1/* More subroutines needed by GCC output code on some machines.  */
2/* Compile this one with gcc.  */
3/* Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4   2000, 2001, 2002, 2003, 2004, 2005  Free Software Foundation, Inc.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
12
13In addition to the permissions in the GNU General Public License, the
14Free Software Foundation gives you unlimited permission to link the
15compiled version of this file into combinations with other programs,
16and to distribute those combinations without any restriction coming
17from the use of this file.  (The General Public License restrictions
18do apply in other respects; for example, they cover modification of
19the file, and distribution when not linked into a combine
20executable.)
21
22GCC is distributed in the hope that it will be useful, but WITHOUT ANY
23WARRANTY; without even the implied warranty of MERCHANTABILITY or
24FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
25for more details.
26
27You should have received a copy of the GNU General Public License
28along with GCC; see the file COPYING.  If not, write to the Free
29Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
3002110-1301, USA.  */
31
32#include "tconfig.h"
33#include "tsystem.h"
34#include "coretypes.h"
35#include "tm.h"
36
37#ifdef HAVE_GAS_HIDDEN
38#define ATTRIBUTE_HIDDEN  __attribute__ ((__visibility__ ("hidden")))
39#else
40#define ATTRIBUTE_HIDDEN
41#endif
42
43#ifndef MIN_UNITS_PER_WORD
44#define MIN_UNITS_PER_WORD UNITS_PER_WORD
45#endif
46
47/* Work out the largest "word" size that we can deal with on this target.  */
48#if MIN_UNITS_PER_WORD > 4
49# define LIBGCC2_MAX_UNITS_PER_WORD 8
50#elif (MIN_UNITS_PER_WORD > 2 \
51       || (MIN_UNITS_PER_WORD > 1 && LONG_LONG_TYPE_SIZE > 32))
52# define LIBGCC2_MAX_UNITS_PER_WORD 4
53#else
54# define LIBGCC2_MAX_UNITS_PER_WORD MIN_UNITS_PER_WORD
55#endif
56
57/* Work out what word size we are using for this compilation.
58   The value can be set on the command line.  */
59#ifndef LIBGCC2_UNITS_PER_WORD
60#define LIBGCC2_UNITS_PER_WORD LIBGCC2_MAX_UNITS_PER_WORD
61#endif
62
63#if LIBGCC2_UNITS_PER_WORD <= LIBGCC2_MAX_UNITS_PER_WORD
64
65#include "libgcc2.h"
66
67#ifdef DECLARE_LIBRARY_RENAMES
68  DECLARE_LIBRARY_RENAMES
69#endif
70
71#if defined (L_negdi2)
72DWtype
73__negdi2 (DWtype u)
74{
75  const DWunion uu = {.ll = u};
76  const DWunion w = { {.low = -uu.s.low,
77		       .high = -uu.s.high - ((UWtype) -uu.s.low > 0) } };
78
79  return w.ll;
80}
81#endif
82
83#ifdef L_addvsi3
84Wtype
85__addvSI3 (Wtype a, Wtype b)
86{
87  const Wtype w = a + b;
88
89  if (b >= 0 ? w < a : w > a)
90    abort ();
91
92  return w;
93}
94#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
95SItype
96__addvsi3 (SItype a, SItype b)
97{
98  const SItype w = a + b;
99
100  if (b >= 0 ? w < a : w > a)
101    abort ();
102
103  return w;
104}
105#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
106#endif
107
108#ifdef L_addvdi3
109DWtype
110__addvDI3 (DWtype a, DWtype b)
111{
112  const DWtype w = a + b;
113
114  if (b >= 0 ? w < a : w > a)
115    abort ();
116
117  return w;
118}
119#endif
120
121#ifdef L_subvsi3
122Wtype
123__subvSI3 (Wtype a, Wtype b)
124{
125  const Wtype w = a - b;
126
127  if (b >= 0 ? w > a : w < a)
128    abort ();
129
130  return w;
131}
132#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
133SItype
134__subvsi3 (SItype a, SItype b)
135{
136  const SItype w = a - b;
137
138  if (b >= 0 ? w > a : w < a)
139    abort ();
140
141  return w;
142}
143#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
144#endif
145
146#ifdef L_subvdi3
147DWtype
148__subvDI3 (DWtype a, DWtype b)
149{
150  const DWtype w = a - b;
151
152  if (b >= 0 ? w > a : w < a)
153    abort ();
154
155  return w;
156}
157#endif
158
159#ifdef L_mulvsi3
160Wtype
161__mulvSI3 (Wtype a, Wtype b)
162{
163  const DWtype w = (DWtype) a * (DWtype) b;
164
165  if ((Wtype) (w >> W_TYPE_SIZE) != (Wtype) w >> (W_TYPE_SIZE - 1))
166    abort ();
167
168  return w;
169}
170#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
171#undef WORD_SIZE
172#define WORD_SIZE (sizeof (SItype) * BITS_PER_UNIT)
173SItype
174__mulvsi3 (SItype a, SItype b)
175{
176  const DItype w = (DItype) a * (DItype) b;
177
178  if ((SItype) (w >> WORD_SIZE) != (SItype) w >> (WORD_SIZE-1))
179    abort ();
180
181  return w;
182}
183#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
184#endif
185
186#ifdef L_negvsi2
187Wtype
188__negvSI2 (Wtype a)
189{
190  const Wtype w = -a;
191
192  if (a >= 0 ? w > 0 : w < 0)
193    abort ();
194
195   return w;
196}
197#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
198SItype
199__negvsi2 (SItype a)
200{
201  const SItype w = -a;
202
203  if (a >= 0 ? w > 0 : w < 0)
204    abort ();
205
206   return w;
207}
208#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
209#endif
210
211#ifdef L_negvdi2
212DWtype
213__negvDI2 (DWtype a)
214{
215  const DWtype w = -a;
216
217  if (a >= 0 ? w > 0 : w < 0)
218    abort ();
219
220  return w;
221}
222#endif
223
224#ifdef L_absvsi2
225Wtype
226__absvSI2 (Wtype a)
227{
228  Wtype w = a;
229
230  if (a < 0)
231#ifdef L_negvsi2
232    w = __negvSI2 (a);
233#else
234    w = -a;
235
236  if (w < 0)
237    abort ();
238#endif
239
240   return w;
241}
242#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
243SItype
244__absvsi2 (SItype a)
245{
246  SItype w = a;
247
248  if (a < 0)
249#ifdef L_negvsi2
250    w = __negvsi2 (a);
251#else
252    w = -a;
253
254  if (w < 0)
255    abort ();
256#endif
257
258   return w;
259}
260#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
261#endif
262
263#ifdef L_absvdi2
264DWtype
265__absvDI2 (DWtype a)
266{
267  DWtype w = a;
268
269  if (a < 0)
270#ifdef L_negvdi2
271    w = __negvDI2 (a);
272#else
273    w = -a;
274
275  if (w < 0)
276    abort ();
277#endif
278
279  return w;
280}
281#endif
282
283#ifdef L_mulvdi3
284DWtype
285__mulvDI3 (DWtype u, DWtype v)
286{
287  /* The unchecked multiplication needs 3 Wtype x Wtype multiplications,
288     but the checked multiplication needs only two.  */
289  const DWunion uu = {.ll = u};
290  const DWunion vv = {.ll = v};
291
292  if (__builtin_expect (uu.s.high == uu.s.low >> (W_TYPE_SIZE - 1), 1))
293    {
294      /* u fits in a single Wtype.  */
295      if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1))
296	{
297	  /* v fits in a single Wtype as well.  */
298	  /* A single multiplication.  No overflow risk.  */
299	  return (DWtype) uu.s.low * (DWtype) vv.s.low;
300	}
301      else
302	{
303	  /* Two multiplications.  */
304	  DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low
305			* (UDWtype) (UWtype) vv.s.low};
306	  DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.low
307			* (UDWtype) (UWtype) vv.s.high};
308
309	  if (vv.s.high < 0)
310	    w1.s.high -= uu.s.low;
311	  if (uu.s.low < 0)
312	    w1.ll -= vv.ll;
313	  w1.ll += (UWtype) w0.s.high;
314	  if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1))
315	    {
316	      w0.s.high = w1.s.low;
317	      return w0.ll;
318	    }
319	}
320    }
321  else
322    {
323      if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1))
324	{
325	  /* v fits into a single Wtype.  */
326	  /* Two multiplications.  */
327	  DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low
328			* (UDWtype) (UWtype) vv.s.low};
329	  DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.high
330			* (UDWtype) (UWtype) vv.s.low};
331
332	  if (uu.s.high < 0)
333	    w1.s.high -= vv.s.low;
334	  if (vv.s.low < 0)
335	    w1.ll -= uu.ll;
336	  w1.ll += (UWtype) w0.s.high;
337	  if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1))
338	    {
339	      w0.s.high = w1.s.low;
340	      return w0.ll;
341	    }
342	}
343      else
344	{
345	  /* A few sign checks and a single multiplication.  */
346	  if (uu.s.high >= 0)
347	    {
348	      if (vv.s.high >= 0)
349		{
350		  if (uu.s.high == 0 && vv.s.high == 0)
351		    {
352		      const DWtype w = (UDWtype) (UWtype) uu.s.low
353			* (UDWtype) (UWtype) vv.s.low;
354		      if (__builtin_expect (w >= 0, 1))
355			return w;
356		    }
357		}
358	      else
359		{
360		  if (uu.s.high == 0 && vv.s.high == (Wtype) -1)
361		    {
362		      DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
363				    * (UDWtype) (UWtype) vv.s.low};
364
365		      ww.s.high -= uu.s.low;
366		      if (__builtin_expect (ww.s.high < 0, 1))
367			return ww.ll;
368		    }
369		}
370	    }
371	  else
372	    {
373	      if (vv.s.high >= 0)
374		{
375		  if (uu.s.high == (Wtype) -1 && vv.s.high == 0)
376		    {
377		      DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
378				    * (UDWtype) (UWtype) vv.s.low};
379
380		      ww.s.high -= vv.s.low;
381		      if (__builtin_expect (ww.s.high < 0, 1))
382			return ww.ll;
383		    }
384		}
385	      else
386		{
387		  if (uu.s.high == (Wtype) -1 && vv.s.high == (Wtype) - 1)
388		    {
389		      DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
390				    * (UDWtype) (UWtype) vv.s.low};
391
392		      ww.s.high -= uu.s.low;
393		      ww.s.high -= vv.s.low;
394		      if (__builtin_expect (ww.s.high >= 0, 1))
395			return ww.ll;
396		    }
397		}
398	    }
399	}
400    }
401
402  /* Overflow.  */
403  abort ();
404}
405#endif
406
407
408/* Unless shift functions are defined with full ANSI prototypes,
409   parameter b will be promoted to int if word_type is smaller than an int.  */
410#ifdef L_lshrdi3
411DWtype
412__lshrdi3 (DWtype u, word_type b)
413{
414  if (b == 0)
415    return u;
416
417  const DWunion uu = {.ll = u};
418  const word_type bm = (sizeof (Wtype) * BITS_PER_UNIT) - b;
419  DWunion w;
420
421  if (bm <= 0)
422    {
423      w.s.high = 0;
424      w.s.low = (UWtype) uu.s.high >> -bm;
425    }
426  else
427    {
428      const UWtype carries = (UWtype) uu.s.high << bm;
429
430      w.s.high = (UWtype) uu.s.high >> b;
431      w.s.low = ((UWtype) uu.s.low >> b) | carries;
432    }
433
434  return w.ll;
435}
436#endif
437
438#ifdef L_ashldi3
439DWtype
440__ashldi3 (DWtype u, word_type b)
441{
442  if (b == 0)
443    return u;
444
445  const DWunion uu = {.ll = u};
446  const word_type bm = (sizeof (Wtype) * BITS_PER_UNIT) - b;
447  DWunion w;
448
449  if (bm <= 0)
450    {
451      w.s.low = 0;
452      w.s.high = (UWtype) uu.s.low << -bm;
453    }
454  else
455    {
456      const UWtype carries = (UWtype) uu.s.low >> bm;
457
458      w.s.low = (UWtype) uu.s.low << b;
459      w.s.high = ((UWtype) uu.s.high << b) | carries;
460    }
461
462  return w.ll;
463}
464#endif
465
466#ifdef L_ashrdi3
467DWtype
468__ashrdi3 (DWtype u, word_type b)
469{
470  if (b == 0)
471    return u;
472
473  const DWunion uu = {.ll = u};
474  const word_type bm = (sizeof (Wtype) * BITS_PER_UNIT) - b;
475  DWunion w;
476
477  if (bm <= 0)
478    {
479      /* w.s.high = 1..1 or 0..0 */
480      w.s.high = uu.s.high >> (sizeof (Wtype) * BITS_PER_UNIT - 1);
481      w.s.low = uu.s.high >> -bm;
482    }
483  else
484    {
485      const UWtype carries = (UWtype) uu.s.high << bm;
486
487      w.s.high = uu.s.high >> b;
488      w.s.low = ((UWtype) uu.s.low >> b) | carries;
489    }
490
491  return w.ll;
492}
493#endif
494
495#ifdef L_ffssi2
496#undef int
497int
498__ffsSI2 (UWtype u)
499{
500  UWtype count;
501
502  if (u == 0)
503    return 0;
504
505  count_trailing_zeros (count, u);
506  return count + 1;
507}
508#endif
509
510#ifdef L_ffsdi2
511#undef int
512int
513__ffsDI2 (DWtype u)
514{
515  const DWunion uu = {.ll = u};
516  UWtype word, count, add;
517
518  if (uu.s.low != 0)
519    word = uu.s.low, add = 0;
520  else if (uu.s.high != 0)
521    word = uu.s.high, add = BITS_PER_UNIT * sizeof (Wtype);
522  else
523    return 0;
524
525  count_trailing_zeros (count, word);
526  return count + add + 1;
527}
528#endif
529
530#ifdef L_muldi3
531DWtype
532__muldi3 (DWtype u, DWtype v)
533{
534  const DWunion uu = {.ll = u};
535  const DWunion vv = {.ll = v};
536  DWunion w = {.ll = __umulsidi3 (uu.s.low, vv.s.low)};
537
538  w.s.high += ((UWtype) uu.s.low * (UWtype) vv.s.high
539	       + (UWtype) uu.s.high * (UWtype) vv.s.low);
540
541  return w.ll;
542}
543#endif
544
545#if (defined (L_udivdi3) || defined (L_divdi3) || \
546     defined (L_umoddi3) || defined (L_moddi3))
547#if defined (sdiv_qrnnd)
548#define L_udiv_w_sdiv
549#endif
550#endif
551
552#ifdef L_udiv_w_sdiv
553#if defined (sdiv_qrnnd)
554#if (defined (L_udivdi3) || defined (L_divdi3) || \
555     defined (L_umoddi3) || defined (L_moddi3))
556static inline __attribute__ ((__always_inline__))
557#endif
558UWtype
559__udiv_w_sdiv (UWtype *rp, UWtype a1, UWtype a0, UWtype d)
560{
561  UWtype q, r;
562  UWtype c0, c1, b1;
563
564  if ((Wtype) d >= 0)
565    {
566      if (a1 < d - a1 - (a0 >> (W_TYPE_SIZE - 1)))
567	{
568	  /* Dividend, divisor, and quotient are nonnegative.  */
569	  sdiv_qrnnd (q, r, a1, a0, d);
570	}
571      else
572	{
573	  /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d.  */
574	  sub_ddmmss (c1, c0, a1, a0, d >> 1, d << (W_TYPE_SIZE - 1));
575	  /* Divide (c1*2^32 + c0) by d.  */
576	  sdiv_qrnnd (q, r, c1, c0, d);
577	  /* Add 2^31 to quotient.  */
578	  q += (UWtype) 1 << (W_TYPE_SIZE - 1);
579	}
580    }
581  else
582    {
583      b1 = d >> 1;			/* d/2, between 2^30 and 2^31 - 1 */
584      c1 = a1 >> 1;			/* A/2 */
585      c0 = (a1 << (W_TYPE_SIZE - 1)) + (a0 >> 1);
586
587      if (a1 < b1)			/* A < 2^32*b1, so A/2 < 2^31*b1 */
588	{
589	  sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
590
591	  r = 2*r + (a0 & 1);		/* Remainder from A/(2*b1) */
592	  if ((d & 1) != 0)
593	    {
594	      if (r >= q)
595		r = r - q;
596	      else if (q - r <= d)
597		{
598		  r = r - q + d;
599		  q--;
600		}
601	      else
602		{
603		  r = r - q + 2*d;
604		  q -= 2;
605		}
606	    }
607	}
608      else if (c1 < b1)			/* So 2^31 <= (A/2)/b1 < 2^32 */
609	{
610	  c1 = (b1 - 1) - c1;
611	  c0 = ~c0;			/* logical NOT */
612
613	  sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
614
615	  q = ~q;			/* (A/2)/b1 */
616	  r = (b1 - 1) - r;
617
618	  r = 2*r + (a0 & 1);		/* A/(2*b1) */
619
620	  if ((d & 1) != 0)
621	    {
622	      if (r >= q)
623		r = r - q;
624	      else if (q - r <= d)
625		{
626		  r = r - q + d;
627		  q--;
628		}
629	      else
630		{
631		  r = r - q + 2*d;
632		  q -= 2;
633		}
634	    }
635	}
636      else				/* Implies c1 = b1 */
637	{				/* Hence a1 = d - 1 = 2*b1 - 1 */
638	  if (a0 >= -d)
639	    {
640	      q = -1;
641	      r = a0 + d;
642	    }
643	  else
644	    {
645	      q = -2;
646	      r = a0 + 2*d;
647	    }
648	}
649    }
650
651  *rp = r;
652  return q;
653}
654#else
655/* If sdiv_qrnnd doesn't exist, define dummy __udiv_w_sdiv.  */
656UWtype
657__udiv_w_sdiv (UWtype *rp __attribute__ ((__unused__)),
658	       UWtype a1 __attribute__ ((__unused__)),
659	       UWtype a0 __attribute__ ((__unused__)),
660	       UWtype d __attribute__ ((__unused__)))
661{
662  return 0;
663}
664#endif
665#endif
666
667#if (defined (L_udivdi3) || defined (L_divdi3) || \
668     defined (L_umoddi3) || defined (L_moddi3))
669#define L_udivmoddi4
670#endif
671
672#ifdef L_clz
673const UQItype __clz_tab[256] =
674{
675  0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
676  6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
677  7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
678  7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
679  8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
680  8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
681  8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
682  8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8
683};
684#endif
685
686#ifdef L_clzsi2
687#undef int
688int
689__clzSI2 (UWtype x)
690{
691  Wtype ret;
692
693  count_leading_zeros (ret, x);
694
695  return ret;
696}
697#endif
698
699#ifdef L_clzdi2
700#undef int
701int
702__clzDI2 (UDWtype x)
703{
704  const DWunion uu = {.ll = x};
705  UWtype word;
706  Wtype ret, add;
707
708  if (uu.s.high)
709    word = uu.s.high, add = 0;
710  else
711    word = uu.s.low, add = W_TYPE_SIZE;
712
713  count_leading_zeros (ret, word);
714  return ret + add;
715}
716#endif
717
718#ifdef L_ctzsi2
719#undef int
720int
721__ctzSI2 (UWtype x)
722{
723  Wtype ret;
724
725  count_trailing_zeros (ret, x);
726
727  return ret;
728}
729#endif
730
731#ifdef L_ctzdi2
732#undef int
733int
734__ctzDI2 (UDWtype x)
735{
736  const DWunion uu = {.ll = x};
737  UWtype word;
738  Wtype ret, add;
739
740  if (uu.s.low)
741    word = uu.s.low, add = 0;
742  else
743    word = uu.s.high, add = W_TYPE_SIZE;
744
745  count_trailing_zeros (ret, word);
746  return ret + add;
747}
748#endif
749
750#ifdef L_popcount_tab
751const UQItype __popcount_tab[256] =
752{
753    0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
754    1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
755    1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
756    2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
757    1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
758    2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
759    2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
760    3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8
761};
762#endif
763
764#ifdef L_popcountsi2
765#undef int
766int
767__popcountSI2 (UWtype x)
768{
769  int i, ret = 0;
770
771  for (i = 0; i < W_TYPE_SIZE; i += 8)
772    ret += __popcount_tab[(x >> i) & 0xff];
773
774  return ret;
775}
776#endif
777
778#ifdef L_popcountdi2
779#undef int
780int
781__popcountDI2 (UDWtype x)
782{
783  int i, ret = 0;
784
785  for (i = 0; i < 2*W_TYPE_SIZE; i += 8)
786    ret += __popcount_tab[(x >> i) & 0xff];
787
788  return ret;
789}
790#endif
791
792#ifdef L_paritysi2
793#undef int
794int
795__paritySI2 (UWtype x)
796{
797#if W_TYPE_SIZE > 64
798# error "fill out the table"
799#endif
800#if W_TYPE_SIZE > 32
801  x ^= x >> 32;
802#endif
803#if W_TYPE_SIZE > 16
804  x ^= x >> 16;
805#endif
806  x ^= x >> 8;
807  x ^= x >> 4;
808  x &= 0xf;
809  return (0x6996 >> x) & 1;
810}
811#endif
812
813#ifdef L_paritydi2
814#undef int
815int
816__parityDI2 (UDWtype x)
817{
818  const DWunion uu = {.ll = x};
819  UWtype nx = uu.s.low ^ uu.s.high;
820
821#if W_TYPE_SIZE > 64
822# error "fill out the table"
823#endif
824#if W_TYPE_SIZE > 32
825  nx ^= nx >> 32;
826#endif
827#if W_TYPE_SIZE > 16
828  nx ^= nx >> 16;
829#endif
830  nx ^= nx >> 8;
831  nx ^= nx >> 4;
832  nx &= 0xf;
833  return (0x6996 >> nx) & 1;
834}
835#endif
836
837#ifdef L_udivmoddi4
838
839#if (defined (L_udivdi3) || defined (L_divdi3) || \
840     defined (L_umoddi3) || defined (L_moddi3))
841static inline __attribute__ ((__always_inline__))
842#endif
843UDWtype
844__udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp)
845{
846  const DWunion nn = {.ll = n};
847  const DWunion dd = {.ll = d};
848  DWunion rr;
849  UWtype d0, d1, n0, n1, n2;
850  UWtype q0, q1;
851  UWtype b, bm;
852
853  d0 = dd.s.low;
854  d1 = dd.s.high;
855  n0 = nn.s.low;
856  n1 = nn.s.high;
857
858#if !UDIV_NEEDS_NORMALIZATION
859  if (d1 == 0)
860    {
861      if (d0 > n1)
862	{
863	  /* 0q = nn / 0D */
864
865	  udiv_qrnnd (q0, n0, n1, n0, d0);
866	  q1 = 0;
867
868	  /* Remainder in n0.  */
869	}
870      else
871	{
872	  /* qq = NN / 0d */
873
874	  if (d0 == 0)
875	    d0 = 1 / d0;	/* Divide intentionally by zero.  */
876
877	  udiv_qrnnd (q1, n1, 0, n1, d0);
878	  udiv_qrnnd (q0, n0, n1, n0, d0);
879
880	  /* Remainder in n0.  */
881	}
882
883      if (rp != 0)
884	{
885	  rr.s.low = n0;
886	  rr.s.high = 0;
887	  *rp = rr.ll;
888	}
889    }
890
891#else /* UDIV_NEEDS_NORMALIZATION */
892
893  if (d1 == 0)
894    {
895      if (d0 > n1)
896	{
897	  /* 0q = nn / 0D */
898
899	  count_leading_zeros (bm, d0);
900
901	  if (bm != 0)
902	    {
903	      /* Normalize, i.e. make the most significant bit of the
904		 denominator set.  */
905
906	      d0 = d0 << bm;
907	      n1 = (n1 << bm) | (n0 >> (W_TYPE_SIZE - bm));
908	      n0 = n0 << bm;
909	    }
910
911	  udiv_qrnnd (q0, n0, n1, n0, d0);
912	  q1 = 0;
913
914	  /* Remainder in n0 >> bm.  */
915	}
916      else
917	{
918	  /* qq = NN / 0d */
919
920	  if (d0 == 0)
921	    d0 = 1 / d0;	/* Divide intentionally by zero.  */
922
923	  count_leading_zeros (bm, d0);
924
925	  if (bm == 0)
926	    {
927	      /* From (n1 >= d0) /\ (the most significant bit of d0 is set),
928		 conclude (the most significant bit of n1 is set) /\ (the
929		 leading quotient digit q1 = 1).
930
931		 This special case is necessary, not an optimization.
932		 (Shifts counts of W_TYPE_SIZE are undefined.)  */
933
934	      n1 -= d0;
935	      q1 = 1;
936	    }
937	  else
938	    {
939	      /* Normalize.  */
940
941	      b = W_TYPE_SIZE - bm;
942
943	      d0 = d0 << bm;
944	      n2 = n1 >> b;
945	      n1 = (n1 << bm) | (n0 >> b);
946	      n0 = n0 << bm;
947
948	      udiv_qrnnd (q1, n1, n2, n1, d0);
949	    }
950
951	  /* n1 != d0...  */
952
953	  udiv_qrnnd (q0, n0, n1, n0, d0);
954
955	  /* Remainder in n0 >> bm.  */
956	}
957
958      if (rp != 0)
959	{
960	  rr.s.low = n0 >> bm;
961	  rr.s.high = 0;
962	  *rp = rr.ll;
963	}
964    }
965#endif /* UDIV_NEEDS_NORMALIZATION */
966
967  else
968    {
969      if (d1 > n1)
970	{
971	  /* 00 = nn / DD */
972
973	  q0 = 0;
974	  q1 = 0;
975
976	  /* Remainder in n1n0.  */
977	  if (rp != 0)
978	    {
979	      rr.s.low = n0;
980	      rr.s.high = n1;
981	      *rp = rr.ll;
982	    }
983	}
984      else
985	{
986	  /* 0q = NN / dd */
987
988	  count_leading_zeros (bm, d1);
989	  if (bm == 0)
990	    {
991	      /* From (n1 >= d1) /\ (the most significant bit of d1 is set),
992		 conclude (the most significant bit of n1 is set) /\ (the
993		 quotient digit q0 = 0 or 1).
994
995		 This special case is necessary, not an optimization.  */
996
997	      /* The condition on the next line takes advantage of that
998		 n1 >= d1 (true due to program flow).  */
999	      if (n1 > d1 || n0 >= d0)
1000		{
1001		  q0 = 1;
1002		  sub_ddmmss (n1, n0, n1, n0, d1, d0);
1003		}
1004	      else
1005		q0 = 0;
1006
1007	      q1 = 0;
1008
1009	      if (rp != 0)
1010		{
1011		  rr.s.low = n0;
1012		  rr.s.high = n1;
1013		  *rp = rr.ll;
1014		}
1015	    }
1016	  else
1017	    {
1018	      UWtype m1, m0;
1019	      /* Normalize.  */
1020
1021	      b = W_TYPE_SIZE - bm;
1022
1023	      d1 = (d1 << bm) | (d0 >> b);
1024	      d0 = d0 << bm;
1025	      n2 = n1 >> b;
1026	      n1 = (n1 << bm) | (n0 >> b);
1027	      n0 = n0 << bm;
1028
1029	      udiv_qrnnd (q0, n1, n2, n1, d1);
1030	      umul_ppmm (m1, m0, q0, d0);
1031
1032	      if (m1 > n1 || (m1 == n1 && m0 > n0))
1033		{
1034		  q0--;
1035		  sub_ddmmss (m1, m0, m1, m0, d1, d0);
1036		}
1037
1038	      q1 = 0;
1039
1040	      /* Remainder in (n1n0 - m1m0) >> bm.  */
1041	      if (rp != 0)
1042		{
1043		  sub_ddmmss (n1, n0, n1, n0, m1, m0);
1044		  rr.s.low = (n1 << b) | (n0 >> bm);
1045		  rr.s.high = n1 >> bm;
1046		  *rp = rr.ll;
1047		}
1048	    }
1049	}
1050    }
1051
1052  const DWunion ww = {{.low = q0, .high = q1}};
1053  return ww.ll;
1054}
1055#endif
1056
1057#ifdef L_divdi3
1058DWtype
1059__divdi3 (DWtype u, DWtype v)
1060{
1061  word_type c = 0;
1062  DWunion uu = {.ll = u};
1063  DWunion vv = {.ll = v};
1064  DWtype w;
1065
1066  if (uu.s.high < 0)
1067    c = ~c,
1068    uu.ll = -uu.ll;
1069  if (vv.s.high < 0)
1070    c = ~c,
1071    vv.ll = -vv.ll;
1072
1073  w = __udivmoddi4 (uu.ll, vv.ll, (UDWtype *) 0);
1074  if (c)
1075    w = -w;
1076
1077  return w;
1078}
1079#endif
1080
1081#ifdef L_moddi3
1082DWtype
1083__moddi3 (DWtype u, DWtype v)
1084{
1085  word_type c = 0;
1086  DWunion uu = {.ll = u};
1087  DWunion vv = {.ll = v};
1088  DWtype w;
1089
1090  if (uu.s.high < 0)
1091    c = ~c,
1092    uu.ll = -uu.ll;
1093  if (vv.s.high < 0)
1094    vv.ll = -vv.ll;
1095
1096  (void) __udivmoddi4 (uu.ll, vv.ll, (UDWtype*)&w);
1097  if (c)
1098    w = -w;
1099
1100  return w;
1101}
1102#endif
1103
1104#ifdef L_umoddi3
1105UDWtype
1106__umoddi3 (UDWtype u, UDWtype v)
1107{
1108  UDWtype w;
1109
1110  (void) __udivmoddi4 (u, v, &w);
1111
1112  return w;
1113}
1114#endif
1115
1116#ifdef L_udivdi3
1117UDWtype
1118__udivdi3 (UDWtype n, UDWtype d)
1119{
1120  return __udivmoddi4 (n, d, (UDWtype *) 0);
1121}
1122#endif
1123
1124#ifdef L_cmpdi2
1125word_type
1126__cmpdi2 (DWtype a, DWtype b)
1127{
1128  const DWunion au = {.ll = a};
1129  const DWunion bu = {.ll = b};
1130
1131  if (au.s.high < bu.s.high)
1132    return 0;
1133  else if (au.s.high > bu.s.high)
1134    return 2;
1135  if ((UWtype) au.s.low < (UWtype) bu.s.low)
1136    return 0;
1137  else if ((UWtype) au.s.low > (UWtype) bu.s.low)
1138    return 2;
1139  return 1;
1140}
1141#endif
1142
1143#ifdef L_ucmpdi2
1144word_type
1145__ucmpdi2 (DWtype a, DWtype b)
1146{
1147  const DWunion au = {.ll = a};
1148  const DWunion bu = {.ll = b};
1149
1150  if ((UWtype) au.s.high < (UWtype) bu.s.high)
1151    return 0;
1152  else if ((UWtype) au.s.high > (UWtype) bu.s.high)
1153    return 2;
1154  if ((UWtype) au.s.low < (UWtype) bu.s.low)
1155    return 0;
1156  else if ((UWtype) au.s.low > (UWtype) bu.s.low)
1157    return 2;
1158  return 1;
1159}
1160#endif
1161
1162#if defined(L_fixunstfdi) && LIBGCC2_HAS_TF_MODE
1163DWtype
1164__fixunstfDI (TFtype a)
1165{
1166  if (a < 0)
1167    return 0;
1168
1169  /* Compute high word of result, as a flonum.  */
1170  const TFtype b = (a / Wtype_MAXp1_F);
1171  /* Convert that to fixed (but not to DWtype!),
1172     and shift it into the high word.  */
1173  UDWtype v = (UWtype) b;
1174  v <<= W_TYPE_SIZE;
1175  /* Remove high part from the TFtype, leaving the low part as flonum.  */
1176  a -= (TFtype)v;
1177  /* Convert that to fixed (but not to DWtype!) and add it in.
1178     Sometimes A comes out negative.  This is significant, since
1179     A has more bits than a long int does.  */
1180  if (a < 0)
1181    v -= (UWtype) (- a);
1182  else
1183    v += (UWtype) a;
1184  return v;
1185}
1186#endif
1187
1188#if defined(L_fixtfdi) && LIBGCC2_HAS_TF_MODE
1189DWtype
1190__fixtfdi (TFtype a)
1191{
1192  if (a < 0)
1193    return - __fixunstfDI (-a);
1194  return __fixunstfDI (a);
1195}
1196#endif
1197
1198#if defined(L_fixunsxfdi) && LIBGCC2_HAS_XF_MODE
1199DWtype
1200__fixunsxfDI (XFtype a)
1201{
1202  if (a < 0)
1203    return 0;
1204
1205  /* Compute high word of result, as a flonum.  */
1206  const XFtype b = (a / Wtype_MAXp1_F);
1207  /* Convert that to fixed (but not to DWtype!),
1208     and shift it into the high word.  */
1209  UDWtype v = (UWtype) b;
1210  v <<= W_TYPE_SIZE;
1211  /* Remove high part from the XFtype, leaving the low part as flonum.  */
1212  a -= (XFtype)v;
1213  /* Convert that to fixed (but not to DWtype!) and add it in.
1214     Sometimes A comes out negative.  This is significant, since
1215     A has more bits than a long int does.  */
1216  if (a < 0)
1217    v -= (UWtype) (- a);
1218  else
1219    v += (UWtype) a;
1220  return v;
1221}
1222#endif
1223
1224#if defined(L_fixxfdi) && LIBGCC2_HAS_XF_MODE
1225DWtype
1226__fixxfdi (XFtype a)
1227{
1228  if (a < 0)
1229    return - __fixunsxfDI (-a);
1230  return __fixunsxfDI (a);
1231}
1232#endif
1233
1234#if defined(L_fixunsdfdi) && LIBGCC2_HAS_DF_MODE
1235DWtype
1236__fixunsdfDI (DFtype a)
1237{
1238  /* Get high part of result.  The division here will just moves the radix
1239     point and will not cause any rounding.  Then the conversion to integral
1240     type chops result as desired.  */
1241  const UWtype hi = a / Wtype_MAXp1_F;
1242
1243  /* Get low part of result.  Convert `hi' to floating type and scale it back,
1244     then subtract this from the number being converted.  This leaves the low
1245     part.  Convert that to integral type.  */
1246  const UWtype lo = a - (DFtype) hi * Wtype_MAXp1_F;
1247
1248  /* Assemble result from the two parts.  */
1249  return ((UDWtype) hi << W_TYPE_SIZE) | lo;
1250}
1251#endif
1252
1253#if defined(L_fixdfdi) && LIBGCC2_HAS_DF_MODE
1254DWtype
1255__fixdfdi (DFtype a)
1256{
1257  if (a < 0)
1258    return - __fixunsdfDI (-a);
1259  return __fixunsdfDI (a);
1260}
1261#endif
1262
1263#if defined(L_fixunssfdi) && LIBGCC2_HAS_SF_MODE
1264DWtype
1265__fixunssfDI (SFtype a)
1266{
1267#if LIBGCC2_HAS_DF_MODE
1268  /* Convert the SFtype to a DFtype, because that is surely not going
1269     to lose any bits.  Some day someone else can write a faster version
1270     that avoids converting to DFtype, and verify it really works right.  */
1271  const DFtype dfa = a;
1272
1273  /* Get high part of result.  The division here will just moves the radix
1274     point and will not cause any rounding.  Then the conversion to integral
1275     type chops result as desired.  */
1276  const UWtype hi = dfa / Wtype_MAXp1_F;
1277
1278  /* Get low part of result.  Convert `hi' to floating type and scale it back,
1279     then subtract this from the number being converted.  This leaves the low
1280     part.  Convert that to integral type.  */
1281  const UWtype lo = dfa - (DFtype) hi * Wtype_MAXp1_F;
1282
1283  /* Assemble result from the two parts.  */
1284  return ((UDWtype) hi << W_TYPE_SIZE) | lo;
1285#elif FLT_MANT_DIG < W_TYPE_SIZE
1286  if (a < 1)
1287    return 0;
1288  if (a < Wtype_MAXp1_F)
1289    return (UWtype)a;
1290  if (a < Wtype_MAXp1_F * Wtype_MAXp1_F)
1291    {
1292      /* Since we know that there are fewer significant bits in the SFmode
1293	 quantity than in a word, we know that we can convert out all the
1294	 significant bits in one step, and thus avoid losing bits.  */
1295
1296      /* ??? This following loop essentially performs frexpf.  If we could
1297	 use the real libm function, or poke at the actual bits of the fp
1298	 format, it would be significantly faster.  */
1299
1300      UWtype shift = 0, counter;
1301      SFtype msb;
1302
1303      a /= Wtype_MAXp1_F;
1304      for (counter = W_TYPE_SIZE / 2; counter != 0; counter >>= 1)
1305	{
1306	  SFtype counterf = (UWtype)1 << counter;
1307	  if (a >= counterf)
1308	    {
1309	      shift |= counter;
1310	      a /= counterf;
1311	    }
1312	}
1313
1314      /* Rescale into the range of one word, extract the bits of that
1315	 one word, and shift the result into position.  */
1316      a *= Wtype_MAXp1_F;
1317      counter = a;
1318      return (DWtype)counter << shift;
1319    }
1320  return -1;
1321#else
1322# error
1323#endif
1324}
1325#endif
1326
1327#if defined(L_fixsfdi) && LIBGCC2_HAS_SF_MODE
1328DWtype
1329__fixsfdi (SFtype a)
1330{
1331  if (a < 0)
1332    return - __fixunssfDI (-a);
1333  return __fixunssfDI (a);
1334}
1335#endif
1336
1337#if defined(L_floatdixf) && LIBGCC2_HAS_XF_MODE
1338XFtype
1339__floatdixf (DWtype u)
1340{
1341#if W_TYPE_SIZE > XF_SIZE
1342# error
1343#endif
1344  XFtype d = (Wtype) (u >> W_TYPE_SIZE);
1345  d *= Wtype_MAXp1_F;
1346  d += (UWtype)u;
1347  return d;
1348}
1349#endif
1350
1351#if defined(L_floatundixf) && LIBGCC2_HAS_XF_MODE
1352XFtype
1353__floatundixf (UDWtype u)
1354{
1355#if W_TYPE_SIZE > XF_SIZE
1356# error
1357#endif
1358  XFtype d = (UWtype) (u >> W_TYPE_SIZE);
1359  d *= Wtype_MAXp1_F;
1360  d += (UWtype)u;
1361  return d;
1362}
1363#endif
1364
1365#if defined(L_floatditf) && LIBGCC2_HAS_TF_MODE
1366TFtype
1367__floatditf (DWtype u)
1368{
1369#if W_TYPE_SIZE > TF_SIZE
1370# error
1371#endif
1372  TFtype d = (Wtype) (u >> W_TYPE_SIZE);
1373  d *= Wtype_MAXp1_F;
1374  d += (UWtype)u;
1375  return d;
1376}
1377#endif
1378
1379#if defined(L_floatunditf) && LIBGCC2_HAS_TF_MODE
1380TFtype
1381__floatunditf (UDWtype u)
1382{
1383#if W_TYPE_SIZE > TF_SIZE
1384# error
1385#endif
1386  TFtype d = (UWtype) (u >> W_TYPE_SIZE);
1387  d *= Wtype_MAXp1_F;
1388  d += (UWtype)u;
1389  return d;
1390}
1391#endif
1392
1393#if (defined(L_floatdisf) && LIBGCC2_HAS_SF_MODE)	\
1394     || (defined(L_floatdidf) && LIBGCC2_HAS_DF_MODE)
1395#define DI_SIZE (W_TYPE_SIZE * 2)
1396#define F_MODE_OK(SIZE) \
1397  (SIZE < DI_SIZE							\
1398   && SIZE > (DI_SIZE - SIZE + FSSIZE)					\
1399   /* Don't use IBM Extended Double TFmode for TI->SF calculations.	\
1400      The conversion from long double to float suffers from double	\
1401      rounding, because we convert via double.  In any case, the	\
1402      fallback code is faster.  */					\
1403   && !IS_IBM_EXTENDED (SIZE))
1404#if defined(L_floatdisf)
1405#define FUNC __floatdisf
1406#define FSTYPE SFtype
1407#define FSSIZE SF_SIZE
1408#else
1409#define FUNC __floatdidf
1410#define FSTYPE DFtype
1411#define FSSIZE DF_SIZE
1412#endif
1413
1414FSTYPE
1415FUNC (DWtype u)
1416{
1417#if FSSIZE >= W_TYPE_SIZE
1418  /* When the word size is small, we never get any rounding error.  */
1419  FSTYPE f = (Wtype) (u >> W_TYPE_SIZE);
1420  f *= Wtype_MAXp1_F;
1421  f += (UWtype)u;
1422  return f;
1423#elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE))	\
1424     || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE))	\
1425     || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
1426
1427#if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE))
1428# define FSIZE DF_SIZE
1429# define FTYPE DFtype
1430#elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE))
1431# define FSIZE XF_SIZE
1432# define FTYPE XFtype
1433#elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
1434# define FSIZE TF_SIZE
1435# define FTYPE TFtype
1436#else
1437# error
1438#endif
1439
1440#define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
1441
1442  /* Protect against double-rounding error.
1443     Represent any low-order bits, that might be truncated by a bit that
1444     won't be lost.  The bit can go in anywhere below the rounding position
1445     of the FSTYPE.  A fixed mask and bit position handles all usual
1446     configurations.  */
1447  if (! (- ((DWtype) 1 << FSIZE) < u
1448	 && u < ((DWtype) 1 << FSIZE)))
1449    {
1450      if ((UDWtype) u & (REP_BIT - 1))
1451	{
1452	  u &= ~ (REP_BIT - 1);
1453	  u |= REP_BIT;
1454	}
1455    }
1456
1457  /* Do the calculation in a wider type so that we don't lose any of
1458     the precision of the high word while multiplying it.  */
1459  FTYPE f = (Wtype) (u >> W_TYPE_SIZE);
1460  f *= Wtype_MAXp1_F;
1461  f += (UWtype)u;
1462  return (FSTYPE) f;
1463#else
1464#if FSSIZE >= W_TYPE_SIZE - 2
1465# error
1466#endif
1467  /* Finally, the word size is larger than the number of bits in the
1468     required FSTYPE, and we've got no suitable wider type.  The only
1469     way to avoid double rounding is to special case the
1470     extraction.  */
1471
1472  /* If there are no high bits set, fall back to one conversion.  */
1473  if ((Wtype)u == u)
1474    return (FSTYPE)(Wtype)u;
1475
1476  /* Otherwise, find the power of two.  */
1477  Wtype hi = u >> W_TYPE_SIZE;
1478  if (hi < 0)
1479    hi = -hi;
1480
1481  UWtype count, shift;
1482  count_leading_zeros (count, hi);
1483
1484  /* No leading bits means u == minimum.  */
1485  if (count == 0)
1486    return -(Wtype_MAXp1_F * (Wtype_MAXp1_F / 2));
1487
1488  shift = 1 + W_TYPE_SIZE - count;
1489
1490  /* Shift down the most significant bits.  */
1491  hi = u >> shift;
1492
1493  /* If we lost any nonzero bits, set the lsb to ensure correct rounding.  */
1494  if (u & (((DWtype)1 << shift) - 1))
1495    hi |= 1;
1496
1497  /* Convert the one word of data, and rescale.  */
1498  FSTYPE f = hi;
1499  f *= (UDWtype)1 << shift;
1500  return f;
1501#endif
1502}
1503#endif
1504
1505#if (defined(L_floatundisf) && LIBGCC2_HAS_SF_MODE)	\
1506     || (defined(L_floatundidf) && LIBGCC2_HAS_DF_MODE)
1507#define DI_SIZE (W_TYPE_SIZE * 2)
1508#define F_MODE_OK(SIZE) \
1509  (SIZE < DI_SIZE							\
1510   && SIZE > (DI_SIZE - SIZE + FSSIZE)					\
1511   /* Don't use IBM Extended Double TFmode for TI->SF calculations.	\
1512      The conversion from long double to float suffers from double	\
1513      rounding, because we convert via double.  In any case, the	\
1514      fallback code is faster.  */					\
1515   && !IS_IBM_EXTENDED (SIZE))
1516#if defined(L_floatundisf)
1517#define FUNC __floatundisf
1518#define FSTYPE SFtype
1519#define FSSIZE SF_SIZE
1520#else
1521#define FUNC __floatundidf
1522#define FSTYPE DFtype
1523#define FSSIZE DF_SIZE
1524#endif
1525
1526FSTYPE
1527FUNC (UDWtype u)
1528{
1529#if FSSIZE >= W_TYPE_SIZE
1530  /* When the word size is small, we never get any rounding error.  */
1531  FSTYPE f = (UWtype) (u >> W_TYPE_SIZE);
1532  f *= Wtype_MAXp1_F;
1533  f += (UWtype)u;
1534  return f;
1535#elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE))	\
1536     || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE))	\
1537     || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
1538
1539#if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE))
1540# define FSIZE DF_SIZE
1541# define FTYPE DFtype
1542#elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE))
1543# define FSIZE XF_SIZE
1544# define FTYPE XFtype
1545#elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
1546# define FSIZE TF_SIZE
1547# define FTYPE TFtype
1548#else
1549# error
1550#endif
1551
1552#define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
1553
1554  /* Protect against double-rounding error.
1555     Represent any low-order bits, that might be truncated by a bit that
1556     won't be lost.  The bit can go in anywhere below the rounding position
1557     of the FSTYPE.  A fixed mask and bit position handles all usual
1558     configurations.  */
1559  if (u >= ((UDWtype) 1 << FSIZE))
1560    {
1561      if ((UDWtype) u & (REP_BIT - 1))
1562	{
1563	  u &= ~ (REP_BIT - 1);
1564	  u |= REP_BIT;
1565	}
1566    }
1567
1568  /* Do the calculation in a wider type so that we don't lose any of
1569     the precision of the high word while multiplying it.  */
1570  FTYPE f = (UWtype) (u >> W_TYPE_SIZE);
1571  f *= Wtype_MAXp1_F;
1572  f += (UWtype)u;
1573  return (FSTYPE) f;
1574#else
1575#if FSSIZE == W_TYPE_SIZE - 1
1576# error
1577#endif
1578  /* Finally, the word size is larger than the number of bits in the
1579     required FSTYPE, and we've got no suitable wider type.  The only
1580     way to avoid double rounding is to special case the
1581     extraction.  */
1582
1583  /* If there are no high bits set, fall back to one conversion.  */
1584  if ((UWtype)u == u)
1585    return (FSTYPE)(UWtype)u;
1586
1587  /* Otherwise, find the power of two.  */
1588  UWtype hi = u >> W_TYPE_SIZE;
1589
1590  UWtype count, shift;
1591  count_leading_zeros (count, hi);
1592
1593  shift = W_TYPE_SIZE - count;
1594
1595  /* Shift down the most significant bits.  */
1596  hi = u >> shift;
1597
1598  /* If we lost any nonzero bits, set the lsb to ensure correct rounding.  */
1599  if (u & (((UDWtype)1 << shift) - 1))
1600    hi |= 1;
1601
1602  /* Convert the one word of data, and rescale.  */
1603  FSTYPE f = hi;
1604  f *= (UDWtype)1 << shift;
1605  return f;
1606#endif
1607}
1608#endif
1609
1610#if defined(L_fixunsxfsi) && LIBGCC2_HAS_XF_MODE
1611/* Reenable the normal types, in case limits.h needs them.  */
1612#undef char
1613#undef short
1614#undef int
1615#undef long
1616#undef unsigned
1617#undef float
1618#undef double
1619#undef MIN
1620#undef MAX
1621#include <limits.h>
1622
1623UWtype
1624__fixunsxfSI (XFtype a)
1625{
1626  if (a >= - (DFtype) Wtype_MIN)
1627    return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1628  return (Wtype) a;
1629}
1630#endif
1631
1632#if defined(L_fixunsdfsi) && LIBGCC2_HAS_DF_MODE
1633/* Reenable the normal types, in case limits.h needs them.  */
1634#undef char
1635#undef short
1636#undef int
1637#undef long
1638#undef unsigned
1639#undef float
1640#undef double
1641#undef MIN
1642#undef MAX
1643#include <limits.h>
1644
1645UWtype
1646__fixunsdfSI (DFtype a)
1647{
1648  if (a >= - (DFtype) Wtype_MIN)
1649    return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1650  return (Wtype) a;
1651}
1652#endif
1653
1654#if defined(L_fixunssfsi) && LIBGCC2_HAS_SF_MODE
1655/* Reenable the normal types, in case limits.h needs them.  */
1656#undef char
1657#undef short
1658#undef int
1659#undef long
1660#undef unsigned
1661#undef float
1662#undef double
1663#undef MIN
1664#undef MAX
1665#include <limits.h>
1666
1667UWtype
1668__fixunssfSI (SFtype a)
1669{
1670  if (a >= - (SFtype) Wtype_MIN)
1671    return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1672  return (Wtype) a;
1673}
1674#endif
1675
1676/* Integer power helper used from __builtin_powi for non-constant
1677   exponents.  */
1678
1679#if (defined(L_powisf2) && LIBGCC2_HAS_SF_MODE) \
1680    || (defined(L_powidf2) && LIBGCC2_HAS_DF_MODE) \
1681    || (defined(L_powixf2) && LIBGCC2_HAS_XF_MODE) \
1682    || (defined(L_powitf2) && LIBGCC2_HAS_TF_MODE)
1683# if defined(L_powisf2)
1684#  define TYPE SFtype
1685#  define NAME __powisf2
1686# elif defined(L_powidf2)
1687#  define TYPE DFtype
1688#  define NAME __powidf2
1689# elif defined(L_powixf2)
1690#  define TYPE XFtype
1691#  define NAME __powixf2
1692# elif defined(L_powitf2)
1693#  define TYPE TFtype
1694#  define NAME __powitf2
1695# endif
1696
1697#undef int
1698#undef unsigned
1699TYPE
1700NAME (TYPE x, int m)
1701{
1702  unsigned int n = m < 0 ? -m : m;
1703  TYPE y = n % 2 ? x : 1;
1704  while (n >>= 1)
1705    {
1706      x = x * x;
1707      if (n % 2)
1708	y = y * x;
1709    }
1710  return m < 0 ? 1/y : y;
1711}
1712
1713#endif
1714
1715#if ((defined(L_mulsc3) || defined(L_divsc3)) && LIBGCC2_HAS_SF_MODE) \
1716    || ((defined(L_muldc3) || defined(L_divdc3)) && LIBGCC2_HAS_DF_MODE) \
1717    || ((defined(L_mulxc3) || defined(L_divxc3)) && LIBGCC2_HAS_XF_MODE) \
1718    || ((defined(L_multc3) || defined(L_divtc3)) && LIBGCC2_HAS_TF_MODE)
1719
1720#undef float
1721#undef double
1722#undef long
1723
1724#if defined(L_mulsc3) || defined(L_divsc3)
1725# define MTYPE	SFtype
1726# define CTYPE	SCtype
1727# define MODE	sc
1728# define CEXT	f
1729# define NOTRUNC __FLT_EVAL_METHOD__ == 0
1730#elif defined(L_muldc3) || defined(L_divdc3)
1731# define MTYPE	DFtype
1732# define CTYPE	DCtype
1733# define MODE	dc
1734# if LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 64
1735#  define CEXT	l
1736#  define NOTRUNC 1
1737# else
1738#  define CEXT
1739#  define NOTRUNC __FLT_EVAL_METHOD__ == 0 || __FLT_EVAL_METHOD__ == 1
1740# endif
1741#elif defined(L_mulxc3) || defined(L_divxc3)
1742# define MTYPE	XFtype
1743# define CTYPE	XCtype
1744# define MODE	xc
1745# define CEXT	l
1746# define NOTRUNC 1
1747#elif defined(L_multc3) || defined(L_divtc3)
1748# define MTYPE	TFtype
1749# define CTYPE	TCtype
1750# define MODE	tc
1751# define CEXT	l
1752# define NOTRUNC 1
1753#else
1754# error
1755#endif
1756
1757#define CONCAT3(A,B,C)	_CONCAT3(A,B,C)
1758#define _CONCAT3(A,B,C)	A##B##C
1759
1760#define CONCAT2(A,B)	_CONCAT2(A,B)
1761#define _CONCAT2(A,B)	A##B
1762
1763/* All of these would be present in a full C99 implementation of <math.h>
1764   and <complex.h>.  Our problem is that only a few systems have such full
1765   implementations.  Further, libgcc_s.so isn't currently linked against
1766   libm.so, and even for systems that do provide full C99, the extra overhead
1767   of all programs using libgcc having to link against libm.  So avoid it.  */
1768
1769#define isnan(x)	__builtin_expect ((x) != (x), 0)
1770#define isfinite(x)	__builtin_expect (!isnan((x) - (x)), 1)
1771#define isinf(x)	__builtin_expect (!isnan(x) & !isfinite(x), 0)
1772
1773#define INFINITY	CONCAT2(__builtin_inf, CEXT) ()
1774#define I		1i
1775
1776/* Helpers to make the following code slightly less gross.  */
1777#define COPYSIGN	CONCAT2(__builtin_copysign, CEXT)
1778#define FABS		CONCAT2(__builtin_fabs, CEXT)
1779
1780/* Verify that MTYPE matches up with CEXT.  */
1781extern void *compile_type_assert[sizeof(INFINITY) == sizeof(MTYPE) ? 1 : -1];
1782
1783/* Ensure that we've lost any extra precision.  */
1784#if NOTRUNC
1785# define TRUNC(x)
1786#else
1787# define TRUNC(x)	__asm__ ("" : "=m"(x) : "m"(x))
1788#endif
1789
1790#if defined(L_mulsc3) || defined(L_muldc3) \
1791    || defined(L_mulxc3) || defined(L_multc3)
1792
1793CTYPE
1794CONCAT3(__mul,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
1795{
1796  MTYPE ac, bd, ad, bc, x, y;
1797
1798  ac = a * c;
1799  bd = b * d;
1800  ad = a * d;
1801  bc = b * c;
1802
1803  TRUNC (ac);
1804  TRUNC (bd);
1805  TRUNC (ad);
1806  TRUNC (bc);
1807
1808  x = ac - bd;
1809  y = ad + bc;
1810
1811  if (isnan (x) && isnan (y))
1812    {
1813      /* Recover infinities that computed as NaN + iNaN.  */
1814      _Bool recalc = 0;
1815      if (isinf (a) || isinf (b))
1816	{
1817	  /* z is infinite.  "Box" the infinity and change NaNs in
1818	     the other factor to 0.  */
1819	  a = COPYSIGN (isinf (a) ? 1 : 0, a);
1820	  b = COPYSIGN (isinf (b) ? 1 : 0, b);
1821	  if (isnan (c)) c = COPYSIGN (0, c);
1822	  if (isnan (d)) d = COPYSIGN (0, d);
1823          recalc = 1;
1824	}
1825     if (isinf (c) || isinf (d))
1826	{
1827	  /* w is infinite.  "Box" the infinity and change NaNs in
1828	     the other factor to 0.  */
1829	  c = COPYSIGN (isinf (c) ? 1 : 0, c);
1830	  d = COPYSIGN (isinf (d) ? 1 : 0, d);
1831	  if (isnan (a)) a = COPYSIGN (0, a);
1832	  if (isnan (b)) b = COPYSIGN (0, b);
1833	  recalc = 1;
1834	}
1835     if (!recalc
1836	  && (isinf (ac) || isinf (bd)
1837	      || isinf (ad) || isinf (bc)))
1838	{
1839	  /* Recover infinities from overflow by changing NaNs to 0.  */
1840	  if (isnan (a)) a = COPYSIGN (0, a);
1841	  if (isnan (b)) b = COPYSIGN (0, b);
1842	  if (isnan (c)) c = COPYSIGN (0, c);
1843	  if (isnan (d)) d = COPYSIGN (0, d);
1844	  recalc = 1;
1845	}
1846      if (recalc)
1847	{
1848	  x = INFINITY * (a * c - b * d);
1849	  y = INFINITY * (a * d + b * c);
1850	}
1851    }
1852
1853  return x + I * y;
1854}
1855#endif /* complex multiply */
1856
1857#if defined(L_divsc3) || defined(L_divdc3) \
1858    || defined(L_divxc3) || defined(L_divtc3)
1859
1860CTYPE
1861CONCAT3(__div,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
1862{
1863  MTYPE denom, ratio, x, y;
1864
1865  /* ??? We can get better behavior from logarithmic scaling instead of
1866     the division.  But that would mean starting to link libgcc against
1867     libm.  We could implement something akin to ldexp/frexp as gcc builtins
1868     fairly easily...  */
1869  if (FABS (c) < FABS (d))
1870    {
1871      ratio = c / d;
1872      denom = (c * ratio) + d;
1873      x = ((a * ratio) + b) / denom;
1874      y = ((b * ratio) - a) / denom;
1875    }
1876  else
1877    {
1878      ratio = d / c;
1879      denom = (d * ratio) + c;
1880      x = ((b * ratio) + a) / denom;
1881      y = (b - (a * ratio)) / denom;
1882    }
1883
1884  /* Recover infinities and zeros that computed as NaN+iNaN; the only cases
1885     are nonzero/zero, infinite/finite, and finite/infinite.  */
1886  if (isnan (x) && isnan (y))
1887    {
1888      if (c == 0.0 && d == 0.0 && (!isnan (a) || !isnan (b)))
1889	{
1890	  x = COPYSIGN (INFINITY, c) * a;
1891	  y = COPYSIGN (INFINITY, c) * b;
1892	}
1893      else if ((isinf (a) || isinf (b)) && isfinite (c) && isfinite (d))
1894	{
1895	  a = COPYSIGN (isinf (a) ? 1 : 0, a);
1896	  b = COPYSIGN (isinf (b) ? 1 : 0, b);
1897	  x = INFINITY * (a * c + b * d);
1898	  y = INFINITY * (b * c - a * d);
1899	}
1900      else if ((isinf (c) || isinf (d)) && isfinite (a) && isfinite (b))
1901	{
1902	  c = COPYSIGN (isinf (c) ? 1 : 0, c);
1903	  d = COPYSIGN (isinf (d) ? 1 : 0, d);
1904	  x = 0.0 * (a * c + b * d);
1905	  y = 0.0 * (b * c - a * d);
1906	}
1907    }
1908
1909  return x + I * y;
1910}
1911#endif /* complex divide */
1912
1913#endif /* all complex float routines */
1914
1915/* From here on down, the routines use normal data types.  */
1916
1917#define SItype bogus_type
1918#define USItype bogus_type
1919#define DItype bogus_type
1920#define UDItype bogus_type
1921#define SFtype bogus_type
1922#define DFtype bogus_type
1923#undef Wtype
1924#undef UWtype
1925#undef HWtype
1926#undef UHWtype
1927#undef DWtype
1928#undef UDWtype
1929
1930#undef char
1931#undef short
1932#undef int
1933#undef long
1934#undef unsigned
1935#undef float
1936#undef double
1937
1938#ifdef L__gcc_bcmp
1939
1940/* Like bcmp except the sign is meaningful.
1941   Result is negative if S1 is less than S2,
1942   positive if S1 is greater, 0 if S1 and S2 are equal.  */
1943
1944int
1945__gcc_bcmp (const unsigned char *s1, const unsigned char *s2, size_t size)
1946{
1947  while (size > 0)
1948    {
1949      const unsigned char c1 = *s1++, c2 = *s2++;
1950      if (c1 != c2)
1951	return c1 - c2;
1952      size--;
1953    }
1954  return 0;
1955}
1956
1957#endif
1958
1959/* __eprintf used to be used by GCC's private version of <assert.h>.
1960   We no longer provide that header, but this routine remains in libgcc.a
1961   for binary backward compatibility.  Note that it is not included in
1962   the shared version of libgcc.  */
1963#ifdef L_eprintf
1964#ifndef inhibit_libc
1965
1966#undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch.  */
1967#include <stdio.h>
1968
1969void
1970__eprintf (const char *string, const char *expression,
1971	   unsigned int line, const char *filename)
1972{
1973  fprintf (stderr, string, expression, line, filename);
1974  fflush (stderr);
1975  abort ();
1976}
1977
1978#endif
1979#endif
1980
1981
1982#ifdef L_clear_cache
1983/* Clear part of an instruction cache.  */
1984
1985void
1986__clear_cache (char *beg __attribute__((__unused__)),
1987	       char *end __attribute__((__unused__)))
1988{
1989#ifdef CLEAR_INSN_CACHE
1990  CLEAR_INSN_CACHE (beg, end);
1991#endif /* CLEAR_INSN_CACHE */
1992}
1993
1994#endif /* L_clear_cache */
1995
1996#ifdef L_enable_execute_stack
1997/* Attempt to turn on execute permission for the stack.  */
1998
1999#ifdef ENABLE_EXECUTE_STACK
2000  ENABLE_EXECUTE_STACK
2001#else
2002void
2003__enable_execute_stack (void *addr __attribute__((__unused__)))
2004{}
2005#endif /* ENABLE_EXECUTE_STACK */
2006
2007#endif /* L_enable_execute_stack */
2008
2009#ifdef L_trampoline
2010
2011/* Jump to a trampoline, loading the static chain address.  */
2012
2013#if defined(WINNT) && ! defined(__CYGWIN__) && ! defined (_UWIN)
2014
2015int
2016getpagesize (void)
2017{
2018#ifdef _ALPHA_
2019  return 8192;
2020#else
2021  return 4096;
2022#endif
2023}
2024
2025#ifdef __i386__
2026extern int VirtualProtect (char *, int, int, int *) __attribute__((stdcall));
2027#endif
2028
2029int
2030mprotect (char *addr, int len, int prot)
2031{
2032  int np, op;
2033
2034  if (prot == 7)
2035    np = 0x40;
2036  else if (prot == 5)
2037    np = 0x20;
2038  else if (prot == 4)
2039    np = 0x10;
2040  else if (prot == 3)
2041    np = 0x04;
2042  else if (prot == 1)
2043    np = 0x02;
2044  else if (prot == 0)
2045    np = 0x01;
2046
2047  if (VirtualProtect (addr, len, np, &op))
2048    return 0;
2049  else
2050    return -1;
2051}
2052
2053#endif /* WINNT && ! __CYGWIN__ && ! _UWIN */
2054
2055#ifdef TRANSFER_FROM_TRAMPOLINE
2056TRANSFER_FROM_TRAMPOLINE
2057#endif
2058#endif /* L_trampoline */
2059
2060#ifndef __CYGWIN__
2061#ifdef L__main
2062
2063#include "gbl-ctors.h"
2064
2065/* Some systems use __main in a way incompatible with its use in gcc, in these
2066   cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
2067   give the same symbol without quotes for an alternative entry point.  You
2068   must define both, or neither.  */
2069#ifndef NAME__MAIN
2070#define NAME__MAIN "__main"
2071#define SYMBOL__MAIN __main
2072#endif
2073
2074#if defined (INIT_SECTION_ASM_OP) || defined (INIT_ARRAY_SECTION_ASM_OP)
2075#undef HAS_INIT_SECTION
2076#define HAS_INIT_SECTION
2077#endif
2078
2079#if !defined (HAS_INIT_SECTION) || !defined (OBJECT_FORMAT_ELF)
2080
2081/* Some ELF crosses use crtstuff.c to provide __CTOR_LIST__, but use this
2082   code to run constructors.  In that case, we need to handle EH here, too.  */
2083
2084#ifdef EH_FRAME_SECTION_NAME
2085#include "unwind-dw2-fde.h"
2086extern unsigned char __EH_FRAME_BEGIN__[];
2087#endif
2088
2089/* Run all the global destructors on exit from the program.  */
2090
2091void
2092__do_global_dtors (void)
2093{
2094#ifdef DO_GLOBAL_DTORS_BODY
2095  DO_GLOBAL_DTORS_BODY;
2096#else
2097  static func_ptr *p = __DTOR_LIST__ + 1;
2098  while (*p)
2099    {
2100      p++;
2101      (*(p-1)) ();
2102    }
2103#endif
2104#if defined (EH_FRAME_SECTION_NAME) && !defined (HAS_INIT_SECTION)
2105  {
2106    static int completed = 0;
2107    if (! completed)
2108      {
2109	completed = 1;
2110	__deregister_frame_info (__EH_FRAME_BEGIN__);
2111      }
2112  }
2113#endif
2114}
2115#endif
2116
2117#ifndef HAS_INIT_SECTION
2118/* Run all the global constructors on entry to the program.  */
2119
2120void
2121__do_global_ctors (void)
2122{
2123#ifdef EH_FRAME_SECTION_NAME
2124  {
2125    static struct object object;
2126    __register_frame_info (__EH_FRAME_BEGIN__, &object);
2127  }
2128#endif
2129  DO_GLOBAL_CTORS_BODY;
2130  atexit (__do_global_dtors);
2131}
2132#endif /* no HAS_INIT_SECTION */
2133
2134#if !defined (HAS_INIT_SECTION) || defined (INVOKE__main)
2135/* Subroutine called automatically by `main'.
2136   Compiling a global function named `main'
2137   produces an automatic call to this function at the beginning.
2138
2139   For many systems, this routine calls __do_global_ctors.
2140   For systems which support a .init section we use the .init section
2141   to run __do_global_ctors, so we need not do anything here.  */
2142
2143extern void SYMBOL__MAIN (void);
2144void
2145SYMBOL__MAIN (void)
2146{
2147  /* Support recursive calls to `main': run initializers just once.  */
2148  static int initialized;
2149  if (! initialized)
2150    {
2151      initialized = 1;
2152      __do_global_ctors ();
2153    }
2154}
2155#endif /* no HAS_INIT_SECTION or INVOKE__main */
2156
2157#endif /* L__main */
2158#endif /* __CYGWIN__ */
2159
2160#ifdef L_ctors
2161
2162#include "gbl-ctors.h"
2163
2164/* Provide default definitions for the lists of constructors and
2165   destructors, so that we don't get linker errors.  These symbols are
2166   intentionally bss symbols, so that gld and/or collect will provide
2167   the right values.  */
2168
2169/* We declare the lists here with two elements each,
2170   so that they are valid empty lists if no other definition is loaded.
2171
2172   If we are using the old "set" extensions to have the gnu linker
2173   collect ctors and dtors, then we __CTOR_LIST__ and __DTOR_LIST__
2174   must be in the bss/common section.
2175
2176   Long term no port should use those extensions.  But many still do.  */
2177#if !defined(INIT_SECTION_ASM_OP) && !defined(CTOR_LISTS_DEFINED_EXTERNALLY)
2178#if defined (TARGET_ASM_CONSTRUCTOR) || defined (USE_COLLECT2)
2179func_ptr __CTOR_LIST__[2] = {0, 0};
2180func_ptr __DTOR_LIST__[2] = {0, 0};
2181#else
2182func_ptr __CTOR_LIST__[2];
2183func_ptr __DTOR_LIST__[2];
2184#endif
2185#endif /* no INIT_SECTION_ASM_OP and not CTOR_LISTS_DEFINED_EXTERNALLY */
2186#endif /* L_ctors */
2187#endif /* LIBGCC2_UNITS_PER_WORD <= MIN_UNITS_PER_WORD */
2188