayStore)
483        return true;
484    }
485    return hasProperty(MCID::MayStore, Type);
486  }
487
488  //===--------------------------------------------------------------------===//
489  // Flags that indicate whether an instruction can be modified by a method.
490  //===--------------------------------------------------------------------===//
491
492  /// isCommutable - Return true if this may be a 2- or 3-address
493  /// instruction (of the form "X = op Y, Z, ..."), which produces the same
494  /// result if Y and Z are exchanged.  If this flag is set, then the
495  /// TargetInstrInfo::commuteInstruction method may be used to hack on the
496  /// instruction.
497  ///
498  /// Note that this flag may be set on instructions that are only commutable
499  /// sometimes.  In these cases, the call to commuteInstruction will fail.
500  /// Also note that some instructions require non-trivial modification to
501  /// commute them.
502  bool isCommutable(QueryType Type = IgnoreBundle) const {
503    return hasProperty(MCID::Commutable, Type);
504  }
505
506  /// isConvertibleTo3Addr - Return true if this is a 2-address instruction
507  /// which can be changed into a 3-address instruction if needed.  Doing this
508  /// transformation can be profitable in the register allocator, because it
509  /// means that the instruction can use a 2-address form if possible, but
510  /// degrade into a less efficient form if the source and dest register cannot
511  /// be assigned to the same register.  For example, this allows the x86
512  /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
513  /// is the same speed as the shift but has bigger code size.
514  ///
515  /// If this returns true, then the target must implement the
516  /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
517  /// is allowed to fail if the transformation isn't valid for this specific
518  /// instruction (e.g. shl reg, 4 on x86).
519  ///
520  bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
521    return hasProperty(MCID::ConvertibleTo3Addr, Type);
522  }
523
524  /// usesCustomInsertionHook - Return true if this instruction requires
525  /// custom insertion support when the DAG scheduler is inserting it into a
526  /// machine basic block.  If this is true for the instruction, it basically
527  /// means that it is a pseudo instruction used at SelectionDAG time that is
528  /// expanded out into magic code by the target when MachineInstrs are formed.
529  ///
530  /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
531  /// is used to insert this into the MachineBasicBlock.
532  bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
533    return hasProperty(MCID::UsesCustomInserter, Type);
534  }
535
536  /// hasPostISelHook - Return true if this instruction requires *adjustment*
537  /// after instruction selection by calling a target hook. For example, this
538  /// can be used to fill in ARM 's' optional operand depending on whether
539  /// the conditional flag register is used.
540  bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
541    return hasProperty(MCID::HasPostISelHook, Type);
542  }
543
544  /// isRematerializable - Returns true if this instruction is a candidate for
545  /// remat.  This flag is deprecated, please don't use it anymore.  If this
546  /// flag is set, the isReallyTriviallyReMaterializable() method is called to
547  /// verify the instruction is really rematable.
548  bool isRematerializable(QueryType Type = AllInBundle) const {
549    // It's only possible to re-mat a bundle if all bundled instructions are
550    // re-materializable.
551    return hasProperty(MCID::Rematerializable, Type);
552  }
553
554  /// isAsCheapAsAMove - Returns true if this instruction has the same cost (or
555  /// less) than a move instruction. This is useful during certain types of
556  /// optimizations (e.g., remat during two-address conversion or machine licm)
557  /// where we would like to remat or hoist the instruction, but not if it costs
558  /// more than moving the instruction into the appropriate register. Note, we
559  /// are not marking copies from and to the same register class with this flag.
560  bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
561    // Only returns true for a bundle if all bundled instructions are cheap.
562    // FIXME: This probably requires a target hook.
563    return hasProperty(MCID::CheapAsAMove, Type);
564  }
565
566  /// hasExtraSrcRegAllocReq - Returns true if this instruction source operands
567  /// have special register allocation requirements that are not captured by the
568  /// operand register classes. e.g. ARM::STRD's two source registers must be an
569  /// even / odd pair, ARM::STM registers have to be in ascending order.
570  /// Post-register allocation passes should not attempt to change allocations
571  /// for sources of instructions with this flag.
572  bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
573    return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
574  }
575
576  /// hasExtraDefRegAllocReq - Returns true if this instruction def operands
577  /// have special register allocation requirements that are not captured by the
578  /// operand register classes. e.g. ARM::LDRD's two def registers must be an
579  /// even / odd pair, ARM::LDM registers have to be in ascending order.
580  /// Post-register allocation passes should not attempt to change allocations
581  /// for definitions of instructions with this flag.
582  bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
583    return hasProperty(MCID::ExtraDefRegAllocReq, Type);
584  }
585
586
587  enum MICheckType {
588    CheckDefs,      // Check all operands for equality
589    CheckKillDead,  // Check all operands including kill / dead markers
590    IgnoreDefs,     // Ignore all definitions
591    IgnoreVRegDefs  // Ignore virtual register definitions
592  };
593
594  /// isIdenticalTo - Return true if this instruction is identical to (same
595  /// opcode and same operands as) the specified instruction.
596  bool isIdenticalTo(const MachineInstr *Other,
597                     MICheckType Check = CheckDefs) const;
598
599  /// Unlink 'this' from the containing basic block, and return it without
600  /// deleting it.
601  ///
602  /// This function can not be used on bundled instructions, use
603  /// removeFromBundle() to remove individual instructions from a bundle.
604  MachineInstr *removeFromParent();
605
606  /// Unlink this instruction from its basic block and return it without
607  /// deleting it.
608  ///
609  /// If the instruction is part of a bundle, the other instructions in the
610  /// bundle remain bundled.
611  MachineInstr *removeFromBundle();
612
613  /// Unlink 'this' from the containing basic block and delete it.
614  ///
615  /// If this instruction is the header of a bundle, the whole bundle is erased.
616  /// This function can not be used for instructions inside a bundle, use
617  /// eraseFromBundle() to erase individual bundled instructions.
618  void eraseFromParent();
619
620  /// Unlink 'this' form its basic block and delete it.
621  ///
622  /// If the instruction is part of a bundle, the other instructions in the
623  /// bundle remain bundled.
624  void eraseFromBundle();
625
626  /// isLabel - Returns true if the MachineInstr represents a label.
627  ///
628  bool isLabel() const {
629    return getOpcode() == TargetOpcode::PROLOG_LABEL ||
630           getOpcode() == TargetOpcode::EH_LABEL ||
631           getOpcode() == TargetOpcode::GC_LABEL;
632  }
633
634  bool isPrologLabel() const {
635    return getOpcode() == TargetOpcode::PROLOG_LABEL;
636  }
637  bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
638  bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
639  bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; }
640
641  bool isPHI() const { return getOpcode() == TargetOpcode::PHI; }
642  bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
643  bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
644  bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; }
645  bool isMSInlineAsm() const {
646    return getOpcode() == TargetOpcode::INLINEASM && getInlineAsmDialect();
647  }
648  bool isStackAligningInlineAsm() const;
649  InlineAsm::AsmDialect getInlineAsmDialect() const;
650  bool isInsertSubreg() const {
651    return getOpcode() == TargetOpcode::INSERT_SUBREG;
652  }
653  bool isSubregToReg() const {
654    return getOpcode() == TargetOpcode::SUBREG_TO_REG;
655  }
656  bool isRegSequence() const {
657    return getOpcode() == TargetOpcode::REG_SEQUENCE;
658  }
659  bool isBundle() const {
660    return getOpcode() == TargetOpcode::BUNDLE;
661  }
662  bool isCopy() const {
663    return getOpcode() == TargetOpcode::COPY;
664  }
665  bool isFullCopy() const {
666    return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
667  }
668
669  /// isCopyLike - Return true if the instruction behaves like a copy.
670  /// This does not include native copy instructions.
671  bool isCopyLike() const {
672    return isCopy() || isSubregToReg();
673  }
674
675  /// isIdentityCopy - Return true is the instruction is an identity copy.
676  bool isIdentityCopy() const {
677    return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
678      getOperand(0).getSubReg() == getOperand(1).getSubReg();
679  }
680
681  /// isTransient - Return true if this is a transient instruction that is
682  /// either very likely to be eliminated during register allocation (such as
683  /// copy-like instructions), or if this instruction doesn't have an
684  /// execution-time cost.
685  bool isTransient() const {
686    switch(getOpcode()) {
687    default: return false;
688    // Copy-like instructions are usually eliminated during register allocation.
689    case TargetOpcode::PHI:
690    case TargetOpcode::COPY:
691    case TargetOpcode::INSERT_SUBREG:
692    case TargetOpcode::SUBREG_TO_REG:
693    case TargetOpcode::REG_SEQUENCE:
694    // Pseudo-instructions that don't produce any real output.
695    case TargetOpcode::IMPLICIT_DEF:
696    case TargetOpcode::KILL:
697    case TargetOpcode::PROLOG_LABEL:
698    case TargetOpcode::EH_LABEL:
699    case TargetOpcode::GC_LABEL:
700    case TargetOpcode::DBG_VALUE:
701      return true;
702    }
703  }
704
705  /// Return the number of instructions inside the MI bundle, excluding the
706  /// bundle header.
707  ///
708  /// This is the number of instructions that MachineBasicBlock::iterator
709  /// skips, 0 for unbundled instructions.
710  unsigned getBundleSize() const;
711
712  /// readsRegister - Return true if the MachineInstr reads the specified
713  /// register. If TargetRegisterInfo is passed, then it also checks if there
714  /// is a read of a super-register.
715  /// This does not count partial redefines of virtual registers as reads:
716  ///   %reg1024:6 = OP.
717  bool readsRegister(unsigned Reg, const TargetRegisterInfo *TRI = NULL) const {
718    return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
719  }
720
721  /// readsVirtualRegister - Return true if the MachineInstr reads the specified
722  /// virtual register. Take into account that a partial define is a
723  /// read-modify-write operation.
724  bool readsVirtualRegister(unsigned Reg) const {
725    return readsWritesVirtualRegister(Reg).first;
726  }
727
728  /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
729  /// indicating if this instruction reads or writes Reg. This also considers
730  /// partial defines.
731  /// If Ops is not null, all operand indices for Reg are added.
732  std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg,
733                                      SmallVectorImpl<unsigned> *Ops = 0) const;
734
735  /// killsRegister - Return true if the MachineInstr kills the specified
736  /// register. If TargetRegisterInfo is passed, then it also checks if there is
737  /// a kill of a super-register.
738  bool killsRegister(unsigned Reg, const TargetRegisterInfo *TRI = NULL) const {
739    return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
740  }
741
742  /// definesRegister - Return true if the MachineInstr fully defines the
743  /// specified register. If TargetRegisterInfo is passed, then it also checks
744  /// if there is a def of a super-register.
745  /// NOTE: It's ignoring subreg indices on virtual registers.
746  bool definesRegister(unsigned Reg, const TargetRegisterInfo *TRI=NULL) const {
747    return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
748  }
749
750  /// modifiesRegister - Return true if the MachineInstr modifies (fully define
751  /// or partially define) the specified register.
752  /// NOTE: It's ignoring subreg indices on virtual registers.
753  bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const {
754    return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
755  }
756
757  /// registerDefIsDead - Returns true if the register is dead in this machine
758  /// instruction. If TargetRegisterInfo is passed, then it also checks
759  /// if there is a dead def of a super-register.
760  bool registerDefIsDead(unsigned Reg,
761                         const TargetRegisterInfo *TRI = NULL) const {
762    return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
763  }
764
765  /// findRegisterUseOperandIdx() - Returns the operand index that is a use of
766  /// the specific register or -1 if it is not found. It further tightens
767  /// the search criteria to a use that kills the register if isKill is true.
768  int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false,
769                                const TargetRegisterInfo *TRI = NULL) const;
770
771  /// findRegisterUseOperand - Wrapper for findRegisterUseOperandIdx, it returns
772  /// a pointer to the MachineOperand rather than an index.
773  MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false,
774                                         const TargetRegisterInfo *TRI = NULL) {
775    int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
776    return (Idx == -1) ? NULL : &getOperand(Idx);
777  }
778
779  /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
780  /// the specified register or -1 if it is not found. If isDead is true, defs
781  /// that are not dead are skipped. If Overlap is true, then it also looks for
782  /// defs that merely overlap the specified register. If TargetRegisterInfo is
783  /// non-null, then it also checks if there is a def of a super-register.
784  /// This may also return a register mask operand when Overlap is true.
785  int findRegisterDefOperandIdx(unsigned Reg,
786                                bool isDead = false, bool Overlap = false,
787                                const TargetRegisterInfo *TRI = NULL) const;
788
789  /// findRegisterDefOperand - Wrapper for findRegisterDefOperandIdx, it returns
790  /// a pointer to the MachineOperand rather than an index.
791  MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false,
792                                         const TargetRegisterInfo *TRI = NULL) {
793    int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI);
794    return (Idx == -1) ? NULL : &getOperand(Idx);
795  }
796
797  /// findFirstPredOperandIdx() - Find the index of the first operand in the
798  /// operand list that is used to represent the predicate. It returns -1 if
799  /// none is found.
800  int findFirstPredOperandIdx() const;
801
802  /// findInlineAsmFlagIdx() - Find the index of the flag word operand that
803  /// corresponds to operand OpIdx on an inline asm instruction.  Returns -1 if
804  /// getOperand(OpIdx) does not belong to an inline asm operand group.
805  ///
806  /// If GroupNo is not NULL, it will receive the number of the operand group
807  /// containing OpIdx.
808  ///
809  /// The flag operand is an immediate that can be decoded with methods like
810  /// InlineAsm::hasRegClassConstraint().
811  ///
812  int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = 0) const;
813
814  /// getRegClassConstraint - Compute the static register class constraint for
815  /// operand OpIdx.  For normal instructions, this is derived from the
816  /// MCInstrDesc.  For inline assembly it is derived from the flag words.
817  ///
818  /// Returns NULL if the static register classs constraint cannot be
819  /// determined.
820  ///
821  const TargetRegisterClass*
822  getRegClassConstraint(unsigned OpIdx,
823                        const TargetInstrInfo *TII,
824                        const TargetRegisterInfo *TRI) const;
825
826  /// tieOperands - Add a tie between the register operands at DefIdx and
827  /// UseIdx. The tie will cause the register allocator to ensure that the two
828  /// operands are assigned the same physical register.
829  ///
830  /// Tied operands are managed automatically for explicit operands in the
831  /// MCInstrDesc. This method is for exceptional cases like inline asm.
832  void tieOperands(unsigned DefIdx, unsigned UseIdx);
833
834  /// findTiedOperandIdx - Given the index of a tied register operand, find the
835  /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
836  /// index of the tied operand which must exist.
837  unsigned findTiedOperandIdx(unsigned OpIdx) const;
838
839  /// isRegTiedToUseOperand - Given the index of a register def operand,
840  /// check if the register def is tied to a source operand, due to either
841  /// two-address elimination or inline assembly constraints. Returns the
842  /// first tied use operand index by reference if UseOpIdx is not null.
843  bool isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx = 0) const {
844    const MachineOperand &MO = getOperand(DefOpIdx);
845    if (!MO.isReg() || !MO.isDef() || !MO.isTied())
846      return false;
847    if (UseOpIdx)
848      *UseOpIdx = findTiedOperandIdx(DefOpIdx);
849    return true;
850  }
851
852  /// isRegTiedToDefOperand - Return true if the use operand of the specified
853  /// index is tied to an def operand. It also returns the def operand index by
854  /// reference if DefOpIdx is not null.
855  bool isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx = 0) const {
856    const MachineOperand &MO = getOperand(UseOpIdx);
857    if (!MO.isReg() || !MO.isUse() || !MO.isTied())
858      return false;
859    if (DefOpIdx)
860      *DefOpIdx = findTiedOperandIdx(UseOpIdx);
861    return true;
862  }
863
864  /// clearKillInfo - Clears kill flags on all operands.
865  ///
866  void clearKillInfo();
867
868  /// substituteRegister - Replace all occurrences of FromReg with ToReg:SubIdx,
869  /// properly composing subreg indices where necessary.
870  void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx,
871                          const TargetRegisterInfo &RegInfo);
872
873  /// addRegisterKilled - We have determined MI kills a register. Look for the
874  /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
875  /// add a implicit operand if it's not found. Returns true if the operand
876  /// exists / is added.
877  bool addRegisterKilled(unsigned IncomingReg,
878                         const TargetRegisterInfo *RegInfo,
879                         bool AddIfNotFound = false);
880
881  /// clearRegisterKills - Clear all kill flags affecting Reg.  If RegInfo is
882  /// provided, this includes super-register kills.
883  void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo);
884
885  /// addRegisterDead - We have determined MI defined a register without a use.
886  /// Look for the operand that defines it and mark it as IsDead. If
887  /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
888  /// true if the operand exists / is added.
889  bool addRegisterDead(unsigned IncomingReg, const TargetRegisterInfo *RegInfo,
890                       bool AddIfNotFound = false);
891
892  /// addRegisterDefined - We have determined MI defines a register. Make sure
893  /// there is an operand defining Reg.
894  void addRegisterDefined(unsigned IncomingReg,
895                          const TargetRegisterInfo *RegInfo = 0);
896
897  /// setPhysRegsDeadExcept - Mark every physreg used by this instruction as
898  /// dead except those in the UsedRegs list.
899  ///
900  /// On instructions with register mask operands, also add implicit-def
901  /// operands for all registers in UsedRegs.
902  void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
903                             const TargetRegisterInfo &TRI);
904
905  /// isSafeToMove - Return true if it is safe to move this instruction. If
906  /// SawStore is set to true, it means that there is a store (or call) between
907  /// the instruction's location and its intended destination.
908  bool isSafeToMove(const TargetInstrInfo *TII, AliasAnalysis *AA,
909                    bool &SawStore) const;
910
911  /// isSafeToReMat - Return true if it's safe to rematerialize the specified
912  /// instruction which defined the specified register instead of copying it.
913  bool isSafeToReMat(const TargetInstrInfo *TII, AliasAnalysis *AA,
914                     unsigned DstReg) const;
915
916  /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
917  /// or volatile memory reference, or if the information describing the memory
918  /// reference is not available. Return false if it is known to have no
919  /// ordered or volatile memory references.
920  bool hasOrderedMemoryRef() const;
921
922  /// isInvariantLoad - Return true if this instruction is loading from a
923  /// location whose value is invariant across the function.  For example,
924  /// loading a value from the constant pool or from the argument area of
925  /// a function if it does not change.  This should only return true of *all*
926  /// loads the instruction does are invariant (if it does multiple loads).
927  bool isInvariantLoad(AliasAnalysis *AA) const;
928
929  /// isConstantValuePHI - If the specified instruction is a PHI that always
930  /// merges together the same virtual register, return the register, otherwise
931  /// return 0.
932  unsigned isConstantValuePHI() const;
933
934  /// hasUnmodeledSideEffects - Return true if this instruction has side
935  /// effects that are not modeled by mayLoad / mayStore, etc.
936  /// For all instructions, the property is encoded in MCInstrDesc::Flags
937  /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
938  /// INLINEASM instruction, in which case the side effect property is encoded
939  /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
940  ///
941  bool hasUnmodeledSideEffects() const;
942
943  /// allDefsAreDead - Return true if all the defs of this instruction are dead.
944  ///
945  bool allDefsAreDead() const;
946
947  /// copyImplicitOps - Copy implicit register operands from specified
948  /// instruction to this instruction.
949  void copyImplicitOps(MachineFunction &MF, const MachineInstr *MI);
950
951  //
952  // Debugging support
953  //
954  void print(raw_ostream &OS, const TargetMachine *TM = 0,
955             bool SkipOpers = false) const;
956  void dump() const;
957
958  //===--------------------------------------------------------------------===//
959  // Accessors used to build up machine instructions.
960
961  /// Add the specified operand to the instruction.  If it is an implicit
962  /// operand, it is added to the end of the operand list.  If it is an
963  /// explicit operand it is added at the end of the explicit operand list
964  /// (before the first implicit operand).
965  ///
966  /// MF must be the machine function that was used to allocate this
967  /// instruction.
968  ///
969  /// MachineInstrBuilder provides a more convenient interface for creating
970  /// instructions and adding operands.
971  void addOperand(MachineFunction &MF, const MachineOperand &Op);
972
973  /// Add an operand without providing an MF reference. This only works for
974  /// instructions that are inserted in a basic block.
975  ///
976  /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
977  /// preferred.
978  void addOperand(const MachineOperand &Op);
979
980  /// setDesc - Replace the instruction descriptor (thus opcode) of
981  /// the current instruction with a new one.
982  ///
983  void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
984
985  /// setDebugLoc - Replace current source information with new such.
986  /// Avoid using this, the constructor argument is preferable.
987  ///
988  void setDebugLoc(const DebugLoc dl) { debugLoc = dl; }
989
990  /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
991  /// fewer operand than it started with.
992  ///
993  void RemoveOperand(unsigned i);
994
995  /// addMemOperand - Add a MachineMemOperand to the machine instruction.
996  /// This function should be used only occasionally. The setMemRefs function
997  /// is the primary method for setting up a MachineInstr's MemRefs list.
998  void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
999
1000  /// setMemRefs - Assign this MachineInstr's memory reference descriptor
1001  /// list. This does not transfer ownership.
1002  void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
1003    MemRefs = NewMemRefs;
1004    NumMemRefs = uint8_t(NewMemRefsEnd - NewMemRefs);
1005    assert(NumMemRefs == NewMemRefsEnd - NewMemRefs && "Too many memrefs");
1006  }
1007
1008private:
1009  /// getRegInfo - If this instruction is embedded into a MachineFunction,
1010  /// return the MachineRegisterInfo object for the current function, otherwise
1011  /// return null.
1012  MachineRegisterInfo *getRegInfo();
1013
1014  /// untieRegOperand - Break any tie involving OpIdx.
1015  void untieRegOperand(unsigned OpIdx) {
1016    MachineOperand &MO = getOperand(OpIdx);
1017    if (MO.isReg() && MO.isTied()) {
1018      getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
1019      MO.TiedTo = 0;
1020    }
1021  }
1022
1023  /// addImplicitDefUseOperands - Add all implicit def and use operands to
1024  /// this instruction.
1025  void addImplicitDefUseOperands(MachineFunction &MF);
1026
1027  /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
1028  /// this instruction from their respective use lists.  This requires that the
1029  /// operands already be on their use lists.
1030  void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);
1031
1032  /// AddRegOperandsToUseLists - Add all of the register operands in
1033  /// this instruction from their respective use lists.  This requires that the
1034  /// operands not be on their use lists yet.
1035  void AddRegOperandsToUseLists(MachineRegisterInfo&);
1036
1037  /// hasPropertyInBundle - Slow path for hasProperty when we're dealing with a
1038  /// bundle.
1039  bool hasPropertyInBundle(unsigned Mask, QueryType Type) const;
1040};
1041
1042/// MachineInstrExpressionTrait - Special DenseMapInfo traits to compare
1043/// MachineInstr* by *value* of the instruction rather than by pointer value.
1044/// The hashing and equality testing functions ignore definitions so this is
1045/// useful for CSE, etc.
1046struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
1047  static inline MachineInstr *getEmptyKey() {
1048    return 0;
1049  }
1050
1051  static inline MachineInstr *getTombstoneKey() {
1052    return reinterpret_cast<MachineInstr*>(-1);
1053  }
1054
1055  static unsigned getHashValue(const MachineInstr* const &MI);
1056
1057  static bool isEqual(const MachineInstr* const &LHS,
1058                      const MachineInstr* const &RHS) {
1059    if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
1060        LHS == getEmptyKey() || LHS == getTombstoneKey())
1061      return LHS == RHS;
1062    return LHS->isIdenticalTo(RHS, MachineInstr::IgnoreVRegDefs);
1063  }
1064};
1065
1066//===----------------------------------------------------------------------===//
1067// Debugging Support
1068
1069inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
1070  MI.print(OS);
1071  return OS;
1072}
1073
1074} // End llvm namespace
1075
1076#endif
1077