1//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision integral
11// constant values and operations on them.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ADT_APINT_H
16#define LLVM_ADT_APINT_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/Support/Compiler.h"
20#include "llvm/Support/MathExtras.h"
21#include <cassert>
22#include <climits>
23#include <cstring>
24#include <string>
25
26namespace llvm {
27  class Deserializer;
28  class FoldingSetNodeID;
29  class Serializer;
30  class StringRef;
31  class hash_code;
32  class raw_ostream;
33
34  template<typename T>
35  class SmallVectorImpl;
36
37  // An unsigned host type used as a single part of a multi-part
38  // bignum.
39  typedef uint64_t integerPart;
40
41  const unsigned int host_char_bit = 8;
42  const unsigned int integerPartWidth = host_char_bit *
43    static_cast<unsigned int>(sizeof(integerPart));
44
45//===----------------------------------------------------------------------===//
46//                              APInt Class
47//===----------------------------------------------------------------------===//
48
49/// APInt - This class represents arbitrary precision constant integral values.
50/// It is a functional replacement for common case unsigned integer type like
51/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
52/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
53/// than 64-bits of precision. APInt provides a variety of arithmetic operators
54/// and methods to manipulate integer values of any bit-width. It supports both
55/// the typical integer arithmetic and comparison operations as well as bitwise
56/// manipulation.
57///
58/// The class has several invariants worth noting:
59///   * All bit, byte, and word positions are zero-based.
60///   * Once the bit width is set, it doesn't change except by the Truncate,
61///     SignExtend, or ZeroExtend operations.
62///   * All binary operators must be on APInt instances of the same bit width.
63///     Attempting to use these operators on instances with different bit
64///     widths will yield an assertion.
65///   * The value is stored canonically as an unsigned value. For operations
66///     where it makes a difference, there are both signed and unsigned variants
67///     of the operation. For example, sdiv and udiv. However, because the bit
68///     widths must be the same, operations such as Mul and Add produce the same
69///     results regardless of whether the values are interpreted as signed or
70///     not.
71///   * In general, the class tries to follow the style of computation that LLVM
72///     uses in its IR. This simplifies its use for LLVM.
73///
74/// @brief Class for arbitrary precision integers.
75class APInt {
76  unsigned BitWidth;      ///< The number of bits in this APInt.
77
78  /// This union is used to store the integer value. When the
79  /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
80  union {
81    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
82    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
83  };
84
85  /// This enum is used to hold the constants we needed for APInt.
86  enum {
87    /// Bits in a word
88    APINT_BITS_PER_WORD = static_cast<unsigned int>(sizeof(uint64_t)) *
89                          CHAR_BIT,
90    /// Byte size of a word
91    APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t))
92  };
93
94  /// This constructor is used only internally for speed of construction of
95  /// temporaries. It is unsafe for general use so it is not public.
96  /// @brief Fast internal constructor
97  APInt(uint64_t* val, unsigned bits) : BitWidth(bits), pVal(val) { }
98
99  /// @returns true if the number of bits <= 64, false otherwise.
100  /// @brief Determine if this APInt just has one word to store value.
101  bool isSingleWord() const {
102    return BitWidth <= APINT_BITS_PER_WORD;
103  }
104
105  /// @returns the word position for the specified bit position.
106  /// @brief Determine which word a bit is in.
107  static unsigned whichWord(unsigned bitPosition) {
108    return bitPosition / APINT_BITS_PER_WORD;
109  }
110
111  /// @returns the bit position in a word for the specified bit position
112  /// in the APInt.
113  /// @brief Determine which bit in a word a bit is in.
114  static unsigned whichBit(unsigned bitPosition) {
115    return bitPosition % APINT_BITS_PER_WORD;
116  }
117
118  /// This method generates and returns a uint64_t (word) mask for a single
119  /// bit at a specific bit position. This is used to mask the bit in the
120  /// corresponding word.
121  /// @returns a uint64_t with only bit at "whichBit(bitPosition)" set
122  /// @brief Get a single bit mask.
123  static uint64_t maskBit(unsigned bitPosition) {
124    return 1ULL << whichBit(bitPosition);
125  }
126
127  /// This method is used internally to clear the to "N" bits in the high order
128  /// word that are not used by the APInt. This is needed after the most
129  /// significant word is assigned a value to ensure that those bits are
130  /// zero'd out.
131  /// @brief Clear unused high order bits
132  APInt& clearUnusedBits() {
133    // Compute how many bits are used in the final word
134    unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
135    if (wordBits == 0)
136      // If all bits are used, we want to leave the value alone. This also
137      // avoids the undefined behavior of >> when the shift is the same size as
138      // the word size (64).
139      return *this;
140
141    // Mask out the high bits.
142    uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits);
143    if (isSingleWord())
144      VAL &= mask;
145    else
146      pVal[getNumWords() - 1] &= mask;
147    return *this;
148  }
149
150  /// @returns the corresponding word for the specified bit position.
151  /// @brief Get the word corresponding to a bit position
152  uint64_t getWord(unsigned bitPosition) const {
153    return isSingleWord() ? VAL : pVal[whichWord(bitPosition)];
154  }
155
156  /// Converts a string into a number.  The string must be non-empty
157  /// and well-formed as a number of the given base. The bit-width
158  /// must be sufficient to hold the result.
159  ///
160  /// This is used by the constructors that take string arguments.
161  ///
162  /// StringRef::getAsInteger is superficially similar but (1) does
163  /// not assume that the string is well-formed and (2) grows the
164  /// result to hold the input.
165  ///
166  /// @param radix 2, 8, 10, 16, or 36
167  /// @brief Convert a char array into an APInt
168  void fromString(unsigned numBits, StringRef str, uint8_t radix);
169
170  /// This is used by the toString method to divide by the radix. It simply
171  /// provides a more convenient form of divide for internal use since KnuthDiv
172  /// has specific constraints on its inputs. If those constraints are not met
173  /// then it provides a simpler form of divide.
174  /// @brief An internal division function for dividing APInts.
175  static void divide(const APInt LHS, unsigned lhsWords,
176                     const APInt &RHS, unsigned rhsWords,
177                     APInt *Quotient, APInt *Remainder);
178
179  /// out-of-line slow case for inline constructor
180  void initSlowCase(unsigned numBits, uint64_t val, bool isSigned);
181
182  /// shared code between two array constructors
183  void initFromArray(ArrayRef<uint64_t> array);
184
185  /// out-of-line slow case for inline copy constructor
186  void initSlowCase(const APInt& that);
187
188  /// out-of-line slow case for shl
189  APInt shlSlowCase(unsigned shiftAmt) const;
190
191  /// out-of-line slow case for operator&
192  APInt AndSlowCase(const APInt& RHS) const;
193
194  /// out-of-line slow case for operator|
195  APInt OrSlowCase(const APInt& RHS) const;
196
197  /// out-of-line slow case for operator^
198  APInt XorSlowCase(const APInt& RHS) const;
199
200  /// out-of-line slow case for operator=
201  APInt& AssignSlowCase(const APInt& RHS);
202
203  /// out-of-line slow case for operator==
204  bool EqualSlowCase(const APInt& RHS) const;
205
206  /// out-of-line slow case for operator==
207  bool EqualSlowCase(uint64_t Val) const;
208
209  /// out-of-line slow case for countLeadingZeros
210  unsigned countLeadingZerosSlowCase() const;
211
212  /// out-of-line slow case for countTrailingOnes
213  unsigned countTrailingOnesSlowCase() const;
214
215  /// out-of-line slow case for countPopulation
216  unsigned countPopulationSlowCase() const;
217
218public:
219  /// @name Constructors
220  /// @{
221  /// If isSigned is true then val is treated as if it were a signed value
222  /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
223  /// will be done. Otherwise, no sign extension occurs (high order bits beyond
224  /// the range of val are zero filled).
225  /// @param numBits the bit width of the constructed APInt
226  /// @param val the initial value of the APInt
227  /// @param isSigned how to treat signedness of val
228  /// @brief Create a new APInt of numBits width, initialized as val.
229  APInt(unsigned numBits, uint64_t val, bool isSigned = false)
230    : BitWidth(numBits), VAL(0) {
231    assert(BitWidth && "bitwidth too small");
232    if (isSingleWord())
233      VAL = val;
234    else
235      initSlowCase(numBits, val, isSigned);
236    clearUnusedBits();
237  }
238
239  /// Note that bigVal.size() can be smaller or larger than the corresponding
240  /// bit width but any extraneous bits will be dropped.
241  /// @param numBits the bit width of the constructed APInt
242  /// @param bigVal a sequence of words to form the initial value of the APInt
243  /// @brief Construct an APInt of numBits width, initialized as bigVal[].
244  APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
245  /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
246  /// deprecated because this constructor is prone to ambiguity with the
247  /// APInt(unsigned, uint64_t, bool) constructor.
248  ///
249  /// If this overload is ever deleted, care should be taken to prevent calls
250  /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
251  /// constructor.
252  APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
253
254  /// This constructor interprets the string \p str in the given radix. The
255  /// interpretation stops when the first character that is not suitable for the
256  /// radix is encountered, or the end of the string. Acceptable radix values
257  /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
258  /// string to require more bits than numBits.
259  ///
260  /// @param numBits the bit width of the constructed APInt
261  /// @param str the string to be interpreted
262  /// @param radix the radix to use for the conversion
263  /// @brief Construct an APInt from a string representation.
264  APInt(unsigned numBits, StringRef str, uint8_t radix);
265
266  /// Simply makes *this a copy of that.
267  /// @brief Copy Constructor.
268  APInt(const APInt& that)
269    : BitWidth(that.BitWidth), VAL(0) {
270    assert(BitWidth && "bitwidth too small");
271    if (isSingleWord())
272      VAL = that.VAL;
273    else
274      initSlowCase(that);
275  }
276
277#if LLVM_HAS_RVALUE_REFERENCES
278  /// @brief Move Constructor.
279  APInt(APInt&& that) : BitWidth(that.BitWidth), VAL(that.VAL) {
280    that.BitWidth = 0;
281  }
282#endif
283
284  /// @brief Destructor.
285  ~APInt() {
286    if (!isSingleWord())
287      delete [] pVal;
288  }
289
290  /// Default constructor that creates an uninitialized APInt.  This is useful
291  ///  for object deserialization (pair this with the static method Read).
292  explicit APInt() : BitWidth(1) {}
293
294  /// Profile - Used to insert APInt objects, or objects that contain APInt
295  ///  objects, into FoldingSets.
296  void Profile(FoldingSetNodeID& id) const;
297
298  /// @}
299  /// @name Value Tests
300  /// @{
301  /// This tests the high bit of this APInt to determine if it is set.
302  /// @returns true if this APInt is negative, false otherwise
303  /// @brief Determine sign of this APInt.
304  bool isNegative() const {
305    return (*this)[BitWidth - 1];
306  }
307
308  /// This tests the high bit of the APInt to determine if it is unset.
309  /// @brief Determine if this APInt Value is non-negative (>= 0)
310  bool isNonNegative() const {
311    return !isNegative();
312  }
313
314  /// This tests if the value of this APInt is positive (> 0). Note
315  /// that 0 is not a positive value.
316  /// @returns true if this APInt is positive.
317  /// @brief Determine if this APInt Value is positive.
318  bool isStrictlyPositive() const {
319    return isNonNegative() && !!*this;
320  }
321
322  /// This checks to see if the value has all bits of the APInt are set or not.
323  /// @brief Determine if all bits are set
324  bool isAllOnesValue() const {
325    return countPopulation() == BitWidth;
326  }
327
328  /// This checks to see if the value of this APInt is the maximum unsigned
329  /// value for the APInt's bit width.
330  /// @brief Determine if this is the largest unsigned value.
331  bool isMaxValue() const {
332    return countPopulation() == BitWidth;
333  }
334
335  /// This checks to see if the value of this APInt is the maximum signed
336  /// value for the APInt's bit width.
337  /// @brief Determine if this is the largest signed value.
338  bool isMaxSignedValue() const {
339    return BitWidth == 1 ? VAL == 0 :
340                          !isNegative() && countPopulation() == BitWidth - 1;
341  }
342
343  /// This checks to see if the value of this APInt is the minimum unsigned
344  /// value for the APInt's bit width.
345  /// @brief Determine if this is the smallest unsigned value.
346  bool isMinValue() const {
347    return !*this;
348  }
349
350  /// This checks to see if the value of this APInt is the minimum signed
351  /// value for the APInt's bit width.
352  /// @brief Determine if this is the smallest signed value.
353  bool isMinSignedValue() const {
354    return BitWidth == 1 ? VAL == 1 : isNegative() && isPowerOf2();
355  }
356
357  /// @brief Check if this APInt has an N-bits unsigned integer value.
358  bool isIntN(unsigned N) const {
359    assert(N && "N == 0 ???");
360    return getActiveBits() <= N;
361  }
362
363  /// @brief Check if this APInt has an N-bits signed integer value.
364  bool isSignedIntN(unsigned N) const {
365    assert(N && "N == 0 ???");
366    return getMinSignedBits() <= N;
367  }
368
369  /// @returns true if the argument APInt value is a power of two > 0.
370  bool isPowerOf2() const {
371    if (isSingleWord())
372      return isPowerOf2_64(VAL);
373    return countPopulationSlowCase() == 1;
374  }
375
376  /// isSignBit - Return true if this is the value returned by getSignBit.
377  bool isSignBit() const { return isMinSignedValue(); }
378
379  /// This converts the APInt to a boolean value as a test against zero.
380  /// @brief Boolean conversion function.
381  bool getBoolValue() const {
382    return !!*this;
383  }
384
385  /// getLimitedValue - If this value is smaller than the specified limit,
386  /// return it, otherwise return the limit value.  This causes the value
387  /// to saturate to the limit.
388  uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
389    return (getActiveBits() > 64 || getZExtValue() > Limit) ?
390      Limit :  getZExtValue();
391  }
392
393  /// @}
394  /// @name Value Generators
395  /// @{
396  /// @brief Gets maximum unsigned value of APInt for specific bit width.
397  static APInt getMaxValue(unsigned numBits) {
398    return getAllOnesValue(numBits);
399  }
400
401  /// @brief Gets maximum signed value of APInt for a specific bit width.
402  static APInt getSignedMaxValue(unsigned numBits) {
403    APInt API = getAllOnesValue(numBits);
404    API.clearBit(numBits - 1);
405    return API;
406  }
407
408  /// @brief Gets minimum unsigned value of APInt for a specific bit width.
409  static APInt getMinValue(unsigned numBits) {
410    return APInt(numBits, 0);
411  }
412
413  /// @brief Gets minimum signed value of APInt for a specific bit width.
414  static APInt getSignedMinValue(unsigned numBits) {
415    APInt API(numBits, 0);
416    API.setBit(numBits - 1);
417    return API;
418  }
419
420  /// getSignBit - This is just a wrapper function of getSignedMinValue(), and
421  /// it helps code readability when we want to get a SignBit.
422  /// @brief Get the SignBit for a specific bit width.
423  static APInt getSignBit(unsigned BitWidth) {
424    return getSignedMinValue(BitWidth);
425  }
426
427  /// @returns the all-ones value for an APInt of the specified bit-width.
428  /// @brief Get the all-ones value.
429  static APInt getAllOnesValue(unsigned numBits) {
430    return APInt(numBits, UINT64_MAX, true);
431  }
432
433  /// @returns the '0' value for an APInt of the specified bit-width.
434  /// @brief Get the '0' value.
435  static APInt getNullValue(unsigned numBits) {
436    return APInt(numBits, 0);
437  }
438
439  /// Get an APInt with the same BitWidth as this APInt, just zero mask
440  /// the low bits and right shift to the least significant bit.
441  /// @returns the high "numBits" bits of this APInt.
442  APInt getHiBits(unsigned numBits) const;
443
444  /// Get an APInt with the same BitWidth as this APInt, just zero mask
445  /// the high bits.
446  /// @returns the low "numBits" bits of this APInt.
447  APInt getLoBits(unsigned numBits) const;
448
449  /// getOneBitSet - Return an APInt with exactly one bit set in the result.
450  static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
451    APInt Res(numBits, 0);
452    Res.setBit(BitNo);
453    return Res;
454  }
455
456  /// Constructs an APInt value that has a contiguous range of bits set. The
457  /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
458  /// bits will be zero. For example, with parameters(32, 0, 16) you would get
459  /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
460  /// example, with parameters (32, 28, 4), you would get 0xF000000F.
461  /// @param numBits the intended bit width of the result
462  /// @param loBit the index of the lowest bit set.
463  /// @param hiBit the index of the highest bit set.
464  /// @returns An APInt value with the requested bits set.
465  /// @brief Get a value with a block of bits set.
466  static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
467    assert(hiBit <= numBits && "hiBit out of range");
468    assert(loBit < numBits && "loBit out of range");
469    if (hiBit < loBit)
470      return getLowBitsSet(numBits, hiBit) |
471             getHighBitsSet(numBits, numBits-loBit);
472    return getLowBitsSet(numBits, hiBit-loBit).shl(loBit);
473  }
474
475  /// Constructs an APInt value that has the top hiBitsSet bits set.
476  /// @param numBits the bitwidth of the result
477  /// @param hiBitsSet the number of high-order bits set in the result.
478  /// @brief Get a value with high bits set
479  static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
480    assert(hiBitsSet <= numBits && "Too many bits to set!");
481    // Handle a degenerate case, to avoid shifting by word size
482    if (hiBitsSet == 0)
483      return APInt(numBits, 0);
484    unsigned shiftAmt = numBits - hiBitsSet;
485    // For small values, return quickly
486    if (numBits <= APINT_BITS_PER_WORD)
487      return APInt(numBits, ~0ULL << shiftAmt);
488    return getAllOnesValue(numBits).shl(shiftAmt);
489  }
490
491  /// Constructs an APInt value that has the bottom loBitsSet bits set.
492  /// @param numBits the bitwidth of the result
493  /// @param loBitsSet the number of low-order bits set in the result.
494  /// @brief Get a value with low bits set
495  static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
496    assert(loBitsSet <= numBits && "Too many bits to set!");
497    // Handle a degenerate case, to avoid shifting by word size
498    if (loBitsSet == 0)
499      return APInt(numBits, 0);
500    if (loBitsSet == APINT_BITS_PER_WORD)
501      return APInt(numBits, UINT64_MAX);
502    // For small values, return quickly.
503    if (loBitsSet <= APINT_BITS_PER_WORD)
504      return APInt(numBits, UINT64_MAX >> (APINT_BITS_PER_WORD - loBitsSet));
505    return getAllOnesValue(numBits).lshr(numBits - loBitsSet);
506  }
507
508  /// \brief Return a value containing V broadcasted over NewLen bits.
509  static APInt getSplat(unsigned NewLen, const APInt &V) {
510    assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
511
512    APInt Val = V.zextOrSelf(NewLen);
513    for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
514      Val |= Val << I;
515
516    return Val;
517  }
518
519  /// \brief Determine if two APInts have the same value, after zero-extending
520  /// one of them (if needed!) to ensure that the bit-widths match.
521  static bool isSameValue(const APInt &I1, const APInt &I2) {
522    if (I1.getBitWidth() == I2.getBitWidth())
523      return I1 == I2;
524
525    if (I1.getBitWidth() > I2.getBitWidth())
526      return I1 == I2.zext(I1.getBitWidth());
527
528    return I1.zext(I2.getBitWidth()) == I2;
529  }
530
531  /// \brief Overload to compute a hash_code for an APInt value.
532  friend hash_code hash_value(const APInt &Arg);
533
534  /// This function returns a pointer to the internal storage of the APInt.
535  /// This is useful for writing out the APInt in binary form without any
536  /// conversions.
537  const uint64_t* getRawData() const {
538    if (isSingleWord())
539      return &VAL;
540    return &pVal[0];
541  }
542
543  /// @}
544  /// @name Unary Operators
545  /// @{
546  /// @returns a new APInt value representing *this incremented by one
547  /// @brief Postfix increment operator.
548  const APInt operator++(int) {
549    APInt API(*this);
550    ++(*this);
551    return API;
552  }
553
554  /// @returns *this incremented by one
555  /// @brief Prefix increment operator.
556  APInt& operator++();
557
558  /// @returns a new APInt representing *this decremented by one.
559  /// @brief Postfix decrement operator.
560  const APInt operator--(int) {
561    APInt API(*this);
562    --(*this);
563    return API;
564  }
565
566  /// @returns *this decremented by one.
567  /// @brief Prefix decrement operator.
568  APInt& operator--();
569
570  /// Performs a bitwise complement operation on this APInt.
571  /// @returns an APInt that is the bitwise complement of *this
572  /// @brief Unary bitwise complement operator.
573  APInt operator~() const {
574    APInt Result(*this);
575    Result.flipAllBits();
576    return Result;
577  }
578
579  /// Negates *this using two's complement logic.
580  /// @returns An APInt value representing the negation of *this.
581  /// @brief Unary negation operator
582  APInt operator-() const {
583    return APInt(BitWidth, 0) - (*this);
584  }
585
586  /// Performs logical negation operation on this APInt.
587  /// @returns true if *this is zero, false otherwise.
588  /// @brief Logical negation operator.
589  bool operator!() const {
590    if (isSingleWord())
591      return !VAL;
592
593    for (unsigned i = 0; i != getNumWords(); ++i)
594      if (pVal[i])
595        return false;
596    return true;
597  }
598
599  /// @}
600  /// @name Assignment Operators
601  /// @{
602  /// @returns *this after assignment of RHS.
603  /// @brief Copy assignment operator.
604  APInt& operator=(const APInt& RHS) {
605    // If the bitwidths are the same, we can avoid mucking with memory
606    if (isSingleWord() && RHS.isSingleWord()) {
607      VAL = RHS.VAL;
608      BitWidth = RHS.BitWidth;
609      return clearUnusedBits();
610    }
611
612    return AssignSlowCase(RHS);
613  }
614
615#if LLVM_HAS_RVALUE_REFERENCES
616  /// @brief Move assignment operator.
617  APInt& operator=(APInt&& that) {
618    if (!isSingleWord())
619      delete [] pVal;
620
621    BitWidth = that.BitWidth;
622    VAL = that.VAL;
623
624    that.BitWidth = 0;
625
626    return *this;
627  }
628#endif
629
630  /// The RHS value is assigned to *this. If the significant bits in RHS exceed
631  /// the bit width, the excess bits are truncated. If the bit width is larger
632  /// than 64, the value is zero filled in the unspecified high order bits.
633  /// @returns *this after assignment of RHS value.
634  /// @brief Assignment operator.
635  APInt& operator=(uint64_t RHS);
636
637  /// Performs a bitwise AND operation on this APInt and RHS. The result is
638  /// assigned to *this.
639  /// @returns *this after ANDing with RHS.
640  /// @brief Bitwise AND assignment operator.
641  APInt& operator&=(const APInt& RHS);
642
643  /// Performs a bitwise OR operation on this APInt and RHS. The result is
644  /// assigned *this;
645  /// @returns *this after ORing with RHS.
646  /// @brief Bitwise OR assignment operator.
647  APInt& operator|=(const APInt& RHS);
648
649  /// Performs a bitwise OR operation on this APInt and RHS. RHS is
650  /// logically zero-extended or truncated to match the bit-width of
651  /// the LHS.
652  ///
653  /// @brief Bitwise OR assignment operator.
654  APInt& operator|=(uint64_t RHS) {
655    if (isSingleWord()) {
656      VAL |= RHS;
657      clearUnusedBits();
658    } else {
659      pVal[0] |= RHS;
660    }
661    return *this;
662  }
663
664  /// Performs a bitwise XOR operation on this APInt and RHS. The result is
665  /// assigned to *this.
666  /// @returns *this after XORing with RHS.
667  /// @brief Bitwise XOR assignment operator.
668  APInt& operator^=(const APInt& RHS);
669
670  /// Multiplies this APInt by RHS and assigns the result to *this.
671  /// @returns *this
672  /// @brief Multiplication assignment operator.
673  APInt& operator*=(const APInt& RHS);
674
675  /// Adds RHS to *this and assigns the result to *this.
676  /// @returns *this
677  /// @brief Addition assignment operator.
678  APInt& operator+=(const APInt& RHS);
679
680  /// Subtracts RHS from *this and assigns the result to *this.
681  /// @returns *this
682  /// @brief Subtraction assignment operator.
683  APInt& operator-=(const APInt& RHS);
684
685  /// Shifts *this left by shiftAmt and assigns the result to *this.
686  /// @returns *this after shifting left by shiftAmt
687  /// @brief Left-shift assignment function.
688  APInt& operator<<=(unsigned shiftAmt) {
689    *this = shl(shiftAmt);
690    return *this;
691  }
692
693  /// @}
694  /// @name Binary Operators
695  /// @{
696  /// Performs a bitwise AND operation on *this and RHS.
697  /// @returns An APInt value representing the bitwise AND of *this and RHS.
698  /// @brief Bitwise AND operator.
699  APInt operator&(const APInt& RHS) const {
700    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
701    if (isSingleWord())
702      return APInt(getBitWidth(), VAL & RHS.VAL);
703    return AndSlowCase(RHS);
704  }
705  APInt And(const APInt& RHS) const {
706    return this->operator&(RHS);
707  }
708
709  /// Performs a bitwise OR operation on *this and RHS.
710  /// @returns An APInt value representing the bitwise OR of *this and RHS.
711  /// @brief Bitwise OR operator.
712  APInt operator|(const APInt& RHS) const {
713    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
714    if (isSingleWord())
715      return APInt(getBitWidth(), VAL | RHS.VAL);
716    return OrSlowCase(RHS);
717  }
718  APInt Or(const APInt& RHS) const {
719    return this->operator|(RHS);
720  }
721
722  /// Performs a bitwise XOR operation on *this and RHS.
723  /// @returns An APInt value representing the bitwise XOR of *this and RHS.
724  /// @brief Bitwise XOR operator.
725  APInt operator^(const APInt& RHS) const {
726    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
727    if (isSingleWord())
728      return APInt(BitWidth, VAL ^ RHS.VAL);
729    return XorSlowCase(RHS);
730  }
731  APInt Xor(const APInt& RHS) const {
732    return this->operator^(RHS);
733  }
734
735  /// Multiplies this APInt by RHS and returns the result.
736  /// @brief Multiplication operator.
737  APInt operator*(const APInt& RHS) const;
738
739  /// Adds RHS to this APInt and returns the result.
740  /// @brief Addition operator.
741  APInt operator+(const APInt& RHS) const;
742  APInt operator+(uint64_t RHS) const {
743    return (*this) + APInt(BitWidth, RHS);
744  }
745
746  /// Subtracts RHS from this APInt and returns the result.
747  /// @brief Subtraction operator.
748  APInt operator-(const APInt& RHS) const;
749  APInt operator-(uint64_t RHS) const {
750    return (*this) - APInt(BitWidth, RHS);
751  }
752
753  APInt operator<<(unsigned Bits) const {
754    return shl(Bits);
755  }
756
757  APInt operator<<(const APInt &Bits) const {
758    return shl(Bits);
759  }
760
761  /// Arithmetic right-shift this APInt by shiftAmt.
762  /// @brief Arithmetic right-shift function.
763  APInt ashr(unsigned shiftAmt) const;
764
765  /// Logical right-shift this APInt by shiftAmt.
766  /// @brief Logical right-shift function.
767  APInt lshr(unsigned shiftAmt) const;
768
769  /// Left-shift this APInt by shiftAmt.
770  /// @brief Left-shift function.
771  APInt shl(unsigned shiftAmt) const {
772    assert(shiftAmt <= BitWidth && "Invalid shift amount");
773    if (isSingleWord()) {
774      if (shiftAmt >= BitWidth)
775        return APInt(BitWidth, 0); // avoid undefined shift results
776      return APInt(BitWidth, VAL << shiftAmt);
777    }
778    return shlSlowCase(shiftAmt);
779  }
780
781  /// @brief Rotate left by rotateAmt.
782  APInt rotl(unsigned rotateAmt) const;
783
784  /// @brief Rotate right by rotateAmt.
785  APInt rotr(unsigned rotateAmt) const;
786
787  /// Arithmetic right-shift this APInt by shiftAmt.
788  /// @brief Arithmetic right-shift function.
789  APInt ashr(const APInt &shiftAmt) const;
790
791  /// Logical right-shift this APInt by shiftAmt.
792  /// @brief Logical right-shift function.
793  APInt lshr(const APInt &shiftAmt) const;
794
795  /// Left-shift this APInt by shiftAmt.
796  /// @brief Left-shift function.
797  APInt shl(const APInt &shiftAmt) const;
798
799  /// @brief Rotate left by rotateAmt.
800  APInt rotl(const APInt &rotateAmt) const;
801
802  /// @brief Rotate right by rotateAmt.
803  APInt rotr(const APInt &rotateAmt) const;
804
805  /// Perform an unsigned divide operation on this APInt by RHS. Both this and
806  /// RHS are treated as unsigned quantities for purposes of this division.
807  /// @returns a new APInt value containing the division result
808  /// @brief Unsigned division operation.
809  APInt udiv(const APInt &RHS) const;
810
811  /// Signed divide this APInt by APInt RHS.
812  /// @brief Signed division function for APInt.
813  APInt sdiv(const APInt &RHS) const;
814
815  /// Perform an unsigned remainder operation on this APInt with RHS being the
816  /// divisor. Both this and RHS are treated as unsigned quantities for purposes
817  /// of this operation. Note that this is a true remainder operation and not
818  /// a modulo operation because the sign follows the sign of the dividend
819  /// which is *this.
820  /// @returns a new APInt value containing the remainder result
821  /// @brief Unsigned remainder operation.
822  APInt urem(const APInt &RHS) const;
823
824  /// Signed remainder operation on APInt.
825  /// @brief Function for signed remainder operation.
826  APInt srem(const APInt &RHS) const;
827
828  /// Sometimes it is convenient to divide two APInt values and obtain both the
829  /// quotient and remainder. This function does both operations in the same
830  /// computation making it a little more efficient. The pair of input arguments
831  /// may overlap with the pair of output arguments. It is safe to call
832  /// udivrem(X, Y, X, Y), for example.
833  /// @brief Dual division/remainder interface.
834  static void udivrem(const APInt &LHS, const APInt &RHS,
835                      APInt &Quotient, APInt &Remainder);
836
837  static void sdivrem(const APInt &LHS, const APInt &RHS,
838                      APInt &Quotient, APInt &Remainder);
839
840
841  // Operations that return overflow indicators.
842  APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
843  APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
844  APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
845  APInt usub_ov(const APInt &RHS, bool &Overflow) const;
846  APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
847  APInt smul_ov(const APInt &RHS, bool &Overflow) const;
848  APInt umul_ov(const APInt &RHS, bool &Overflow) const;
849  APInt sshl_ov(unsigned Amt, bool &Overflow) const;
850
851  /// @returns the bit value at bitPosition
852  /// @brief Array-indexing support.
853  bool operator[](unsigned bitPosition) const {
854    assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
855    return (maskBit(bitPosition) &
856            (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
857  }
858
859  /// @}
860  /// @name Comparison Operators
861  /// @{
862  /// Compares this APInt with RHS for the validity of the equality
863  /// relationship.
864  /// @brief Equality operator.
865  bool operator==(const APInt& RHS) const {
866    assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
867    if (isSingleWord())
868      return VAL == RHS.VAL;
869    return EqualSlowCase(RHS);
870  }
871
872  /// Compares this APInt with a uint64_t for the validity of the equality
873  /// relationship.
874  /// @returns true if *this == Val
875  /// @brief Equality operator.
876  bool operator==(uint64_t Val) const {
877    if (isSingleWord())
878      return VAL == Val;
879    return EqualSlowCase(Val);
880  }
881
882  /// Compares this APInt with RHS for the validity of the equality
883  /// relationship.
884  /// @returns true if *this == Val
885  /// @brief Equality comparison.
886  bool eq(const APInt &RHS) const {
887    return (*this) == RHS;
888  }
889
890  /// Compares this APInt with RHS for the validity of the inequality
891  /// relationship.
892  /// @returns true if *this != Val
893  /// @brief Inequality operator.
894  bool operator!=(const APInt& RHS) const {
895    return !((*this) == RHS);
896  }
897
898  /// Compares this APInt with a uint64_t for the validity of the inequality
899  /// relationship.
900  /// @returns true if *this != Val
901  /// @brief Inequality operator.
902  bool operator!=(uint64_t Val) const {
903    return !((*this) == Val);
904  }
905
906  /// Compares this APInt with RHS for the validity of the inequality
907  /// relationship.
908  /// @returns true if *this != Val
909  /// @brief Inequality comparison
910  bool ne(const APInt &RHS) const {
911    return !((*this) == RHS);
912  }
913
914  /// Regards both *this and RHS as unsigned quantities and compares them for
915  /// the validity of the less-than relationship.
916  /// @returns true if *this < RHS when both are considered unsigned.
917  /// @brief Unsigned less than comparison
918  bool ult(const APInt &RHS) const;
919
920  /// Regards both *this as an unsigned quantity and compares it with RHS for
921  /// the validity of the less-than relationship.
922  /// @returns true if *this < RHS when considered unsigned.
923  /// @brief Unsigned less than comparison
924  bool ult(uint64_t RHS) const {
925    return ult(APInt(getBitWidth(), RHS));
926  }
927
928  /// Regards both *this and RHS as signed quantities and compares them for
929  /// validity of the less-than relationship.
930  /// @returns true if *this < RHS when both are considered signed.
931  /// @brief Signed less than comparison
932  bool slt(const APInt& RHS) const;
933
934  /// Regards both *this as a signed quantity and compares it with RHS for
935  /// the validity of the less-than relationship.
936  /// @returns true if *this < RHS when considered signed.
937  /// @brief Signed less than comparison
938  bool slt(uint64_t RHS) const {
939    return slt(APInt(getBitWidth(), RHS));
940  }
941
942  /// Regards both *this and RHS as unsigned quantities and compares them for
943  /// validity of the less-or-equal relationship.
944  /// @returns true if *this <= RHS when both are considered unsigned.
945  /// @brief Unsigned less or equal comparison
946  bool ule(const APInt& RHS) const {
947    return ult(RHS) || eq(RHS);
948  }
949
950  /// Regards both *this as an unsigned quantity and compares it with RHS for
951  /// the validity of the less-or-equal relationship.
952  /// @returns true if *this <= RHS when considered unsigned.
953  /// @brief Unsigned less or equal comparison
954  bool ule(uint64_t RHS) const {
955    return ule(APInt(getBitWidth(), RHS));
956  }
957
958  /// Regards both *this and RHS as signed quantities and compares them for
959  /// validity of the less-or-equal relationship.
960  /// @returns true if *this <= RHS when both are considered signed.
961  /// @brief Signed less or equal comparison
962  bool sle(const APInt& RHS) const {
963    return slt(RHS) || eq(RHS);
964  }
965
966  /// Regards both *this as a signed quantity and compares it with RHS for
967  /// the validity of the less-or-equal relationship.
968  /// @returns true if *this <= RHS when considered signed.
969  /// @brief Signed less or equal comparison
970  bool sle(uint64_t RHS) const {
971    return sle(APInt(getBitWidth(), RHS));
972  }
973
974  /// Regards both *this and RHS as unsigned quantities and compares them for
975  /// the validity of the greater-than relationship.
976  /// @returns true if *this > RHS when both are considered unsigned.
977  /// @brief Unsigned greather than comparison
978  bool ugt(const APInt& RHS) const {
979    return !ult(RHS) && !eq(RHS);
980  }
981
982  /// Regards both *this as an unsigned quantity and compares it with RHS for
983  /// the validity of the greater-than relationship.
984  /// @returns true if *this > RHS when considered unsigned.
985  /// @brief Unsigned greater than comparison
986  bool ugt(uint64_t RHS) const {
987    return ugt(APInt(getBitWidth(), RHS));
988  }
989
990  /// Regards both *this and RHS as signed quantities and compares them for
991  /// the validity of the greater-than relationship.
992  /// @returns true if *this > RHS when both are considered signed.
993  /// @brief Signed greather than comparison
994  bool sgt(const APInt& RHS) const {
995    return !slt(RHS) && !eq(RHS);
996  }
997
998  /// Regards both *this as a signed quantity and compares it with RHS for
999  /// the validity of the greater-than relationship.
1000  /// @returns true if *this > RHS when considered signed.
1001  /// @brief Signed greater than comparison
1002  bool sgt(uint64_t RHS) const {
1003    return sgt(APInt(getBitWidth(), RHS));
1004  }
1005
1006  /// Regards both *this and RHS as unsigned quantities and compares them for
1007  /// validity of the greater-or-equal relationship.
1008  /// @returns true if *this >= RHS when both are considered unsigned.
1009  /// @brief Unsigned greater or equal comparison
1010  bool uge(const APInt& RHS) const {
1011    return !ult(RHS);
1012  }
1013
1014  /// Regards both *this as an unsigned quantity and compares it with RHS for
1015  /// the validity of the greater-or-equal relationship.
1016  /// @returns true if *this >= RHS when considered unsigned.
1017  /// @brief Unsigned greater or equal comparison
1018  bool uge(uint64_t RHS) const {
1019    return uge(APInt(getBitWidth(), RHS));
1020  }
1021
1022  /// Regards both *this and RHS as signed quantities and compares them for
1023  /// validity of the greater-or-equal relationship.
1024  /// @returns true if *this >= RHS when both are considered signed.
1025  /// @brief Signed greather or equal comparison
1026  bool sge(const APInt& RHS) const {
1027    return !slt(RHS);
1028  }
1029
1030  /// Regards both *this as a signed quantity and compares it with RHS for
1031  /// the validity of the greater-or-equal relationship.
1032  /// @returns true if *this >= RHS when considered signed.
1033  /// @brief Signed greater or equal comparison
1034  bool sge(uint64_t RHS) const {
1035    return sge(APInt(getBitWidth(), RHS));
1036  }
1037
1038
1039
1040
1041  /// This operation tests if there are any pairs of corresponding bits
1042  /// between this APInt and RHS that are both set.
1043  bool intersects(const APInt &RHS) const {
1044    return (*this & RHS) != 0;
1045  }
1046
1047  /// @}
1048  /// @name Resizing Operators
1049  /// @{
1050  /// Truncate the APInt to a specified width. It is an error to specify a width
1051  /// that is greater than or equal to the current width.
1052  /// @brief Truncate to new width.
1053  APInt trunc(unsigned width) const;
1054
1055  /// This operation sign extends the APInt to a new width. If the high order
1056  /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1057  /// It is an error to specify a width that is less than or equal to the
1058  /// current width.
1059  /// @brief Sign extend to a new width.
1060  APInt sext(unsigned width) const;
1061
1062  /// This operation zero extends the APInt to a new width. The high order bits
1063  /// are filled with 0 bits.  It is an error to specify a width that is less
1064  /// than or equal to the current width.
1065  /// @brief Zero extend to a new width.
1066  APInt zext(unsigned width) const;
1067
1068  /// Make this APInt have the bit width given by \p width. The value is sign
1069  /// extended, truncated, or left alone to make it that width.
1070  /// @brief Sign extend or truncate to width
1071  APInt sextOrTrunc(unsigned width) const;
1072
1073  /// Make this APInt have the bit width given by \p width. The value is zero
1074  /// extended, truncated, or left alone to make it that width.
1075  /// @brief Zero extend or truncate to width
1076  APInt zextOrTrunc(unsigned width) const;
1077
1078  /// Make this APInt have the bit width given by \p width. The value is sign
1079  /// extended, or left alone to make it that width.
1080  /// @brief Sign extend or truncate to width
1081  APInt sextOrSelf(unsigned width) const;
1082
1083  /// Make this APInt have the bit width given by \p width. The value is zero
1084  /// extended, or left alone to make it that width.
1085  /// @brief Zero extend or truncate to width
1086  APInt zextOrSelf(unsigned width) const;
1087
1088  /// @}
1089  /// @name Bit Manipulation Operators
1090  /// @{
1091  /// @brief Set every bit to 1.
1092  void setAllBits() {
1093    if (isSingleWord())
1094      VAL = UINT64_MAX;
1095    else {
1096      // Set all the bits in all the words.
1097      for (unsigned i = 0; i < getNumWords(); ++i)
1098        pVal[i] = UINT64_MAX;
1099    }
1100    // Clear the unused ones
1101    clearUnusedBits();
1102  }
1103
1104  /// Set the given bit to 1 whose position is given as "bitPosition".
1105  /// @brief Set a given bit to 1.
1106  void setBit(unsigned bitPosition);
1107
1108  /// @brief Set every bit to 0.
1109  void clearAllBits() {
1110    if (isSingleWord())
1111      VAL = 0;
1112    else
1113      memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
1114  }
1115
1116  /// Set the given bit to 0 whose position is given as "bitPosition".
1117  /// @brief Set a given bit to 0.
1118  void clearBit(unsigned bitPosition);
1119
1120  /// @brief Toggle every bit to its opposite value.
1121  void flipAllBits() {
1122    if (isSingleWord())
1123      VAL ^= UINT64_MAX;
1124    else {
1125      for (unsigned i = 0; i < getNumWords(); ++i)
1126        pVal[i] ^= UINT64_MAX;
1127    }
1128    clearUnusedBits();
1129  }
1130
1131  /// Toggle a given bit to its opposite value whose position is given
1132  /// as "bitPosition".
1133  /// @brief Toggles a given bit to its opposite value.
1134  void flipBit(unsigned bitPosition);
1135
1136  /// @}
1137  /// @name Value Characterization Functions
1138  /// @{
1139
1140  /// @returns the total number of bits.
1141  unsigned getBitWidth() const {
1142    return BitWidth;
1143  }
1144
1145  /// Here one word's bitwidth equals to that of uint64_t.
1146  /// @returns the number of words to hold the integer value of this APInt.
1147  /// @brief Get the number of words.
1148  unsigned getNumWords() const {
1149    return getNumWords(BitWidth);
1150  }
1151
1152  /// Here one word's bitwidth equals to that of uint64_t.
1153  /// @returns the number of words to hold the integer value with a
1154  /// given bit width.
1155  /// @brief Get the number of words.
1156  static unsigned getNumWords(unsigned BitWidth) {
1157    return (BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1158  }
1159
1160  /// This function returns the number of active bits which is defined as the
1161  /// bit width minus the number of leading zeros. This is used in several
1162  /// computations to see how "wide" the value is.
1163  /// @brief Compute the number of active bits in the value
1164  unsigned getActiveBits() const {
1165    return BitWidth - countLeadingZeros();
1166  }
1167
1168  /// This function returns the number of active words in the value of this
1169  /// APInt. This is used in conjunction with getActiveData to extract the raw
1170  /// value of the APInt.
1171  unsigned getActiveWords() const {
1172    unsigned numActiveBits = getActiveBits();
1173    return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1174  }
1175
1176  /// Computes the minimum bit width for this APInt while considering it to be
1177  /// a signed (and probably negative) value. If the value is not negative,
1178  /// this function returns the same value as getActiveBits()+1. Otherwise, it
1179  /// returns the smallest bit width that will retain the negative value. For
1180  /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1181  /// for -1, this function will always return 1.
1182  /// @brief Get the minimum bit size for this signed APInt
1183  unsigned getMinSignedBits() const {
1184    if (isNegative())
1185      return BitWidth - countLeadingOnes() + 1;
1186    return getActiveBits()+1;
1187  }
1188
1189  /// This method attempts to return the value of this APInt as a zero extended
1190  /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1191  /// uint64_t. Otherwise an assertion will result.
1192  /// @brief Get zero extended value
1193  uint64_t getZExtValue() const {
1194    if (isSingleWord())
1195      return VAL;
1196    assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1197    return pVal[0];
1198  }
1199
1200  /// This method attempts to return the value of this APInt as a sign extended
1201  /// int64_t. The bit width must be <= 64 or the value must fit within an
1202  /// int64_t. Otherwise an assertion will result.
1203  /// @brief Get sign extended value
1204  int64_t getSExtValue() const {
1205    if (isSingleWord())
1206      return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >>
1207                     (APINT_BITS_PER_WORD - BitWidth);
1208    assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
1209    return int64_t(pVal[0]);
1210  }
1211
1212  /// This method determines how many bits are required to hold the APInt
1213  /// equivalent of the string given by \p str.
1214  /// @brief Get bits required for string value.
1215  static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1216
1217  /// countLeadingZeros - This function is an APInt version of the
1218  /// countLeadingZeros_{32,64} functions in MathExtras.h. It counts the number
1219  /// of zeros from the most significant bit to the first one bit.
1220  /// @returns BitWidth if the value is zero, otherwise
1221  /// returns the number of zeros from the most significant bit to the first
1222  /// one bits.
1223  unsigned countLeadingZeros() const {
1224    if (isSingleWord()) {
1225      unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1226      return CountLeadingZeros_64(VAL) - unusedBits;
1227    }
1228    return countLeadingZerosSlowCase();
1229  }
1230
1231  /// countLeadingOnes - This function is an APInt version of the
1232  /// countLeadingOnes_{32,64} functions in MathExtras.h. It counts the number
1233  /// of ones from the most significant bit to the first zero bit.
1234  /// @returns 0 if the high order bit is not set, otherwise
1235  /// returns the number of 1 bits from the most significant to the least
1236  /// @brief Count the number of leading one bits.
1237  unsigned countLeadingOnes() const;
1238
1239  /// Computes the number of leading bits of this APInt that are equal to its
1240  /// sign bit.
1241  unsigned getNumSignBits() const {
1242    return isNegative() ? countLeadingOnes() : countLeadingZeros();
1243  }
1244
1245  /// countTrailingZeros - This function is an APInt version of the
1246  /// countTrailingZeros_{32,64} functions in MathExtras.h. It counts
1247  /// the number of zeros from the least significant bit to the first set bit.
1248  /// @returns BitWidth if the value is zero, otherwise
1249  /// returns the number of zeros from the least significant bit to the first
1250  /// one bit.
1251  /// @brief Count the number of trailing zero bits.
1252  unsigned countTrailingZeros() const;
1253
1254  /// countTrailingOnes - This function is an APInt version of the
1255  /// countTrailingOnes_{32,64} functions in MathExtras.h. It counts
1256  /// the number of ones from the least significant bit to the first zero bit.
1257  /// @returns BitWidth if the value is all ones, otherwise
1258  /// returns the number of ones from the least significant bit to the first
1259  /// zero bit.
1260  /// @brief Count the number of trailing one bits.
1261  unsigned countTrailingOnes() const {
1262    if (isSingleWord())
1263      return CountTrailingOnes_64(VAL);
1264    return countTrailingOnesSlowCase();
1265  }
1266
1267  /// countPopulation - This function is an APInt version of the
1268  /// countPopulation_{32,64} functions in MathExtras.h. It counts the number
1269  /// of 1 bits in the APInt value.
1270  /// @returns 0 if the value is zero, otherwise returns the number of set
1271  /// bits.
1272  /// @brief Count the number of bits set.
1273  unsigned countPopulation() const {
1274    if (isSingleWord())
1275      return CountPopulation_64(VAL);
1276    return countPopulationSlowCase();
1277  }
1278
1279  /// @}
1280  /// @name Conversion Functions
1281  /// @{
1282  void print(raw_ostream &OS, bool isSigned) const;
1283
1284  /// toString - Converts an APInt to a string and append it to Str.  Str is
1285  /// commonly a SmallString.
1286  void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1287                bool formatAsCLiteral = false) const;
1288
1289  /// Considers the APInt to be unsigned and converts it into a string in the
1290  /// radix given. The radix can be 2, 8, 10 16, or 36.
1291  void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1292    toString(Str, Radix, false, false);
1293  }
1294
1295  /// Considers the APInt to be signed and converts it into a string in the
1296  /// radix given. The radix can be 2, 8, 10, 16, or 36.
1297  void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1298    toString(Str, Radix, true, false);
1299  }
1300
1301  /// toString - This returns the APInt as a std::string.  Note that this is an
1302  /// inefficient method.  It is better to pass in a SmallVector/SmallString
1303  /// to the methods above to avoid thrashing the heap for the string.
1304  std::string toString(unsigned Radix, bool Signed) const;
1305
1306
1307  /// @returns a byte-swapped representation of this APInt Value.
1308  APInt byteSwap() const;
1309
1310  /// @brief Converts this APInt to a double value.
1311  double roundToDouble(bool isSigned) const;
1312
1313  /// @brief Converts this unsigned APInt to a double value.
1314  double roundToDouble() const {
1315    return roundToDouble(false);
1316  }
1317
1318  /// @brief Converts this signed APInt to a double value.
1319  double signedRoundToDouble() const {
1320    return roundToDouble(true);
1321  }
1322
1323  /// The conversion does not do a translation from integer to double, it just
1324  /// re-interprets the bits as a double. Note that it is valid to do this on
1325  /// any bit width. Exactly 64 bits will be translated.
1326  /// @brief Converts APInt bits to a double
1327  double bitsToDouble() const {
1328    union {
1329      uint64_t I;
1330      double D;
1331    } T;
1332    T.I = (isSingleWord() ? VAL : pVal[0]);
1333    return T.D;
1334  }
1335
1336  /// The conversion does not do a translation from integer to float, it just
1337  /// re-interprets the bits as a float. Note that it is valid to do this on
1338  /// any bit width. Exactly 32 bits will be translated.
1339  /// @brief Converts APInt bits to a double
1340  float bitsToFloat() const {
1341    union {
1342      unsigned I;
1343      float F;
1344    } T;
1345    T.I = unsigned((isSingleWord() ? VAL : pVal[0]));
1346    return T.F;
1347  }
1348
1349  /// The conversion does not do a translation from double to integer, it just
1350  /// re-interprets the bits of the double.
1351  /// @brief Converts a double to APInt bits.
1352  static APInt doubleToBits(double V) {
1353    union {
1354      uint64_t I;
1355      double D;
1356    } T;
1357    T.D = V;
1358    return APInt(sizeof T * CHAR_BIT, T.I);
1359  }
1360
1361  /// The conversion does not do a translation from float to integer, it just
1362  /// re-interprets the bits of the float.
1363  /// @brief Converts a float to APInt bits.
1364  static APInt floatToBits(float V) {
1365    union {
1366      unsigned I;
1367      float F;
1368    } T;
1369    T.F = V;
1370    return APInt(sizeof T * CHAR_BIT, T.I);
1371  }
1372
1373  /// @}
1374  /// @name Mathematics Operations
1375  /// @{
1376
1377  /// @returns the floor log base 2 of this APInt.
1378  unsigned logBase2() const {
1379    return BitWidth - 1 - countLeadingZeros();
1380  }
1381
1382  /// @returns the ceil log base 2 of this APInt.
1383  unsigned ceilLogBase2() const {
1384    return BitWidth - (*this - 1).countLeadingZeros();
1385  }
1386
1387  /// @returns the log base 2 of this APInt if its an exact power of two, -1
1388  /// otherwise
1389  int32_t exactLogBase2() const {
1390    if (!isPowerOf2())
1391      return -1;
1392    return logBase2();
1393  }
1394
1395  /// @brief Compute the square root
1396  APInt sqrt() const;
1397
1398  /// If *this is < 0 then return -(*this), otherwise *this;
1399  /// @brief Get the absolute value;
1400  APInt abs() const {
1401    if (isNegative())
1402      return -(*this);
1403    return *this;
1404  }
1405
1406  /// @returns the multiplicative inverse for a given modulo.
1407  APInt multiplicativeInverse(const APInt& modulo) const;
1408
1409  /// @}
1410  /// @name Support for division by constant
1411  /// @{
1412
1413  /// Calculate the magic number for signed division by a constant.
1414  struct ms;
1415  ms magic() const;
1416
1417  /// Calculate the magic number for unsigned division by a constant.
1418  struct mu;
1419  mu magicu(unsigned LeadingZeros = 0) const;
1420
1421  /// @}
1422  /// @name Building-block Operations for APInt and APFloat
1423  /// @{
1424
1425  // These building block operations operate on a representation of
1426  // arbitrary precision, two's-complement, bignum integer values.
1427  // They should be sufficient to implement APInt and APFloat bignum
1428  // requirements.  Inputs are generally a pointer to the base of an
1429  // array of integer parts, representing an unsigned bignum, and a
1430  // count of how many parts there are.
1431
1432  /// Sets the least significant part of a bignum to the input value,
1433  /// and zeroes out higher parts.  */
1434  static void tcSet(integerPart *, integerPart, unsigned int);
1435
1436  /// Assign one bignum to another.
1437  static void tcAssign(integerPart *, const integerPart *, unsigned int);
1438
1439  /// Returns true if a bignum is zero, false otherwise.
1440  static bool tcIsZero(const integerPart *, unsigned int);
1441
1442  /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
1443  static int tcExtractBit(const integerPart *, unsigned int bit);
1444
1445  /// Copy the bit vector of width srcBITS from SRC, starting at bit
1446  /// srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB
1447  /// becomes the least significant bit of DST.  All high bits above
1448  /// srcBITS in DST are zero-filled.
1449  static void tcExtract(integerPart *, unsigned int dstCount,
1450                        const integerPart *,
1451                        unsigned int srcBits, unsigned int srcLSB);
1452
1453  /// Set the given bit of a bignum.  Zero-based.
1454  static void tcSetBit(integerPart *, unsigned int bit);
1455
1456  /// Clear the given bit of a bignum.  Zero-based.
1457  static void tcClearBit(integerPart *, unsigned int bit);
1458
1459  /// Returns the bit number of the least or most significant set bit
1460  /// of a number.  If the input number has no bits set -1U is
1461  /// returned.
1462  static unsigned int tcLSB(const integerPart *, unsigned int);
1463  static unsigned int tcMSB(const integerPart *parts, unsigned int n);
1464
1465  /// Negate a bignum in-place.
1466  static void tcNegate(integerPart *, unsigned int);
1467
1468  /// DST += RHS + CARRY where CARRY is zero or one.  Returns the
1469  /// carry flag.
1470  static integerPart tcAdd(integerPart *, const integerPart *,
1471                           integerPart carry, unsigned);
1472
1473  /// DST -= RHS + CARRY where CARRY is zero or one.  Returns the
1474  /// carry flag.
1475  static integerPart tcSubtract(integerPart *, const integerPart *,
1476                                integerPart carry, unsigned);
1477
1478  ///  DST += SRC * MULTIPLIER + PART   if add is true
1479  ///  DST  = SRC * MULTIPLIER + PART   if add is false
1480  ///
1481  ///  Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC
1482  ///  they must start at the same point, i.e. DST == SRC.
1483  ///
1484  ///  If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is
1485  ///  returned.  Otherwise DST is filled with the least significant
1486  ///  DSTPARTS parts of the result, and if all of the omitted higher
1487  ///  parts were zero return zero, otherwise overflow occurred and
1488  ///  return one.
1489  static int tcMultiplyPart(integerPart *dst, const integerPart *src,
1490                            integerPart multiplier, integerPart carry,
1491                            unsigned int srcParts, unsigned int dstParts,
1492                            bool add);
1493
1494  /// DST = LHS * RHS, where DST has the same width as the operands
1495  /// and is filled with the least significant parts of the result.
1496  /// Returns one if overflow occurred, otherwise zero.  DST must be
1497  /// disjoint from both operands.
1498  static int tcMultiply(integerPart *, const integerPart *,
1499                        const integerPart *, unsigned);
1500
1501  /// DST = LHS * RHS, where DST has width the sum of the widths of
1502  /// the operands.  No overflow occurs.  DST must be disjoint from
1503  /// both operands. Returns the number of parts required to hold the
1504  /// result.
1505  static unsigned int tcFullMultiply(integerPart *, const integerPart *,
1506                                     const integerPart *, unsigned, unsigned);
1507
1508  /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1509  /// Otherwise set LHS to LHS / RHS with the fractional part
1510  /// discarded, set REMAINDER to the remainder, return zero.  i.e.
1511  ///
1512  ///  OLD_LHS = RHS * LHS + REMAINDER
1513  ///
1514  ///  SCRATCH is a bignum of the same size as the operands and result
1515  ///  for use by the routine; its contents need not be initialized
1516  ///  and are destroyed.  LHS, REMAINDER and SCRATCH must be
1517  ///  distinct.
1518  static int tcDivide(integerPart *lhs, const integerPart *rhs,
1519                      integerPart *remainder, integerPart *scratch,
1520                      unsigned int parts);
1521
1522  /// Shift a bignum left COUNT bits.  Shifted in bits are zero.
1523  /// There are no restrictions on COUNT.
1524  static void tcShiftLeft(integerPart *, unsigned int parts,
1525                          unsigned int count);
1526
1527  /// Shift a bignum right COUNT bits.  Shifted in bits are zero.
1528  /// There are no restrictions on COUNT.
1529  static void tcShiftRight(integerPart *, unsigned int parts,
1530                           unsigned int count);
1531
1532  /// The obvious AND, OR and XOR and complement operations.
1533  static void tcAnd(integerPart *, const integerPart *, unsigned int);
1534  static void tcOr(integerPart *, const integerPart *, unsigned int);
1535  static void tcXor(integerPart *, const integerPart *, unsigned int);
1536  static void tcComplement(integerPart *, unsigned int);
1537
1538  /// Comparison (unsigned) of two bignums.
1539  static int tcCompare(const integerPart *, const integerPart *,
1540                       unsigned int);
1541
1542  /// Increment a bignum in-place.  Return the carry flag.
1543  static integerPart tcIncrement(integerPart *, unsigned int);
1544
1545  /// Set the least significant BITS and clear the rest.
1546  static void tcSetLeastSignificantBits(integerPart *, unsigned int,
1547                                        unsigned int bits);
1548
1549  /// @brief debug method
1550  void dump() const;
1551
1552  /// @}
1553};
1554
1555/// Magic data for optimising signed division by a constant.
1556struct APInt::ms {
1557  APInt m;  ///< magic number
1558  unsigned s;  ///< shift amount
1559};
1560
1561/// Magic data for optimising unsigned division by a constant.
1562struct APInt::mu {
1563  APInt m;     ///< magic number
1564  bool a;      ///< add indicator
1565  unsigned s;  ///< shift amount
1566};
1567
1568inline bool operator==(uint64_t V1, const APInt& V2) {
1569  return V2 == V1;
1570}
1571
1572inline bool operator!=(uint64_t V1, const APInt& V2) {
1573  return V2 != V1;
1574}
1575
1576inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
1577  I.print(OS, true);
1578  return OS;
1579}
1580
1581namespace APIntOps {
1582
1583/// @brief Determine the smaller of two APInts considered to be signed.
1584inline APInt smin(const APInt &A, const APInt &B) {
1585  return A.slt(B) ? A : B;
1586}
1587
1588/// @brief Determine the larger of two APInts considered to be signed.
1589inline APInt smax(const APInt &A, const APInt &B) {
1590  return A.sgt(B) ? A : B;
1591}
1592
1593/// @brief Determine the smaller of two APInts considered to be signed.
1594inline APInt umin(const APInt &A, const APInt &B) {
1595  return A.ult(B) ? A : B;
1596}
1597
1598/// @brief Determine the larger of two APInts considered to be unsigned.
1599inline APInt umax(const APInt &A, const APInt &B) {
1600  return A.ugt(B) ? A : B;
1601}
1602
1603/// @brief Check if the specified APInt has a N-bits unsigned integer value.
1604inline bool isIntN(unsigned N, const APInt& APIVal) {
1605  return APIVal.isIntN(N);
1606}
1607
1608/// @brief Check if the specified APInt has a N-bits signed integer value.
1609inline bool isSignedIntN(unsigned N, const APInt& APIVal) {
1610  return APIVal.isSignedIntN(N);
1611}
1612
1613/// @returns true if the argument APInt value is a sequence of ones
1614/// starting at the least significant bit with the remainder zero.
1615inline bool isMask(unsigned numBits, const APInt& APIVal) {
1616  return numBits <= APIVal.getBitWidth() &&
1617    APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits);
1618}
1619
1620/// @returns true if the argument APInt value contains a sequence of ones
1621/// with the remainder zero.
1622inline bool isShiftedMask(unsigned numBits, const APInt& APIVal) {
1623  return isMask(numBits, (APIVal - APInt(numBits,1)) | APIVal);
1624}
1625
1626/// @returns a byte-swapped representation of the specified APInt Value.
1627inline APInt byteSwap(const APInt& APIVal) {
1628  return APIVal.byteSwap();
1629}
1630
1631/// @returns the floor log base 2 of the specified APInt value.
1632inline unsigned logBase2(const APInt& APIVal) {
1633  return APIVal.logBase2();
1634}
1635
1636/// GreatestCommonDivisor - This function returns the greatest common
1637/// divisor of the two APInt values using Euclid's algorithm.
1638/// @returns the greatest common divisor of Val1 and Val2
1639/// @brief Compute GCD of two APInt values.
1640APInt GreatestCommonDivisor(const APInt& Val1, const APInt& Val2);
1641
1642/// Treats the APInt as an unsigned value for conversion purposes.
1643/// @brief Converts the given APInt to a double value.
1644inline double RoundAPIntToDouble(const APInt& APIVal) {
1645  return APIVal.roundToDouble();
1646}
1647
1648/// Treats the APInt as a signed value for conversion purposes.
1649/// @brief Converts the given APInt to a double value.
1650inline double RoundSignedAPIntToDouble(const APInt& APIVal) {
1651  return APIVal.signedRoundToDouble();
1652}
1653
1654/// @brief Converts the given APInt to a float vlalue.
1655inline float RoundAPIntToFloat(const APInt& APIVal) {
1656  return float(RoundAPIntToDouble(APIVal));
1657}
1658
1659/// Treast the APInt as a signed value for conversion purposes.
1660/// @brief Converts the given APInt to a float value.
1661inline float RoundSignedAPIntToFloat(const APInt& APIVal) {
1662  return float(APIVal.signedRoundToDouble());
1663}
1664
1665/// RoundDoubleToAPInt - This function convert a double value to an APInt value.
1666/// @brief Converts the given double value into a APInt.
1667APInt RoundDoubleToAPInt(double Double, unsigned width);
1668
1669/// RoundFloatToAPInt - Converts a float value into an APInt value.
1670/// @brief Converts a float value into a APInt.
1671inline APInt RoundFloatToAPInt(float Float, unsigned width) {
1672  return RoundDoubleToAPInt(double(Float), width);
1673}
1674
1675/// Arithmetic right-shift the APInt by shiftAmt.
1676/// @brief Arithmetic right-shift function.
1677inline APInt ashr(const APInt& LHS, unsigned shiftAmt) {
1678  return LHS.ashr(shiftAmt);
1679}
1680
1681/// Logical right-shift the APInt by shiftAmt.
1682/// @brief Logical right-shift function.
1683inline APInt lshr(const APInt& LHS, unsigned shiftAmt) {
1684  return LHS.lshr(shiftAmt);
1685}
1686
1687/// Left-shift the APInt by shiftAmt.
1688/// @brief Left-shift function.
1689inline APInt shl(const APInt& LHS, unsigned shiftAmt) {
1690  return LHS.shl(shiftAmt);
1691}
1692
1693/// Signed divide APInt LHS by APInt RHS.
1694/// @brief Signed division function for APInt.
1695inline APInt sdiv(const APInt& LHS, const APInt& RHS) {
1696  return LHS.sdiv(RHS);
1697}
1698
1699/// Unsigned divide APInt LHS by APInt RHS.
1700/// @brief Unsigned division function for APInt.
1701inline APInt udiv(const APInt& LHS, const APInt& RHS) {
1702  return LHS.udiv(RHS);
1703}
1704
1705/// Signed remainder operation on APInt.
1706/// @brief Function for signed remainder operation.
1707inline APInt srem(const APInt& LHS, const APInt& RHS) {
1708  return LHS.srem(RHS);
1709}
1710
1711/// Unsigned remainder operation on APInt.
1712/// @brief Function for unsigned remainder operation.
1713inline APInt urem(const APInt& LHS, const APInt& RHS) {
1714  return LHS.urem(RHS);
1715}
1716
1717/// Performs multiplication on APInt values.
1718/// @brief Function for multiplication operation.
1719inline APInt mul(const APInt& LHS, const APInt& RHS) {
1720  return LHS * RHS;
1721}
1722
1723/// Performs addition on APInt values.
1724/// @brief Function for addition operation.
1725inline APInt add(const APInt& LHS, const APInt& RHS) {
1726  return LHS + RHS;
1727}
1728
1729/// Performs subtraction on APInt values.
1730/// @brief Function for subtraction operation.
1731inline APInt sub(const APInt& LHS, const APInt& RHS) {
1732  return LHS - RHS;
1733}
1734
1735/// Performs bitwise AND operation on APInt LHS and
1736/// APInt RHS.
1737/// @brief Bitwise AND function for APInt.
1738inline APInt And(const APInt& LHS, const APInt& RHS) {
1739  return LHS & RHS;
1740}
1741
1742/// Performs bitwise OR operation on APInt LHS and APInt RHS.
1743/// @brief Bitwise OR function for APInt.
1744inline APInt Or(const APInt& LHS, const APInt& RHS) {
1745  return LHS | RHS;
1746}
1747
1748/// Performs bitwise XOR operation on APInt.
1749/// @brief Bitwise XOR function for APInt.
1750inline APInt Xor(const APInt& LHS, const APInt& RHS) {
1751  return LHS ^ RHS;
1752}
1753
1754/// Performs a bitwise complement operation on APInt.
1755/// @brief Bitwise complement function.
1756inline APInt Not(const APInt& APIVal) {
1757  return ~APIVal;
1758}
1759
1760} // End of APIntOps namespace
1761
1762  // See friend declaration above. This additional declaration is required in
1763  // order to compile LLVM with IBM xlC compiler.
1764  hash_code hash_value(const APInt &Arg);
1765} // End of llvm namespace
1766
1767#endif
1768