1/* Expands front end tree to back end RTL for GCC.
2   Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3   1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4   Free Software Foundation, Inc.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING.  If not, write to the Free
20Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2102110-1301, USA.  */
22
23/* $FreeBSD$ */
24
25/* This file handles the generation of rtl code from tree structure
26   at the level of the function as a whole.
27   It creates the rtl expressions for parameters and auto variables
28   and has full responsibility for allocating stack slots.
29
30   `expand_function_start' is called at the beginning of a function,
31   before the function body is parsed, and `expand_function_end' is
32   called after parsing the body.
33
34   Call `assign_stack_local' to allocate a stack slot for a local variable.
35   This is usually done during the RTL generation for the function body,
36   but it can also be done in the reload pass when a pseudo-register does
37   not get a hard register.  */
38
39#include "config.h"
40#include "system.h"
41#include "coretypes.h"
42#include "tm.h"
43#include "rtl.h"
44#include "tree.h"
45#include "flags.h"
46#include "except.h"
47#include "function.h"
48#include "expr.h"
49#include "optabs.h"
50#include "libfuncs.h"
51#include "regs.h"
52#include "hard-reg-set.h"
53#include "insn-config.h"
54#include "recog.h"
55#include "output.h"
56#include "basic-block.h"
57#include "toplev.h"
58#include "hashtab.h"
59#include "ggc.h"
60#include "tm_p.h"
61#include "integrate.h"
62#include "langhooks.h"
63#include "target.h"
64#include "cfglayout.h"
65#include "tree-gimple.h"
66#include "tree-pass.h"
67#include "predict.h"
68#include "vecprim.h"
69
70#ifndef LOCAL_ALIGNMENT
71#define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
72#endif
73
74#ifndef STACK_ALIGNMENT_NEEDED
75#define STACK_ALIGNMENT_NEEDED 1
76#endif
77
78#define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
79
80/* Some systems use __main in a way incompatible with its use in gcc, in these
81   cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
82   give the same symbol without quotes for an alternative entry point.  You
83   must define both, or neither.  */
84#ifndef NAME__MAIN
85#define NAME__MAIN "__main"
86#endif
87
88/* Round a value to the lowest integer less than it that is a multiple of
89   the required alignment.  Avoid using division in case the value is
90   negative.  Assume the alignment is a power of two.  */
91#define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
92
93/* Similar, but round to the next highest integer that meets the
94   alignment.  */
95#define CEIL_ROUND(VALUE,ALIGN)	(((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
96
97/* Nonzero if function being compiled doesn't contain any calls
98   (ignoring the prologue and epilogue).  This is set prior to
99   local register allocation and is valid for the remaining
100   compiler passes.  */
101int current_function_is_leaf;
102
103/* Nonzero if function being compiled doesn't modify the stack pointer
104   (ignoring the prologue and epilogue).  This is only valid after
105   life_analysis has run.  */
106int current_function_sp_is_unchanging;
107
108/* Nonzero if the function being compiled is a leaf function which only
109   uses leaf registers.  This is valid after reload (specifically after
110   sched2) and is useful only if the port defines LEAF_REGISTERS.  */
111int current_function_uses_only_leaf_regs;
112
113/* Nonzero once virtual register instantiation has been done.
114   assign_stack_local uses frame_pointer_rtx when this is nonzero.
115   calls.c:emit_library_call_value_1 uses it to set up
116   post-instantiation libcalls.  */
117int virtuals_instantiated;
118
119/* Assign unique numbers to labels generated for profiling, debugging, etc.  */
120static GTY(()) int funcdef_no;
121
122/* These variables hold pointers to functions to create and destroy
123   target specific, per-function data structures.  */
124struct machine_function * (*init_machine_status) (void);
125
126/* The currently compiled function.  */
127struct function *cfun = 0;
128
129/* These arrays record the INSN_UIDs of the prologue and epilogue insns.  */
130static VEC(int,heap) *prologue;
131static VEC(int,heap) *epilogue;
132
133/* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
134   in this function.  */
135static VEC(int,heap) *sibcall_epilogue;
136
137/* In order to evaluate some expressions, such as function calls returning
138   structures in memory, we need to temporarily allocate stack locations.
139   We record each allocated temporary in the following structure.
140
141   Associated with each temporary slot is a nesting level.  When we pop up
142   one level, all temporaries associated with the previous level are freed.
143   Normally, all temporaries are freed after the execution of the statement
144   in which they were created.  However, if we are inside a ({...}) grouping,
145   the result may be in a temporary and hence must be preserved.  If the
146   result could be in a temporary, we preserve it if we can determine which
147   one it is in.  If we cannot determine which temporary may contain the
148   result, all temporaries are preserved.  A temporary is preserved by
149   pretending it was allocated at the previous nesting level.
150
151   Automatic variables are also assigned temporary slots, at the nesting
152   level where they are defined.  They are marked a "kept" so that
153   free_temp_slots will not free them.  */
154
155struct temp_slot GTY(())
156{
157  /* Points to next temporary slot.  */
158  struct temp_slot *next;
159  /* Points to previous temporary slot.  */
160  struct temp_slot *prev;
161
162  /* The rtx to used to reference the slot.  */
163  rtx slot;
164  /* The rtx used to represent the address if not the address of the
165     slot above.  May be an EXPR_LIST if multiple addresses exist.  */
166  rtx address;
167  /* The alignment (in bits) of the slot.  */
168  unsigned int align;
169  /* The size, in units, of the slot.  */
170  HOST_WIDE_INT size;
171  /* The type of the object in the slot, or zero if it doesn't correspond
172     to a type.  We use this to determine whether a slot can be reused.
173     It can be reused if objects of the type of the new slot will always
174     conflict with objects of the type of the old slot.  */
175  tree type;
176  /* Nonzero if this temporary is currently in use.  */
177  char in_use;
178  /* Nonzero if this temporary has its address taken.  */
179  char addr_taken;
180  /* Nesting level at which this slot is being used.  */
181  int level;
182  /* Nonzero if this should survive a call to free_temp_slots.  */
183  int keep;
184  /* The offset of the slot from the frame_pointer, including extra space
185     for alignment.  This info is for combine_temp_slots.  */
186  HOST_WIDE_INT base_offset;
187  /* The size of the slot, including extra space for alignment.  This
188     info is for combine_temp_slots.  */
189  HOST_WIDE_INT full_size;
190};
191
192/* Forward declarations.  */
193
194static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
195				 struct function *);
196static struct temp_slot *find_temp_slot_from_address (rtx);
197static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
198static void pad_below (struct args_size *, enum machine_mode, tree);
199static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
200static int all_blocks (tree, tree *);
201static tree *get_block_vector (tree, int *);
202extern tree debug_find_var_in_block_tree (tree, tree);
203/* We always define `record_insns' even if it's not used so that we
204   can always export `prologue_epilogue_contains'.  */
205static void record_insns (rtx, VEC(int,heap) **) ATTRIBUTE_UNUSED;
206static int contains (rtx, VEC(int,heap) **);
207#ifdef HAVE_return
208static void emit_return_into_block (basic_block, rtx);
209#endif
210#if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
211static rtx keep_stack_depressed (rtx);
212#endif
213static void prepare_function_start (tree);
214static void do_clobber_return_reg (rtx, void *);
215static void do_use_return_reg (rtx, void *);
216static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
217
218/* Pointer to chain of `struct function' for containing functions.  */
219struct function *outer_function_chain;
220
221/* Given a function decl for a containing function,
222   return the `struct function' for it.  */
223
224struct function *
225find_function_data (tree decl)
226{
227  struct function *p;
228
229  for (p = outer_function_chain; p; p = p->outer)
230    if (p->decl == decl)
231      return p;
232
233  gcc_unreachable ();
234}
235
236/* Save the current context for compilation of a nested function.
237   This is called from language-specific code.  The caller should use
238   the enter_nested langhook to save any language-specific state,
239   since this function knows only about language-independent
240   variables.  */
241
242void
243push_function_context_to (tree context ATTRIBUTE_UNUSED)
244{
245  struct function *p;
246
247  if (cfun == 0)
248    init_dummy_function_start ();
249  p = cfun;
250
251  p->outer = outer_function_chain;
252  outer_function_chain = p;
253
254  lang_hooks.function.enter_nested (p);
255
256  cfun = 0;
257}
258
259void
260push_function_context (void)
261{
262  push_function_context_to (current_function_decl);
263}
264
265/* Restore the last saved context, at the end of a nested function.
266   This function is called from language-specific code.  */
267
268void
269pop_function_context_from (tree context ATTRIBUTE_UNUSED)
270{
271  struct function *p = outer_function_chain;
272
273  cfun = p;
274  outer_function_chain = p->outer;
275
276  current_function_decl = p->decl;
277
278  lang_hooks.function.leave_nested (p);
279
280  /* Reset variables that have known state during rtx generation.  */
281  virtuals_instantiated = 0;
282  generating_concat_p = 1;
283}
284
285void
286pop_function_context (void)
287{
288  pop_function_context_from (current_function_decl);
289}
290
291/* Clear out all parts of the state in F that can safely be discarded
292   after the function has been parsed, but not compiled, to let
293   garbage collection reclaim the memory.  */
294
295void
296free_after_parsing (struct function *f)
297{
298  /* f->expr->forced_labels is used by code generation.  */
299  /* f->emit->regno_reg_rtx is used by code generation.  */
300  /* f->varasm is used by code generation.  */
301  /* f->eh->eh_return_stub_label is used by code generation.  */
302
303  lang_hooks.function.final (f);
304}
305
306/* Clear out all parts of the state in F that can safely be discarded
307   after the function has been compiled, to let garbage collection
308   reclaim the memory.  */
309
310void
311free_after_compilation (struct function *f)
312{
313  VEC_free (int, heap, prologue);
314  VEC_free (int, heap, epilogue);
315  VEC_free (int, heap, sibcall_epilogue);
316
317  f->eh = NULL;
318  f->expr = NULL;
319  f->emit = NULL;
320  f->varasm = NULL;
321  f->machine = NULL;
322  f->cfg = NULL;
323
324  f->x_avail_temp_slots = NULL;
325  f->x_used_temp_slots = NULL;
326  f->arg_offset_rtx = NULL;
327  f->return_rtx = NULL;
328  f->internal_arg_pointer = NULL;
329  f->x_nonlocal_goto_handler_labels = NULL;
330  f->x_return_label = NULL;
331  f->x_naked_return_label = NULL;
332  f->x_stack_slot_list = NULL;
333  f->x_stack_check_probe_note = NULL;
334  f->x_arg_pointer_save_area = NULL;
335  f->x_parm_birth_insn = NULL;
336  f->epilogue_delay_list = NULL;
337}
338
339/* Allocate fixed slots in the stack frame of the current function.  */
340
341/* Return size needed for stack frame based on slots so far allocated in
342   function F.
343   This size counts from zero.  It is not rounded to PREFERRED_STACK_BOUNDARY;
344   the caller may have to do that.  */
345
346static HOST_WIDE_INT
347get_func_frame_size (struct function *f)
348{
349  if (FRAME_GROWS_DOWNWARD)
350    return -f->x_frame_offset;
351  else
352    return f->x_frame_offset;
353}
354
355/* Return size needed for stack frame based on slots so far allocated.
356   This size counts from zero.  It is not rounded to PREFERRED_STACK_BOUNDARY;
357   the caller may have to do that.  */
358
359HOST_WIDE_INT
360get_frame_size (void)
361{
362  return get_func_frame_size (cfun);
363}
364
365/* Issue an error message and return TRUE if frame OFFSET overflows in
366   the signed target pointer arithmetics for function FUNC.  Otherwise
367   return FALSE.  */
368
369bool
370frame_offset_overflow (HOST_WIDE_INT offset, tree func)
371{
372  unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
373
374  if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
375	       /* Leave room for the fixed part of the frame.  */
376	       - 64 * UNITS_PER_WORD)
377    {
378      error ("%Jtotal size of local objects too large", func);
379      return TRUE;
380    }
381
382  return FALSE;
383}
384
385/* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
386   with machine mode MODE.
387
388   ALIGN controls the amount of alignment for the address of the slot:
389   0 means according to MODE,
390   -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
391   -2 means use BITS_PER_UNIT,
392   positive specifies alignment boundary in bits.
393
394   We do not round to stack_boundary here.
395
396   FUNCTION specifies the function to allocate in.  */
397
398static rtx
399assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
400		      struct function *function)
401{
402  rtx x, addr;
403  int bigend_correction = 0;
404  unsigned int alignment;
405  int frame_off, frame_alignment, frame_phase;
406
407  if (align == 0)
408    {
409      tree type;
410
411      if (mode == BLKmode)
412	alignment = BIGGEST_ALIGNMENT;
413      else
414	alignment = GET_MODE_ALIGNMENT (mode);
415
416      /* Allow the target to (possibly) increase the alignment of this
417	 stack slot.  */
418      type = lang_hooks.types.type_for_mode (mode, 0);
419      if (type)
420	alignment = LOCAL_ALIGNMENT (type, alignment);
421
422      alignment /= BITS_PER_UNIT;
423    }
424  else if (align == -1)
425    {
426      alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
427      size = CEIL_ROUND (size, alignment);
428    }
429  else if (align == -2)
430    alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
431  else
432    alignment = align / BITS_PER_UNIT;
433
434  if (FRAME_GROWS_DOWNWARD)
435    function->x_frame_offset -= size;
436
437  /* Ignore alignment we can't do with expected alignment of the boundary.  */
438  if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
439    alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
440
441  if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
442    function->stack_alignment_needed = alignment * BITS_PER_UNIT;
443
444  /* Calculate how many bytes the start of local variables is off from
445     stack alignment.  */
446  frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
447  frame_off = STARTING_FRAME_OFFSET % frame_alignment;
448  frame_phase = frame_off ? frame_alignment - frame_off : 0;
449
450  /* Round the frame offset to the specified alignment.  The default is
451     to always honor requests to align the stack but a port may choose to
452     do its own stack alignment by defining STACK_ALIGNMENT_NEEDED.  */
453  if (STACK_ALIGNMENT_NEEDED
454      || mode != BLKmode
455      || size != 0)
456    {
457      /*  We must be careful here, since FRAME_OFFSET might be negative and
458	  division with a negative dividend isn't as well defined as we might
459	  like.  So we instead assume that ALIGNMENT is a power of two and
460	  use logical operations which are unambiguous.  */
461      if (FRAME_GROWS_DOWNWARD)
462	function->x_frame_offset
463	  = (FLOOR_ROUND (function->x_frame_offset - frame_phase,
464			  (unsigned HOST_WIDE_INT) alignment)
465	     + frame_phase);
466      else
467	function->x_frame_offset
468	  = (CEIL_ROUND (function->x_frame_offset - frame_phase,
469			 (unsigned HOST_WIDE_INT) alignment)
470	     + frame_phase);
471    }
472
473  /* On a big-endian machine, if we are allocating more space than we will use,
474     use the least significant bytes of those that are allocated.  */
475  if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
476    bigend_correction = size - GET_MODE_SIZE (mode);
477
478  /* If we have already instantiated virtual registers, return the actual
479     address relative to the frame pointer.  */
480  if (function == cfun && virtuals_instantiated)
481    addr = plus_constant (frame_pointer_rtx,
482			  trunc_int_for_mode
483			  (frame_offset + bigend_correction
484			   + STARTING_FRAME_OFFSET, Pmode));
485  else
486    addr = plus_constant (virtual_stack_vars_rtx,
487			  trunc_int_for_mode
488			  (function->x_frame_offset + bigend_correction,
489			   Pmode));
490
491  if (!FRAME_GROWS_DOWNWARD)
492    function->x_frame_offset += size;
493
494  x = gen_rtx_MEM (mode, addr);
495  MEM_NOTRAP_P (x) = 1;
496
497  function->x_stack_slot_list
498    = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
499
500  if (frame_offset_overflow (function->x_frame_offset, function->decl))
501    function->x_frame_offset = 0;
502
503  return x;
504}
505
506/* Wrapper around assign_stack_local_1;  assign a local stack slot for the
507   current function.  */
508
509rtx
510assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
511{
512  return assign_stack_local_1 (mode, size, align, cfun);
513}
514
515
516/* Removes temporary slot TEMP from LIST.  */
517
518static void
519cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
520{
521  if (temp->next)
522    temp->next->prev = temp->prev;
523  if (temp->prev)
524    temp->prev->next = temp->next;
525  else
526    *list = temp->next;
527
528  temp->prev = temp->next = NULL;
529}
530
531/* Inserts temporary slot TEMP to LIST.  */
532
533static void
534insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
535{
536  temp->next = *list;
537  if (*list)
538    (*list)->prev = temp;
539  temp->prev = NULL;
540  *list = temp;
541}
542
543/* Returns the list of used temp slots at LEVEL.  */
544
545static struct temp_slot **
546temp_slots_at_level (int level)
547{
548  if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
549    {
550      size_t old_length = VEC_length (temp_slot_p, used_temp_slots);
551      temp_slot_p *p;
552
553      VEC_safe_grow (temp_slot_p, gc, used_temp_slots, level + 1);
554      p = VEC_address (temp_slot_p, used_temp_slots);
555      memset (&p[old_length], 0,
556	      sizeof (temp_slot_p) * (level + 1 - old_length));
557    }
558
559  return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
560}
561
562/* Returns the maximal temporary slot level.  */
563
564static int
565max_slot_level (void)
566{
567  if (!used_temp_slots)
568    return -1;
569
570  return VEC_length (temp_slot_p, used_temp_slots) - 1;
571}
572
573/* Moves temporary slot TEMP to LEVEL.  */
574
575static void
576move_slot_to_level (struct temp_slot *temp, int level)
577{
578  cut_slot_from_list (temp, temp_slots_at_level (temp->level));
579  insert_slot_to_list (temp, temp_slots_at_level (level));
580  temp->level = level;
581}
582
583/* Make temporary slot TEMP available.  */
584
585static void
586make_slot_available (struct temp_slot *temp)
587{
588  cut_slot_from_list (temp, temp_slots_at_level (temp->level));
589  insert_slot_to_list (temp, &avail_temp_slots);
590  temp->in_use = 0;
591  temp->level = -1;
592}
593
594/* Allocate a temporary stack slot and record it for possible later
595   reuse.
596
597   MODE is the machine mode to be given to the returned rtx.
598
599   SIZE is the size in units of the space required.  We do no rounding here
600   since assign_stack_local will do any required rounding.
601
602   KEEP is 1 if this slot is to be retained after a call to
603   free_temp_slots.  Automatic variables for a block are allocated
604   with this flag.  KEEP values of 2 or 3 were needed respectively
605   for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
606   or for SAVE_EXPRs, but they are now unused.
607
608   TYPE is the type that will be used for the stack slot.  */
609
610rtx
611assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
612			    int keep, tree type)
613{
614  unsigned int align;
615  struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
616  rtx slot;
617
618  /* If SIZE is -1 it means that somebody tried to allocate a temporary
619     of a variable size.  */
620  gcc_assert (size != -1);
621
622  /* These are now unused.  */
623  gcc_assert (keep <= 1);
624
625  if (mode == BLKmode)
626    align = BIGGEST_ALIGNMENT;
627  else
628    align = GET_MODE_ALIGNMENT (mode);
629
630  if (! type)
631    type = lang_hooks.types.type_for_mode (mode, 0);
632
633  if (type)
634    align = LOCAL_ALIGNMENT (type, align);
635
636  /* Try to find an available, already-allocated temporary of the proper
637     mode which meets the size and alignment requirements.  Choose the
638     smallest one with the closest alignment.
639
640     If assign_stack_temp is called outside of the tree->rtl expansion,
641     we cannot reuse the stack slots (that may still refer to
642     VIRTUAL_STACK_VARS_REGNUM).  */
643  if (!virtuals_instantiated)
644    {
645      for (p = avail_temp_slots; p; p = p->next)
646	{
647	  if (p->align >= align && p->size >= size
648	      && GET_MODE (p->slot) == mode
649	      && objects_must_conflict_p (p->type, type)
650	      && (best_p == 0 || best_p->size > p->size
651		  || (best_p->size == p->size && best_p->align > p->align)))
652	    {
653	      if (p->align == align && p->size == size)
654		{
655		  selected = p;
656		  cut_slot_from_list (selected, &avail_temp_slots);
657		  best_p = 0;
658		  break;
659		}
660	      best_p = p;
661	    }
662	}
663    }
664
665  /* Make our best, if any, the one to use.  */
666  if (best_p)
667    {
668      selected = best_p;
669      cut_slot_from_list (selected, &avail_temp_slots);
670
671      /* If there are enough aligned bytes left over, make them into a new
672	 temp_slot so that the extra bytes don't get wasted.  Do this only
673	 for BLKmode slots, so that we can be sure of the alignment.  */
674      if (GET_MODE (best_p->slot) == BLKmode)
675	{
676	  int alignment = best_p->align / BITS_PER_UNIT;
677	  HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
678
679	  if (best_p->size - rounded_size >= alignment)
680	    {
681	      p = ggc_alloc (sizeof (struct temp_slot));
682	      p->in_use = p->addr_taken = 0;
683	      p->size = best_p->size - rounded_size;
684	      p->base_offset = best_p->base_offset + rounded_size;
685	      p->full_size = best_p->full_size - rounded_size;
686	      p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
687	      p->align = best_p->align;
688	      p->address = 0;
689	      p->type = best_p->type;
690	      insert_slot_to_list (p, &avail_temp_slots);
691
692	      stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
693						   stack_slot_list);
694
695	      best_p->size = rounded_size;
696	      best_p->full_size = rounded_size;
697	    }
698	}
699    }
700
701  /* If we still didn't find one, make a new temporary.  */
702  if (selected == 0)
703    {
704      HOST_WIDE_INT frame_offset_old = frame_offset;
705
706      p = ggc_alloc (sizeof (struct temp_slot));
707
708      /* We are passing an explicit alignment request to assign_stack_local.
709	 One side effect of that is assign_stack_local will not round SIZE
710	 to ensure the frame offset remains suitably aligned.
711
712	 So for requests which depended on the rounding of SIZE, we go ahead
713	 and round it now.  We also make sure ALIGNMENT is at least
714	 BIGGEST_ALIGNMENT.  */
715      gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
716      p->slot = assign_stack_local (mode,
717				    (mode == BLKmode
718				     ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
719				     : size),
720				    align);
721
722      p->align = align;
723
724      /* The following slot size computation is necessary because we don't
725	 know the actual size of the temporary slot until assign_stack_local
726	 has performed all the frame alignment and size rounding for the
727	 requested temporary.  Note that extra space added for alignment
728	 can be either above or below this stack slot depending on which
729	 way the frame grows.  We include the extra space if and only if it
730	 is above this slot.  */
731      if (FRAME_GROWS_DOWNWARD)
732	p->size = frame_offset_old - frame_offset;
733      else
734	p->size = size;
735
736      /* Now define the fields used by combine_temp_slots.  */
737      if (FRAME_GROWS_DOWNWARD)
738	{
739	  p->base_offset = frame_offset;
740	  p->full_size = frame_offset_old - frame_offset;
741	}
742      else
743	{
744	  p->base_offset = frame_offset_old;
745	  p->full_size = frame_offset - frame_offset_old;
746	}
747      p->address = 0;
748
749      selected = p;
750    }
751
752  p = selected;
753  p->in_use = 1;
754  p->addr_taken = 0;
755  p->type = type;
756  p->level = temp_slot_level;
757  p->keep = keep;
758
759  pp = temp_slots_at_level (p->level);
760  insert_slot_to_list (p, pp);
761
762  /* Create a new MEM rtx to avoid clobbering MEM flags of old slots.  */
763  slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
764  stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
765
766  /* If we know the alias set for the memory that will be used, use
767     it.  If there's no TYPE, then we don't know anything about the
768     alias set for the memory.  */
769  set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
770  set_mem_align (slot, align);
771
772  /* If a type is specified, set the relevant flags.  */
773  if (type != 0)
774    {
775      MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
776      MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
777    }
778  MEM_NOTRAP_P (slot) = 1;
779
780  return slot;
781}
782
783/* Allocate a temporary stack slot and record it for possible later
784   reuse.  First three arguments are same as in preceding function.  */
785
786rtx
787assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
788{
789  return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
790}
791
792/* Assign a temporary.
793   If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
794   and so that should be used in error messages.  In either case, we
795   allocate of the given type.
796   KEEP is as for assign_stack_temp.
797   MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
798   it is 0 if a register is OK.
799   DONT_PROMOTE is 1 if we should not promote values in register
800   to wider modes.  */
801
802rtx
803assign_temp (tree type_or_decl, int keep, int memory_required,
804	     int dont_promote ATTRIBUTE_UNUSED)
805{
806  tree type, decl;
807  enum machine_mode mode;
808#ifdef PROMOTE_MODE
809  int unsignedp;
810#endif
811
812  if (DECL_P (type_or_decl))
813    decl = type_or_decl, type = TREE_TYPE (decl);
814  else
815    decl = NULL, type = type_or_decl;
816
817  mode = TYPE_MODE (type);
818#ifdef PROMOTE_MODE
819  unsignedp = TYPE_UNSIGNED (type);
820#endif
821
822  if (mode == BLKmode || memory_required)
823    {
824      HOST_WIDE_INT size = int_size_in_bytes (type);
825      rtx tmp;
826
827      /* Zero sized arrays are GNU C extension.  Set size to 1 to avoid
828	 problems with allocating the stack space.  */
829      if (size == 0)
830	size = 1;
831
832      /* Unfortunately, we don't yet know how to allocate variable-sized
833	 temporaries.  However, sometimes we can find a fixed upper limit on
834	 the size, so try that instead.  */
835      else if (size == -1)
836	size = max_int_size_in_bytes (type);
837
838      /* The size of the temporary may be too large to fit into an integer.  */
839      /* ??? Not sure this should happen except for user silliness, so limit
840	 this to things that aren't compiler-generated temporaries.  The
841	 rest of the time we'll die in assign_stack_temp_for_type.  */
842      if (decl && size == -1
843	  && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
844	{
845	  error ("size of variable %q+D is too large", decl);
846	  size = 1;
847	}
848
849      tmp = assign_stack_temp_for_type (mode, size, keep, type);
850      return tmp;
851    }
852
853#ifdef PROMOTE_MODE
854  if (! dont_promote)
855    mode = promote_mode (type, mode, &unsignedp, 0);
856#endif
857
858  return gen_reg_rtx (mode);
859}
860
861/* Combine temporary stack slots which are adjacent on the stack.
862
863   This allows for better use of already allocated stack space.  This is only
864   done for BLKmode slots because we can be sure that we won't have alignment
865   problems in this case.  */
866
867static void
868combine_temp_slots (void)
869{
870  struct temp_slot *p, *q, *next, *next_q;
871  int num_slots;
872
873  /* We can't combine slots, because the information about which slot
874     is in which alias set will be lost.  */
875  if (flag_strict_aliasing)
876    return;
877
878  /* If there are a lot of temp slots, don't do anything unless
879     high levels of optimization.  */
880  if (! flag_expensive_optimizations)
881    for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
882      if (num_slots > 100 || (num_slots > 10 && optimize == 0))
883	return;
884
885  for (p = avail_temp_slots; p; p = next)
886    {
887      int delete_p = 0;
888
889      next = p->next;
890
891      if (GET_MODE (p->slot) != BLKmode)
892	continue;
893
894      for (q = p->next; q; q = next_q)
895	{
896       	  int delete_q = 0;
897
898	  next_q = q->next;
899
900	  if (GET_MODE (q->slot) != BLKmode)
901	    continue;
902
903	  if (p->base_offset + p->full_size == q->base_offset)
904	    {
905	      /* Q comes after P; combine Q into P.  */
906	      p->size += q->size;
907	      p->full_size += q->full_size;
908	      delete_q = 1;
909	    }
910	  else if (q->base_offset + q->full_size == p->base_offset)
911	    {
912	      /* P comes after Q; combine P into Q.  */
913	      q->size += p->size;
914	      q->full_size += p->full_size;
915	      delete_p = 1;
916	      break;
917	    }
918	  if (delete_q)
919	    cut_slot_from_list (q, &avail_temp_slots);
920	}
921
922      /* Either delete P or advance past it.  */
923      if (delete_p)
924	cut_slot_from_list (p, &avail_temp_slots);
925    }
926}
927
928/* Find the temp slot corresponding to the object at address X.  */
929
930static struct temp_slot *
931find_temp_slot_from_address (rtx x)
932{
933  struct temp_slot *p;
934  rtx next;
935  int i;
936
937  for (i = max_slot_level (); i >= 0; i--)
938    for (p = *temp_slots_at_level (i); p; p = p->next)
939      {
940	if (XEXP (p->slot, 0) == x
941	    || p->address == x
942	    || (GET_CODE (x) == PLUS
943		&& XEXP (x, 0) == virtual_stack_vars_rtx
944		&& GET_CODE (XEXP (x, 1)) == CONST_INT
945		&& INTVAL (XEXP (x, 1)) >= p->base_offset
946		&& INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
947	  return p;
948
949	else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
950	  for (next = p->address; next; next = XEXP (next, 1))
951	    if (XEXP (next, 0) == x)
952	      return p;
953      }
954
955  /* If we have a sum involving a register, see if it points to a temp
956     slot.  */
957  if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
958      && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
959    return p;
960  else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
961	   && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
962    return p;
963
964  return 0;
965}
966
967/* Indicate that NEW is an alternate way of referring to the temp slot
968   that previously was known by OLD.  */
969
970void
971update_temp_slot_address (rtx old, rtx new)
972{
973  struct temp_slot *p;
974
975  if (rtx_equal_p (old, new))
976    return;
977
978  p = find_temp_slot_from_address (old);
979
980  /* If we didn't find one, see if both OLD is a PLUS.  If so, and NEW
981     is a register, see if one operand of the PLUS is a temporary
982     location.  If so, NEW points into it.  Otherwise, if both OLD and
983     NEW are a PLUS and if there is a register in common between them.
984     If so, try a recursive call on those values.  */
985  if (p == 0)
986    {
987      if (GET_CODE (old) != PLUS)
988	return;
989
990      if (REG_P (new))
991	{
992	  update_temp_slot_address (XEXP (old, 0), new);
993	  update_temp_slot_address (XEXP (old, 1), new);
994	  return;
995	}
996      else if (GET_CODE (new) != PLUS)
997	return;
998
999      if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1000	update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1001      else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1002	update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1003      else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1004	update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1005      else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1006	update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1007
1008      return;
1009    }
1010
1011  /* Otherwise add an alias for the temp's address.  */
1012  else if (p->address == 0)
1013    p->address = new;
1014  else
1015    {
1016      if (GET_CODE (p->address) != EXPR_LIST)
1017	p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1018
1019      p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1020    }
1021}
1022
1023/* If X could be a reference to a temporary slot, mark the fact that its
1024   address was taken.  */
1025
1026void
1027mark_temp_addr_taken (rtx x)
1028{
1029  struct temp_slot *p;
1030
1031  if (x == 0)
1032    return;
1033
1034  /* If X is not in memory or is at a constant address, it cannot be in
1035     a temporary slot.  */
1036  if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1037    return;
1038
1039  p = find_temp_slot_from_address (XEXP (x, 0));
1040  if (p != 0)
1041    p->addr_taken = 1;
1042}
1043
1044/* If X could be a reference to a temporary slot, mark that slot as
1045   belonging to the to one level higher than the current level.  If X
1046   matched one of our slots, just mark that one.  Otherwise, we can't
1047   easily predict which it is, so upgrade all of them.  Kept slots
1048   need not be touched.
1049
1050   This is called when an ({...}) construct occurs and a statement
1051   returns a value in memory.  */
1052
1053void
1054preserve_temp_slots (rtx x)
1055{
1056  struct temp_slot *p = 0, *next;
1057
1058  /* If there is no result, we still might have some objects whose address
1059     were taken, so we need to make sure they stay around.  */
1060  if (x == 0)
1061    {
1062      for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1063	{
1064	  next = p->next;
1065
1066	  if (p->addr_taken)
1067	    move_slot_to_level (p, temp_slot_level - 1);
1068	}
1069
1070      return;
1071    }
1072
1073  /* If X is a register that is being used as a pointer, see if we have
1074     a temporary slot we know it points to.  To be consistent with
1075     the code below, we really should preserve all non-kept slots
1076     if we can't find a match, but that seems to be much too costly.  */
1077  if (REG_P (x) && REG_POINTER (x))
1078    p = find_temp_slot_from_address (x);
1079
1080  /* If X is not in memory or is at a constant address, it cannot be in
1081     a temporary slot, but it can contain something whose address was
1082     taken.  */
1083  if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1084    {
1085      for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1086	{
1087	  next = p->next;
1088
1089	  if (p->addr_taken)
1090	    move_slot_to_level (p, temp_slot_level - 1);
1091	}
1092
1093      return;
1094    }
1095
1096  /* First see if we can find a match.  */
1097  if (p == 0)
1098    p = find_temp_slot_from_address (XEXP (x, 0));
1099
1100  if (p != 0)
1101    {
1102      /* Move everything at our level whose address was taken to our new
1103	 level in case we used its address.  */
1104      struct temp_slot *q;
1105
1106      if (p->level == temp_slot_level)
1107	{
1108	  for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1109	    {
1110	      next = q->next;
1111
1112	      if (p != q && q->addr_taken)
1113		move_slot_to_level (q, temp_slot_level - 1);
1114	    }
1115
1116	  move_slot_to_level (p, temp_slot_level - 1);
1117	  p->addr_taken = 0;
1118	}
1119      return;
1120    }
1121
1122  /* Otherwise, preserve all non-kept slots at this level.  */
1123  for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1124    {
1125      next = p->next;
1126
1127      if (!p->keep)
1128	move_slot_to_level (p, temp_slot_level - 1);
1129    }
1130}
1131
1132/* Free all temporaries used so far.  This is normally called at the
1133   end of generating code for a statement.  */
1134
1135void
1136free_temp_slots (void)
1137{
1138  struct temp_slot *p, *next;
1139
1140  for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1141    {
1142      next = p->next;
1143
1144      if (!p->keep)
1145	make_slot_available (p);
1146    }
1147
1148  combine_temp_slots ();
1149}
1150
1151/* Push deeper into the nesting level for stack temporaries.  */
1152
1153void
1154push_temp_slots (void)
1155{
1156  temp_slot_level++;
1157}
1158
1159/* Pop a temporary nesting level.  All slots in use in the current level
1160   are freed.  */
1161
1162void
1163pop_temp_slots (void)
1164{
1165  struct temp_slot *p, *next;
1166
1167  for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1168    {
1169      next = p->next;
1170      make_slot_available (p);
1171    }
1172
1173  combine_temp_slots ();
1174
1175  temp_slot_level--;
1176}
1177
1178/* Initialize temporary slots.  */
1179
1180void
1181init_temp_slots (void)
1182{
1183  /* We have not allocated any temporaries yet.  */
1184  avail_temp_slots = 0;
1185  used_temp_slots = 0;
1186  temp_slot_level = 0;
1187}
1188
1189/* These routines are responsible for converting virtual register references
1190   to the actual hard register references once RTL generation is complete.
1191
1192   The following four variables are used for communication between the
1193   routines.  They contain the offsets of the virtual registers from their
1194   respective hard registers.  */
1195
1196static int in_arg_offset;
1197static int var_offset;
1198static int dynamic_offset;
1199static int out_arg_offset;
1200static int cfa_offset;
1201
1202/* In most machines, the stack pointer register is equivalent to the bottom
1203   of the stack.  */
1204
1205#ifndef STACK_POINTER_OFFSET
1206#define STACK_POINTER_OFFSET	0
1207#endif
1208
1209/* If not defined, pick an appropriate default for the offset of dynamically
1210   allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1211   REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE.  */
1212
1213#ifndef STACK_DYNAMIC_OFFSET
1214
1215/* The bottom of the stack points to the actual arguments.  If
1216   REG_PARM_STACK_SPACE is defined, this includes the space for the register
1217   parameters.  However, if OUTGOING_REG_PARM_STACK space is not defined,
1218   stack space for register parameters is not pushed by the caller, but
1219   rather part of the fixed stack areas and hence not included in
1220   `current_function_outgoing_args_size'.  Nevertheless, we must allow
1221   for it when allocating stack dynamic objects.  */
1222
1223#if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
1224#define STACK_DYNAMIC_OFFSET(FNDECL)	\
1225((ACCUMULATE_OUTGOING_ARGS						      \
1226  ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
1227 + (STACK_POINTER_OFFSET))						      \
1228
1229#else
1230#define STACK_DYNAMIC_OFFSET(FNDECL)	\
1231((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0)	      \
1232 + (STACK_POINTER_OFFSET))
1233#endif
1234#endif
1235
1236
1237/* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1238   is a virtual register, return the equivalent hard register and set the
1239   offset indirectly through the pointer.  Otherwise, return 0.  */
1240
1241static rtx
1242instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1243{
1244  rtx new;
1245  HOST_WIDE_INT offset;
1246
1247  if (x == virtual_incoming_args_rtx)
1248    new = arg_pointer_rtx, offset = in_arg_offset;
1249  else if (x == virtual_stack_vars_rtx)
1250    new = frame_pointer_rtx, offset = var_offset;
1251  else if (x == virtual_stack_dynamic_rtx)
1252    new = stack_pointer_rtx, offset = dynamic_offset;
1253  else if (x == virtual_outgoing_args_rtx)
1254    new = stack_pointer_rtx, offset = out_arg_offset;
1255  else if (x == virtual_cfa_rtx)
1256    {
1257#ifdef FRAME_POINTER_CFA_OFFSET
1258      new = frame_pointer_rtx;
1259#else
1260      new = arg_pointer_rtx;
1261#endif
1262      offset = cfa_offset;
1263    }
1264  else
1265    return NULL_RTX;
1266
1267  *poffset = offset;
1268  return new;
1269}
1270
1271/* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1272   Instantiate any virtual registers present inside of *LOC.  The expression
1273   is simplified, as much as possible, but is not to be considered "valid"
1274   in any sense implied by the target.  If any change is made, set CHANGED
1275   to true.  */
1276
1277static int
1278instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1279{
1280  HOST_WIDE_INT offset;
1281  bool *changed = (bool *) data;
1282  rtx x, new;
1283
1284  x = *loc;
1285  if (x == 0)
1286    return 0;
1287
1288  switch (GET_CODE (x))
1289    {
1290    case REG:
1291      new = instantiate_new_reg (x, &offset);
1292      if (new)
1293	{
1294	  *loc = plus_constant (new, offset);
1295	  if (changed)
1296	    *changed = true;
1297	}
1298      return -1;
1299
1300    case PLUS:
1301      new = instantiate_new_reg (XEXP (x, 0), &offset);
1302      if (new)
1303	{
1304	  new = plus_constant (new, offset);
1305	  *loc = simplify_gen_binary (PLUS, GET_MODE (x), new, XEXP (x, 1));
1306	  if (changed)
1307	    *changed = true;
1308	  return -1;
1309	}
1310
1311      /* FIXME -- from old code */
1312	  /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1313	     we can commute the PLUS and SUBREG because pointers into the
1314	     frame are well-behaved.  */
1315      break;
1316
1317    default:
1318      break;
1319    }
1320
1321  return 0;
1322}
1323
1324/* A subroutine of instantiate_virtual_regs_in_insn.  Return true if X
1325   matches the predicate for insn CODE operand OPERAND.  */
1326
1327static int
1328safe_insn_predicate (int code, int operand, rtx x)
1329{
1330  const struct insn_operand_data *op_data;
1331
1332  if (code < 0)
1333    return true;
1334
1335  op_data = &insn_data[code].operand[operand];
1336  if (op_data->predicate == NULL)
1337    return true;
1338
1339  return op_data->predicate (x, op_data->mode);
1340}
1341
1342/* A subroutine of instantiate_virtual_regs.  Instantiate any virtual
1343   registers present inside of insn.  The result will be a valid insn.  */
1344
1345static void
1346instantiate_virtual_regs_in_insn (rtx insn)
1347{
1348  HOST_WIDE_INT offset;
1349  int insn_code, i;
1350  bool any_change = false;
1351  rtx set, new, x, seq;
1352
1353  /* There are some special cases to be handled first.  */
1354  set = single_set (insn);
1355  if (set)
1356    {
1357      /* We're allowed to assign to a virtual register.  This is interpreted
1358	 to mean that the underlying register gets assigned the inverse
1359	 transformation.  This is used, for example, in the handling of
1360	 non-local gotos.  */
1361      new = instantiate_new_reg (SET_DEST (set), &offset);
1362      if (new)
1363	{
1364	  start_sequence ();
1365
1366	  for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1367	  x = simplify_gen_binary (PLUS, GET_MODE (new), SET_SRC (set),
1368				   GEN_INT (-offset));
1369	  x = force_operand (x, new);
1370	  if (x != new)
1371	    emit_move_insn (new, x);
1372
1373	  seq = get_insns ();
1374	  end_sequence ();
1375
1376	  emit_insn_before (seq, insn);
1377	  delete_insn (insn);
1378	  return;
1379	}
1380
1381      /* Handle a straight copy from a virtual register by generating a
1382	 new add insn.  The difference between this and falling through
1383	 to the generic case is avoiding a new pseudo and eliminating a
1384	 move insn in the initial rtl stream.  */
1385      new = instantiate_new_reg (SET_SRC (set), &offset);
1386      if (new && offset != 0
1387	  && REG_P (SET_DEST (set))
1388	  && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1389	{
1390	  start_sequence ();
1391
1392	  x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1393				   new, GEN_INT (offset), SET_DEST (set),
1394				   1, OPTAB_LIB_WIDEN);
1395	  if (x != SET_DEST (set))
1396	    emit_move_insn (SET_DEST (set), x);
1397
1398	  seq = get_insns ();
1399	  end_sequence ();
1400
1401	  emit_insn_before (seq, insn);
1402	  delete_insn (insn);
1403	  return;
1404	}
1405
1406      extract_insn (insn);
1407      insn_code = INSN_CODE (insn);
1408
1409      /* Handle a plus involving a virtual register by determining if the
1410	 operands remain valid if they're modified in place.  */
1411      if (GET_CODE (SET_SRC (set)) == PLUS
1412	  && recog_data.n_operands >= 3
1413	  && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1414	  && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1415	  && GET_CODE (recog_data.operand[2]) == CONST_INT
1416	  && (new = instantiate_new_reg (recog_data.operand[1], &offset)))
1417	{
1418	  offset += INTVAL (recog_data.operand[2]);
1419
1420	  /* If the sum is zero, then replace with a plain move.  */
1421	  if (offset == 0
1422	      && REG_P (SET_DEST (set))
1423	      && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1424	    {
1425	      start_sequence ();
1426	      emit_move_insn (SET_DEST (set), new);
1427	      seq = get_insns ();
1428	      end_sequence ();
1429
1430	      emit_insn_before (seq, insn);
1431	      delete_insn (insn);
1432	      return;
1433	    }
1434
1435	  x = gen_int_mode (offset, recog_data.operand_mode[2]);
1436
1437	  /* Using validate_change and apply_change_group here leaves
1438	     recog_data in an invalid state.  Since we know exactly what
1439	     we want to check, do those two by hand.  */
1440	  if (safe_insn_predicate (insn_code, 1, new)
1441	      && safe_insn_predicate (insn_code, 2, x))
1442	    {
1443	      *recog_data.operand_loc[1] = recog_data.operand[1] = new;
1444	      *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1445	      any_change = true;
1446
1447	      /* Fall through into the regular operand fixup loop in
1448		 order to take care of operands other than 1 and 2.  */
1449	    }
1450	}
1451    }
1452  else
1453    {
1454      extract_insn (insn);
1455      insn_code = INSN_CODE (insn);
1456    }
1457
1458  /* In the general case, we expect virtual registers to appear only in
1459     operands, and then only as either bare registers or inside memories.  */
1460  for (i = 0; i < recog_data.n_operands; ++i)
1461    {
1462      x = recog_data.operand[i];
1463      switch (GET_CODE (x))
1464	{
1465	case MEM:
1466	  {
1467	    rtx addr = XEXP (x, 0);
1468	    bool changed = false;
1469
1470	    for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1471	    if (!changed)
1472	      continue;
1473
1474	    start_sequence ();
1475	    x = replace_equiv_address (x, addr);
1476	    seq = get_insns ();
1477	    end_sequence ();
1478	    if (seq)
1479	      emit_insn_before (seq, insn);
1480	  }
1481	  break;
1482
1483	case REG:
1484	  new = instantiate_new_reg (x, &offset);
1485	  if (new == NULL)
1486	    continue;
1487	  if (offset == 0)
1488	    x = new;
1489	  else
1490	    {
1491	      start_sequence ();
1492
1493	      /* Careful, special mode predicates may have stuff in
1494		 insn_data[insn_code].operand[i].mode that isn't useful
1495		 to us for computing a new value.  */
1496	      /* ??? Recognize address_operand and/or "p" constraints
1497		 to see if (plus new offset) is a valid before we put
1498		 this through expand_simple_binop.  */
1499	      x = expand_simple_binop (GET_MODE (x), PLUS, new,
1500				       GEN_INT (offset), NULL_RTX,
1501				       1, OPTAB_LIB_WIDEN);
1502	      seq = get_insns ();
1503	      end_sequence ();
1504	      emit_insn_before (seq, insn);
1505	    }
1506	  break;
1507
1508	case SUBREG:
1509	  new = instantiate_new_reg (SUBREG_REG (x), &offset);
1510	  if (new == NULL)
1511	    continue;
1512	  if (offset != 0)
1513	    {
1514	      start_sequence ();
1515	      new = expand_simple_binop (GET_MODE (new), PLUS, new,
1516					 GEN_INT (offset), NULL_RTX,
1517					 1, OPTAB_LIB_WIDEN);
1518	      seq = get_insns ();
1519	      end_sequence ();
1520	      emit_insn_before (seq, insn);
1521	    }
1522	  x = simplify_gen_subreg (recog_data.operand_mode[i], new,
1523				   GET_MODE (new), SUBREG_BYTE (x));
1524	  break;
1525
1526	default:
1527	  continue;
1528	}
1529
1530      /* At this point, X contains the new value for the operand.
1531	 Validate the new value vs the insn predicate.  Note that
1532	 asm insns will have insn_code -1 here.  */
1533      if (!safe_insn_predicate (insn_code, i, x))
1534	{
1535	  start_sequence ();
1536	  x = force_reg (insn_data[insn_code].operand[i].mode, x);
1537	  seq = get_insns ();
1538	  end_sequence ();
1539	  if (seq)
1540	    emit_insn_before (seq, insn);
1541	}
1542
1543      *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1544      any_change = true;
1545    }
1546
1547  if (any_change)
1548    {
1549      /* Propagate operand changes into the duplicates.  */
1550      for (i = 0; i < recog_data.n_dups; ++i)
1551	*recog_data.dup_loc[i]
1552	  = recog_data.operand[(unsigned)recog_data.dup_num[i]];
1553
1554      /* Force re-recognition of the instruction for validation.  */
1555      INSN_CODE (insn) = -1;
1556    }
1557
1558  if (asm_noperands (PATTERN (insn)) >= 0)
1559    {
1560      if (!check_asm_operands (PATTERN (insn)))
1561	{
1562	  error_for_asm (insn, "impossible constraint in %<asm%>");
1563	  delete_insn (insn);
1564	}
1565    }
1566  else
1567    {
1568      if (recog_memoized (insn) < 0)
1569	fatal_insn_not_found (insn);
1570    }
1571}
1572
1573/* Subroutine of instantiate_decls.  Given RTL representing a decl,
1574   do any instantiation required.  */
1575
1576static void
1577instantiate_decl (rtx x)
1578{
1579  rtx addr;
1580
1581  if (x == 0)
1582    return;
1583
1584  /* If this is a CONCAT, recurse for the pieces.  */
1585  if (GET_CODE (x) == CONCAT)
1586    {
1587      instantiate_decl (XEXP (x, 0));
1588      instantiate_decl (XEXP (x, 1));
1589      return;
1590    }
1591
1592  /* If this is not a MEM, no need to do anything.  Similarly if the
1593     address is a constant or a register that is not a virtual register.  */
1594  if (!MEM_P (x))
1595    return;
1596
1597  addr = XEXP (x, 0);
1598  if (CONSTANT_P (addr)
1599      || (REG_P (addr)
1600	  && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1601	      || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1602    return;
1603
1604  for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1605}
1606
1607/* Helper for instantiate_decls called via walk_tree: Process all decls
1608   in the given DECL_VALUE_EXPR.  */
1609
1610static tree
1611instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1612{
1613  tree t = *tp;
1614  if (! EXPR_P (t))
1615    {
1616      *walk_subtrees = 0;
1617      if (DECL_P (t) && DECL_RTL_SET_P (t))
1618	instantiate_decl (DECL_RTL (t));
1619    }
1620  return NULL;
1621}
1622
1623/* Subroutine of instantiate_decls: Process all decls in the given
1624   BLOCK node and all its subblocks.  */
1625
1626static void
1627instantiate_decls_1 (tree let)
1628{
1629  tree t;
1630
1631  for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1632    {
1633      if (DECL_RTL_SET_P (t))
1634	instantiate_decl (DECL_RTL (t));
1635      if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1636	{
1637	  tree v = DECL_VALUE_EXPR (t);
1638	  walk_tree (&v, instantiate_expr, NULL, NULL);
1639	}
1640    }
1641
1642  /* Process all subblocks.  */
1643  for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
1644    instantiate_decls_1 (t);
1645}
1646
1647/* Scan all decls in FNDECL (both variables and parameters) and instantiate
1648   all virtual registers in their DECL_RTL's.  */
1649
1650static void
1651instantiate_decls (tree fndecl)
1652{
1653  tree decl;
1654
1655  /* Process all parameters of the function.  */
1656  for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1657    {
1658      instantiate_decl (DECL_RTL (decl));
1659      instantiate_decl (DECL_INCOMING_RTL (decl));
1660      if (DECL_HAS_VALUE_EXPR_P (decl))
1661	{
1662	  tree v = DECL_VALUE_EXPR (decl);
1663	  walk_tree (&v, instantiate_expr, NULL, NULL);
1664	}
1665    }
1666
1667  /* Now process all variables defined in the function or its subblocks.  */
1668  instantiate_decls_1 (DECL_INITIAL (fndecl));
1669}
1670
1671/* Pass through the INSNS of function FNDECL and convert virtual register
1672   references to hard register references.  */
1673
1674static unsigned int
1675instantiate_virtual_regs (void)
1676{
1677  rtx insn;
1678
1679  /* Compute the offsets to use for this function.  */
1680  in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1681  var_offset = STARTING_FRAME_OFFSET;
1682  dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1683  out_arg_offset = STACK_POINTER_OFFSET;
1684#ifdef FRAME_POINTER_CFA_OFFSET
1685  cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1686#else
1687  cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1688#endif
1689
1690  /* Initialize recognition, indicating that volatile is OK.  */
1691  init_recog ();
1692
1693  /* Scan through all the insns, instantiating every virtual register still
1694     present.  */
1695  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1696    if (INSN_P (insn))
1697      {
1698	/* These patterns in the instruction stream can never be recognized.
1699	   Fortunately, they shouldn't contain virtual registers either.  */
1700	if (GET_CODE (PATTERN (insn)) == USE
1701	    || GET_CODE (PATTERN (insn)) == CLOBBER
1702	    || GET_CODE (PATTERN (insn)) == ADDR_VEC
1703	    || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1704	    || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1705	  continue;
1706
1707	instantiate_virtual_regs_in_insn (insn);
1708
1709	if (INSN_DELETED_P (insn))
1710	  continue;
1711
1712	for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1713
1714	/* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE.  */
1715	if (GET_CODE (insn) == CALL_INSN)
1716	  for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1717			instantiate_virtual_regs_in_rtx, NULL);
1718      }
1719
1720  /* Instantiate the virtual registers in the DECLs for debugging purposes.  */
1721  instantiate_decls (current_function_decl);
1722
1723  /* Indicate that, from now on, assign_stack_local should use
1724     frame_pointer_rtx.  */
1725  virtuals_instantiated = 1;
1726  return 0;
1727}
1728
1729struct tree_opt_pass pass_instantiate_virtual_regs =
1730{
1731  "vregs",                              /* name */
1732  NULL,                                 /* gate */
1733  instantiate_virtual_regs,             /* execute */
1734  NULL,                                 /* sub */
1735  NULL,                                 /* next */
1736  0,                                    /* static_pass_number */
1737  0,                                    /* tv_id */
1738  0,                                    /* properties_required */
1739  0,                                    /* properties_provided */
1740  0,                                    /* properties_destroyed */
1741  0,                                    /* todo_flags_start */
1742  TODO_dump_func,                       /* todo_flags_finish */
1743  0                                     /* letter */
1744};
1745
1746
1747/* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1748   This means a type for which function calls must pass an address to the
1749   function or get an address back from the function.
1750   EXP may be a type node or an expression (whose type is tested).  */
1751
1752int
1753aggregate_value_p (tree exp, tree fntype)
1754{
1755  int i, regno, nregs;
1756  rtx reg;
1757
1758  tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1759
1760  /* DECL node associated with FNTYPE when relevant, which we might need to
1761     check for by-invisible-reference returns, typically for CALL_EXPR input
1762     EXPressions.  */
1763  tree fndecl = NULL_TREE;
1764
1765  if (fntype)
1766    switch (TREE_CODE (fntype))
1767      {
1768      case CALL_EXPR:
1769	fndecl = get_callee_fndecl (fntype);
1770	fntype = fndecl ? TREE_TYPE (fndecl) : 0;
1771	break;
1772      case FUNCTION_DECL:
1773	fndecl = fntype;
1774	fntype = TREE_TYPE (fndecl);
1775	break;
1776      case FUNCTION_TYPE:
1777      case METHOD_TYPE:
1778        break;
1779      case IDENTIFIER_NODE:
1780	fntype = 0;
1781	break;
1782      default:
1783	/* We don't expect other rtl types here.  */
1784	gcc_unreachable ();
1785      }
1786
1787  if (TREE_CODE (type) == VOID_TYPE)
1788    return 0;
1789
1790  /* If the front end has decided that this needs to be passed by
1791     reference, do so.  */
1792  if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1793      && DECL_BY_REFERENCE (exp))
1794    return 1;
1795
1796  /* If the EXPression is a CALL_EXPR, honor DECL_BY_REFERENCE set on the
1797     called function RESULT_DECL, meaning the function returns in memory by
1798     invisible reference.  This check lets front-ends not set TREE_ADDRESSABLE
1799     on the function type, which used to be the way to request such a return
1800     mechanism but might now be causing troubles at gimplification time if
1801     temporaries with the function type need to be created.  */
1802  if (TREE_CODE (exp) == CALL_EXPR && fndecl && DECL_RESULT (fndecl)
1803      && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
1804    return 1;
1805
1806  if (targetm.calls.return_in_memory (type, fntype))
1807    return 1;
1808  /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1809     and thus can't be returned in registers.  */
1810  if (TREE_ADDRESSABLE (type))
1811    return 1;
1812  if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1813    return 1;
1814  /* Make sure we have suitable call-clobbered regs to return
1815     the value in; if not, we must return it in memory.  */
1816  reg = hard_function_value (type, 0, fntype, 0);
1817
1818  /* If we have something other than a REG (e.g. a PARALLEL), then assume
1819     it is OK.  */
1820  if (!REG_P (reg))
1821    return 0;
1822
1823  regno = REGNO (reg);
1824  nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1825  for (i = 0; i < nregs; i++)
1826    if (! call_used_regs[regno + i])
1827      return 1;
1828  return 0;
1829}
1830
1831/* Return true if we should assign DECL a pseudo register; false if it
1832   should live on the local stack.  */
1833
1834bool
1835use_register_for_decl (tree decl)
1836{
1837  /* Honor volatile.  */
1838  if (TREE_SIDE_EFFECTS (decl))
1839    return false;
1840
1841  /* Honor addressability.  */
1842  if (TREE_ADDRESSABLE (decl))
1843    return false;
1844
1845  /* Only register-like things go in registers.  */
1846  if (DECL_MODE (decl) == BLKmode)
1847    return false;
1848
1849  /* If -ffloat-store specified, don't put explicit float variables
1850     into registers.  */
1851  /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1852     propagates values across these stores, and it probably shouldn't.  */
1853  if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1854    return false;
1855
1856  /* If we're not interested in tracking debugging information for
1857     this decl, then we can certainly put it in a register.  */
1858  if (DECL_IGNORED_P (decl))
1859    return true;
1860
1861  return (optimize || DECL_REGISTER (decl));
1862}
1863
1864/* Return true if TYPE should be passed by invisible reference.  */
1865
1866bool
1867pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1868		   tree type, bool named_arg)
1869{
1870  if (type)
1871    {
1872      /* If this type contains non-trivial constructors, then it is
1873	 forbidden for the middle-end to create any new copies.  */
1874      if (TREE_ADDRESSABLE (type))
1875	return true;
1876
1877      /* GCC post 3.4 passes *all* variable sized types by reference.  */
1878      if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1879	return true;
1880    }
1881
1882  return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1883}
1884
1885/* Return true if TYPE, which is passed by reference, should be callee
1886   copied instead of caller copied.  */
1887
1888bool
1889reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1890			 tree type, bool named_arg)
1891{
1892  if (type && TREE_ADDRESSABLE (type))
1893    return false;
1894  return targetm.calls.callee_copies (ca, mode, type, named_arg);
1895}
1896
1897/* Structures to communicate between the subroutines of assign_parms.
1898   The first holds data persistent across all parameters, the second
1899   is cleared out for each parameter.  */
1900
1901struct assign_parm_data_all
1902{
1903  CUMULATIVE_ARGS args_so_far;
1904  struct args_size stack_args_size;
1905  tree function_result_decl;
1906  tree orig_fnargs;
1907  rtx conversion_insns;
1908  HOST_WIDE_INT pretend_args_size;
1909  HOST_WIDE_INT extra_pretend_bytes;
1910  int reg_parm_stack_space;
1911};
1912
1913struct assign_parm_data_one
1914{
1915  tree nominal_type;
1916  tree passed_type;
1917  rtx entry_parm;
1918  rtx stack_parm;
1919  enum machine_mode nominal_mode;
1920  enum machine_mode passed_mode;
1921  enum machine_mode promoted_mode;
1922  struct locate_and_pad_arg_data locate;
1923  int partial;
1924  BOOL_BITFIELD named_arg : 1;
1925  BOOL_BITFIELD passed_pointer : 1;
1926  BOOL_BITFIELD on_stack : 1;
1927  BOOL_BITFIELD loaded_in_reg : 1;
1928};
1929
1930/* A subroutine of assign_parms.  Initialize ALL.  */
1931
1932static void
1933assign_parms_initialize_all (struct assign_parm_data_all *all)
1934{
1935  tree fntype;
1936
1937  memset (all, 0, sizeof (*all));
1938
1939  fntype = TREE_TYPE (current_function_decl);
1940
1941#ifdef INIT_CUMULATIVE_INCOMING_ARGS
1942  INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
1943#else
1944  INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
1945			current_function_decl, -1);
1946#endif
1947
1948#ifdef REG_PARM_STACK_SPACE
1949  all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
1950#endif
1951}
1952
1953/* If ARGS contains entries with complex types, split the entry into two
1954   entries of the component type.  Return a new list of substitutions are
1955   needed, else the old list.  */
1956
1957static tree
1958split_complex_args (tree args)
1959{
1960  tree p;
1961
1962  /* Before allocating memory, check for the common case of no complex.  */
1963  for (p = args; p; p = TREE_CHAIN (p))
1964    {
1965      tree type = TREE_TYPE (p);
1966      if (TREE_CODE (type) == COMPLEX_TYPE
1967	  && targetm.calls.split_complex_arg (type))
1968        goto found;
1969    }
1970  return args;
1971
1972 found:
1973  args = copy_list (args);
1974
1975  for (p = args; p; p = TREE_CHAIN (p))
1976    {
1977      tree type = TREE_TYPE (p);
1978      if (TREE_CODE (type) == COMPLEX_TYPE
1979	  && targetm.calls.split_complex_arg (type))
1980	{
1981	  tree decl;
1982	  tree subtype = TREE_TYPE (type);
1983	  bool addressable = TREE_ADDRESSABLE (p);
1984
1985	  /* Rewrite the PARM_DECL's type with its component.  */
1986	  TREE_TYPE (p) = subtype;
1987	  DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
1988	  DECL_MODE (p) = VOIDmode;
1989	  DECL_SIZE (p) = NULL;
1990	  DECL_SIZE_UNIT (p) = NULL;
1991	  /* If this arg must go in memory, put it in a pseudo here.
1992	     We can't allow it to go in memory as per normal parms,
1993	     because the usual place might not have the imag part
1994	     adjacent to the real part.  */
1995	  DECL_ARTIFICIAL (p) = addressable;
1996	  DECL_IGNORED_P (p) = addressable;
1997	  TREE_ADDRESSABLE (p) = 0;
1998	  layout_decl (p, 0);
1999
2000	  /* Build a second synthetic decl.  */
2001	  decl = build_decl (PARM_DECL, NULL_TREE, subtype);
2002	  DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2003	  DECL_ARTIFICIAL (decl) = addressable;
2004	  DECL_IGNORED_P (decl) = addressable;
2005	  layout_decl (decl, 0);
2006
2007	  /* Splice it in; skip the new decl.  */
2008	  TREE_CHAIN (decl) = TREE_CHAIN (p);
2009	  TREE_CHAIN (p) = decl;
2010	  p = decl;
2011	}
2012    }
2013
2014  return args;
2015}
2016
2017/* A subroutine of assign_parms.  Adjust the parameter list to incorporate
2018   the hidden struct return argument, and (abi willing) complex args.
2019   Return the new parameter list.  */
2020
2021static tree
2022assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2023{
2024  tree fndecl = current_function_decl;
2025  tree fntype = TREE_TYPE (fndecl);
2026  tree fnargs = DECL_ARGUMENTS (fndecl);
2027
2028  /* If struct value address is treated as the first argument, make it so.  */
2029  if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2030      && ! current_function_returns_pcc_struct
2031      && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2032    {
2033      tree type = build_pointer_type (TREE_TYPE (fntype));
2034      tree decl;
2035
2036      decl = build_decl (PARM_DECL, NULL_TREE, type);
2037      DECL_ARG_TYPE (decl) = type;
2038      DECL_ARTIFICIAL (decl) = 1;
2039      DECL_IGNORED_P (decl) = 1;
2040
2041      TREE_CHAIN (decl) = fnargs;
2042      fnargs = decl;
2043      all->function_result_decl = decl;
2044    }
2045
2046  all->orig_fnargs = fnargs;
2047
2048  /* If the target wants to split complex arguments into scalars, do so.  */
2049  if (targetm.calls.split_complex_arg)
2050    fnargs = split_complex_args (fnargs);
2051
2052  return fnargs;
2053}
2054
2055/* A subroutine of assign_parms.  Examine PARM and pull out type and mode
2056   data for the parameter.  Incorporate ABI specifics such as pass-by-
2057   reference and type promotion.  */
2058
2059static void
2060assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2061			     struct assign_parm_data_one *data)
2062{
2063  tree nominal_type, passed_type;
2064  enum machine_mode nominal_mode, passed_mode, promoted_mode;
2065
2066  memset (data, 0, sizeof (*data));
2067
2068  /* NAMED_ARG is a mis-nomer.  We really mean 'non-varadic'. */
2069  if (!current_function_stdarg)
2070    data->named_arg = 1;  /* No varadic parms.  */
2071  else if (TREE_CHAIN (parm))
2072    data->named_arg = 1;  /* Not the last non-varadic parm. */
2073  else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2074    data->named_arg = 1;  /* Only varadic ones are unnamed.  */
2075  else
2076    data->named_arg = 0;  /* Treat as varadic.  */
2077
2078  nominal_type = TREE_TYPE (parm);
2079  passed_type = DECL_ARG_TYPE (parm);
2080
2081  /* Look out for errors propagating this far.  Also, if the parameter's
2082     type is void then its value doesn't matter.  */
2083  if (TREE_TYPE (parm) == error_mark_node
2084      /* This can happen after weird syntax errors
2085	 or if an enum type is defined among the parms.  */
2086      || TREE_CODE (parm) != PARM_DECL
2087      || passed_type == NULL
2088      || VOID_TYPE_P (nominal_type))
2089    {
2090      nominal_type = passed_type = void_type_node;
2091      nominal_mode = passed_mode = promoted_mode = VOIDmode;
2092      goto egress;
2093    }
2094
2095  /* Find mode of arg as it is passed, and mode of arg as it should be
2096     during execution of this function.  */
2097  passed_mode = TYPE_MODE (passed_type);
2098  nominal_mode = TYPE_MODE (nominal_type);
2099
2100  /* If the parm is to be passed as a transparent union, use the type of
2101     the first field for the tests below.  We have already verified that
2102     the modes are the same.  */
2103  if (TREE_CODE (passed_type) == UNION_TYPE
2104      && TYPE_TRANSPARENT_UNION (passed_type))
2105    passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2106
2107  /* See if this arg was passed by invisible reference.  */
2108  if (pass_by_reference (&all->args_so_far, passed_mode,
2109			 passed_type, data->named_arg))
2110    {
2111      passed_type = nominal_type = build_pointer_type (passed_type);
2112      data->passed_pointer = true;
2113      passed_mode = nominal_mode = Pmode;
2114    }
2115
2116  /* Find mode as it is passed by the ABI.  */
2117  promoted_mode = passed_mode;
2118  if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2119    {
2120      int unsignedp = TYPE_UNSIGNED (passed_type);
2121      promoted_mode = promote_mode (passed_type, promoted_mode,
2122				    &unsignedp, 1);
2123    }
2124
2125 egress:
2126  data->nominal_type = nominal_type;
2127  data->passed_type = passed_type;
2128  data->nominal_mode = nominal_mode;
2129  data->passed_mode = passed_mode;
2130  data->promoted_mode = promoted_mode;
2131}
2132
2133/* A subroutine of assign_parms.  Invoke setup_incoming_varargs.  */
2134
2135static void
2136assign_parms_setup_varargs (struct assign_parm_data_all *all,
2137			    struct assign_parm_data_one *data, bool no_rtl)
2138{
2139  int varargs_pretend_bytes = 0;
2140
2141  targetm.calls.setup_incoming_varargs (&all->args_so_far,
2142					data->promoted_mode,
2143					data->passed_type,
2144					&varargs_pretend_bytes, no_rtl);
2145
2146  /* If the back-end has requested extra stack space, record how much is
2147     needed.  Do not change pretend_args_size otherwise since it may be
2148     nonzero from an earlier partial argument.  */
2149  if (varargs_pretend_bytes > 0)
2150    all->pretend_args_size = varargs_pretend_bytes;
2151}
2152
2153/* A subroutine of assign_parms.  Set DATA->ENTRY_PARM corresponding to
2154   the incoming location of the current parameter.  */
2155
2156static void
2157assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2158			    struct assign_parm_data_one *data)
2159{
2160  HOST_WIDE_INT pretend_bytes = 0;
2161  rtx entry_parm;
2162  bool in_regs;
2163
2164  if (data->promoted_mode == VOIDmode)
2165    {
2166      data->entry_parm = data->stack_parm = const0_rtx;
2167      return;
2168    }
2169
2170#ifdef FUNCTION_INCOMING_ARG
2171  entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2172				      data->passed_type, data->named_arg);
2173#else
2174  entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2175			     data->passed_type, data->named_arg);
2176#endif
2177
2178  if (entry_parm == 0)
2179    data->promoted_mode = data->passed_mode;
2180
2181  /* Determine parm's home in the stack, in case it arrives in the stack
2182     or we should pretend it did.  Compute the stack position and rtx where
2183     the argument arrives and its size.
2184
2185     There is one complexity here:  If this was a parameter that would
2186     have been passed in registers, but wasn't only because it is
2187     __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2188     it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2189     In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2190     as it was the previous time.  */
2191  in_regs = entry_parm != 0;
2192#ifdef STACK_PARMS_IN_REG_PARM_AREA
2193  in_regs = true;
2194#endif
2195  if (!in_regs && !data->named_arg)
2196    {
2197      if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2198	{
2199	  rtx tem;
2200#ifdef FUNCTION_INCOMING_ARG
2201	  tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2202				       data->passed_type, true);
2203#else
2204	  tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2205			      data->passed_type, true);
2206#endif
2207	  in_regs = tem != NULL;
2208	}
2209    }
2210
2211  /* If this parameter was passed both in registers and in the stack, use
2212     the copy on the stack.  */
2213  if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2214					data->passed_type))
2215    entry_parm = 0;
2216
2217  if (entry_parm)
2218    {
2219      int partial;
2220
2221      partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2222						 data->promoted_mode,
2223						 data->passed_type,
2224						 data->named_arg);
2225      data->partial = partial;
2226
2227      /* The caller might already have allocated stack space for the
2228	 register parameters.  */
2229      if (partial != 0 && all->reg_parm_stack_space == 0)
2230	{
2231	  /* Part of this argument is passed in registers and part
2232	     is passed on the stack.  Ask the prologue code to extend
2233	     the stack part so that we can recreate the full value.
2234
2235	     PRETEND_BYTES is the size of the registers we need to store.
2236	     CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2237	     stack space that the prologue should allocate.
2238
2239	     Internally, gcc assumes that the argument pointer is aligned
2240	     to STACK_BOUNDARY bits.  This is used both for alignment
2241	     optimizations (see init_emit) and to locate arguments that are
2242	     aligned to more than PARM_BOUNDARY bits.  We must preserve this
2243	     invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2244	     a stack boundary.  */
2245
2246	  /* We assume at most one partial arg, and it must be the first
2247	     argument on the stack.  */
2248	  gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2249
2250	  pretend_bytes = partial;
2251	  all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2252
2253	  /* We want to align relative to the actual stack pointer, so
2254	     don't include this in the stack size until later.  */
2255	  all->extra_pretend_bytes = all->pretend_args_size;
2256	}
2257    }
2258
2259  locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2260		       entry_parm ? data->partial : 0, current_function_decl,
2261		       &all->stack_args_size, &data->locate);
2262
2263  /* Adjust offsets to include the pretend args.  */
2264  pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2265  data->locate.slot_offset.constant += pretend_bytes;
2266  data->locate.offset.constant += pretend_bytes;
2267
2268  data->entry_parm = entry_parm;
2269}
2270
2271/* A subroutine of assign_parms.  If there is actually space on the stack
2272   for this parm, count it in stack_args_size and return true.  */
2273
2274static bool
2275assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2276			   struct assign_parm_data_one *data)
2277{
2278  /* Trivially true if we've no incoming register.  */
2279  if (data->entry_parm == NULL)
2280    ;
2281  /* Also true if we're partially in registers and partially not,
2282     since we've arranged to drop the entire argument on the stack.  */
2283  else if (data->partial != 0)
2284    ;
2285  /* Also true if the target says that it's passed in both registers
2286     and on the stack.  */
2287  else if (GET_CODE (data->entry_parm) == PARALLEL
2288	   && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2289    ;
2290  /* Also true if the target says that there's stack allocated for
2291     all register parameters.  */
2292  else if (all->reg_parm_stack_space > 0)
2293    ;
2294  /* Otherwise, no, this parameter has no ABI defined stack slot.  */
2295  else
2296    return false;
2297
2298  all->stack_args_size.constant += data->locate.size.constant;
2299  if (data->locate.size.var)
2300    ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2301
2302  return true;
2303}
2304
2305/* A subroutine of assign_parms.  Given that this parameter is allocated
2306   stack space by the ABI, find it.  */
2307
2308static void
2309assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2310{
2311  rtx offset_rtx, stack_parm;
2312  unsigned int align, boundary;
2313
2314  /* If we're passing this arg using a reg, make its stack home the
2315     aligned stack slot.  */
2316  if (data->entry_parm)
2317    offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2318  else
2319    offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2320
2321  stack_parm = current_function_internal_arg_pointer;
2322  if (offset_rtx != const0_rtx)
2323    stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2324  stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2325
2326  set_mem_attributes (stack_parm, parm, 1);
2327
2328  boundary = data->locate.boundary;
2329  align = BITS_PER_UNIT;
2330
2331  /* If we're padding upward, we know that the alignment of the slot
2332     is FUNCTION_ARG_BOUNDARY.  If we're using slot_offset, we're
2333     intentionally forcing upward padding.  Otherwise we have to come
2334     up with a guess at the alignment based on OFFSET_RTX.  */
2335  if (data->locate.where_pad != downward || data->entry_parm)
2336    align = boundary;
2337  else if (GET_CODE (offset_rtx) == CONST_INT)
2338    {
2339      align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2340      align = align & -align;
2341    }
2342  set_mem_align (stack_parm, align);
2343
2344  if (data->entry_parm)
2345    set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2346
2347  data->stack_parm = stack_parm;
2348}
2349
2350/* A subroutine of assign_parms.  Adjust DATA->ENTRY_RTL such that it's
2351   always valid and contiguous.  */
2352
2353static void
2354assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2355{
2356  rtx entry_parm = data->entry_parm;
2357  rtx stack_parm = data->stack_parm;
2358
2359  /* If this parm was passed part in regs and part in memory, pretend it
2360     arrived entirely in memory by pushing the register-part onto the stack.
2361     In the special case of a DImode or DFmode that is split, we could put
2362     it together in a pseudoreg directly, but for now that's not worth
2363     bothering with.  */
2364  if (data->partial != 0)
2365    {
2366      /* Handle calls that pass values in multiple non-contiguous
2367	 locations.  The Irix 6 ABI has examples of this.  */
2368      if (GET_CODE (entry_parm) == PARALLEL)
2369	emit_group_store (validize_mem (stack_parm), entry_parm,
2370			  data->passed_type,
2371			  int_size_in_bytes (data->passed_type));
2372      else
2373	{
2374	  gcc_assert (data->partial % UNITS_PER_WORD == 0);
2375	  move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2376			       data->partial / UNITS_PER_WORD);
2377	}
2378
2379      entry_parm = stack_parm;
2380    }
2381
2382  /* If we didn't decide this parm came in a register, by default it came
2383     on the stack.  */
2384  else if (entry_parm == NULL)
2385    entry_parm = stack_parm;
2386
2387  /* When an argument is passed in multiple locations, we can't make use
2388     of this information, but we can save some copying if the whole argument
2389     is passed in a single register.  */
2390  else if (GET_CODE (entry_parm) == PARALLEL
2391	   && data->nominal_mode != BLKmode
2392	   && data->passed_mode != BLKmode)
2393    {
2394      size_t i, len = XVECLEN (entry_parm, 0);
2395
2396      for (i = 0; i < len; i++)
2397	if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2398	    && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2399	    && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2400		== data->passed_mode)
2401	    && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2402	  {
2403	    entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2404	    break;
2405	  }
2406    }
2407
2408  data->entry_parm = entry_parm;
2409}
2410
2411/* A subroutine of assign_parms.  Adjust DATA->STACK_RTL such that it's
2412   always valid and properly aligned.  */
2413
2414static void
2415assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2416{
2417  rtx stack_parm = data->stack_parm;
2418
2419  /* If we can't trust the parm stack slot to be aligned enough for its
2420     ultimate type, don't use that slot after entry.  We'll make another
2421     stack slot, if we need one.  */
2422  if (stack_parm
2423      && ((STRICT_ALIGNMENT
2424	   && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2425	  || (data->nominal_type
2426	      && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2427	      && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2428    stack_parm = NULL;
2429
2430  /* If parm was passed in memory, and we need to convert it on entry,
2431     don't store it back in that same slot.  */
2432  else if (data->entry_parm == stack_parm
2433	   && data->nominal_mode != BLKmode
2434	   && data->nominal_mode != data->passed_mode)
2435    stack_parm = NULL;
2436
2437  /* If stack protection is in effect for this function, don't leave any
2438     pointers in their passed stack slots.  */
2439  else if (cfun->stack_protect_guard
2440	   && (flag_stack_protect == 2
2441	       || data->passed_pointer
2442	       || POINTER_TYPE_P (data->nominal_type)))
2443    stack_parm = NULL;
2444
2445  data->stack_parm = stack_parm;
2446}
2447
2448/* A subroutine of assign_parms.  Return true if the current parameter
2449   should be stored as a BLKmode in the current frame.  */
2450
2451static bool
2452assign_parm_setup_block_p (struct assign_parm_data_one *data)
2453{
2454  if (data->nominal_mode == BLKmode)
2455    return true;
2456  if (GET_CODE (data->entry_parm) == PARALLEL)
2457    return true;
2458
2459#ifdef BLOCK_REG_PADDING
2460  /* Only assign_parm_setup_block knows how to deal with register arguments
2461     that are padded at the least significant end.  */
2462  if (REG_P (data->entry_parm)
2463      && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2464      && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2465	  == (BYTES_BIG_ENDIAN ? upward : downward)))
2466    return true;
2467#endif
2468
2469  return false;
2470}
2471
2472/* A subroutine of assign_parms.  Arrange for the parameter to be
2473   present and valid in DATA->STACK_RTL.  */
2474
2475static void
2476assign_parm_setup_block (struct assign_parm_data_all *all,
2477			 tree parm, struct assign_parm_data_one *data)
2478{
2479  rtx entry_parm = data->entry_parm;
2480  rtx stack_parm = data->stack_parm;
2481  HOST_WIDE_INT size;
2482  HOST_WIDE_INT size_stored;
2483  rtx orig_entry_parm = entry_parm;
2484
2485  if (GET_CODE (entry_parm) == PARALLEL)
2486    entry_parm = emit_group_move_into_temps (entry_parm);
2487
2488  /* If we've a non-block object that's nevertheless passed in parts,
2489     reconstitute it in register operations rather than on the stack.  */
2490  if (GET_CODE (entry_parm) == PARALLEL
2491      && data->nominal_mode != BLKmode)
2492    {
2493      rtx elt0 = XEXP (XVECEXP (orig_entry_parm, 0, 0), 0);
2494
2495      if ((XVECLEN (entry_parm, 0) > 1
2496	   || hard_regno_nregs[REGNO (elt0)][GET_MODE (elt0)] > 1)
2497	  && use_register_for_decl (parm))
2498	{
2499	  rtx parmreg = gen_reg_rtx (data->nominal_mode);
2500
2501	  push_to_sequence (all->conversion_insns);
2502
2503	  /* For values returned in multiple registers, handle possible
2504	     incompatible calls to emit_group_store.
2505
2506	     For example, the following would be invalid, and would have to
2507	     be fixed by the conditional below:
2508
2509	     emit_group_store ((reg:SF), (parallel:DF))
2510	     emit_group_store ((reg:SI), (parallel:DI))
2511
2512	     An example of this are doubles in e500 v2:
2513	     (parallel:DF (expr_list (reg:SI) (const_int 0))
2514	     (expr_list (reg:SI) (const_int 4))).  */
2515	  if (data->nominal_mode != data->passed_mode)
2516	    {
2517	      rtx t = gen_reg_rtx (GET_MODE (entry_parm));
2518	      emit_group_store (t, entry_parm, NULL_TREE,
2519				GET_MODE_SIZE (GET_MODE (entry_parm)));
2520	      convert_move (parmreg, t, 0);
2521	    }
2522	  else
2523	    emit_group_store (parmreg, entry_parm, data->nominal_type,
2524			      int_size_in_bytes (data->nominal_type));
2525
2526	  all->conversion_insns = get_insns ();
2527	  end_sequence ();
2528
2529	  SET_DECL_RTL (parm, parmreg);
2530	  return;
2531	}
2532    }
2533
2534  size = int_size_in_bytes (data->passed_type);
2535  size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2536  if (stack_parm == 0)
2537    {
2538      DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2539      stack_parm = assign_stack_local (BLKmode, size_stored,
2540				       DECL_ALIGN (parm));
2541      if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2542	PUT_MODE (stack_parm, GET_MODE (entry_parm));
2543      set_mem_attributes (stack_parm, parm, 1);
2544    }
2545
2546  /* If a BLKmode arrives in registers, copy it to a stack slot.  Handle
2547     calls that pass values in multiple non-contiguous locations.  */
2548  if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2549    {
2550      rtx mem;
2551
2552      /* Note that we will be storing an integral number of words.
2553	 So we have to be careful to ensure that we allocate an
2554	 integral number of words.  We do this above when we call
2555	 assign_stack_local if space was not allocated in the argument
2556	 list.  If it was, this will not work if PARM_BOUNDARY is not
2557	 a multiple of BITS_PER_WORD.  It isn't clear how to fix this
2558	 if it becomes a problem.  Exception is when BLKmode arrives
2559	 with arguments not conforming to word_mode.  */
2560
2561      if (data->stack_parm == 0)
2562	;
2563      else if (GET_CODE (entry_parm) == PARALLEL)
2564	;
2565      else
2566	gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2567
2568      mem = validize_mem (stack_parm);
2569
2570      /* Handle values in multiple non-contiguous locations.  */
2571      if (GET_CODE (entry_parm) == PARALLEL)
2572	{
2573	  push_to_sequence (all->conversion_insns);
2574	  emit_group_store (mem, entry_parm, data->passed_type, size);
2575	  all->conversion_insns = get_insns ();
2576	  end_sequence ();
2577	}
2578
2579      else if (size == 0)
2580	;
2581
2582      /* If SIZE is that of a mode no bigger than a word, just use
2583	 that mode's store operation.  */
2584      else if (size <= UNITS_PER_WORD)
2585	{
2586	  enum machine_mode mode
2587	    = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2588
2589	  if (mode != BLKmode
2590#ifdef BLOCK_REG_PADDING
2591	      && (size == UNITS_PER_WORD
2592		  || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2593		      != (BYTES_BIG_ENDIAN ? upward : downward)))
2594#endif
2595	      )
2596	    {
2597	      rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
2598	      emit_move_insn (change_address (mem, mode, 0), reg);
2599	    }
2600
2601	  /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2602	     machine must be aligned to the left before storing
2603	     to memory.  Note that the previous test doesn't
2604	     handle all cases (e.g. SIZE == 3).  */
2605	  else if (size != UNITS_PER_WORD
2606#ifdef BLOCK_REG_PADDING
2607		   && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2608		       == downward)
2609#else
2610		   && BYTES_BIG_ENDIAN
2611#endif
2612		   )
2613	    {
2614	      rtx tem, x;
2615	      int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2616	      rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2617
2618	      x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2619				build_int_cst (NULL_TREE, by),
2620				NULL_RTX, 1);
2621	      tem = change_address (mem, word_mode, 0);
2622	      emit_move_insn (tem, x);
2623	    }
2624	  else
2625	    move_block_from_reg (REGNO (entry_parm), mem,
2626				 size_stored / UNITS_PER_WORD);
2627	}
2628      else
2629	move_block_from_reg (REGNO (entry_parm), mem,
2630			     size_stored / UNITS_PER_WORD);
2631    }
2632  else if (data->stack_parm == 0)
2633    {
2634      push_to_sequence (all->conversion_insns);
2635      emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2636		       BLOCK_OP_NORMAL);
2637      all->conversion_insns = get_insns ();
2638      end_sequence ();
2639    }
2640
2641  data->stack_parm = stack_parm;
2642  SET_DECL_RTL (parm, stack_parm);
2643}
2644
2645/* A subroutine of assign_parms.  Allocate a pseudo to hold the current
2646   parameter.  Get it there.  Perform all ABI specified conversions.  */
2647
2648static void
2649assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2650		       struct assign_parm_data_one *data)
2651{
2652  rtx parmreg;
2653  enum machine_mode promoted_nominal_mode;
2654  int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2655  bool did_conversion = false;
2656
2657  /* Store the parm in a pseudoregister during the function, but we may
2658     need to do it in a wider mode.  */
2659
2660  /* This is not really promoting for a call.  However we need to be
2661     consistent with assign_parm_find_data_types and expand_expr_real_1.  */
2662  promoted_nominal_mode
2663    = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 1);
2664
2665  parmreg = gen_reg_rtx (promoted_nominal_mode);
2666
2667  if (!DECL_ARTIFICIAL (parm))
2668    mark_user_reg (parmreg);
2669
2670  /* If this was an item that we received a pointer to,
2671     set DECL_RTL appropriately.  */
2672  if (data->passed_pointer)
2673    {
2674      rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2675      set_mem_attributes (x, parm, 1);
2676      SET_DECL_RTL (parm, x);
2677    }
2678  else
2679    SET_DECL_RTL (parm, parmreg);
2680
2681  /* Copy the value into the register.  */
2682  if (data->nominal_mode != data->passed_mode
2683      || promoted_nominal_mode != data->promoted_mode)
2684    {
2685      int save_tree_used;
2686
2687      /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2688	 mode, by the caller.  We now have to convert it to
2689	 NOMINAL_MODE, if different.  However, PARMREG may be in
2690	 a different mode than NOMINAL_MODE if it is being stored
2691	 promoted.
2692
2693	 If ENTRY_PARM is a hard register, it might be in a register
2694	 not valid for operating in its mode (e.g., an odd-numbered
2695	 register for a DFmode).  In that case, moves are the only
2696	 thing valid, so we can't do a convert from there.  This
2697	 occurs when the calling sequence allow such misaligned
2698	 usages.
2699
2700	 In addition, the conversion may involve a call, which could
2701	 clobber parameters which haven't been copied to pseudo
2702	 registers yet.  Therefore, we must first copy the parm to
2703	 a pseudo reg here, and save the conversion until after all
2704	 parameters have been moved.  */
2705
2706      rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2707
2708      emit_move_insn (tempreg, validize_mem (data->entry_parm));
2709
2710      push_to_sequence (all->conversion_insns);
2711      tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2712
2713      if (GET_CODE (tempreg) == SUBREG
2714	  && GET_MODE (tempreg) == data->nominal_mode
2715	  && REG_P (SUBREG_REG (tempreg))
2716	  && data->nominal_mode == data->passed_mode
2717	  && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2718	  && GET_MODE_SIZE (GET_MODE (tempreg))
2719	     < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2720	{
2721	  /* The argument is already sign/zero extended, so note it
2722	     into the subreg.  */
2723	  SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2724	  SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2725	}
2726
2727      /* TREE_USED gets set erroneously during expand_assignment.  */
2728      save_tree_used = TREE_USED (parm);
2729      expand_assignment (parm, make_tree (data->nominal_type, tempreg));
2730      TREE_USED (parm) = save_tree_used;
2731      all->conversion_insns = get_insns ();
2732      end_sequence ();
2733
2734      did_conversion = true;
2735    }
2736  else
2737    emit_move_insn (parmreg, validize_mem (data->entry_parm));
2738
2739  /* If we were passed a pointer but the actual value can safely live
2740     in a register, put it in one.  */
2741  if (data->passed_pointer
2742      && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2743      /* If by-reference argument was promoted, demote it.  */
2744      && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2745	  || use_register_for_decl (parm)))
2746    {
2747      /* We can't use nominal_mode, because it will have been set to
2748	 Pmode above.  We must use the actual mode of the parm.  */
2749      parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2750      mark_user_reg (parmreg);
2751
2752      if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2753	{
2754	  rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2755	  int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2756
2757	  push_to_sequence (all->conversion_insns);
2758	  emit_move_insn (tempreg, DECL_RTL (parm));
2759	  tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2760	  emit_move_insn (parmreg, tempreg);
2761	  all->conversion_insns = get_insns ();
2762	  end_sequence ();
2763
2764	  did_conversion = true;
2765	}
2766      else
2767	emit_move_insn (parmreg, DECL_RTL (parm));
2768
2769      SET_DECL_RTL (parm, parmreg);
2770
2771      /* STACK_PARM is the pointer, not the parm, and PARMREG is
2772	 now the parm.  */
2773      data->stack_parm = NULL;
2774    }
2775
2776  /* Mark the register as eliminable if we did no conversion and it was
2777     copied from memory at a fixed offset, and the arg pointer was not
2778     copied to a pseudo-reg.  If the arg pointer is a pseudo reg or the
2779     offset formed an invalid address, such memory-equivalences as we
2780     make here would screw up life analysis for it.  */
2781  if (data->nominal_mode == data->passed_mode
2782      && !did_conversion
2783      && data->stack_parm != 0
2784      && MEM_P (data->stack_parm)
2785      && data->locate.offset.var == 0
2786      && reg_mentioned_p (virtual_incoming_args_rtx,
2787			  XEXP (data->stack_parm, 0)))
2788    {
2789      rtx linsn = get_last_insn ();
2790      rtx sinsn, set;
2791
2792      /* Mark complex types separately.  */
2793      if (GET_CODE (parmreg) == CONCAT)
2794	{
2795	  enum machine_mode submode
2796	    = GET_MODE_INNER (GET_MODE (parmreg));
2797	  int regnor = REGNO (XEXP (parmreg, 0));
2798	  int regnoi = REGNO (XEXP (parmreg, 1));
2799	  rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2800	  rtx stacki = adjust_address_nv (data->stack_parm, submode,
2801					  GET_MODE_SIZE (submode));
2802
2803	  /* Scan backwards for the set of the real and
2804	     imaginary parts.  */
2805	  for (sinsn = linsn; sinsn != 0;
2806	       sinsn = prev_nonnote_insn (sinsn))
2807	    {
2808	      set = single_set (sinsn);
2809	      if (set == 0)
2810		continue;
2811
2812	      if (SET_DEST (set) == regno_reg_rtx [regnoi])
2813		REG_NOTES (sinsn)
2814		  = gen_rtx_EXPR_LIST (REG_EQUIV, stacki,
2815				       REG_NOTES (sinsn));
2816	      else if (SET_DEST (set) == regno_reg_rtx [regnor])
2817		REG_NOTES (sinsn)
2818		  = gen_rtx_EXPR_LIST (REG_EQUIV, stackr,
2819				       REG_NOTES (sinsn));
2820	    }
2821	}
2822      else if ((set = single_set (linsn)) != 0
2823	       && SET_DEST (set) == parmreg)
2824	REG_NOTES (linsn)
2825	  = gen_rtx_EXPR_LIST (REG_EQUIV,
2826			       data->stack_parm, REG_NOTES (linsn));
2827    }
2828
2829  /* For pointer data type, suggest pointer register.  */
2830  if (POINTER_TYPE_P (TREE_TYPE (parm)))
2831    mark_reg_pointer (parmreg,
2832		      TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2833}
2834
2835/* A subroutine of assign_parms.  Allocate stack space to hold the current
2836   parameter.  Get it there.  Perform all ABI specified conversions.  */
2837
2838static void
2839assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2840		         struct assign_parm_data_one *data)
2841{
2842  /* Value must be stored in the stack slot STACK_PARM during function
2843     execution.  */
2844  bool to_conversion = false;
2845
2846  if (data->promoted_mode != data->nominal_mode)
2847    {
2848      /* Conversion is required.  */
2849      rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2850
2851      emit_move_insn (tempreg, validize_mem (data->entry_parm));
2852
2853      push_to_sequence (all->conversion_insns);
2854      to_conversion = true;
2855
2856      data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2857					  TYPE_UNSIGNED (TREE_TYPE (parm)));
2858
2859      if (data->stack_parm)
2860	/* ??? This may need a big-endian conversion on sparc64.  */
2861	data->stack_parm
2862	  = adjust_address (data->stack_parm, data->nominal_mode, 0);
2863    }
2864
2865  if (data->entry_parm != data->stack_parm)
2866    {
2867      rtx src, dest;
2868
2869      if (data->stack_parm == 0)
2870	{
2871	  data->stack_parm
2872	    = assign_stack_local (GET_MODE (data->entry_parm),
2873				  GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2874				  TYPE_ALIGN (data->passed_type));
2875	  set_mem_attributes (data->stack_parm, parm, 1);
2876	}
2877
2878      dest = validize_mem (data->stack_parm);
2879      src = validize_mem (data->entry_parm);
2880
2881      if (MEM_P (src))
2882	{
2883	  /* Use a block move to handle potentially misaligned entry_parm.  */
2884	  if (!to_conversion)
2885	    push_to_sequence (all->conversion_insns);
2886	  to_conversion = true;
2887
2888	  emit_block_move (dest, src,
2889			   GEN_INT (int_size_in_bytes (data->passed_type)),
2890			   BLOCK_OP_NORMAL);
2891	}
2892      else
2893	emit_move_insn (dest, src);
2894    }
2895
2896  if (to_conversion)
2897    {
2898      all->conversion_insns = get_insns ();
2899      end_sequence ();
2900    }
2901
2902  SET_DECL_RTL (parm, data->stack_parm);
2903}
2904
2905/* A subroutine of assign_parms.  If the ABI splits complex arguments, then
2906   undo the frobbing that we did in assign_parms_augmented_arg_list.  */
2907
2908static void
2909assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
2910{
2911  tree parm;
2912  tree orig_fnargs = all->orig_fnargs;
2913
2914  for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2915    {
2916      if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2917	  && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2918	{
2919	  rtx tmp, real, imag;
2920	  enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2921
2922	  real = DECL_RTL (fnargs);
2923	  imag = DECL_RTL (TREE_CHAIN (fnargs));
2924	  if (inner != GET_MODE (real))
2925	    {
2926	      real = gen_lowpart_SUBREG (inner, real);
2927	      imag = gen_lowpart_SUBREG (inner, imag);
2928	    }
2929
2930	  if (TREE_ADDRESSABLE (parm))
2931	    {
2932	      rtx rmem, imem;
2933	      HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
2934
2935	      /* split_complex_arg put the real and imag parts in
2936		 pseudos.  Move them to memory.  */
2937	      tmp = assign_stack_local (DECL_MODE (parm), size,
2938					TYPE_ALIGN (TREE_TYPE (parm)));
2939	      set_mem_attributes (tmp, parm, 1);
2940	      rmem = adjust_address_nv (tmp, inner, 0);
2941	      imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
2942	      push_to_sequence (all->conversion_insns);
2943	      emit_move_insn (rmem, real);
2944	      emit_move_insn (imem, imag);
2945	      all->conversion_insns = get_insns ();
2946	      end_sequence ();
2947	    }
2948	  else
2949	    tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2950	  SET_DECL_RTL (parm, tmp);
2951
2952	  real = DECL_INCOMING_RTL (fnargs);
2953	  imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
2954	  if (inner != GET_MODE (real))
2955	    {
2956	      real = gen_lowpart_SUBREG (inner, real);
2957	      imag = gen_lowpart_SUBREG (inner, imag);
2958	    }
2959	  tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2960	  set_decl_incoming_rtl (parm, tmp);
2961	  fnargs = TREE_CHAIN (fnargs);
2962	}
2963      else
2964	{
2965	  SET_DECL_RTL (parm, DECL_RTL (fnargs));
2966	  set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
2967
2968	  /* Set MEM_EXPR to the original decl, i.e. to PARM,
2969	     instead of the copy of decl, i.e. FNARGS.  */
2970	  if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
2971	    set_mem_expr (DECL_INCOMING_RTL (parm), parm);
2972	}
2973
2974      fnargs = TREE_CHAIN (fnargs);
2975    }
2976}
2977
2978/* Assign RTL expressions to the function's parameters.  This may involve
2979   copying them into registers and using those registers as the DECL_RTL.  */
2980
2981static void
2982assign_parms (tree fndecl)
2983{
2984  struct assign_parm_data_all all;
2985  tree fnargs, parm;
2986
2987  current_function_internal_arg_pointer
2988    = targetm.calls.internal_arg_pointer ();
2989
2990  assign_parms_initialize_all (&all);
2991  fnargs = assign_parms_augmented_arg_list (&all);
2992
2993  for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
2994    {
2995      struct assign_parm_data_one data;
2996
2997      /* Extract the type of PARM; adjust it according to ABI.  */
2998      assign_parm_find_data_types (&all, parm, &data);
2999
3000      /* Early out for errors and void parameters.  */
3001      if (data.passed_mode == VOIDmode)
3002	{
3003	  SET_DECL_RTL (parm, const0_rtx);
3004	  DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3005	  continue;
3006	}
3007
3008      if (current_function_stdarg && !TREE_CHAIN (parm))
3009	assign_parms_setup_varargs (&all, &data, false);
3010
3011      /* Find out where the parameter arrives in this function.  */
3012      assign_parm_find_entry_rtl (&all, &data);
3013
3014      /* Find out where stack space for this parameter might be.  */
3015      if (assign_parm_is_stack_parm (&all, &data))
3016	{
3017	  assign_parm_find_stack_rtl (parm, &data);
3018	  assign_parm_adjust_entry_rtl (&data);
3019	}
3020
3021      /* Record permanently how this parm was passed.  */
3022      set_decl_incoming_rtl (parm, data.entry_parm);
3023
3024      /* Update info on where next arg arrives in registers.  */
3025      FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3026			    data.passed_type, data.named_arg);
3027
3028      assign_parm_adjust_stack_rtl (&data);
3029
3030      if (assign_parm_setup_block_p (&data))
3031	assign_parm_setup_block (&all, parm, &data);
3032      else if (data.passed_pointer || use_register_for_decl (parm))
3033	assign_parm_setup_reg (&all, parm, &data);
3034      else
3035	assign_parm_setup_stack (&all, parm, &data);
3036    }
3037
3038  if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3039    assign_parms_unsplit_complex (&all, fnargs);
3040
3041  /* Output all parameter conversion instructions (possibly including calls)
3042     now that all parameters have been copied out of hard registers.  */
3043  emit_insn (all.conversion_insns);
3044
3045  /* If we are receiving a struct value address as the first argument, set up
3046     the RTL for the function result. As this might require code to convert
3047     the transmitted address to Pmode, we do this here to ensure that possible
3048     preliminary conversions of the address have been emitted already.  */
3049  if (all.function_result_decl)
3050    {
3051      tree result = DECL_RESULT (current_function_decl);
3052      rtx addr = DECL_RTL (all.function_result_decl);
3053      rtx x;
3054
3055      if (DECL_BY_REFERENCE (result))
3056	x = addr;
3057      else
3058	{
3059	  addr = convert_memory_address (Pmode, addr);
3060	  x = gen_rtx_MEM (DECL_MODE (result), addr);
3061	  set_mem_attributes (x, result, 1);
3062	}
3063      SET_DECL_RTL (result, x);
3064    }
3065
3066  /* We have aligned all the args, so add space for the pretend args.  */
3067  current_function_pretend_args_size = all.pretend_args_size;
3068  all.stack_args_size.constant += all.extra_pretend_bytes;
3069  current_function_args_size = all.stack_args_size.constant;
3070
3071  /* Adjust function incoming argument size for alignment and
3072     minimum length.  */
3073
3074#ifdef REG_PARM_STACK_SPACE
3075  current_function_args_size = MAX (current_function_args_size,
3076				    REG_PARM_STACK_SPACE (fndecl));
3077#endif
3078
3079  current_function_args_size = CEIL_ROUND (current_function_args_size,
3080					   PARM_BOUNDARY / BITS_PER_UNIT);
3081
3082#ifdef ARGS_GROW_DOWNWARD
3083  current_function_arg_offset_rtx
3084    = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3085       : expand_expr (size_diffop (all.stack_args_size.var,
3086				   size_int (-all.stack_args_size.constant)),
3087		      NULL_RTX, VOIDmode, 0));
3088#else
3089  current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3090#endif
3091
3092  /* See how many bytes, if any, of its args a function should try to pop
3093     on return.  */
3094
3095  current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3096						 current_function_args_size);
3097
3098  /* For stdarg.h function, save info about
3099     regs and stack space used by the named args.  */
3100
3101  current_function_args_info = all.args_so_far;
3102
3103  /* Set the rtx used for the function return value.  Put this in its
3104     own variable so any optimizers that need this information don't have
3105     to include tree.h.  Do this here so it gets done when an inlined
3106     function gets output.  */
3107
3108  current_function_return_rtx
3109    = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3110       ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3111
3112  /* If scalar return value was computed in a pseudo-reg, or was a named
3113     return value that got dumped to the stack, copy that to the hard
3114     return register.  */
3115  if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3116    {
3117      tree decl_result = DECL_RESULT (fndecl);
3118      rtx decl_rtl = DECL_RTL (decl_result);
3119
3120      if (REG_P (decl_rtl)
3121	  ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3122	  : DECL_REGISTER (decl_result))
3123	{
3124	  rtx real_decl_rtl;
3125
3126	  real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3127							fndecl, true);
3128	  REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3129	  /* The delay slot scheduler assumes that current_function_return_rtx
3130	     holds the hard register containing the return value, not a
3131	     temporary pseudo.  */
3132	  current_function_return_rtx = real_decl_rtl;
3133	}
3134    }
3135}
3136
3137/* A subroutine of gimplify_parameters, invoked via walk_tree.
3138   For all seen types, gimplify their sizes.  */
3139
3140static tree
3141gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3142{
3143  tree t = *tp;
3144
3145  *walk_subtrees = 0;
3146  if (TYPE_P (t))
3147    {
3148      if (POINTER_TYPE_P (t))
3149	*walk_subtrees = 1;
3150      else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3151	       && !TYPE_SIZES_GIMPLIFIED (t))
3152	{
3153	  gimplify_type_sizes (t, (tree *) data);
3154	  *walk_subtrees = 1;
3155	}
3156    }
3157
3158  return NULL;
3159}
3160
3161/* Gimplify the parameter list for current_function_decl.  This involves
3162   evaluating SAVE_EXPRs of variable sized parameters and generating code
3163   to implement callee-copies reference parameters.  Returns a list of
3164   statements to add to the beginning of the function, or NULL if nothing
3165   to do.  */
3166
3167tree
3168gimplify_parameters (void)
3169{
3170  struct assign_parm_data_all all;
3171  tree fnargs, parm, stmts = NULL;
3172
3173  assign_parms_initialize_all (&all);
3174  fnargs = assign_parms_augmented_arg_list (&all);
3175
3176  for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3177    {
3178      struct assign_parm_data_one data;
3179
3180      /* Extract the type of PARM; adjust it according to ABI.  */
3181      assign_parm_find_data_types (&all, parm, &data);
3182
3183      /* Early out for errors and void parameters.  */
3184      if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3185	continue;
3186
3187      /* Update info on where next arg arrives in registers.  */
3188      FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3189			    data.passed_type, data.named_arg);
3190
3191      /* ??? Once upon a time variable_size stuffed parameter list
3192	 SAVE_EXPRs (amongst others) onto a pending sizes list.  This
3193	 turned out to be less than manageable in the gimple world.
3194	 Now we have to hunt them down ourselves.  */
3195      walk_tree_without_duplicates (&data.passed_type,
3196				    gimplify_parm_type, &stmts);
3197
3198      if (!TREE_CONSTANT (DECL_SIZE (parm)))
3199	{
3200	  gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3201	  gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3202	}
3203
3204      if (data.passed_pointer)
3205	{
3206          tree type = TREE_TYPE (data.passed_type);
3207	  if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3208				       type, data.named_arg))
3209	    {
3210	      tree local, t;
3211
3212	      /* For constant sized objects, this is trivial; for
3213		 variable-sized objects, we have to play games.  */
3214	      if (TREE_CONSTANT (DECL_SIZE (parm)))
3215		{
3216		  local = create_tmp_var (type, get_name (parm));
3217		  DECL_IGNORED_P (local) = 0;
3218		}
3219	      else
3220		{
3221		  tree ptr_type, addr, args;
3222
3223		  ptr_type = build_pointer_type (type);
3224		  addr = create_tmp_var (ptr_type, get_name (parm));
3225		  DECL_IGNORED_P (addr) = 0;
3226		  local = build_fold_indirect_ref (addr);
3227
3228		  args = tree_cons (NULL, DECL_SIZE_UNIT (parm), NULL);
3229		  t = built_in_decls[BUILT_IN_ALLOCA];
3230		  t = build_function_call_expr (t, args);
3231		  t = fold_convert (ptr_type, t);
3232		  t = build2 (MODIFY_EXPR, void_type_node, addr, t);
3233		  gimplify_and_add (t, &stmts);
3234		}
3235
3236	      t = build2 (MODIFY_EXPR, void_type_node, local, parm);
3237	      gimplify_and_add (t, &stmts);
3238
3239	      SET_DECL_VALUE_EXPR (parm, local);
3240	      DECL_HAS_VALUE_EXPR_P (parm) = 1;
3241	    }
3242	}
3243    }
3244
3245  return stmts;
3246}
3247
3248/* Indicate whether REGNO is an incoming argument to the current function
3249   that was promoted to a wider mode.  If so, return the RTX for the
3250   register (to get its mode).  PMODE and PUNSIGNEDP are set to the mode
3251   that REGNO is promoted from and whether the promotion was signed or
3252   unsigned.  */
3253
3254rtx
3255promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
3256{
3257  tree arg;
3258
3259  for (arg = DECL_ARGUMENTS (current_function_decl); arg;
3260       arg = TREE_CHAIN (arg))
3261    if (REG_P (DECL_INCOMING_RTL (arg))
3262	&& REGNO (DECL_INCOMING_RTL (arg)) == regno
3263	&& TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
3264      {
3265	enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
3266	int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg));
3267
3268	mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
3269	if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
3270	    && mode != DECL_MODE (arg))
3271	  {
3272	    *pmode = DECL_MODE (arg);
3273	    *punsignedp = unsignedp;
3274	    return DECL_INCOMING_RTL (arg);
3275	  }
3276      }
3277
3278  return 0;
3279}
3280
3281
3282/* Compute the size and offset from the start of the stacked arguments for a
3283   parm passed in mode PASSED_MODE and with type TYPE.
3284
3285   INITIAL_OFFSET_PTR points to the current offset into the stacked
3286   arguments.
3287
3288   The starting offset and size for this parm are returned in
3289   LOCATE->OFFSET and LOCATE->SIZE, respectively.  When IN_REGS is
3290   nonzero, the offset is that of stack slot, which is returned in
3291   LOCATE->SLOT_OFFSET.  LOCATE->ALIGNMENT_PAD is the amount of
3292   padding required from the initial offset ptr to the stack slot.
3293
3294   IN_REGS is nonzero if the argument will be passed in registers.  It will
3295   never be set if REG_PARM_STACK_SPACE is not defined.
3296
3297   FNDECL is the function in which the argument was defined.
3298
3299   There are two types of rounding that are done.  The first, controlled by
3300   FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3301   list to be aligned to the specific boundary (in bits).  This rounding
3302   affects the initial and starting offsets, but not the argument size.
3303
3304   The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3305   optionally rounds the size of the parm to PARM_BOUNDARY.  The
3306   initial offset is not affected by this rounding, while the size always
3307   is and the starting offset may be.  */
3308
3309/*  LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3310    INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3311    callers pass in the total size of args so far as
3312    INITIAL_OFFSET_PTR.  LOCATE->SIZE is always positive.  */
3313
3314void
3315locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3316		     int partial, tree fndecl ATTRIBUTE_UNUSED,
3317		     struct args_size *initial_offset_ptr,
3318		     struct locate_and_pad_arg_data *locate)
3319{
3320  tree sizetree;
3321  enum direction where_pad;
3322  unsigned int boundary;
3323  int reg_parm_stack_space = 0;
3324  int part_size_in_regs;
3325
3326#ifdef REG_PARM_STACK_SPACE
3327  reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3328
3329  /* If we have found a stack parm before we reach the end of the
3330     area reserved for registers, skip that area.  */
3331  if (! in_regs)
3332    {
3333      if (reg_parm_stack_space > 0)
3334	{
3335	  if (initial_offset_ptr->var)
3336	    {
3337	      initial_offset_ptr->var
3338		= size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3339			      ssize_int (reg_parm_stack_space));
3340	      initial_offset_ptr->constant = 0;
3341	    }
3342	  else if (initial_offset_ptr->constant < reg_parm_stack_space)
3343	    initial_offset_ptr->constant = reg_parm_stack_space;
3344	}
3345    }
3346#endif /* REG_PARM_STACK_SPACE */
3347
3348  part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3349
3350  sizetree
3351    = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3352  where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3353  boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3354  locate->where_pad = where_pad;
3355  locate->boundary = boundary;
3356
3357  /* Remember if the outgoing parameter requires extra alignment on the
3358     calling function side.  */
3359  if (boundary > PREFERRED_STACK_BOUNDARY)
3360    boundary = PREFERRED_STACK_BOUNDARY;
3361  if (cfun->stack_alignment_needed < boundary)
3362    cfun->stack_alignment_needed = boundary;
3363
3364#ifdef ARGS_GROW_DOWNWARD
3365  locate->slot_offset.constant = -initial_offset_ptr->constant;
3366  if (initial_offset_ptr->var)
3367    locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3368					  initial_offset_ptr->var);
3369
3370  {
3371    tree s2 = sizetree;
3372    if (where_pad != none
3373	&& (!host_integerp (sizetree, 1)
3374	    || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3375      s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3376    SUB_PARM_SIZE (locate->slot_offset, s2);
3377  }
3378
3379  locate->slot_offset.constant += part_size_in_regs;
3380
3381  if (!in_regs
3382#ifdef REG_PARM_STACK_SPACE
3383      || REG_PARM_STACK_SPACE (fndecl) > 0
3384#endif
3385     )
3386    pad_to_arg_alignment (&locate->slot_offset, boundary,
3387			  &locate->alignment_pad);
3388
3389  locate->size.constant = (-initial_offset_ptr->constant
3390			   - locate->slot_offset.constant);
3391  if (initial_offset_ptr->var)
3392    locate->size.var = size_binop (MINUS_EXPR,
3393				   size_binop (MINUS_EXPR,
3394					       ssize_int (0),
3395					       initial_offset_ptr->var),
3396				   locate->slot_offset.var);
3397
3398  /* Pad_below needs the pre-rounded size to know how much to pad
3399     below.  */
3400  locate->offset = locate->slot_offset;
3401  if (where_pad == downward)
3402    pad_below (&locate->offset, passed_mode, sizetree);
3403
3404#else /* !ARGS_GROW_DOWNWARD */
3405  if (!in_regs
3406#ifdef REG_PARM_STACK_SPACE
3407      || REG_PARM_STACK_SPACE (fndecl) > 0
3408#endif
3409      )
3410    pad_to_arg_alignment (initial_offset_ptr, boundary,
3411			  &locate->alignment_pad);
3412  locate->slot_offset = *initial_offset_ptr;
3413
3414#ifdef PUSH_ROUNDING
3415  if (passed_mode != BLKmode)
3416    sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3417#endif
3418
3419  /* Pad_below needs the pre-rounded size to know how much to pad below
3420     so this must be done before rounding up.  */
3421  locate->offset = locate->slot_offset;
3422  if (where_pad == downward)
3423    pad_below (&locate->offset, passed_mode, sizetree);
3424
3425  if (where_pad != none
3426      && (!host_integerp (sizetree, 1)
3427	  || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3428    sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3429
3430  ADD_PARM_SIZE (locate->size, sizetree);
3431
3432  locate->size.constant -= part_size_in_regs;
3433#endif /* ARGS_GROW_DOWNWARD */
3434}
3435
3436/* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3437   BOUNDARY is measured in bits, but must be a multiple of a storage unit.  */
3438
3439static void
3440pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3441		      struct args_size *alignment_pad)
3442{
3443  tree save_var = NULL_TREE;
3444  HOST_WIDE_INT save_constant = 0;
3445  int boundary_in_bytes = boundary / BITS_PER_UNIT;
3446  HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3447
3448#ifdef SPARC_STACK_BOUNDARY_HACK
3449  /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3450     the real alignment of %sp.  However, when it does this, the
3451     alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY.  */
3452  if (SPARC_STACK_BOUNDARY_HACK)
3453    sp_offset = 0;
3454#endif
3455
3456  if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3457    {
3458      save_var = offset_ptr->var;
3459      save_constant = offset_ptr->constant;
3460    }
3461
3462  alignment_pad->var = NULL_TREE;
3463  alignment_pad->constant = 0;
3464
3465  if (boundary > BITS_PER_UNIT)
3466    {
3467      if (offset_ptr->var)
3468	{
3469	  tree sp_offset_tree = ssize_int (sp_offset);
3470	  tree offset = size_binop (PLUS_EXPR,
3471				    ARGS_SIZE_TREE (*offset_ptr),
3472				    sp_offset_tree);
3473#ifdef ARGS_GROW_DOWNWARD
3474	  tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3475#else
3476	  tree rounded = round_up   (offset, boundary / BITS_PER_UNIT);
3477#endif
3478
3479	  offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3480	  /* ARGS_SIZE_TREE includes constant term.  */
3481	  offset_ptr->constant = 0;
3482	  if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3483	    alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3484					     save_var);
3485	}
3486      else
3487	{
3488	  offset_ptr->constant = -sp_offset +
3489#ifdef ARGS_GROW_DOWNWARD
3490	    FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3491#else
3492	    CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3493#endif
3494	    if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3495	      alignment_pad->constant = offset_ptr->constant - save_constant;
3496	}
3497    }
3498}
3499
3500static void
3501pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3502{
3503  if (passed_mode != BLKmode)
3504    {
3505      if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3506	offset_ptr->constant
3507	  += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3508	       / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3509	      - GET_MODE_SIZE (passed_mode));
3510    }
3511  else
3512    {
3513      if (TREE_CODE (sizetree) != INTEGER_CST
3514	  || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3515	{
3516	  /* Round the size up to multiple of PARM_BOUNDARY bits.  */
3517	  tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3518	  /* Add it in.  */
3519	  ADD_PARM_SIZE (*offset_ptr, s2);
3520	  SUB_PARM_SIZE (*offset_ptr, sizetree);
3521	}
3522    }
3523}
3524
3525/* Walk the tree of blocks describing the binding levels within a function
3526   and warn about variables the might be killed by setjmp or vfork.
3527   This is done after calling flow_analysis and before global_alloc
3528   clobbers the pseudo-regs to hard regs.  */
3529
3530void
3531setjmp_vars_warning (tree block)
3532{
3533  tree decl, sub;
3534
3535  for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3536    {
3537      if (TREE_CODE (decl) == VAR_DECL
3538	  && DECL_RTL_SET_P (decl)
3539	  && REG_P (DECL_RTL (decl))
3540	  && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3541	warning (0, "variable %q+D might be clobbered by %<longjmp%>"
3542		 " or %<vfork%>",
3543		 decl);
3544    }
3545
3546  for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
3547    setjmp_vars_warning (sub);
3548}
3549
3550/* Do the appropriate part of setjmp_vars_warning
3551   but for arguments instead of local variables.  */
3552
3553void
3554setjmp_args_warning (void)
3555{
3556  tree decl;
3557  for (decl = DECL_ARGUMENTS (current_function_decl);
3558       decl; decl = TREE_CHAIN (decl))
3559    if (DECL_RTL (decl) != 0
3560	&& REG_P (DECL_RTL (decl))
3561	&& regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3562      warning (0, "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3563	       decl);
3564}
3565
3566
3567/* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3568   and create duplicate blocks.  */
3569/* ??? Need an option to either create block fragments or to create
3570   abstract origin duplicates of a source block.  It really depends
3571   on what optimization has been performed.  */
3572
3573void
3574reorder_blocks (void)
3575{
3576  tree block = DECL_INITIAL (current_function_decl);
3577  VEC(tree,heap) *block_stack;
3578
3579  if (block == NULL_TREE)
3580    return;
3581
3582  block_stack = VEC_alloc (tree, heap, 10);
3583
3584  /* Reset the TREE_ASM_WRITTEN bit for all blocks.  */
3585  clear_block_marks (block);
3586
3587  /* Prune the old trees away, so that they don't get in the way.  */
3588  BLOCK_SUBBLOCKS (block) = NULL_TREE;
3589  BLOCK_CHAIN (block) = NULL_TREE;
3590
3591  /* Recreate the block tree from the note nesting.  */
3592  reorder_blocks_1 (get_insns (), block, &block_stack);
3593  BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3594
3595  VEC_free (tree, heap, block_stack);
3596}
3597
3598/* Helper function for reorder_blocks.  Reset TREE_ASM_WRITTEN.  */
3599
3600void
3601clear_block_marks (tree block)
3602{
3603  while (block)
3604    {
3605      TREE_ASM_WRITTEN (block) = 0;
3606      clear_block_marks (BLOCK_SUBBLOCKS (block));
3607      block = BLOCK_CHAIN (block);
3608    }
3609}
3610
3611static void
3612reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3613{
3614  rtx insn;
3615
3616  for (insn = insns; insn; insn = NEXT_INSN (insn))
3617    {
3618      if (NOTE_P (insn))
3619	{
3620	  if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
3621	    {
3622	      tree block = NOTE_BLOCK (insn);
3623	      tree origin;
3624
3625	      origin = (BLOCK_FRAGMENT_ORIGIN (block)
3626			? BLOCK_FRAGMENT_ORIGIN (block)
3627			: block);
3628
3629	      /* If we have seen this block before, that means it now
3630		 spans multiple address regions.  Create a new fragment.  */
3631	      if (TREE_ASM_WRITTEN (block))
3632		{
3633		  tree new_block = copy_node (block);
3634
3635		  BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3636		  BLOCK_FRAGMENT_CHAIN (new_block)
3637		    = BLOCK_FRAGMENT_CHAIN (origin);
3638		  BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3639
3640		  NOTE_BLOCK (insn) = new_block;
3641		  block = new_block;
3642		}
3643
3644	      BLOCK_SUBBLOCKS (block) = 0;
3645	      TREE_ASM_WRITTEN (block) = 1;
3646	      /* When there's only one block for the entire function,
3647		 current_block == block and we mustn't do this, it
3648		 will cause infinite recursion.  */
3649	      if (block != current_block)
3650		{
3651		  if (block != origin)
3652		    gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
3653
3654		  BLOCK_SUPERCONTEXT (block) = current_block;
3655		  BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3656		  BLOCK_SUBBLOCKS (current_block) = block;
3657		  current_block = origin;
3658		}
3659	      VEC_safe_push (tree, heap, *p_block_stack, block);
3660	    }
3661	  else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
3662	    {
3663	      NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3664	      BLOCK_SUBBLOCKS (current_block)
3665		= blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3666	      current_block = BLOCK_SUPERCONTEXT (current_block);
3667	    }
3668	}
3669    }
3670}
3671
3672/* Reverse the order of elements in the chain T of blocks,
3673   and return the new head of the chain (old last element).  */
3674
3675tree
3676blocks_nreverse (tree t)
3677{
3678  tree prev = 0, decl, next;
3679  for (decl = t; decl; decl = next)
3680    {
3681      next = BLOCK_CHAIN (decl);
3682      BLOCK_CHAIN (decl) = prev;
3683      prev = decl;
3684    }
3685  return prev;
3686}
3687
3688/* Count the subblocks of the list starting with BLOCK.  If VECTOR is
3689   non-NULL, list them all into VECTOR, in a depth-first preorder
3690   traversal of the block tree.  Also clear TREE_ASM_WRITTEN in all
3691   blocks.  */
3692
3693static int
3694all_blocks (tree block, tree *vector)
3695{
3696  int n_blocks = 0;
3697
3698  while (block)
3699    {
3700      TREE_ASM_WRITTEN (block) = 0;
3701
3702      /* Record this block.  */
3703      if (vector)
3704	vector[n_blocks] = block;
3705
3706      ++n_blocks;
3707
3708      /* Record the subblocks, and their subblocks...  */
3709      n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3710			      vector ? vector + n_blocks : 0);
3711      block = BLOCK_CHAIN (block);
3712    }
3713
3714  return n_blocks;
3715}
3716
3717/* Return a vector containing all the blocks rooted at BLOCK.  The
3718   number of elements in the vector is stored in N_BLOCKS_P.  The
3719   vector is dynamically allocated; it is the caller's responsibility
3720   to call `free' on the pointer returned.  */
3721
3722static tree *
3723get_block_vector (tree block, int *n_blocks_p)
3724{
3725  tree *block_vector;
3726
3727  *n_blocks_p = all_blocks (block, NULL);
3728  block_vector = XNEWVEC (tree, *n_blocks_p);
3729  all_blocks (block, block_vector);
3730
3731  return block_vector;
3732}
3733
3734static GTY(()) int next_block_index = 2;
3735
3736/* Set BLOCK_NUMBER for all the blocks in FN.  */
3737
3738void
3739number_blocks (tree fn)
3740{
3741  int i;
3742  int n_blocks;
3743  tree *block_vector;
3744
3745  /* For SDB and XCOFF debugging output, we start numbering the blocks
3746     from 1 within each function, rather than keeping a running
3747     count.  */
3748#if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3749  if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3750    next_block_index = 1;
3751#endif
3752
3753  block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3754
3755  /* The top-level BLOCK isn't numbered at all.  */
3756  for (i = 1; i < n_blocks; ++i)
3757    /* We number the blocks from two.  */
3758    BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3759
3760  free (block_vector);
3761
3762  return;
3763}
3764
3765/* If VAR is present in a subblock of BLOCK, return the subblock.  */
3766
3767tree
3768debug_find_var_in_block_tree (tree var, tree block)
3769{
3770  tree t;
3771
3772  for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3773    if (t == var)
3774      return block;
3775
3776  for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3777    {
3778      tree ret = debug_find_var_in_block_tree (var, t);
3779      if (ret)
3780	return ret;
3781    }
3782
3783  return NULL_TREE;
3784}
3785
3786/* Allocate a function structure for FNDECL and set its contents
3787   to the defaults.  */
3788
3789void
3790allocate_struct_function (tree fndecl)
3791{
3792  tree result;
3793  tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3794
3795  cfun = ggc_alloc_cleared (sizeof (struct function));
3796
3797  cfun->stack_alignment_needed = STACK_BOUNDARY;
3798  cfun->preferred_stack_boundary = STACK_BOUNDARY;
3799
3800  current_function_funcdef_no = funcdef_no++;
3801
3802  cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3803
3804  init_eh_for_function ();
3805
3806  lang_hooks.function.init (cfun);
3807  if (init_machine_status)
3808    cfun->machine = (*init_machine_status) ();
3809
3810  if (fndecl == NULL)
3811    return;
3812
3813  DECL_STRUCT_FUNCTION (fndecl) = cfun;
3814  cfun->decl = fndecl;
3815
3816  result = DECL_RESULT (fndecl);
3817  if (aggregate_value_p (result, fndecl))
3818    {
3819#ifdef PCC_STATIC_STRUCT_RETURN
3820      current_function_returns_pcc_struct = 1;
3821#endif
3822      current_function_returns_struct = 1;
3823    }
3824
3825  current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
3826
3827  current_function_stdarg
3828    = (fntype
3829       && TYPE_ARG_TYPES (fntype) != 0
3830       && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3831	   != void_type_node));
3832
3833  /* Assume all registers in stdarg functions need to be saved.  */
3834  cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
3835  cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
3836}
3837
3838/* Reset cfun, and other non-struct-function variables to defaults as
3839   appropriate for emitting rtl at the start of a function.  */
3840
3841static void
3842prepare_function_start (tree fndecl)
3843{
3844  if (fndecl && DECL_STRUCT_FUNCTION (fndecl))
3845    cfun = DECL_STRUCT_FUNCTION (fndecl);
3846  else
3847    allocate_struct_function (fndecl);
3848  init_emit ();
3849  init_varasm_status (cfun);
3850  init_expr ();
3851
3852  cse_not_expected = ! optimize;
3853
3854  /* Caller save not needed yet.  */
3855  caller_save_needed = 0;
3856
3857  /* We haven't done register allocation yet.  */
3858  reg_renumber = 0;
3859
3860  /* Indicate that we have not instantiated virtual registers yet.  */
3861  virtuals_instantiated = 0;
3862
3863  /* Indicate that we want CONCATs now.  */
3864  generating_concat_p = 1;
3865
3866  /* Indicate we have no need of a frame pointer yet.  */
3867  frame_pointer_needed = 0;
3868}
3869
3870/* Initialize the rtl expansion mechanism so that we can do simple things
3871   like generate sequences.  This is used to provide a context during global
3872   initialization of some passes.  */
3873void
3874init_dummy_function_start (void)
3875{
3876  prepare_function_start (NULL);
3877}
3878
3879/* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3880   and initialize static variables for generating RTL for the statements
3881   of the function.  */
3882
3883void
3884init_function_start (tree subr)
3885{
3886  prepare_function_start (subr);
3887
3888  /* Prevent ever trying to delete the first instruction of a
3889     function.  Also tell final how to output a linenum before the
3890     function prologue.  Note linenums could be missing, e.g. when
3891     compiling a Java .class file.  */
3892  if (! DECL_IS_BUILTIN (subr))
3893    emit_line_note (DECL_SOURCE_LOCATION (subr));
3894
3895  /* Make sure first insn is a note even if we don't want linenums.
3896     This makes sure the first insn will never be deleted.
3897     Also, final expects a note to appear there.  */
3898  emit_note (NOTE_INSN_DELETED);
3899
3900  /* Warn if this value is an aggregate type,
3901     regardless of which calling convention we are using for it.  */
3902  if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
3903    warning (OPT_Waggregate_return, "function returns an aggregate");
3904}
3905
3906/* Make sure all values used by the optimization passes have sane
3907   defaults.  */
3908unsigned int
3909init_function_for_compilation (void)
3910{
3911  reg_renumber = 0;
3912
3913  /* No prologue/epilogue insns yet.  Make sure that these vectors are
3914     empty.  */
3915  gcc_assert (VEC_length (int, prologue) == 0);
3916  gcc_assert (VEC_length (int, epilogue) == 0);
3917  gcc_assert (VEC_length (int, sibcall_epilogue) == 0);
3918  return 0;
3919}
3920
3921struct tree_opt_pass pass_init_function =
3922{
3923  NULL,                                 /* name */
3924  NULL,                                 /* gate */
3925  init_function_for_compilation,        /* execute */
3926  NULL,                                 /* sub */
3927  NULL,                                 /* next */
3928  0,                                    /* static_pass_number */
3929  0,                                    /* tv_id */
3930  0,                                    /* properties_required */
3931  0,                                    /* properties_provided */
3932  0,                                    /* properties_destroyed */
3933  0,                                    /* todo_flags_start */
3934  0,                                    /* todo_flags_finish */
3935  0                                     /* letter */
3936};
3937
3938
3939void
3940expand_main_function (void)
3941{
3942#if (defined(INVOKE__main)				\
3943     || (!defined(HAS_INIT_SECTION)			\
3944	 && !defined(INIT_SECTION_ASM_OP)		\
3945	 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
3946  emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
3947#endif
3948}
3949
3950/* Expand code to initialize the stack_protect_guard.  This is invoked at
3951   the beginning of a function to be protected.  */
3952
3953#ifndef HAVE_stack_protect_set
3954# define HAVE_stack_protect_set		0
3955# define gen_stack_protect_set(x,y)	(gcc_unreachable (), NULL_RTX)
3956#endif
3957
3958void
3959stack_protect_prologue (void)
3960{
3961  tree guard_decl = targetm.stack_protect_guard ();
3962  rtx x, y;
3963
3964  /* Avoid expand_expr here, because we don't want guard_decl pulled
3965     into registers unless absolutely necessary.  And we know that
3966     cfun->stack_protect_guard is a local stack slot, so this skips
3967     all the fluff.  */
3968  x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
3969  y = validize_mem (DECL_RTL (guard_decl));
3970
3971  /* Allow the target to copy from Y to X without leaking Y into a
3972     register.  */
3973  if (HAVE_stack_protect_set)
3974    {
3975      rtx insn = gen_stack_protect_set (x, y);
3976      if (insn)
3977	{
3978	  emit_insn (insn);
3979	  return;
3980	}
3981    }
3982
3983  /* Otherwise do a straight move.  */
3984  emit_move_insn (x, y);
3985}
3986
3987/* Expand code to verify the stack_protect_guard.  This is invoked at
3988   the end of a function to be protected.  */
3989
3990#ifndef HAVE_stack_protect_test
3991# define HAVE_stack_protect_test		0
3992# define gen_stack_protect_test(x, y, z)	(gcc_unreachable (), NULL_RTX)
3993#endif
3994
3995void
3996stack_protect_epilogue (void)
3997{
3998  tree guard_decl = targetm.stack_protect_guard ();
3999  rtx label = gen_label_rtx ();
4000  rtx x, y, tmp;
4001
4002  /* Avoid expand_expr here, because we don't want guard_decl pulled
4003     into registers unless absolutely necessary.  And we know that
4004     cfun->stack_protect_guard is a local stack slot, so this skips
4005     all the fluff.  */
4006  x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
4007  y = validize_mem (DECL_RTL (guard_decl));
4008
4009  /* Allow the target to compare Y with X without leaking either into
4010     a register.  */
4011  if (HAVE_stack_protect_test != 0)
4012    {
4013      tmp = gen_stack_protect_test (x, y, label);
4014      if (tmp)
4015	{
4016	  emit_insn (tmp);
4017	  goto done;
4018	}
4019    }
4020
4021  emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4022 done:
4023
4024  /* The noreturn predictor has been moved to the tree level.  The rtl-level
4025     predictors estimate this branch about 20%, which isn't enough to get
4026     things moved out of line.  Since this is the only extant case of adding
4027     a noreturn function at the rtl level, it doesn't seem worth doing ought
4028     except adding the prediction by hand.  */
4029  tmp = get_last_insn ();
4030  if (JUMP_P (tmp))
4031    predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4032
4033  expand_expr_stmt (targetm.stack_protect_fail ());
4034  emit_label (label);
4035}
4036
4037/* Start the RTL for a new function, and set variables used for
4038   emitting RTL.
4039   SUBR is the FUNCTION_DECL node.
4040   PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4041   the function's parameters, which must be run at any return statement.  */
4042
4043void
4044expand_function_start (tree subr)
4045{
4046  /* Make sure volatile mem refs aren't considered
4047     valid operands of arithmetic insns.  */
4048  init_recog_no_volatile ();
4049
4050  current_function_profile
4051    = (profile_flag
4052       && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4053
4054  current_function_limit_stack
4055    = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4056
4057  /* Make the label for return statements to jump to.  Do not special
4058     case machines with special return instructions -- they will be
4059     handled later during jump, ifcvt, or epilogue creation.  */
4060  return_label = gen_label_rtx ();
4061
4062  /* Initialize rtx used to return the value.  */
4063  /* Do this before assign_parms so that we copy the struct value address
4064     before any library calls that assign parms might generate.  */
4065
4066  /* Decide whether to return the value in memory or in a register.  */
4067  if (aggregate_value_p (DECL_RESULT (subr), subr))
4068    {
4069      /* Returning something that won't go in a register.  */
4070      rtx value_address = 0;
4071
4072#ifdef PCC_STATIC_STRUCT_RETURN
4073      if (current_function_returns_pcc_struct)
4074	{
4075	  int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4076	  value_address = assemble_static_space (size);
4077	}
4078      else
4079#endif
4080	{
4081	  rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4082	  /* Expect to be passed the address of a place to store the value.
4083	     If it is passed as an argument, assign_parms will take care of
4084	     it.  */
4085	  if (sv)
4086	    {
4087	      value_address = gen_reg_rtx (Pmode);
4088	      emit_move_insn (value_address, sv);
4089	    }
4090	}
4091      if (value_address)
4092	{
4093	  rtx x = value_address;
4094	  if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4095	    {
4096	      x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4097	      set_mem_attributes (x, DECL_RESULT (subr), 1);
4098	    }
4099	  SET_DECL_RTL (DECL_RESULT (subr), x);
4100	}
4101    }
4102  else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4103    /* If return mode is void, this decl rtl should not be used.  */
4104    SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4105  else
4106    {
4107      /* Compute the return values into a pseudo reg, which we will copy
4108	 into the true return register after the cleanups are done.  */
4109      tree return_type = TREE_TYPE (DECL_RESULT (subr));
4110      if (TYPE_MODE (return_type) != BLKmode
4111	  && targetm.calls.return_in_msb (return_type))
4112	/* expand_function_end will insert the appropriate padding in
4113	   this case.  Use the return value's natural (unpadded) mode
4114	   within the function proper.  */
4115	SET_DECL_RTL (DECL_RESULT (subr),
4116		      gen_reg_rtx (TYPE_MODE (return_type)));
4117      else
4118	{
4119	  /* In order to figure out what mode to use for the pseudo, we
4120	     figure out what the mode of the eventual return register will
4121	     actually be, and use that.  */
4122	  rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4123
4124	  /* Structures that are returned in registers are not
4125	     aggregate_value_p, so we may see a PARALLEL or a REG.  */
4126	  if (REG_P (hard_reg))
4127	    SET_DECL_RTL (DECL_RESULT (subr),
4128			  gen_reg_rtx (GET_MODE (hard_reg)));
4129	  else
4130	    {
4131	      gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4132	      SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4133	    }
4134	}
4135
4136      /* Set DECL_REGISTER flag so that expand_function_end will copy the
4137	 result to the real return register(s).  */
4138      DECL_REGISTER (DECL_RESULT (subr)) = 1;
4139    }
4140
4141  /* Initialize rtx for parameters and local variables.
4142     In some cases this requires emitting insns.  */
4143  assign_parms (subr);
4144
4145  /* If function gets a static chain arg, store it.  */
4146  if (cfun->static_chain_decl)
4147    {
4148      tree parm = cfun->static_chain_decl;
4149      rtx local = gen_reg_rtx (Pmode);
4150
4151      set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
4152      SET_DECL_RTL (parm, local);
4153      mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4154
4155      emit_move_insn (local, static_chain_incoming_rtx);
4156    }
4157
4158  /* If the function receives a non-local goto, then store the
4159     bits we need to restore the frame pointer.  */
4160  if (cfun->nonlocal_goto_save_area)
4161    {
4162      tree t_save;
4163      rtx r_save;
4164
4165      /* ??? We need to do this save early.  Unfortunately here is
4166	 before the frame variable gets declared.  Help out...  */
4167      expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
4168
4169      t_save = build4 (ARRAY_REF, ptr_type_node,
4170		       cfun->nonlocal_goto_save_area,
4171		       integer_zero_node, NULL_TREE, NULL_TREE);
4172      r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4173      r_save = convert_memory_address (Pmode, r_save);
4174
4175      emit_move_insn (r_save, virtual_stack_vars_rtx);
4176      update_nonlocal_goto_save_area ();
4177    }
4178
4179  /* The following was moved from init_function_start.
4180     The move is supposed to make sdb output more accurate.  */
4181  /* Indicate the beginning of the function body,
4182     as opposed to parm setup.  */
4183  emit_note (NOTE_INSN_FUNCTION_BEG);
4184
4185  gcc_assert (NOTE_P (get_last_insn ()));
4186
4187  parm_birth_insn = get_last_insn ();
4188
4189  if (current_function_profile)
4190    {
4191#ifdef PROFILE_HOOK
4192      PROFILE_HOOK (current_function_funcdef_no);
4193#endif
4194    }
4195
4196  /* After the display initializations is where the stack checking
4197     probe should go.  */
4198  if(flag_stack_check)
4199    stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4200
4201  /* Make sure there is a line number after the function entry setup code.  */
4202  force_next_line_note ();
4203}
4204
4205/* Undo the effects of init_dummy_function_start.  */
4206void
4207expand_dummy_function_end (void)
4208{
4209  /* End any sequences that failed to be closed due to syntax errors.  */
4210  while (in_sequence_p ())
4211    end_sequence ();
4212
4213  /* Outside function body, can't compute type's actual size
4214     until next function's body starts.  */
4215
4216  free_after_parsing (cfun);
4217  free_after_compilation (cfun);
4218  cfun = 0;
4219}
4220
4221/* Call DOIT for each hard register used as a return value from
4222   the current function.  */
4223
4224void
4225diddle_return_value (void (*doit) (rtx, void *), void *arg)
4226{
4227  rtx outgoing = current_function_return_rtx;
4228
4229  if (! outgoing)
4230    return;
4231
4232  if (REG_P (outgoing))
4233    (*doit) (outgoing, arg);
4234  else if (GET_CODE (outgoing) == PARALLEL)
4235    {
4236      int i;
4237
4238      for (i = 0; i < XVECLEN (outgoing, 0); i++)
4239	{
4240	  rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4241
4242	  if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4243	    (*doit) (x, arg);
4244	}
4245    }
4246}
4247
4248static void
4249do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4250{
4251  emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4252}
4253
4254void
4255clobber_return_register (void)
4256{
4257  diddle_return_value (do_clobber_return_reg, NULL);
4258
4259  /* In case we do use pseudo to return value, clobber it too.  */
4260  if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4261    {
4262      tree decl_result = DECL_RESULT (current_function_decl);
4263      rtx decl_rtl = DECL_RTL (decl_result);
4264      if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4265	{
4266	  do_clobber_return_reg (decl_rtl, NULL);
4267	}
4268    }
4269}
4270
4271static void
4272do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4273{
4274  emit_insn (gen_rtx_USE (VOIDmode, reg));
4275}
4276
4277static void
4278use_return_register (void)
4279{
4280  diddle_return_value (do_use_return_reg, NULL);
4281}
4282
4283/* Possibly warn about unused parameters.  */
4284void
4285do_warn_unused_parameter (tree fn)
4286{
4287  tree decl;
4288
4289  for (decl = DECL_ARGUMENTS (fn);
4290       decl; decl = TREE_CHAIN (decl))
4291    if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4292	&& DECL_NAME (decl) && !DECL_ARTIFICIAL (decl))
4293      warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4294}
4295
4296static GTY(()) rtx initial_trampoline;
4297
4298/* Generate RTL for the end of the current function.  */
4299
4300void
4301expand_function_end (void)
4302{
4303  rtx clobber_after;
4304
4305  /* If arg_pointer_save_area was referenced only from a nested
4306     function, we will not have initialized it yet.  Do that now.  */
4307  if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
4308    get_arg_pointer_save_area (cfun);
4309
4310  /* If we are doing stack checking and this function makes calls,
4311     do a stack probe at the start of the function to ensure we have enough
4312     space for another stack frame.  */
4313  if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4314    {
4315      rtx insn, seq;
4316
4317      for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4318	if (CALL_P (insn))
4319	  {
4320	    start_sequence ();
4321	    probe_stack_range (STACK_CHECK_PROTECT,
4322			       GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4323	    seq = get_insns ();
4324	    end_sequence ();
4325	    emit_insn_before (seq, stack_check_probe_note);
4326	    break;
4327	  }
4328    }
4329
4330  /* Possibly warn about unused parameters.
4331     When frontend does unit-at-a-time, the warning is already
4332     issued at finalization time.  */
4333  if (warn_unused_parameter
4334      && !lang_hooks.callgraph.expand_function)
4335    do_warn_unused_parameter (current_function_decl);
4336
4337  /* End any sequences that failed to be closed due to syntax errors.  */
4338  while (in_sequence_p ())
4339    end_sequence ();
4340
4341  clear_pending_stack_adjust ();
4342  do_pending_stack_adjust ();
4343
4344  /* Mark the end of the function body.
4345     If control reaches this insn, the function can drop through
4346     without returning a value.  */
4347  emit_note (NOTE_INSN_FUNCTION_END);
4348
4349  /* Must mark the last line number note in the function, so that the test
4350     coverage code can avoid counting the last line twice.  This just tells
4351     the code to ignore the immediately following line note, since there
4352     already exists a copy of this note somewhere above.  This line number
4353     note is still needed for debugging though, so we can't delete it.  */
4354  if (flag_test_coverage)
4355    emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
4356
4357  /* Output a linenumber for the end of the function.
4358     SDB depends on this.  */
4359  force_next_line_note ();
4360  emit_line_note (input_location);
4361
4362  /* Before the return label (if any), clobber the return
4363     registers so that they are not propagated live to the rest of
4364     the function.  This can only happen with functions that drop
4365     through; if there had been a return statement, there would
4366     have either been a return rtx, or a jump to the return label.
4367
4368     We delay actual code generation after the current_function_value_rtx
4369     is computed.  */
4370  clobber_after = get_last_insn ();
4371
4372  /* Output the label for the actual return from the function.  */
4373  emit_label (return_label);
4374
4375#ifdef TARGET_PROFILER_EPILOGUE
4376  if (current_function_profile && TARGET_PROFILER_EPILOGUE)
4377    {
4378      static rtx mexitcount_libfunc;
4379      static int initialized;
4380
4381      if (!initialized)
4382	{
4383	  mexitcount_libfunc = init_one_libfunc (".mexitcount");
4384	  initialized = 0;
4385	}
4386      emit_library_call (mexitcount_libfunc, LCT_NORMAL, VOIDmode, 0);
4387    }
4388#endif
4389
4390  if (USING_SJLJ_EXCEPTIONS)
4391    {
4392      /* Let except.c know where it should emit the call to unregister
4393	 the function context for sjlj exceptions.  */
4394      if (flag_exceptions)
4395	sjlj_emit_function_exit_after (get_last_insn ());
4396    }
4397  else
4398    {
4399      /* @@@ This is a kludge.  We want to ensure that instructions that
4400	 may trap are not moved into the epilogue by scheduling, because
4401	 we don't always emit unwind information for the epilogue.
4402	 However, not all machine descriptions define a blockage insn, so
4403	 emit an ASM_INPUT to act as one.  */
4404      if (flag_non_call_exceptions)
4405	emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
4406    }
4407
4408  /* If this is an implementation of throw, do what's necessary to
4409     communicate between __builtin_eh_return and the epilogue.  */
4410  expand_eh_return ();
4411
4412  /* If scalar return value was computed in a pseudo-reg, or was a named
4413     return value that got dumped to the stack, copy that to the hard
4414     return register.  */
4415  if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4416    {
4417      tree decl_result = DECL_RESULT (current_function_decl);
4418      rtx decl_rtl = DECL_RTL (decl_result);
4419
4420      if (REG_P (decl_rtl)
4421	  ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4422	  : DECL_REGISTER (decl_result))
4423	{
4424	  rtx real_decl_rtl = current_function_return_rtx;
4425
4426	  /* This should be set in assign_parms.  */
4427	  gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4428
4429	  /* If this is a BLKmode structure being returned in registers,
4430	     then use the mode computed in expand_return.  Note that if
4431	     decl_rtl is memory, then its mode may have been changed,
4432	     but that current_function_return_rtx has not.  */
4433	  if (GET_MODE (real_decl_rtl) == BLKmode)
4434	    PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4435
4436	  /* If a non-BLKmode return value should be padded at the least
4437	     significant end of the register, shift it left by the appropriate
4438	     amount.  BLKmode results are handled using the group load/store
4439	     machinery.  */
4440	  if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4441	      && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4442	    {
4443	      emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4444					   REGNO (real_decl_rtl)),
4445			      decl_rtl);
4446	      shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4447	    }
4448	  /* If a named return value dumped decl_return to memory, then
4449	     we may need to re-do the PROMOTE_MODE signed/unsigned
4450	     extension.  */
4451	  else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4452	    {
4453	      int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4454
4455	      if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4456		promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4457			      &unsignedp, 1);
4458
4459	      convert_move (real_decl_rtl, decl_rtl, unsignedp);
4460	    }
4461	  else if (GET_CODE (real_decl_rtl) == PARALLEL)
4462	    {
4463	      /* If expand_function_start has created a PARALLEL for decl_rtl,
4464		 move the result to the real return registers.  Otherwise, do
4465		 a group load from decl_rtl for a named return.  */
4466	      if (GET_CODE (decl_rtl) == PARALLEL)
4467		emit_group_move (real_decl_rtl, decl_rtl);
4468	      else
4469		emit_group_load (real_decl_rtl, decl_rtl,
4470				 TREE_TYPE (decl_result),
4471				 int_size_in_bytes (TREE_TYPE (decl_result)));
4472	    }
4473	  /* In the case of complex integer modes smaller than a word, we'll
4474	     need to generate some non-trivial bitfield insertions.  Do that
4475	     on a pseudo and not the hard register.  */
4476	  else if (GET_CODE (decl_rtl) == CONCAT
4477		   && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4478		   && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4479	    {
4480	      int old_generating_concat_p;
4481	      rtx tmp;
4482
4483	      old_generating_concat_p = generating_concat_p;
4484	      generating_concat_p = 0;
4485	      tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4486	      generating_concat_p = old_generating_concat_p;
4487
4488	      emit_move_insn (tmp, decl_rtl);
4489	      emit_move_insn (real_decl_rtl, tmp);
4490	    }
4491	  else
4492	    emit_move_insn (real_decl_rtl, decl_rtl);
4493	}
4494    }
4495
4496  /* If returning a structure, arrange to return the address of the value
4497     in a place where debuggers expect to find it.
4498
4499     If returning a structure PCC style,
4500     the caller also depends on this value.
4501     And current_function_returns_pcc_struct is not necessarily set.  */
4502  if (current_function_returns_struct
4503      || current_function_returns_pcc_struct)
4504    {
4505      rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4506      tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4507      rtx outgoing;
4508
4509      if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4510	type = TREE_TYPE (type);
4511      else
4512	value_address = XEXP (value_address, 0);
4513
4514      outgoing = targetm.calls.function_value (build_pointer_type (type),
4515					       current_function_decl, true);
4516
4517      /* Mark this as a function return value so integrate will delete the
4518	 assignment and USE below when inlining this function.  */
4519      REG_FUNCTION_VALUE_P (outgoing) = 1;
4520
4521      /* The address may be ptr_mode and OUTGOING may be Pmode.  */
4522      value_address = convert_memory_address (GET_MODE (outgoing),
4523					      value_address);
4524
4525      emit_move_insn (outgoing, value_address);
4526
4527      /* Show return register used to hold result (in this case the address
4528	 of the result.  */
4529      current_function_return_rtx = outgoing;
4530    }
4531
4532  /* Emit the actual code to clobber return register.  */
4533  {
4534    rtx seq;
4535
4536    start_sequence ();
4537    clobber_return_register ();
4538    expand_naked_return ();
4539    seq = get_insns ();
4540    end_sequence ();
4541
4542    emit_insn_after (seq, clobber_after);
4543  }
4544
4545  /* Output the label for the naked return from the function.  */
4546  emit_label (naked_return_label);
4547
4548  /* If stack protection is enabled for this function, check the guard.  */
4549  if (cfun->stack_protect_guard)
4550    stack_protect_epilogue ();
4551
4552  /* If we had calls to alloca, and this machine needs
4553     an accurate stack pointer to exit the function,
4554     insert some code to save and restore the stack pointer.  */
4555  if (! EXIT_IGNORE_STACK
4556      && current_function_calls_alloca)
4557    {
4558      rtx tem = 0;
4559
4560      emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4561      emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4562    }
4563
4564  /* ??? This should no longer be necessary since stupid is no longer with
4565     us, but there are some parts of the compiler (eg reload_combine, and
4566     sh mach_dep_reorg) that still try and compute their own lifetime info
4567     instead of using the general framework.  */
4568  use_return_register ();
4569}
4570
4571rtx
4572get_arg_pointer_save_area (struct function *f)
4573{
4574  rtx ret = f->x_arg_pointer_save_area;
4575
4576  if (! ret)
4577    {
4578      ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
4579      f->x_arg_pointer_save_area = ret;
4580    }
4581
4582  if (f == cfun && ! f->arg_pointer_save_area_init)
4583    {
4584      rtx seq;
4585
4586      /* Save the arg pointer at the beginning of the function.  The
4587	 generated stack slot may not be a valid memory address, so we
4588	 have to check it and fix it if necessary.  */
4589      start_sequence ();
4590      emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4591      seq = get_insns ();
4592      end_sequence ();
4593
4594      push_topmost_sequence ();
4595      emit_insn_after (seq, entry_of_function ());
4596      pop_topmost_sequence ();
4597    }
4598
4599  return ret;
4600}
4601
4602/* Extend a vector that records the INSN_UIDs of INSNS
4603   (a list of one or more insns).  */
4604
4605static void
4606record_insns (rtx insns, VEC(int,heap) **vecp)
4607{
4608  rtx tmp;
4609
4610  for (tmp = insns; tmp != NULL_RTX; tmp = NEXT_INSN (tmp))
4611    VEC_safe_push (int, heap, *vecp, INSN_UID (tmp));
4612}
4613
4614/* Set the locator of the insn chain starting at INSN to LOC.  */
4615static void
4616set_insn_locators (rtx insn, int loc)
4617{
4618  while (insn != NULL_RTX)
4619    {
4620      if (INSN_P (insn))
4621	INSN_LOCATOR (insn) = loc;
4622      insn = NEXT_INSN (insn);
4623    }
4624}
4625
4626/* Determine how many INSN_UIDs in VEC are part of INSN.  Because we can
4627   be running after reorg, SEQUENCE rtl is possible.  */
4628
4629static int
4630contains (rtx insn, VEC(int,heap) **vec)
4631{
4632  int i, j;
4633
4634  if (NONJUMP_INSN_P (insn)
4635      && GET_CODE (PATTERN (insn)) == SEQUENCE)
4636    {
4637      int count = 0;
4638      for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4639	for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4640	  if (INSN_UID (XVECEXP (PATTERN (insn), 0, i))
4641	      == VEC_index (int, *vec, j))
4642	    count++;
4643      return count;
4644    }
4645  else
4646    {
4647      for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4648	if (INSN_UID (insn) == VEC_index (int, *vec, j))
4649	  return 1;
4650    }
4651  return 0;
4652}
4653
4654int
4655prologue_epilogue_contains (rtx insn)
4656{
4657  if (contains (insn, &prologue))
4658    return 1;
4659  if (contains (insn, &epilogue))
4660    return 1;
4661  return 0;
4662}
4663
4664int
4665sibcall_epilogue_contains (rtx insn)
4666{
4667  if (sibcall_epilogue)
4668    return contains (insn, &sibcall_epilogue);
4669  return 0;
4670}
4671
4672#ifdef HAVE_return
4673/* Insert gen_return at the end of block BB.  This also means updating
4674   block_for_insn appropriately.  */
4675
4676static void
4677emit_return_into_block (basic_block bb, rtx line_note)
4678{
4679  emit_jump_insn_after (gen_return (), BB_END (bb));
4680  if (line_note)
4681    emit_note_copy_after (line_note, PREV_INSN (BB_END (bb)));
4682}
4683#endif /* HAVE_return */
4684
4685#if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
4686
4687/* These functions convert the epilogue into a variant that does not
4688   modify the stack pointer.  This is used in cases where a function
4689   returns an object whose size is not known until it is computed.
4690   The called function leaves the object on the stack, leaves the
4691   stack depressed, and returns a pointer to the object.
4692
4693   What we need to do is track all modifications and references to the
4694   stack pointer, deleting the modifications and changing the
4695   references to point to the location the stack pointer would have
4696   pointed to had the modifications taken place.
4697
4698   These functions need to be portable so we need to make as few
4699   assumptions about the epilogue as we can.  However, the epilogue
4700   basically contains three things: instructions to reset the stack
4701   pointer, instructions to reload registers, possibly including the
4702   frame pointer, and an instruction to return to the caller.
4703
4704   We must be sure of what a relevant epilogue insn is doing.  We also
4705   make no attempt to validate the insns we make since if they are
4706   invalid, we probably can't do anything valid.  The intent is that
4707   these routines get "smarter" as more and more machines start to use
4708   them and they try operating on different epilogues.
4709
4710   We use the following structure to track what the part of the
4711   epilogue that we've already processed has done.  We keep two copies
4712   of the SP equivalence, one for use during the insn we are
4713   processing and one for use in the next insn.  The difference is
4714   because one part of a PARALLEL may adjust SP and the other may use
4715   it.  */
4716
4717struct epi_info
4718{
4719  rtx sp_equiv_reg;		/* REG that SP is set from, perhaps SP.  */
4720  HOST_WIDE_INT sp_offset;	/* Offset from SP_EQUIV_REG of present SP.  */
4721  rtx new_sp_equiv_reg;		/* REG to be used at end of insn.  */
4722  HOST_WIDE_INT new_sp_offset;	/* Offset to be used at end of insn.  */
4723  rtx equiv_reg_src;		/* If nonzero, the value that SP_EQUIV_REG
4724				   should be set to once we no longer need
4725				   its value.  */
4726  rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
4727					     for registers.  */
4728};
4729
4730static void handle_epilogue_set (rtx, struct epi_info *);
4731static void update_epilogue_consts (rtx, rtx, void *);
4732static void emit_equiv_load (struct epi_info *);
4733
4734/* Modify INSN, a list of one or more insns that is part of the epilogue, to
4735   no modifications to the stack pointer.  Return the new list of insns.  */
4736
4737static rtx
4738keep_stack_depressed (rtx insns)
4739{
4740  int j;
4741  struct epi_info info;
4742  rtx insn, next;
4743
4744  /* If the epilogue is just a single instruction, it must be OK as is.  */
4745  if (NEXT_INSN (insns) == NULL_RTX)
4746    return insns;
4747
4748  /* Otherwise, start a sequence, initialize the information we have, and
4749     process all the insns we were given.  */
4750  start_sequence ();
4751
4752  info.sp_equiv_reg = stack_pointer_rtx;
4753  info.sp_offset = 0;
4754  info.equiv_reg_src = 0;
4755
4756  for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
4757    info.const_equiv[j] = 0;
4758
4759  insn = insns;
4760  next = NULL_RTX;
4761  while (insn != NULL_RTX)
4762    {
4763      next = NEXT_INSN (insn);
4764
4765      if (!INSN_P (insn))
4766	{
4767	  add_insn (insn);
4768	  insn = next;
4769	  continue;
4770	}
4771
4772      /* If this insn references the register that SP is equivalent to and
4773	 we have a pending load to that register, we must force out the load
4774	 first and then indicate we no longer know what SP's equivalent is.  */
4775      if (info.equiv_reg_src != 0
4776	  && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
4777	{
4778	  emit_equiv_load (&info);
4779	  info.sp_equiv_reg = 0;
4780	}
4781
4782      info.new_sp_equiv_reg = info.sp_equiv_reg;
4783      info.new_sp_offset = info.sp_offset;
4784
4785      /* If this is a (RETURN) and the return address is on the stack,
4786	 update the address and change to an indirect jump.  */
4787      if (GET_CODE (PATTERN (insn)) == RETURN
4788	  || (GET_CODE (PATTERN (insn)) == PARALLEL
4789	      && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
4790	{
4791	  rtx retaddr = INCOMING_RETURN_ADDR_RTX;
4792	  rtx base = 0;
4793	  HOST_WIDE_INT offset = 0;
4794	  rtx jump_insn, jump_set;
4795
4796	  /* If the return address is in a register, we can emit the insn
4797	     unchanged.  Otherwise, it must be a MEM and we see what the
4798	     base register and offset are.  In any case, we have to emit any
4799	     pending load to the equivalent reg of SP, if any.  */
4800	  if (REG_P (retaddr))
4801	    {
4802	      emit_equiv_load (&info);
4803	      add_insn (insn);
4804	      insn = next;
4805	      continue;
4806	    }
4807	  else
4808	    {
4809	      rtx ret_ptr;
4810	      gcc_assert (MEM_P (retaddr));
4811
4812	      ret_ptr = XEXP (retaddr, 0);
4813
4814	      if (REG_P (ret_ptr))
4815		{
4816		  base = gen_rtx_REG (Pmode, REGNO (ret_ptr));
4817		  offset = 0;
4818		}
4819	      else
4820		{
4821		  gcc_assert (GET_CODE (ret_ptr) == PLUS
4822			      && REG_P (XEXP (ret_ptr, 0))
4823			      && GET_CODE (XEXP (ret_ptr, 1)) == CONST_INT);
4824		  base = gen_rtx_REG (Pmode, REGNO (XEXP (ret_ptr, 0)));
4825		  offset = INTVAL (XEXP (ret_ptr, 1));
4826		}
4827	    }
4828
4829	  /* If the base of the location containing the return pointer
4830	     is SP, we must update it with the replacement address.  Otherwise,
4831	     just build the necessary MEM.  */
4832	  retaddr = plus_constant (base, offset);
4833	  if (base == stack_pointer_rtx)
4834	    retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
4835					    plus_constant (info.sp_equiv_reg,
4836							   info.sp_offset));
4837
4838	  retaddr = gen_rtx_MEM (Pmode, retaddr);
4839	  MEM_NOTRAP_P (retaddr) = 1;
4840
4841	  /* If there is a pending load to the equivalent register for SP
4842	     and we reference that register, we must load our address into
4843	     a scratch register and then do that load.  */
4844	  if (info.equiv_reg_src
4845	      && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
4846	    {
4847	      unsigned int regno;
4848	      rtx reg;
4849
4850	      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4851		if (HARD_REGNO_MODE_OK (regno, Pmode)
4852		    && !fixed_regs[regno]
4853		    && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
4854		    && !REGNO_REG_SET_P
4855		         (EXIT_BLOCK_PTR->il.rtl->global_live_at_start, regno)
4856		    && !refers_to_regno_p (regno,
4857					   regno + hard_regno_nregs[regno]
4858								   [Pmode],
4859					   info.equiv_reg_src, NULL)
4860		    && info.const_equiv[regno] == 0)
4861		  break;
4862
4863	      gcc_assert (regno < FIRST_PSEUDO_REGISTER);
4864
4865	      reg = gen_rtx_REG (Pmode, regno);
4866	      emit_move_insn (reg, retaddr);
4867	      retaddr = reg;
4868	    }
4869
4870	  emit_equiv_load (&info);
4871	  jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
4872
4873	  /* Show the SET in the above insn is a RETURN.  */
4874	  jump_set = single_set (jump_insn);
4875	  gcc_assert (jump_set);
4876	  SET_IS_RETURN_P (jump_set) = 1;
4877	}
4878
4879      /* If SP is not mentioned in the pattern and its equivalent register, if
4880	 any, is not modified, just emit it.  Otherwise, if neither is set,
4881	 replace the reference to SP and emit the insn.  If none of those are
4882	 true, handle each SET individually.  */
4883      else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
4884	       && (info.sp_equiv_reg == stack_pointer_rtx
4885		   || !reg_set_p (info.sp_equiv_reg, insn)))
4886	add_insn (insn);
4887      else if (! reg_set_p (stack_pointer_rtx, insn)
4888	       && (info.sp_equiv_reg == stack_pointer_rtx
4889		   || !reg_set_p (info.sp_equiv_reg, insn)))
4890	{
4891	  int changed;
4892
4893	  changed = validate_replace_rtx (stack_pointer_rtx,
4894					  plus_constant (info.sp_equiv_reg,
4895							 info.sp_offset),
4896					  insn);
4897	  gcc_assert (changed);
4898
4899	  add_insn (insn);
4900	}
4901      else if (GET_CODE (PATTERN (insn)) == SET)
4902	handle_epilogue_set (PATTERN (insn), &info);
4903      else if (GET_CODE (PATTERN (insn)) == PARALLEL)
4904	{
4905	  for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
4906	    if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
4907	      handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
4908	}
4909      else
4910	add_insn (insn);
4911
4912      info.sp_equiv_reg = info.new_sp_equiv_reg;
4913      info.sp_offset = info.new_sp_offset;
4914
4915      /* Now update any constants this insn sets.  */
4916      note_stores (PATTERN (insn), update_epilogue_consts, &info);
4917      insn = next;
4918    }
4919
4920  insns = get_insns ();
4921  end_sequence ();
4922  return insns;
4923}
4924
4925/* SET is a SET from an insn in the epilogue.  P is a pointer to the epi_info
4926   structure that contains information about what we've seen so far.  We
4927   process this SET by either updating that data or by emitting one or
4928   more insns.  */
4929
4930static void
4931handle_epilogue_set (rtx set, struct epi_info *p)
4932{
4933  /* First handle the case where we are setting SP.  Record what it is being
4934     set from, which we must be able to determine  */
4935  if (reg_set_p (stack_pointer_rtx, set))
4936    {
4937      gcc_assert (SET_DEST (set) == stack_pointer_rtx);
4938
4939      if (GET_CODE (SET_SRC (set)) == PLUS)
4940	{
4941	  p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
4942	  if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
4943	    p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
4944	  else
4945	    {
4946	      gcc_assert (REG_P (XEXP (SET_SRC (set), 1))
4947			  && (REGNO (XEXP (SET_SRC (set), 1))
4948			      < FIRST_PSEUDO_REGISTER)
4949			  && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4950	      p->new_sp_offset
4951		= INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4952	    }
4953	}
4954      else
4955	p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
4956
4957      /* If we are adjusting SP, we adjust from the old data.  */
4958      if (p->new_sp_equiv_reg == stack_pointer_rtx)
4959	{
4960	  p->new_sp_equiv_reg = p->sp_equiv_reg;
4961	  p->new_sp_offset += p->sp_offset;
4962	}
4963
4964      gcc_assert (p->new_sp_equiv_reg && REG_P (p->new_sp_equiv_reg));
4965
4966      return;
4967    }
4968
4969  /* Next handle the case where we are setting SP's equivalent
4970     register.  We must not already have a value to set it to.  We
4971     could update, but there seems little point in handling that case.
4972     Note that we have to allow for the case where we are setting the
4973     register set in the previous part of a PARALLEL inside a single
4974     insn.  But use the old offset for any updates within this insn.
4975     We must allow for the case where the register is being set in a
4976     different (usually wider) mode than Pmode).  */
4977  else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
4978    {
4979      gcc_assert (!p->equiv_reg_src
4980		  && REG_P (p->new_sp_equiv_reg)
4981		  && REG_P (SET_DEST (set))
4982		  && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set)))
4983		      <= BITS_PER_WORD)
4984		  && REGNO (p->new_sp_equiv_reg) == REGNO (SET_DEST (set)));
4985      p->equiv_reg_src
4986	= simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4987				plus_constant (p->sp_equiv_reg,
4988					       p->sp_offset));
4989    }
4990
4991  /* Otherwise, replace any references to SP in the insn to its new value
4992     and emit the insn.  */
4993  else
4994    {
4995      SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4996					    plus_constant (p->sp_equiv_reg,
4997							   p->sp_offset));
4998      SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
4999					     plus_constant (p->sp_equiv_reg,
5000							    p->sp_offset));
5001      emit_insn (set);
5002    }
5003}
5004
5005/* Update the tracking information for registers set to constants.  */
5006
5007static void
5008update_epilogue_consts (rtx dest, rtx x, void *data)
5009{
5010  struct epi_info *p = (struct epi_info *) data;
5011  rtx new;
5012
5013  if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
5014    return;
5015
5016  /* If we are either clobbering a register or doing a partial set,
5017     show we don't know the value.  */
5018  else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
5019    p->const_equiv[REGNO (dest)] = 0;
5020
5021  /* If we are setting it to a constant, record that constant.  */
5022  else if (GET_CODE (SET_SRC (x)) == CONST_INT)
5023    p->const_equiv[REGNO (dest)] = SET_SRC (x);
5024
5025  /* If this is a binary operation between a register we have been tracking
5026     and a constant, see if we can compute a new constant value.  */
5027  else if (ARITHMETIC_P (SET_SRC (x))
5028	   && REG_P (XEXP (SET_SRC (x), 0))
5029	   && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
5030	   && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
5031	   && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
5032	   && 0 != (new = simplify_binary_operation
5033		    (GET_CODE (SET_SRC (x)), GET_MODE (dest),
5034		     p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
5035		     XEXP (SET_SRC (x), 1)))
5036	   && GET_CODE (new) == CONST_INT)
5037    p->const_equiv[REGNO (dest)] = new;
5038
5039  /* Otherwise, we can't do anything with this value.  */
5040  else
5041    p->const_equiv[REGNO (dest)] = 0;
5042}
5043
5044/* Emit an insn to do the load shown in p->equiv_reg_src, if needed.  */
5045
5046static void
5047emit_equiv_load (struct epi_info *p)
5048{
5049  if (p->equiv_reg_src != 0)
5050    {
5051      rtx dest = p->sp_equiv_reg;
5052
5053      if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
5054	dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
5055			    REGNO (p->sp_equiv_reg));
5056
5057      emit_move_insn (dest, p->equiv_reg_src);
5058      p->equiv_reg_src = 0;
5059    }
5060}
5061#endif
5062
5063/* Generate the prologue and epilogue RTL if the machine supports it.  Thread
5064   this into place with notes indicating where the prologue ends and where
5065   the epilogue begins.  Update the basic block information when possible.  */
5066
5067void
5068thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
5069{
5070  int inserted = 0;
5071  edge e;
5072#if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
5073  rtx seq;
5074#endif
5075#ifdef HAVE_prologue
5076  rtx prologue_end = NULL_RTX;
5077#endif
5078#if defined (HAVE_epilogue) || defined(HAVE_return)
5079  rtx epilogue_end = NULL_RTX;
5080#endif
5081  edge_iterator ei;
5082
5083#ifdef HAVE_prologue
5084  if (HAVE_prologue)
5085    {
5086      start_sequence ();
5087      seq = gen_prologue ();
5088      emit_insn (seq);
5089
5090      /* Retain a map of the prologue insns.  */
5091      record_insns (seq, &prologue);
5092      prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
5093
5094#ifndef PROFILE_BEFORE_PROLOGUE
5095      /* Ensure that instructions are not moved into the prologue when
5096	 profiling is on.  The call to the profiling routine can be
5097	 emitted within the live range of a call-clobbered register.  */
5098      if (current_function_profile)
5099	emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
5100#endif
5101
5102      seq = get_insns ();
5103      end_sequence ();
5104      set_insn_locators (seq, prologue_locator);
5105
5106      /* Can't deal with multiple successors of the entry block
5107         at the moment.  Function should always have at least one
5108         entry point.  */
5109      gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5110
5111      insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
5112      inserted = 1;
5113    }
5114#endif
5115
5116  /* If the exit block has no non-fake predecessors, we don't need
5117     an epilogue.  */
5118  FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5119    if ((e->flags & EDGE_FAKE) == 0)
5120      break;
5121  if (e == NULL)
5122    goto epilogue_done;
5123
5124#ifdef HAVE_return
5125  if (optimize && HAVE_return)
5126    {
5127      /* If we're allowed to generate a simple return instruction,
5128	 then by definition we don't need a full epilogue.  Examine
5129	 the block that falls through to EXIT.   If it does not
5130	 contain any code, examine its predecessors and try to
5131	 emit (conditional) return instructions.  */
5132
5133      basic_block last;
5134      rtx label;
5135
5136      FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5137	if (e->flags & EDGE_FALLTHRU)
5138	  break;
5139      if (e == NULL)
5140	goto epilogue_done;
5141      last = e->src;
5142
5143      /* Verify that there are no active instructions in the last block.  */
5144      label = BB_END (last);
5145      while (label && !LABEL_P (label))
5146	{
5147	  if (active_insn_p (label))
5148	    break;
5149	  label = PREV_INSN (label);
5150	}
5151
5152      if (BB_HEAD (last) == label && LABEL_P (label))
5153	{
5154	  edge_iterator ei2;
5155	  rtx epilogue_line_note = NULL_RTX;
5156
5157	  /* Locate the line number associated with the closing brace,
5158	     if we can find one.  */
5159	  for (seq = get_last_insn ();
5160	       seq && ! active_insn_p (seq);
5161	       seq = PREV_INSN (seq))
5162	    if (NOTE_P (seq) && NOTE_LINE_NUMBER (seq) > 0)
5163	      {
5164		epilogue_line_note = seq;
5165		break;
5166	      }
5167
5168	  for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5169	    {
5170	      basic_block bb = e->src;
5171	      rtx jump;
5172
5173	      if (bb == ENTRY_BLOCK_PTR)
5174		{
5175		  ei_next (&ei2);
5176		  continue;
5177		}
5178
5179	      jump = BB_END (bb);
5180	      if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5181		{
5182		  ei_next (&ei2);
5183		  continue;
5184		}
5185
5186	      /* If we have an unconditional jump, we can replace that
5187		 with a simple return instruction.  */
5188	      if (simplejump_p (jump))
5189		{
5190		  emit_return_into_block (bb, epilogue_line_note);
5191		  delete_insn (jump);
5192		}
5193
5194	      /* If we have a conditional jump, we can try to replace
5195		 that with a conditional return instruction.  */
5196	      else if (condjump_p (jump))
5197		{
5198		  if (! redirect_jump (jump, 0, 0))
5199		    {
5200		      ei_next (&ei2);
5201		      continue;
5202		    }
5203
5204		  /* If this block has only one successor, it both jumps
5205		     and falls through to the fallthru block, so we can't
5206		     delete the edge.  */
5207		  if (single_succ_p (bb))
5208		    {
5209		      ei_next (&ei2);
5210		      continue;
5211		    }
5212		}
5213	      else
5214		{
5215		  ei_next (&ei2);
5216		  continue;
5217		}
5218
5219	      /* Fix up the CFG for the successful change we just made.  */
5220	      redirect_edge_succ (e, EXIT_BLOCK_PTR);
5221	    }
5222
5223	  /* Emit a return insn for the exit fallthru block.  Whether
5224	     this is still reachable will be determined later.  */
5225
5226	  emit_barrier_after (BB_END (last));
5227	  emit_return_into_block (last, epilogue_line_note);
5228	  epilogue_end = BB_END (last);
5229	  single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5230	  goto epilogue_done;
5231	}
5232    }
5233#endif
5234  /* Find the edge that falls through to EXIT.  Other edges may exist
5235     due to RETURN instructions, but those don't need epilogues.
5236     There really shouldn't be a mixture -- either all should have
5237     been converted or none, however...  */
5238
5239  FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5240    if (e->flags & EDGE_FALLTHRU)
5241      break;
5242  if (e == NULL)
5243    goto epilogue_done;
5244
5245#ifdef HAVE_epilogue
5246  if (HAVE_epilogue)
5247    {
5248      start_sequence ();
5249      epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5250
5251      seq = gen_epilogue ();
5252
5253#ifdef INCOMING_RETURN_ADDR_RTX
5254      /* If this function returns with the stack depressed and we can support
5255	 it, massage the epilogue to actually do that.  */
5256      if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
5257	  && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
5258	seq = keep_stack_depressed (seq);
5259#endif
5260
5261      emit_jump_insn (seq);
5262
5263      /* Retain a map of the epilogue insns.  */
5264      record_insns (seq, &epilogue);
5265      set_insn_locators (seq, epilogue_locator);
5266
5267      seq = get_insns ();
5268      end_sequence ();
5269
5270      insert_insn_on_edge (seq, e);
5271      inserted = 1;
5272    }
5273  else
5274#endif
5275    {
5276      basic_block cur_bb;
5277
5278      if (! next_active_insn (BB_END (e->src)))
5279	goto epilogue_done;
5280      /* We have a fall-through edge to the exit block, the source is not
5281         at the end of the function, and there will be an assembler epilogue
5282         at the end of the function.
5283         We can't use force_nonfallthru here, because that would try to
5284         use return.  Inserting a jump 'by hand' is extremely messy, so
5285	 we take advantage of cfg_layout_finalize using
5286	fixup_fallthru_exit_predecessor.  */
5287      cfg_layout_initialize (0);
5288      FOR_EACH_BB (cur_bb)
5289	if (cur_bb->index >= NUM_FIXED_BLOCKS
5290	    && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5291	  cur_bb->aux = cur_bb->next_bb;
5292      cfg_layout_finalize ();
5293    }
5294epilogue_done:
5295
5296  if (inserted)
5297    commit_edge_insertions ();
5298
5299#ifdef HAVE_sibcall_epilogue
5300  /* Emit sibling epilogues before any sibling call sites.  */
5301  for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5302    {
5303      basic_block bb = e->src;
5304      rtx insn = BB_END (bb);
5305
5306      if (!CALL_P (insn)
5307	  || ! SIBLING_CALL_P (insn))
5308	{
5309	  ei_next (&ei);
5310	  continue;
5311	}
5312
5313      start_sequence ();
5314      emit_insn (gen_sibcall_epilogue ());
5315      seq = get_insns ();
5316      end_sequence ();
5317
5318      /* Retain a map of the epilogue insns.  Used in life analysis to
5319	 avoid getting rid of sibcall epilogue insns.  Do this before we
5320	 actually emit the sequence.  */
5321      record_insns (seq, &sibcall_epilogue);
5322      set_insn_locators (seq, epilogue_locator);
5323
5324      emit_insn_before (seq, insn);
5325      ei_next (&ei);
5326    }
5327#endif
5328
5329#ifdef HAVE_prologue
5330  /* This is probably all useless now that we use locators.  */
5331  if (prologue_end)
5332    {
5333      rtx insn, prev;
5334
5335      /* GDB handles `break f' by setting a breakpoint on the first
5336	 line note after the prologue.  Which means (1) that if
5337	 there are line number notes before where we inserted the
5338	 prologue we should move them, and (2) we should generate a
5339	 note before the end of the first basic block, if there isn't
5340	 one already there.
5341
5342	 ??? This behavior is completely broken when dealing with
5343	 multiple entry functions.  We simply place the note always
5344	 into first basic block and let alternate entry points
5345	 to be missed.
5346       */
5347
5348      for (insn = prologue_end; insn; insn = prev)
5349	{
5350	  prev = PREV_INSN (insn);
5351	  if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5352	    {
5353	      /* Note that we cannot reorder the first insn in the
5354		 chain, since rest_of_compilation relies on that
5355		 remaining constant.  */
5356	      if (prev == NULL)
5357		break;
5358	      reorder_insns (insn, insn, prologue_end);
5359	    }
5360	}
5361
5362      /* Find the last line number note in the first block.  */
5363      for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb);
5364	   insn != prologue_end && insn;
5365	   insn = PREV_INSN (insn))
5366	if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5367	  break;
5368
5369      /* If we didn't find one, make a copy of the first line number
5370	 we run across.  */
5371      if (! insn)
5372	{
5373	  for (insn = next_active_insn (prologue_end);
5374	       insn;
5375	       insn = PREV_INSN (insn))
5376	    if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5377	      {
5378		emit_note_copy_after (insn, prologue_end);
5379		break;
5380	      }
5381	}
5382    }
5383#endif
5384#ifdef HAVE_epilogue
5385  if (epilogue_end)
5386    {
5387      rtx insn, next;
5388
5389      /* Similarly, move any line notes that appear after the epilogue.
5390         There is no need, however, to be quite so anal about the existence
5391	 of such a note.  Also move the NOTE_INSN_FUNCTION_END and (possibly)
5392	 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5393	 info generation.  */
5394      for (insn = epilogue_end; insn; insn = next)
5395	{
5396	  next = NEXT_INSN (insn);
5397	  if (NOTE_P (insn)
5398	      && (NOTE_LINE_NUMBER (insn) > 0
5399		  || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG
5400		  || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END))
5401	    reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5402	}
5403    }
5404#endif
5405}
5406
5407/* Reposition the prologue-end and epilogue-begin notes after instruction
5408   scheduling and delayed branch scheduling.  */
5409
5410void
5411reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
5412{
5413#if defined (HAVE_prologue) || defined (HAVE_epilogue)
5414  rtx insn, last, note;
5415  int len;
5416
5417  if ((len = VEC_length (int, prologue)) > 0)
5418    {
5419      last = 0, note = 0;
5420
5421      /* Scan from the beginning until we reach the last prologue insn.
5422	 We apparently can't depend on basic_block_{head,end} after
5423	 reorg has run.  */
5424      for (insn = f; insn; insn = NEXT_INSN (insn))
5425	{
5426	  if (NOTE_P (insn))
5427	    {
5428	      if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
5429		note = insn;
5430	    }
5431	  else if (contains (insn, &prologue))
5432	    {
5433	      last = insn;
5434	      if (--len == 0)
5435		break;
5436	    }
5437	}
5438
5439      if (last)
5440	{
5441	  /* Find the prologue-end note if we haven't already, and
5442	     move it to just after the last prologue insn.  */
5443	  if (note == 0)
5444	    {
5445	      for (note = last; (note = NEXT_INSN (note));)
5446		if (NOTE_P (note)
5447		    && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
5448		  break;
5449	    }
5450
5451	  /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note.  */
5452	  if (LABEL_P (last))
5453	    last = NEXT_INSN (last);
5454	  reorder_insns (note, note, last);
5455	}
5456    }
5457
5458  if ((len = VEC_length (int, epilogue)) > 0)
5459    {
5460      last = 0, note = 0;
5461
5462      /* Scan from the end until we reach the first epilogue insn.
5463	 We apparently can't depend on basic_block_{head,end} after
5464	 reorg has run.  */
5465      for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5466	{
5467	  if (NOTE_P (insn))
5468	    {
5469	      if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
5470		note = insn;
5471	    }
5472	  else if (contains (insn, &epilogue))
5473	    {
5474	      last = insn;
5475	      if (--len == 0)
5476		break;
5477	    }
5478	}
5479
5480      if (last)
5481	{
5482	  /* Find the epilogue-begin note if we haven't already, and
5483	     move it to just before the first epilogue insn.  */
5484	  if (note == 0)
5485	    {
5486	      for (note = insn; (note = PREV_INSN (note));)
5487		if (NOTE_P (note)
5488		    && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
5489		  break;
5490	    }
5491
5492	  if (PREV_INSN (last) != note)
5493	    reorder_insns (note, note, PREV_INSN (last));
5494	}
5495    }
5496#endif /* HAVE_prologue or HAVE_epilogue */
5497}
5498
5499/* Resets insn_block_boundaries array.  */
5500
5501void
5502reset_block_changes (void)
5503{
5504  cfun->ib_boundaries_block = VEC_alloc (tree, gc, 100);
5505  VEC_quick_push (tree, cfun->ib_boundaries_block, NULL_TREE);
5506}
5507
5508/* Record the boundary for BLOCK.  */
5509void
5510record_block_change (tree block)
5511{
5512  int i, n;
5513  tree last_block;
5514
5515  if (!block)
5516    return;
5517
5518  if(!cfun->ib_boundaries_block)
5519    return;
5520
5521  last_block = VEC_pop (tree, cfun->ib_boundaries_block);
5522  n = get_max_uid ();
5523  for (i = VEC_length (tree, cfun->ib_boundaries_block); i < n; i++)
5524    VEC_safe_push (tree, gc, cfun->ib_boundaries_block, last_block);
5525
5526  VEC_safe_push (tree, gc, cfun->ib_boundaries_block, block);
5527}
5528
5529/* Finishes record of boundaries.  */
5530void
5531finalize_block_changes (void)
5532{
5533  record_block_change (DECL_INITIAL (current_function_decl));
5534}
5535
5536/* For INSN return the BLOCK it belongs to.  */
5537void
5538check_block_change (rtx insn, tree *block)
5539{
5540  unsigned uid = INSN_UID (insn);
5541
5542  if (uid >= VEC_length (tree, cfun->ib_boundaries_block))
5543    return;
5544
5545  *block = VEC_index (tree, cfun->ib_boundaries_block, uid);
5546}
5547
5548/* Releases the ib_boundaries_block records.  */
5549void
5550free_block_changes (void)
5551{
5552  VEC_free (tree, gc, cfun->ib_boundaries_block);
5553}
5554
5555/* Returns the name of the current function.  */
5556const char *
5557current_function_name (void)
5558{
5559  return lang_hooks.decl_printable_name (cfun->decl, 2);
5560}
5561
5562
5563static unsigned int
5564rest_of_handle_check_leaf_regs (void)
5565{
5566#ifdef LEAF_REGISTERS
5567  current_function_uses_only_leaf_regs
5568    = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5569#endif
5570  return 0;
5571}
5572
5573/* Insert a TYPE into the used types hash table of CFUN.  */
5574static void
5575used_types_insert_helper (tree type, struct function *func)
5576{
5577  if (type != NULL && func != NULL)
5578    {
5579      void **slot;
5580
5581      if (func->used_types_hash == NULL)
5582	func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
5583						 htab_eq_pointer, NULL);
5584      slot = htab_find_slot (func->used_types_hash, type, INSERT);
5585      if (*slot == NULL)
5586	*slot = type;
5587    }
5588}
5589
5590/* Given a type, insert it into the used hash table in cfun.  */
5591void
5592used_types_insert (tree t)
5593{
5594  while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
5595    t = TREE_TYPE (t);
5596  t = TYPE_MAIN_VARIANT (t);
5597  if (debug_info_level > DINFO_LEVEL_NONE)
5598    used_types_insert_helper (t, cfun);
5599}
5600
5601struct tree_opt_pass pass_leaf_regs =
5602{
5603  NULL,                                 /* name */
5604  NULL,                                 /* gate */
5605  rest_of_handle_check_leaf_regs,       /* execute */
5606  NULL,                                 /* sub */
5607  NULL,                                 /* next */
5608  0,                                    /* static_pass_number */
5609  0,                                    /* tv_id */
5610  0,                                    /* properties_required */
5611  0,                                    /* properties_provided */
5612  0,                                    /* properties_destroyed */
5613  0,                                    /* todo_flags_start */
5614  0,                                    /* todo_flags_finish */
5615  0                                     /* letter */
5616};
5617
5618
5619#include "gt-function.h"
5620