1//===-- llvm/CodeGen/LiveInterval.h - Interval representation ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveRange and LiveInterval classes.  Given some
11// numbering of each the machine instructions an interval [i, j) is said to be a
12// live interval for register v if there is no instruction with number j' >= j
13// such that v is live at j' and there is no instruction with number i' < i such
14// that v is live at i'. In this implementation intervals can have holes,
15// i.e. an interval might look like [1,20), [50,65), [1000,1001).  Each
16// individual range is represented as an instance of LiveRange, and the whole
17// interval is represented as an instance of LiveInterval.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_CODEGEN_LIVEINTERVAL_H
22#define LLVM_CODEGEN_LIVEINTERVAL_H
23
24#include "llvm/ADT/IntEqClasses.h"
25#include "llvm/CodeGen/SlotIndexes.h"
26#include "llvm/Support/AlignOf.h"
27#include "llvm/Support/Allocator.h"
28#include <cassert>
29#include <climits>
30
31namespace llvm {
32  class CoalescerPair;
33  class LiveIntervals;
34  class MachineInstr;
35  class MachineRegisterInfo;
36  class TargetRegisterInfo;
37  class raw_ostream;
38
39  /// VNInfo - Value Number Information.
40  /// This class holds information about a machine level values, including
41  /// definition and use points.
42  ///
43  class VNInfo {
44  public:
45    typedef BumpPtrAllocator Allocator;
46
47    /// The ID number of this value.
48    unsigned id;
49
50    /// The index of the defining instruction.
51    SlotIndex def;
52
53    /// VNInfo constructor.
54    VNInfo(unsigned i, SlotIndex d)
55      : id(i), def(d)
56    { }
57
58    /// VNInfo construtor, copies values from orig, except for the value number.
59    VNInfo(unsigned i, const VNInfo &orig)
60      : id(i), def(orig.def)
61    { }
62
63    /// Copy from the parameter into this VNInfo.
64    void copyFrom(VNInfo &src) {
65      def = src.def;
66    }
67
68    /// Returns true if this value is defined by a PHI instruction (or was,
69    /// PHI instrucions may have been eliminated).
70    /// PHI-defs begin at a block boundary, all other defs begin at register or
71    /// EC slots.
72    bool isPHIDef() const { return def.isBlock(); }
73
74    /// Returns true if this value is unused.
75    bool isUnused() const { return !def.isValid(); }
76
77    /// Mark this value as unused.
78    void markUnused() { def = SlotIndex(); }
79  };
80
81  /// LiveRange structure - This represents a simple register range in the
82  /// program, with an inclusive start point and an exclusive end point.
83  /// These ranges are rendered as [start,end).
84  struct LiveRange {
85    SlotIndex start;  // Start point of the interval (inclusive)
86    SlotIndex end;    // End point of the interval (exclusive)
87    VNInfo *valno;   // identifier for the value contained in this interval.
88
89    LiveRange() : valno(0) {}
90
91    LiveRange(SlotIndex S, SlotIndex E, VNInfo *V)
92      : start(S), end(E), valno(V) {
93      assert(S < E && "Cannot create empty or backwards range");
94    }
95
96    /// contains - Return true if the index is covered by this range.
97    ///
98    bool contains(SlotIndex I) const {
99      return start <= I && I < end;
100    }
101
102    /// containsRange - Return true if the given range, [S, E), is covered by
103    /// this range.
104    bool containsRange(SlotIndex S, SlotIndex E) const {
105      assert((S < E) && "Backwards interval?");
106      return (start <= S && S < end) && (start < E && E <= end);
107    }
108
109    bool operator<(const LiveRange &LR) const {
110      return start < LR.start || (start == LR.start && end < LR.end);
111    }
112    bool operator==(const LiveRange &LR) const {
113      return start == LR.start && end == LR.end;
114    }
115
116    void dump() const;
117    void print(raw_ostream &os) const;
118  };
119
120  template <> struct isPodLike<LiveRange> { static const bool value = true; };
121
122  raw_ostream& operator<<(raw_ostream& os, const LiveRange &LR);
123
124
125  inline bool operator<(SlotIndex V, const LiveRange &LR) {
126    return V < LR.start;
127  }
128
129  inline bool operator<(const LiveRange &LR, SlotIndex V) {
130    return LR.start < V;
131  }
132
133  /// LiveInterval - This class represents some number of live ranges for a
134  /// register or value.  This class also contains a bit of register allocator
135  /// state.
136  class LiveInterval {
137  public:
138
139    typedef SmallVector<LiveRange,4> Ranges;
140    typedef SmallVector<VNInfo*,4> VNInfoList;
141
142    const unsigned reg;  // the register or stack slot of this interval.
143    float weight;        // weight of this interval
144    Ranges ranges;       // the ranges in which this register is live
145    VNInfoList valnos;   // value#'s
146
147    struct InstrSlots {
148      enum {
149        LOAD  = 0,
150        USE   = 1,
151        DEF   = 2,
152        STORE = 3,
153        NUM   = 4
154      };
155
156    };
157
158    LiveInterval(unsigned Reg, float Weight)
159      : reg(Reg), weight(Weight) {}
160
161    typedef Ranges::iterator iterator;
162    iterator begin() { return ranges.begin(); }
163    iterator end()   { return ranges.end(); }
164
165    typedef Ranges::const_iterator const_iterator;
166    const_iterator begin() const { return ranges.begin(); }
167    const_iterator end() const  { return ranges.end(); }
168
169    typedef VNInfoList::iterator vni_iterator;
170    vni_iterator vni_begin() { return valnos.begin(); }
171    vni_iterator vni_end() { return valnos.end(); }
172
173    typedef VNInfoList::const_iterator const_vni_iterator;
174    const_vni_iterator vni_begin() const { return valnos.begin(); }
175    const_vni_iterator vni_end() const { return valnos.end(); }
176
177    /// advanceTo - Advance the specified iterator to point to the LiveRange
178    /// containing the specified position, or end() if the position is past the
179    /// end of the interval.  If no LiveRange contains this position, but the
180    /// position is in a hole, this method returns an iterator pointing to the
181    /// LiveRange immediately after the hole.
182    iterator advanceTo(iterator I, SlotIndex Pos) {
183      assert(I != end());
184      if (Pos >= endIndex())
185        return end();
186      while (I->end <= Pos) ++I;
187      return I;
188    }
189
190    /// find - Return an iterator pointing to the first range that ends after
191    /// Pos, or end(). This is the same as advanceTo(begin(), Pos), but faster
192    /// when searching large intervals.
193    ///
194    /// If Pos is contained in a LiveRange, that range is returned.
195    /// If Pos is in a hole, the following LiveRange is returned.
196    /// If Pos is beyond endIndex, end() is returned.
197    iterator find(SlotIndex Pos);
198
199    const_iterator find(SlotIndex Pos) const {
200      return const_cast<LiveInterval*>(this)->find(Pos);
201    }
202
203    void clear() {
204      valnos.clear();
205      ranges.clear();
206    }
207
208    bool hasAtLeastOneValue() const { return !valnos.empty(); }
209
210    bool containsOneValue() const { return valnos.size() == 1; }
211
212    unsigned getNumValNums() const { return (unsigned)valnos.size(); }
213
214    /// getValNumInfo - Returns pointer to the specified val#.
215    ///
216    inline VNInfo *getValNumInfo(unsigned ValNo) {
217      return valnos[ValNo];
218    }
219    inline const VNInfo *getValNumInfo(unsigned ValNo) const {
220      return valnos[ValNo];
221    }
222
223    /// containsValue - Returns true if VNI belongs to this interval.
224    bool containsValue(const VNInfo *VNI) const {
225      return VNI && VNI->id < getNumValNums() && VNI == getValNumInfo(VNI->id);
226    }
227
228    /// getNextValue - Create a new value number and return it.  MIIdx specifies
229    /// the instruction that defines the value number.
230    VNInfo *getNextValue(SlotIndex def, VNInfo::Allocator &VNInfoAllocator) {
231      VNInfo *VNI =
232        new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), def);
233      valnos.push_back(VNI);
234      return VNI;
235    }
236
237    /// createDeadDef - Make sure the interval has a value defined at Def.
238    /// If one already exists, return it. Otherwise allocate a new value and
239    /// add liveness for a dead def.
240    VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNInfoAllocator);
241
242    /// Create a copy of the given value. The new value will be identical except
243    /// for the Value number.
244    VNInfo *createValueCopy(const VNInfo *orig,
245                            VNInfo::Allocator &VNInfoAllocator) {
246      VNInfo *VNI =
247        new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), *orig);
248      valnos.push_back(VNI);
249      return VNI;
250    }
251
252    /// RenumberValues - Renumber all values in order of appearance and remove
253    /// unused values.
254    void RenumberValues(LiveIntervals &lis);
255
256    /// MergeValueNumberInto - This method is called when two value nubmers
257    /// are found to be equivalent.  This eliminates V1, replacing all
258    /// LiveRanges with the V1 value number with the V2 value number.  This can
259    /// cause merging of V1/V2 values numbers and compaction of the value space.
260    VNInfo* MergeValueNumberInto(VNInfo *V1, VNInfo *V2);
261
262    /// MergeValueInAsValue - Merge all of the live ranges of a specific val#
263    /// in RHS into this live interval as the specified value number.
264    /// The LiveRanges in RHS are allowed to overlap with LiveRanges in the
265    /// current interval, it will replace the value numbers of the overlaped
266    /// live ranges with the specified value number.
267    void MergeRangesInAsValue(const LiveInterval &RHS, VNInfo *LHSValNo);
268
269    /// MergeValueInAsValue - Merge all of the live ranges of a specific val#
270    /// in RHS into this live interval as the specified value number.
271    /// The LiveRanges in RHS are allowed to overlap with LiveRanges in the
272    /// current interval, but only if the overlapping LiveRanges have the
273    /// specified value number.
274    void MergeValueInAsValue(const LiveInterval &RHS,
275                             const VNInfo *RHSValNo, VNInfo *LHSValNo);
276
277    bool empty() const { return ranges.empty(); }
278
279    /// beginIndex - Return the lowest numbered slot covered by interval.
280    SlotIndex beginIndex() const {
281      assert(!empty() && "Call to beginIndex() on empty interval.");
282      return ranges.front().start;
283    }
284
285    /// endNumber - return the maximum point of the interval of the whole,
286    /// exclusive.
287    SlotIndex endIndex() const {
288      assert(!empty() && "Call to endIndex() on empty interval.");
289      return ranges.back().end;
290    }
291
292    bool expiredAt(SlotIndex index) const {
293      return index >= endIndex();
294    }
295
296    bool liveAt(SlotIndex index) const {
297      const_iterator r = find(index);
298      return r != end() && r->start <= index;
299    }
300
301    /// killedAt - Return true if a live range ends at index. Note that the kill
302    /// point is not contained in the half-open live range. It is usually the
303    /// getDefIndex() slot following its last use.
304    bool killedAt(SlotIndex index) const {
305      const_iterator r = find(index.getRegSlot(true));
306      return r != end() && r->end == index;
307    }
308
309    /// getLiveRangeContaining - Return the live range that contains the
310    /// specified index, or null if there is none.
311    const LiveRange *getLiveRangeContaining(SlotIndex Idx) const {
312      const_iterator I = FindLiveRangeContaining(Idx);
313      return I == end() ? 0 : &*I;
314    }
315
316    /// getLiveRangeContaining - Return the live range that contains the
317    /// specified index, or null if there is none.
318    LiveRange *getLiveRangeContaining(SlotIndex Idx) {
319      iterator I = FindLiveRangeContaining(Idx);
320      return I == end() ? 0 : &*I;
321    }
322
323    /// getVNInfoAt - Return the VNInfo that is live at Idx, or NULL.
324    VNInfo *getVNInfoAt(SlotIndex Idx) const {
325      const_iterator I = FindLiveRangeContaining(Idx);
326      return I == end() ? 0 : I->valno;
327    }
328
329    /// getVNInfoBefore - Return the VNInfo that is live up to but not
330    /// necessarilly including Idx, or NULL. Use this to find the reaching def
331    /// used by an instruction at this SlotIndex position.
332    VNInfo *getVNInfoBefore(SlotIndex Idx) const {
333      const_iterator I = FindLiveRangeContaining(Idx.getPrevSlot());
334      return I == end() ? 0 : I->valno;
335    }
336
337    /// FindLiveRangeContaining - Return an iterator to the live range that
338    /// contains the specified index, or end() if there is none.
339    iterator FindLiveRangeContaining(SlotIndex Idx) {
340      iterator I = find(Idx);
341      return I != end() && I->start <= Idx ? I : end();
342    }
343
344    const_iterator FindLiveRangeContaining(SlotIndex Idx) const {
345      const_iterator I = find(Idx);
346      return I != end() && I->start <= Idx ? I : end();
347    }
348
349    /// overlaps - Return true if the intersection of the two live intervals is
350    /// not empty.
351    bool overlaps(const LiveInterval& other) const {
352      if (other.empty())
353        return false;
354      return overlapsFrom(other, other.begin());
355    }
356
357    /// overlaps - Return true if the two intervals have overlapping segments
358    /// that are not coalescable according to CP.
359    ///
360    /// Overlapping segments where one interval is defined by a coalescable
361    /// copy are allowed.
362    bool overlaps(const LiveInterval &Other, const CoalescerPair &CP,
363                  const SlotIndexes&) const;
364
365    /// overlaps - Return true if the live interval overlaps a range specified
366    /// by [Start, End).
367    bool overlaps(SlotIndex Start, SlotIndex End) const;
368
369    /// overlapsFrom - Return true if the intersection of the two live intervals
370    /// is not empty.  The specified iterator is a hint that we can begin
371    /// scanning the Other interval starting at I.
372    bool overlapsFrom(const LiveInterval& other, const_iterator I) const;
373
374    /// addRange - Add the specified LiveRange to this interval, merging
375    /// intervals as appropriate.  This returns an iterator to the inserted live
376    /// range (which may have grown since it was inserted.
377    iterator addRange(LiveRange LR) {
378      return addRangeFrom(LR, ranges.begin());
379    }
380
381    /// extendInBlock - If this interval is live before Kill in the basic block
382    /// that starts at StartIdx, extend it to be live up to Kill, and return
383    /// the value. If there is no live range before Kill, return NULL.
384    VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Kill);
385
386    /// join - Join two live intervals (this, and other) together.  This applies
387    /// mappings to the value numbers in the LHS/RHS intervals as specified.  If
388    /// the intervals are not joinable, this aborts.
389    void join(LiveInterval &Other,
390              const int *ValNoAssignments,
391              const int *RHSValNoAssignments,
392              SmallVector<VNInfo*, 16> &NewVNInfo,
393              MachineRegisterInfo *MRI);
394
395    /// isInOneLiveRange - Return true if the range specified is entirely in the
396    /// a single LiveRange of the live interval.
397    bool isInOneLiveRange(SlotIndex Start, SlotIndex End) const {
398      const_iterator r = find(Start);
399      return r != end() && r->containsRange(Start, End);
400    }
401
402    /// True iff this live range is a single segment that lies between the
403    /// specified boundaries, exclusively. Vregs live across a backedge are not
404    /// considered local. The boundaries are expected to lie within an extended
405    /// basic block, so vregs that are not live out should contain no holes.
406    bool isLocal(SlotIndex Start, SlotIndex End) const {
407      return beginIndex() > Start.getBaseIndex() &&
408        endIndex() < End.getBoundaryIndex();
409    }
410
411    /// removeRange - Remove the specified range from this interval.  Note that
412    /// the range must be a single LiveRange in its entirety.
413    void removeRange(SlotIndex Start, SlotIndex End,
414                     bool RemoveDeadValNo = false);
415
416    void removeRange(LiveRange LR, bool RemoveDeadValNo = false) {
417      removeRange(LR.start, LR.end, RemoveDeadValNo);
418    }
419
420    /// removeValNo - Remove all the ranges defined by the specified value#.
421    /// Also remove the value# from value# list.
422    void removeValNo(VNInfo *ValNo);
423
424    /// getSize - Returns the sum of sizes of all the LiveRange's.
425    ///
426    unsigned getSize() const;
427
428    /// Returns true if the live interval is zero length, i.e. no live ranges
429    /// span instructions. It doesn't pay to spill such an interval.
430    bool isZeroLength(SlotIndexes *Indexes) const {
431      for (const_iterator i = begin(), e = end(); i != e; ++i)
432        if (Indexes->getNextNonNullIndex(i->start).getBaseIndex() <
433            i->end.getBaseIndex())
434          return false;
435      return true;
436    }
437
438    /// isSpillable - Can this interval be spilled?
439    bool isSpillable() const {
440      return weight != HUGE_VALF;
441    }
442
443    /// markNotSpillable - Mark interval as not spillable
444    void markNotSpillable() {
445      weight = HUGE_VALF;
446    }
447
448    bool operator<(const LiveInterval& other) const {
449      const SlotIndex &thisIndex = beginIndex();
450      const SlotIndex &otherIndex = other.beginIndex();
451      return (thisIndex < otherIndex ||
452              (thisIndex == otherIndex && reg < other.reg));
453    }
454
455    void print(raw_ostream &OS) const;
456    void dump() const;
457
458    /// \brief Walk the interval and assert if any invariants fail to hold.
459    ///
460    /// Note that this is a no-op when asserts are disabled.
461#ifdef NDEBUG
462    void verify() const {}
463#else
464    void verify() const;
465#endif
466
467  private:
468
469    Ranges::iterator addRangeFrom(LiveRange LR, Ranges::iterator From);
470    void extendIntervalEndTo(Ranges::iterator I, SlotIndex NewEnd);
471    Ranges::iterator extendIntervalStartTo(Ranges::iterator I, SlotIndex NewStr);
472    void markValNoForDeletion(VNInfo *V);
473
474    LiveInterval& operator=(const LiveInterval& rhs) LLVM_DELETED_FUNCTION;
475
476  };
477
478  inline raw_ostream &operator<<(raw_ostream &OS, const LiveInterval &LI) {
479    LI.print(OS);
480    return OS;
481  }
482
483  /// Helper class for performant LiveInterval bulk updates.
484  ///
485  /// Calling LiveInterval::addRange() repeatedly can be expensive on large
486  /// live ranges because segments after the insertion point may need to be
487  /// shifted. The LiveRangeUpdater class can defer the shifting when adding
488  /// many segments in order.
489  ///
490  /// The LiveInterval will be in an invalid state until flush() is called.
491  class LiveRangeUpdater {
492    LiveInterval *LI;
493    SlotIndex LastStart;
494    LiveInterval::iterator WriteI;
495    LiveInterval::iterator ReadI;
496    SmallVector<LiveRange, 16> Spills;
497    void mergeSpills();
498
499  public:
500    /// Create a LiveRangeUpdater for adding segments to LI.
501    /// LI will temporarily be in an invalid state until flush() is called.
502    LiveRangeUpdater(LiveInterval *li = 0) : LI(li) {}
503
504    ~LiveRangeUpdater() { flush(); }
505
506    /// Add a segment to LI and coalesce when possible, just like LI.addRange().
507    /// Segments should be added in increasing start order for best performance.
508    void add(LiveRange);
509
510    void add(SlotIndex Start, SlotIndex End, VNInfo *VNI) {
511      add(LiveRange(Start, End, VNI));
512    }
513
514    /// Return true if the LI is currently in an invalid state, and flush()
515    /// needs to be called.
516    bool isDirty() const { return LastStart.isValid(); }
517
518    /// Flush the updater state to LI so it is valid and contains all added
519    /// segments.
520    void flush();
521
522    /// Select a different destination live range.
523    void setDest(LiveInterval *li) {
524      if (LI != li && isDirty())
525        flush();
526      LI = li;
527    }
528
529    /// Get the current destination live range.
530    LiveInterval *getDest() const { return LI; }
531
532    void dump() const;
533    void print(raw_ostream&) const;
534  };
535
536  inline raw_ostream &operator<<(raw_ostream &OS, const LiveRangeUpdater &X) {
537    X.print(OS);
538    return OS;
539  }
540
541  /// LiveRangeQuery - Query information about a live range around a given
542  /// instruction. This class hides the implementation details of live ranges,
543  /// and it should be used as the primary interface for examining live ranges
544  /// around instructions.
545  ///
546  class LiveRangeQuery {
547    VNInfo *EarlyVal;
548    VNInfo *LateVal;
549    SlotIndex EndPoint;
550    bool Kill;
551
552  public:
553    /// Create a LiveRangeQuery for the given live range and instruction index.
554    /// The sub-instruction slot of Idx doesn't matter, only the instruction it
555    /// refers to is considered.
556    LiveRangeQuery(const LiveInterval &LI, SlotIndex Idx)
557      : EarlyVal(0), LateVal(0), Kill(false) {
558      // Find the segment that enters the instruction.
559      LiveInterval::const_iterator I = LI.find(Idx.getBaseIndex());
560      LiveInterval::const_iterator E = LI.end();
561      if (I == E)
562        return;
563      // Is this an instruction live-in segment?
564      // If Idx is the start index of a basic block, include live-in segments
565      // that start at Idx.getBaseIndex().
566      if (I->start <= Idx.getBaseIndex()) {
567        EarlyVal = I->valno;
568        EndPoint = I->end;
569        // Move to the potentially live-out segment.
570        if (SlotIndex::isSameInstr(Idx, I->end)) {
571          Kill = true;
572          if (++I == E)
573            return;
574        }
575        // Special case: A PHIDef value can have its def in the middle of a
576        // segment if the value happens to be live out of the layout
577        // predecessor.
578        // Such a value is not live-in.
579        if (EarlyVal->def == Idx.getBaseIndex())
580          EarlyVal = 0;
581      }
582      // I now points to the segment that may be live-through, or defined by
583      // this instr. Ignore segments starting after the current instr.
584      if (SlotIndex::isEarlierInstr(Idx, I->start))
585        return;
586      LateVal = I->valno;
587      EndPoint = I->end;
588    }
589
590    /// Return the value that is live-in to the instruction. This is the value
591    /// that will be read by the instruction's use operands. Return NULL if no
592    /// value is live-in.
593    VNInfo *valueIn() const {
594      return EarlyVal;
595    }
596
597    /// Return true if the live-in value is killed by this instruction. This
598    /// means that either the live range ends at the instruction, or it changes
599    /// value.
600    bool isKill() const {
601      return Kill;
602    }
603
604    /// Return true if this instruction has a dead def.
605    bool isDeadDef() const {
606      return EndPoint.isDead();
607    }
608
609    /// Return the value leaving the instruction, if any. This can be a
610    /// live-through value, or a live def. A dead def returns NULL.
611    VNInfo *valueOut() const {
612      return isDeadDef() ? 0 : LateVal;
613    }
614
615    /// Return the value defined by this instruction, if any. This includes
616    /// dead defs, it is the value created by the instruction's def operands.
617    VNInfo *valueDefined() const {
618      return EarlyVal == LateVal ? 0 : LateVal;
619    }
620
621    /// Return the end point of the last live range segment to interact with
622    /// the instruction, if any.
623    ///
624    /// The end point is an invalid SlotIndex only if the live range doesn't
625    /// intersect the instruction at all.
626    ///
627    /// The end point may be at or past the end of the instruction's basic
628    /// block. That means the value was live out of the block.
629    SlotIndex endPoint() const {
630      return EndPoint;
631    }
632  };
633
634  /// ConnectedVNInfoEqClasses - Helper class that can divide VNInfos in a
635  /// LiveInterval into equivalence clases of connected components. A
636  /// LiveInterval that has multiple connected components can be broken into
637  /// multiple LiveIntervals.
638  ///
639  /// Given a LiveInterval that may have multiple connected components, run:
640  ///
641  ///   unsigned numComps = ConEQ.Classify(LI);
642  ///   if (numComps > 1) {
643  ///     // allocate numComps-1 new LiveIntervals into LIS[1..]
644  ///     ConEQ.Distribute(LIS);
645  /// }
646
647  class ConnectedVNInfoEqClasses {
648    LiveIntervals &LIS;
649    IntEqClasses EqClass;
650
651    // Note that values a and b are connected.
652    void Connect(unsigned a, unsigned b);
653
654    unsigned Renumber();
655
656  public:
657    explicit ConnectedVNInfoEqClasses(LiveIntervals &lis) : LIS(lis) {}
658
659    /// Classify - Classify the values in LI into connected components.
660    /// Return the number of connected components.
661    unsigned Classify(const LiveInterval *LI);
662
663    /// getEqClass - Classify creates equivalence classes numbered 0..N. Return
664    /// the equivalence class assigned the VNI.
665    unsigned getEqClass(const VNInfo *VNI) const { return EqClass[VNI->id]; }
666
667    /// Distribute - Distribute values in LIV[0] into a separate LiveInterval
668    /// for each connected component. LIV must have a LiveInterval for each
669    /// connected component. The LiveIntervals in Liv[1..] must be empty.
670    /// Instructions using LIV[0] are rewritten.
671    void Distribute(LiveInterval *LIV[], MachineRegisterInfo &MRI);
672
673  };
674
675}
676#endif
677