1/* Convert RTL to assembler code and output it, for GNU compiler.
2   Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3   1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4   Free Software Foundation, Inc.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING.  If not, write to the Free
20Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2102110-1301, USA.  */
22
23/* This is the final pass of the compiler.
24   It looks at the rtl code for a function and outputs assembler code.
25
26   Call `final_start_function' to output the assembler code for function entry,
27   `final' to output assembler code for some RTL code,
28   `final_end_function' to output assembler code for function exit.
29   If a function is compiled in several pieces, each piece is
30   output separately with `final'.
31
32   Some optimizations are also done at this level.
33   Move instructions that were made unnecessary by good register allocation
34   are detected and omitted from the output.  (Though most of these
35   are removed by the last jump pass.)
36
37   Instructions to set the condition codes are omitted when it can be
38   seen that the condition codes already had the desired values.
39
40   In some cases it is sufficient if the inherited condition codes
41   have related values, but this may require the following insn
42   (the one that tests the condition codes) to be modified.
43
44   The code for the function prologue and epilogue are generated
45   directly in assembler by the target functions function_prologue and
46   function_epilogue.  Those instructions never exist as rtl.  */
47
48#include "config.h"
49#include "system.h"
50#include "coretypes.h"
51#include "tm.h"
52
53#include "tree.h"
54#include "rtl.h"
55#include "tm_p.h"
56#include "regs.h"
57#include "insn-config.h"
58#include "insn-attr.h"
59#include "recog.h"
60#include "conditions.h"
61#include "flags.h"
62#include "real.h"
63#include "hard-reg-set.h"
64#include "output.h"
65#include "except.h"
66#include "function.h"
67#include "toplev.h"
68#include "reload.h"
69#include "intl.h"
70#include "basic-block.h"
71#include "target.h"
72#include "debug.h"
73#include "expr.h"
74#include "cfglayout.h"
75#include "tree-pass.h"
76#include "timevar.h"
77#include "cgraph.h"
78#include "coverage.h"
79
80#ifdef XCOFF_DEBUGGING_INFO
81#include "xcoffout.h"		/* Needed for external data
82				   declarations for e.g. AIX 4.x.  */
83#endif
84
85#if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
86#include "dwarf2out.h"
87#endif
88
89#ifdef DBX_DEBUGGING_INFO
90#include "dbxout.h"
91#endif
92
93#ifdef SDB_DEBUGGING_INFO
94#include "sdbout.h"
95#endif
96
97/* If we aren't using cc0, CC_STATUS_INIT shouldn't exist.  So define a
98   null default for it to save conditionalization later.  */
99#ifndef CC_STATUS_INIT
100#define CC_STATUS_INIT
101#endif
102
103/* How to start an assembler comment.  */
104#ifndef ASM_COMMENT_START
105#define ASM_COMMENT_START ";#"
106#endif
107
108/* Is the given character a logical line separator for the assembler?  */
109#ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
110#define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
111#endif
112
113#ifndef JUMP_TABLES_IN_TEXT_SECTION
114#define JUMP_TABLES_IN_TEXT_SECTION 0
115#endif
116
117/* Bitflags used by final_scan_insn.  */
118#define SEEN_BB		1
119#define SEEN_NOTE	2
120#define SEEN_EMITTED	4
121
122/* Last insn processed by final_scan_insn.  */
123static rtx debug_insn;
124rtx current_output_insn;
125
126/* Line number of last NOTE.  */
127static int last_linenum;
128
129/* Highest line number in current block.  */
130static int high_block_linenum;
131
132/* Likewise for function.  */
133static int high_function_linenum;
134
135/* Filename of last NOTE.  */
136static const char *last_filename;
137
138/* Whether to force emission of a line note before the next insn.  */
139static bool force_source_line = false;
140
141extern const int length_unit_log; /* This is defined in insn-attrtab.c.  */
142
143/* Nonzero while outputting an `asm' with operands.
144   This means that inconsistencies are the user's fault, so don't die.
145   The precise value is the insn being output, to pass to error_for_asm.  */
146rtx this_is_asm_operands;
147
148/* Number of operands of this insn, for an `asm' with operands.  */
149static unsigned int insn_noperands;
150
151/* Compare optimization flag.  */
152
153static rtx last_ignored_compare = 0;
154
155/* Assign a unique number to each insn that is output.
156   This can be used to generate unique local labels.  */
157
158static int insn_counter = 0;
159
160#ifdef HAVE_cc0
161/* This variable contains machine-dependent flags (defined in tm.h)
162   set and examined by output routines
163   that describe how to interpret the condition codes properly.  */
164
165CC_STATUS cc_status;
166
167/* During output of an insn, this contains a copy of cc_status
168   from before the insn.  */
169
170CC_STATUS cc_prev_status;
171#endif
172
173/* Indexed by hardware reg number, is 1 if that register is ever
174   used in the current function.
175
176   In life_analysis, or in stupid_life_analysis, this is set
177   up to record the hard regs used explicitly.  Reload adds
178   in the hard regs used for holding pseudo regs.  Final uses
179   it to generate the code in the function prologue and epilogue
180   to save and restore registers as needed.  */
181
182char regs_ever_live[FIRST_PSEUDO_REGISTER];
183
184/* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm.
185   Unlike regs_ever_live, elements of this array corresponding to
186   eliminable regs like the frame pointer are set if an asm sets them.  */
187
188char regs_asm_clobbered[FIRST_PSEUDO_REGISTER];
189
190/* Nonzero means current function must be given a frame pointer.
191   Initialized in function.c to 0.  Set only in reload1.c as per
192   the needs of the function.  */
193
194int frame_pointer_needed;
195
196/* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen.  */
197
198static int block_depth;
199
200/* Nonzero if have enabled APP processing of our assembler output.  */
201
202static int app_on;
203
204/* If we are outputting an insn sequence, this contains the sequence rtx.
205   Zero otherwise.  */
206
207rtx final_sequence;
208
209#ifdef ASSEMBLER_DIALECT
210
211/* Number of the assembler dialect to use, starting at 0.  */
212static int dialect_number;
213#endif
214
215#ifdef HAVE_conditional_execution
216/* Nonnull if the insn currently being emitted was a COND_EXEC pattern.  */
217rtx current_insn_predicate;
218#endif
219
220#ifdef HAVE_ATTR_length
221static int asm_insn_count (rtx);
222#endif
223static void profile_function (FILE *);
224static void profile_after_prologue (FILE *);
225static bool notice_source_line (rtx);
226static rtx walk_alter_subreg (rtx *);
227static void output_asm_name (void);
228static void output_alternate_entry_point (FILE *, rtx);
229static tree get_mem_expr_from_op (rtx, int *);
230static void output_asm_operand_names (rtx *, int *, int);
231static void output_operand (rtx, int);
232#ifdef LEAF_REGISTERS
233static void leaf_renumber_regs (rtx);
234#endif
235#ifdef HAVE_cc0
236static int alter_cond (rtx);
237#endif
238#ifndef ADDR_VEC_ALIGN
239static int final_addr_vec_align (rtx);
240#endif
241#ifdef HAVE_ATTR_length
242static int align_fuzz (rtx, rtx, int, unsigned);
243#endif
244
245/* Initialize data in final at the beginning of a compilation.  */
246
247void
248init_final (const char *filename ATTRIBUTE_UNUSED)
249{
250  app_on = 0;
251  final_sequence = 0;
252
253#ifdef ASSEMBLER_DIALECT
254  dialect_number = ASSEMBLER_DIALECT;
255#endif
256}
257
258/* Default target function prologue and epilogue assembler output.
259
260   If not overridden for epilogue code, then the function body itself
261   contains return instructions wherever needed.  */
262void
263default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
264			       HOST_WIDE_INT size ATTRIBUTE_UNUSED)
265{
266}
267
268/* Default target hook that outputs nothing to a stream.  */
269void
270no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
271{
272}
273
274/* Enable APP processing of subsequent output.
275   Used before the output from an `asm' statement.  */
276
277void
278app_enable (void)
279{
280  if (! app_on)
281    {
282      fputs (ASM_APP_ON, asm_out_file);
283      app_on = 1;
284    }
285}
286
287/* Disable APP processing of subsequent output.
288   Called from varasm.c before most kinds of output.  */
289
290void
291app_disable (void)
292{
293  if (app_on)
294    {
295      fputs (ASM_APP_OFF, asm_out_file);
296      app_on = 0;
297    }
298}
299
300/* Return the number of slots filled in the current
301   delayed branch sequence (we don't count the insn needing the
302   delay slot).   Zero if not in a delayed branch sequence.  */
303
304#ifdef DELAY_SLOTS
305int
306dbr_sequence_length (void)
307{
308  if (final_sequence != 0)
309    return XVECLEN (final_sequence, 0) - 1;
310  else
311    return 0;
312}
313#endif
314
315/* The next two pages contain routines used to compute the length of an insn
316   and to shorten branches.  */
317
318/* Arrays for insn lengths, and addresses.  The latter is referenced by
319   `insn_current_length'.  */
320
321static int *insn_lengths;
322
323varray_type insn_addresses_;
324
325/* Max uid for which the above arrays are valid.  */
326static int insn_lengths_max_uid;
327
328/* Address of insn being processed.  Used by `insn_current_length'.  */
329int insn_current_address;
330
331/* Address of insn being processed in previous iteration.  */
332int insn_last_address;
333
334/* known invariant alignment of insn being processed.  */
335int insn_current_align;
336
337/* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
338   gives the next following alignment insn that increases the known
339   alignment, or NULL_RTX if there is no such insn.
340   For any alignment obtained this way, we can again index uid_align with
341   its uid to obtain the next following align that in turn increases the
342   alignment, till we reach NULL_RTX; the sequence obtained this way
343   for each insn we'll call the alignment chain of this insn in the following
344   comments.  */
345
346struct label_alignment
347{
348  short alignment;
349  short max_skip;
350};
351
352static rtx *uid_align;
353static int *uid_shuid;
354static struct label_alignment *label_align;
355
356/* Indicate that branch shortening hasn't yet been done.  */
357
358void
359init_insn_lengths (void)
360{
361  if (uid_shuid)
362    {
363      free (uid_shuid);
364      uid_shuid = 0;
365    }
366  if (insn_lengths)
367    {
368      free (insn_lengths);
369      insn_lengths = 0;
370      insn_lengths_max_uid = 0;
371    }
372#ifdef HAVE_ATTR_length
373  INSN_ADDRESSES_FREE ();
374#endif
375  if (uid_align)
376    {
377      free (uid_align);
378      uid_align = 0;
379    }
380}
381
382/* Obtain the current length of an insn.  If branch shortening has been done,
383   get its actual length.  Otherwise, use FALLBACK_FN to calculate the
384   length.  */
385static inline int
386get_attr_length_1 (rtx insn ATTRIBUTE_UNUSED,
387		   int (*fallback_fn) (rtx) ATTRIBUTE_UNUSED)
388{
389#ifdef HAVE_ATTR_length
390  rtx body;
391  int i;
392  int length = 0;
393
394  if (insn_lengths_max_uid > INSN_UID (insn))
395    return insn_lengths[INSN_UID (insn)];
396  else
397    switch (GET_CODE (insn))
398      {
399      case NOTE:
400      case BARRIER:
401      case CODE_LABEL:
402	return 0;
403
404      case CALL_INSN:
405	length = fallback_fn (insn);
406	break;
407
408      case JUMP_INSN:
409	body = PATTERN (insn);
410	if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
411	  {
412	    /* Alignment is machine-dependent and should be handled by
413	       ADDR_VEC_ALIGN.  */
414	  }
415	else
416	  length = fallback_fn (insn);
417	break;
418
419      case INSN:
420	body = PATTERN (insn);
421	if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
422	  return 0;
423
424	else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
425	  length = asm_insn_count (body) * fallback_fn (insn);
426	else if (GET_CODE (body) == SEQUENCE)
427	  for (i = 0; i < XVECLEN (body, 0); i++)
428	    length += get_attr_length (XVECEXP (body, 0, i));
429	else
430	  length = fallback_fn (insn);
431	break;
432
433      default:
434	break;
435      }
436
437#ifdef ADJUST_INSN_LENGTH
438  ADJUST_INSN_LENGTH (insn, length);
439#endif
440  return length;
441#else /* not HAVE_ATTR_length */
442  return 0;
443#define insn_default_length 0
444#define insn_min_length 0
445#endif /* not HAVE_ATTR_length */
446}
447
448/* Obtain the current length of an insn.  If branch shortening has been done,
449   get its actual length.  Otherwise, get its maximum length.  */
450int
451get_attr_length (rtx insn)
452{
453  return get_attr_length_1 (insn, insn_default_length);
454}
455
456/* Obtain the current length of an insn.  If branch shortening has been done,
457   get its actual length.  Otherwise, get its minimum length.  */
458int
459get_attr_min_length (rtx insn)
460{
461  return get_attr_length_1 (insn, insn_min_length);
462}
463
464/* Code to handle alignment inside shorten_branches.  */
465
466/* Here is an explanation how the algorithm in align_fuzz can give
467   proper results:
468
469   Call a sequence of instructions beginning with alignment point X
470   and continuing until the next alignment point `block X'.  When `X'
471   is used in an expression, it means the alignment value of the
472   alignment point.
473
474   Call the distance between the start of the first insn of block X, and
475   the end of the last insn of block X `IX', for the `inner size of X'.
476   This is clearly the sum of the instruction lengths.
477
478   Likewise with the next alignment-delimited block following X, which we
479   shall call block Y.
480
481   Call the distance between the start of the first insn of block X, and
482   the start of the first insn of block Y `OX', for the `outer size of X'.
483
484   The estimated padding is then OX - IX.
485
486   OX can be safely estimated as
487
488           if (X >= Y)
489                   OX = round_up(IX, Y)
490           else
491                   OX = round_up(IX, X) + Y - X
492
493   Clearly est(IX) >= real(IX), because that only depends on the
494   instruction lengths, and those being overestimated is a given.
495
496   Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
497   we needn't worry about that when thinking about OX.
498
499   When X >= Y, the alignment provided by Y adds no uncertainty factor
500   for branch ranges starting before X, so we can just round what we have.
501   But when X < Y, we don't know anything about the, so to speak,
502   `middle bits', so we have to assume the worst when aligning up from an
503   address mod X to one mod Y, which is Y - X.  */
504
505#ifndef LABEL_ALIGN
506#define LABEL_ALIGN(LABEL) align_labels_log
507#endif
508
509#ifndef LABEL_ALIGN_MAX_SKIP
510#define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
511#endif
512
513#ifndef LOOP_ALIGN
514#define LOOP_ALIGN(LABEL) align_loops_log
515#endif
516
517#ifndef LOOP_ALIGN_MAX_SKIP
518#define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
519#endif
520
521#ifndef LABEL_ALIGN_AFTER_BARRIER
522#define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
523#endif
524
525#ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
526#define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
527#endif
528
529#ifndef JUMP_ALIGN
530#define JUMP_ALIGN(LABEL) align_jumps_log
531#endif
532
533#ifndef JUMP_ALIGN_MAX_SKIP
534#define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
535#endif
536
537#ifndef ADDR_VEC_ALIGN
538static int
539final_addr_vec_align (rtx addr_vec)
540{
541  int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
542
543  if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
544    align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
545  return exact_log2 (align);
546
547}
548
549#define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
550#endif
551
552#ifndef INSN_LENGTH_ALIGNMENT
553#define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
554#endif
555
556#define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
557
558static int min_labelno, max_labelno;
559
560#define LABEL_TO_ALIGNMENT(LABEL) \
561  (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
562
563#define LABEL_TO_MAX_SKIP(LABEL) \
564  (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
565
566/* For the benefit of port specific code do this also as a function.  */
567
568int
569label_to_alignment (rtx label)
570{
571  return LABEL_TO_ALIGNMENT (label);
572}
573
574#ifdef HAVE_ATTR_length
575/* The differences in addresses
576   between a branch and its target might grow or shrink depending on
577   the alignment the start insn of the range (the branch for a forward
578   branch or the label for a backward branch) starts out on; if these
579   differences are used naively, they can even oscillate infinitely.
580   We therefore want to compute a 'worst case' address difference that
581   is independent of the alignment the start insn of the range end
582   up on, and that is at least as large as the actual difference.
583   The function align_fuzz calculates the amount we have to add to the
584   naively computed difference, by traversing the part of the alignment
585   chain of the start insn of the range that is in front of the end insn
586   of the range, and considering for each alignment the maximum amount
587   that it might contribute to a size increase.
588
589   For casesi tables, we also want to know worst case minimum amounts of
590   address difference, in case a machine description wants to introduce
591   some common offset that is added to all offsets in a table.
592   For this purpose, align_fuzz with a growth argument of 0 computes the
593   appropriate adjustment.  */
594
595/* Compute the maximum delta by which the difference of the addresses of
596   START and END might grow / shrink due to a different address for start
597   which changes the size of alignment insns between START and END.
598   KNOWN_ALIGN_LOG is the alignment known for START.
599   GROWTH should be ~0 if the objective is to compute potential code size
600   increase, and 0 if the objective is to compute potential shrink.
601   The return value is undefined for any other value of GROWTH.  */
602
603static int
604align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
605{
606  int uid = INSN_UID (start);
607  rtx align_label;
608  int known_align = 1 << known_align_log;
609  int end_shuid = INSN_SHUID (end);
610  int fuzz = 0;
611
612  for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
613    {
614      int align_addr, new_align;
615
616      uid = INSN_UID (align_label);
617      align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
618      if (uid_shuid[uid] > end_shuid)
619	break;
620      known_align_log = LABEL_TO_ALIGNMENT (align_label);
621      new_align = 1 << known_align_log;
622      if (new_align < known_align)
623	continue;
624      fuzz += (-align_addr ^ growth) & (new_align - known_align);
625      known_align = new_align;
626    }
627  return fuzz;
628}
629
630/* Compute a worst-case reference address of a branch so that it
631   can be safely used in the presence of aligned labels.  Since the
632   size of the branch itself is unknown, the size of the branch is
633   not included in the range.  I.e. for a forward branch, the reference
634   address is the end address of the branch as known from the previous
635   branch shortening pass, minus a value to account for possible size
636   increase due to alignment.  For a backward branch, it is the start
637   address of the branch as known from the current pass, plus a value
638   to account for possible size increase due to alignment.
639   NB.: Therefore, the maximum offset allowed for backward branches needs
640   to exclude the branch size.  */
641
642int
643insn_current_reference_address (rtx branch)
644{
645  rtx dest, seq;
646  int seq_uid;
647
648  if (! INSN_ADDRESSES_SET_P ())
649    return 0;
650
651  seq = NEXT_INSN (PREV_INSN (branch));
652  seq_uid = INSN_UID (seq);
653  if (!JUMP_P (branch))
654    /* This can happen for example on the PA; the objective is to know the
655       offset to address something in front of the start of the function.
656       Thus, we can treat it like a backward branch.
657       We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
658       any alignment we'd encounter, so we skip the call to align_fuzz.  */
659    return insn_current_address;
660  dest = JUMP_LABEL (branch);
661
662  /* BRANCH has no proper alignment chain set, so use SEQ.
663     BRANCH also has no INSN_SHUID.  */
664  if (INSN_SHUID (seq) < INSN_SHUID (dest))
665    {
666      /* Forward branch.  */
667      return (insn_last_address + insn_lengths[seq_uid]
668	      - align_fuzz (seq, dest, length_unit_log, ~0));
669    }
670  else
671    {
672      /* Backward branch.  */
673      return (insn_current_address
674	      + align_fuzz (dest, seq, length_unit_log, ~0));
675    }
676}
677#endif /* HAVE_ATTR_length */
678
679/* Compute branch alignments based on frequency information in the
680   CFG.  */
681
682static unsigned int
683compute_alignments (void)
684{
685  int log, max_skip, max_log;
686  basic_block bb;
687
688  if (label_align)
689    {
690      free (label_align);
691      label_align = 0;
692    }
693
694  max_labelno = max_label_num ();
695  min_labelno = get_first_label_num ();
696  label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
697
698  /* If not optimizing or optimizing for size, don't assign any alignments.  */
699  if (! optimize || optimize_size)
700    return 0;
701
702  FOR_EACH_BB (bb)
703    {
704      rtx label = BB_HEAD (bb);
705      int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
706      edge e;
707      edge_iterator ei;
708
709      if (!LABEL_P (label)
710	  || probably_never_executed_bb_p (bb))
711	continue;
712      max_log = LABEL_ALIGN (label);
713      max_skip = LABEL_ALIGN_MAX_SKIP;
714
715      FOR_EACH_EDGE (e, ei, bb->preds)
716	{
717	  if (e->flags & EDGE_FALLTHRU)
718	    has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
719	  else
720	    branch_frequency += EDGE_FREQUENCY (e);
721	}
722
723      /* There are two purposes to align block with no fallthru incoming edge:
724	 1) to avoid fetch stalls when branch destination is near cache boundary
725	 2) to improve cache efficiency in case the previous block is not executed
726	    (so it does not need to be in the cache).
727
728	 We to catch first case, we align frequently executed blocks.
729	 To catch the second, we align blocks that are executed more frequently
730	 than the predecessor and the predecessor is likely to not be executed
731	 when function is called.  */
732
733      if (!has_fallthru
734	  && (branch_frequency > BB_FREQ_MAX / 10
735	      || (bb->frequency > bb->prev_bb->frequency * 10
736		  && (bb->prev_bb->frequency
737		      <= ENTRY_BLOCK_PTR->frequency / 2))))
738	{
739	  log = JUMP_ALIGN (label);
740	  if (max_log < log)
741	    {
742	      max_log = log;
743	      max_skip = JUMP_ALIGN_MAX_SKIP;
744	    }
745	}
746      /* In case block is frequent and reached mostly by non-fallthru edge,
747	 align it.  It is most likely a first block of loop.  */
748      if (has_fallthru
749	  && maybe_hot_bb_p (bb)
750	  && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
751	  && branch_frequency > fallthru_frequency * 2)
752	{
753	  log = LOOP_ALIGN (label);
754	  if (max_log < log)
755	    {
756	      max_log = log;
757	      max_skip = LOOP_ALIGN_MAX_SKIP;
758	    }
759	}
760      LABEL_TO_ALIGNMENT (label) = max_log;
761      LABEL_TO_MAX_SKIP (label) = max_skip;
762    }
763  return 0;
764}
765
766struct tree_opt_pass pass_compute_alignments =
767{
768  NULL,                                 /* name */
769  NULL,                                 /* gate */
770  compute_alignments,                   /* execute */
771  NULL,                                 /* sub */
772  NULL,                                 /* next */
773  0,                                    /* static_pass_number */
774  0,                                    /* tv_id */
775  0,                                    /* properties_required */
776  0,                                    /* properties_provided */
777  0,                                    /* properties_destroyed */
778  0,                                    /* todo_flags_start */
779  0,                                    /* todo_flags_finish */
780  0                                     /* letter */
781};
782
783
784/* Make a pass over all insns and compute their actual lengths by shortening
785   any branches of variable length if possible.  */
786
787/* shorten_branches might be called multiple times:  for example, the SH
788   port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
789   In order to do this, it needs proper length information, which it obtains
790   by calling shorten_branches.  This cannot be collapsed with
791   shorten_branches itself into a single pass unless we also want to integrate
792   reorg.c, since the branch splitting exposes new instructions with delay
793   slots.  */
794
795void
796shorten_branches (rtx first ATTRIBUTE_UNUSED)
797{
798  rtx insn;
799  int max_uid;
800  int i;
801  int max_log;
802  int max_skip;
803#ifdef HAVE_ATTR_length
804#define MAX_CODE_ALIGN 16
805  rtx seq;
806  int something_changed = 1;
807  char *varying_length;
808  rtx body;
809  int uid;
810  rtx align_tab[MAX_CODE_ALIGN];
811
812#endif
813
814  /* Compute maximum UID and allocate label_align / uid_shuid.  */
815  max_uid = get_max_uid ();
816
817  /* Free uid_shuid before reallocating it.  */
818  free (uid_shuid);
819
820  uid_shuid = XNEWVEC (int, max_uid);
821
822  if (max_labelno != max_label_num ())
823    {
824      int old = max_labelno;
825      int n_labels;
826      int n_old_labels;
827
828      max_labelno = max_label_num ();
829
830      n_labels = max_labelno - min_labelno + 1;
831      n_old_labels = old - min_labelno + 1;
832
833      label_align = xrealloc (label_align,
834			      n_labels * sizeof (struct label_alignment));
835
836      /* Range of labels grows monotonically in the function.  Failing here
837         means that the initialization of array got lost.  */
838      gcc_assert (n_old_labels <= n_labels);
839
840      memset (label_align + n_old_labels, 0,
841	      (n_labels - n_old_labels) * sizeof (struct label_alignment));
842    }
843
844  /* Initialize label_align and set up uid_shuid to be strictly
845     monotonically rising with insn order.  */
846  /* We use max_log here to keep track of the maximum alignment we want to
847     impose on the next CODE_LABEL (or the current one if we are processing
848     the CODE_LABEL itself).  */
849
850  max_log = 0;
851  max_skip = 0;
852
853  for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
854    {
855      int log;
856
857      INSN_SHUID (insn) = i++;
858      if (INSN_P (insn))
859	continue;
860
861      if (LABEL_P (insn))
862	{
863	  rtx next;
864
865	  /* Merge in alignments computed by compute_alignments.  */
866	  log = LABEL_TO_ALIGNMENT (insn);
867	  if (max_log < log)
868	    {
869	      max_log = log;
870	      max_skip = LABEL_TO_MAX_SKIP (insn);
871	    }
872
873	  log = LABEL_ALIGN (insn);
874	  if (max_log < log)
875	    {
876	      max_log = log;
877	      max_skip = LABEL_ALIGN_MAX_SKIP;
878	    }
879	  next = next_nonnote_insn (insn);
880	  /* ADDR_VECs only take room if read-only data goes into the text
881	     section.  */
882	  if (JUMP_TABLES_IN_TEXT_SECTION
883	      || readonly_data_section == text_section)
884	    if (next && JUMP_P (next))
885	      {
886		rtx nextbody = PATTERN (next);
887		if (GET_CODE (nextbody) == ADDR_VEC
888		    || GET_CODE (nextbody) == ADDR_DIFF_VEC)
889		  {
890		    log = ADDR_VEC_ALIGN (next);
891		    if (max_log < log)
892		      {
893			max_log = log;
894			max_skip = LABEL_ALIGN_MAX_SKIP;
895		      }
896		  }
897	      }
898	  LABEL_TO_ALIGNMENT (insn) = max_log;
899	  LABEL_TO_MAX_SKIP (insn) = max_skip;
900	  max_log = 0;
901	  max_skip = 0;
902	}
903      else if (BARRIER_P (insn))
904	{
905	  rtx label;
906
907	  for (label = insn; label && ! INSN_P (label);
908	       label = NEXT_INSN (label))
909	    if (LABEL_P (label))
910	      {
911		log = LABEL_ALIGN_AFTER_BARRIER (insn);
912		if (max_log < log)
913		  {
914		    max_log = log;
915		    max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
916		  }
917		break;
918	      }
919	}
920    }
921#ifdef HAVE_ATTR_length
922
923  /* Allocate the rest of the arrays.  */
924  insn_lengths = XNEWVEC (int, max_uid);
925  insn_lengths_max_uid = max_uid;
926  /* Syntax errors can lead to labels being outside of the main insn stream.
927     Initialize insn_addresses, so that we get reproducible results.  */
928  INSN_ADDRESSES_ALLOC (max_uid);
929
930  varying_length = XCNEWVEC (char, max_uid);
931
932  /* Initialize uid_align.  We scan instructions
933     from end to start, and keep in align_tab[n] the last seen insn
934     that does an alignment of at least n+1, i.e. the successor
935     in the alignment chain for an insn that does / has a known
936     alignment of n.  */
937  uid_align = XCNEWVEC (rtx, max_uid);
938
939  for (i = MAX_CODE_ALIGN; --i >= 0;)
940    align_tab[i] = NULL_RTX;
941  seq = get_last_insn ();
942  for (; seq; seq = PREV_INSN (seq))
943    {
944      int uid = INSN_UID (seq);
945      int log;
946      log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
947      uid_align[uid] = align_tab[0];
948      if (log)
949	{
950	  /* Found an alignment label.  */
951	  uid_align[uid] = align_tab[log];
952	  for (i = log - 1; i >= 0; i--)
953	    align_tab[i] = seq;
954	}
955    }
956#ifdef CASE_VECTOR_SHORTEN_MODE
957  if (optimize)
958    {
959      /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
960         label fields.  */
961
962      int min_shuid = INSN_SHUID (get_insns ()) - 1;
963      int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
964      int rel;
965
966      for (insn = first; insn != 0; insn = NEXT_INSN (insn))
967	{
968	  rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
969	  int len, i, min, max, insn_shuid;
970	  int min_align;
971	  addr_diff_vec_flags flags;
972
973	  if (!JUMP_P (insn)
974	      || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
975	    continue;
976	  pat = PATTERN (insn);
977	  len = XVECLEN (pat, 1);
978	  gcc_assert (len > 0);
979	  min_align = MAX_CODE_ALIGN;
980	  for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
981	    {
982	      rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
983	      int shuid = INSN_SHUID (lab);
984	      if (shuid < min)
985		{
986		  min = shuid;
987		  min_lab = lab;
988		}
989	      if (shuid > max)
990		{
991		  max = shuid;
992		  max_lab = lab;
993		}
994	      if (min_align > LABEL_TO_ALIGNMENT (lab))
995		min_align = LABEL_TO_ALIGNMENT (lab);
996	    }
997	  XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
998	  XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
999	  insn_shuid = INSN_SHUID (insn);
1000	  rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1001	  memset (&flags, 0, sizeof (flags));
1002	  flags.min_align = min_align;
1003	  flags.base_after_vec = rel > insn_shuid;
1004	  flags.min_after_vec  = min > insn_shuid;
1005	  flags.max_after_vec  = max > insn_shuid;
1006	  flags.min_after_base = min > rel;
1007	  flags.max_after_base = max > rel;
1008	  ADDR_DIFF_VEC_FLAGS (pat) = flags;
1009	}
1010    }
1011#endif /* CASE_VECTOR_SHORTEN_MODE */
1012
1013  /* Compute initial lengths, addresses, and varying flags for each insn.  */
1014  for (insn_current_address = 0, insn = first;
1015       insn != 0;
1016       insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1017    {
1018      uid = INSN_UID (insn);
1019
1020      insn_lengths[uid] = 0;
1021
1022      if (LABEL_P (insn))
1023	{
1024	  int log = LABEL_TO_ALIGNMENT (insn);
1025	  if (log)
1026	    {
1027	      int align = 1 << log;
1028	      int new_address = (insn_current_address + align - 1) & -align;
1029	      insn_lengths[uid] = new_address - insn_current_address;
1030	    }
1031	}
1032
1033      INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1034
1035      if (NOTE_P (insn) || BARRIER_P (insn)
1036	  || LABEL_P (insn))
1037	continue;
1038      if (INSN_DELETED_P (insn))
1039	continue;
1040
1041      body = PATTERN (insn);
1042      if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1043	{
1044	  /* This only takes room if read-only data goes into the text
1045	     section.  */
1046	  if (JUMP_TABLES_IN_TEXT_SECTION
1047	      || readonly_data_section == text_section)
1048	    insn_lengths[uid] = (XVECLEN (body,
1049					  GET_CODE (body) == ADDR_DIFF_VEC)
1050				 * GET_MODE_SIZE (GET_MODE (body)));
1051	  /* Alignment is handled by ADDR_VEC_ALIGN.  */
1052	}
1053      else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1054	insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1055      else if (GET_CODE (body) == SEQUENCE)
1056	{
1057	  int i;
1058	  int const_delay_slots;
1059#ifdef DELAY_SLOTS
1060	  const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1061#else
1062	  const_delay_slots = 0;
1063#endif
1064	  /* Inside a delay slot sequence, we do not do any branch shortening
1065	     if the shortening could change the number of delay slots
1066	     of the branch.  */
1067	  for (i = 0; i < XVECLEN (body, 0); i++)
1068	    {
1069	      rtx inner_insn = XVECEXP (body, 0, i);
1070	      int inner_uid = INSN_UID (inner_insn);
1071	      int inner_length;
1072
1073	      if (GET_CODE (body) == ASM_INPUT
1074		  || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1075		inner_length = (asm_insn_count (PATTERN (inner_insn))
1076				* insn_default_length (inner_insn));
1077	      else
1078		inner_length = insn_default_length (inner_insn);
1079
1080	      insn_lengths[inner_uid] = inner_length;
1081	      if (const_delay_slots)
1082		{
1083		  if ((varying_length[inner_uid]
1084		       = insn_variable_length_p (inner_insn)) != 0)
1085		    varying_length[uid] = 1;
1086		  INSN_ADDRESSES (inner_uid) = (insn_current_address
1087						+ insn_lengths[uid]);
1088		}
1089	      else
1090		varying_length[inner_uid] = 0;
1091	      insn_lengths[uid] += inner_length;
1092	    }
1093	}
1094      else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1095	{
1096	  insn_lengths[uid] = insn_default_length (insn);
1097	  varying_length[uid] = insn_variable_length_p (insn);
1098	}
1099
1100      /* If needed, do any adjustment.  */
1101#ifdef ADJUST_INSN_LENGTH
1102      ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1103      if (insn_lengths[uid] < 0)
1104	fatal_insn ("negative insn length", insn);
1105#endif
1106    }
1107
1108  /* Now loop over all the insns finding varying length insns.  For each,
1109     get the current insn length.  If it has changed, reflect the change.
1110     When nothing changes for a full pass, we are done.  */
1111
1112  while (something_changed)
1113    {
1114      something_changed = 0;
1115      insn_current_align = MAX_CODE_ALIGN - 1;
1116      for (insn_current_address = 0, insn = first;
1117	   insn != 0;
1118	   insn = NEXT_INSN (insn))
1119	{
1120	  int new_length;
1121#ifdef ADJUST_INSN_LENGTH
1122	  int tmp_length;
1123#endif
1124	  int length_align;
1125
1126	  uid = INSN_UID (insn);
1127
1128	  if (LABEL_P (insn))
1129	    {
1130	      int log = LABEL_TO_ALIGNMENT (insn);
1131	      if (log > insn_current_align)
1132		{
1133		  int align = 1 << log;
1134		  int new_address= (insn_current_address + align - 1) & -align;
1135		  insn_lengths[uid] = new_address - insn_current_address;
1136		  insn_current_align = log;
1137		  insn_current_address = new_address;
1138		}
1139	      else
1140		insn_lengths[uid] = 0;
1141	      INSN_ADDRESSES (uid) = insn_current_address;
1142	      continue;
1143	    }
1144
1145	  length_align = INSN_LENGTH_ALIGNMENT (insn);
1146	  if (length_align < insn_current_align)
1147	    insn_current_align = length_align;
1148
1149	  insn_last_address = INSN_ADDRESSES (uid);
1150	  INSN_ADDRESSES (uid) = insn_current_address;
1151
1152#ifdef CASE_VECTOR_SHORTEN_MODE
1153	  if (optimize && JUMP_P (insn)
1154	      && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1155	    {
1156	      rtx body = PATTERN (insn);
1157	      int old_length = insn_lengths[uid];
1158	      rtx rel_lab = XEXP (XEXP (body, 0), 0);
1159	      rtx min_lab = XEXP (XEXP (body, 2), 0);
1160	      rtx max_lab = XEXP (XEXP (body, 3), 0);
1161	      int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1162	      int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1163	      int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1164	      rtx prev;
1165	      int rel_align = 0;
1166	      addr_diff_vec_flags flags;
1167
1168	      /* Avoid automatic aggregate initialization.  */
1169	      flags = ADDR_DIFF_VEC_FLAGS (body);
1170
1171	      /* Try to find a known alignment for rel_lab.  */
1172	      for (prev = rel_lab;
1173		   prev
1174		   && ! insn_lengths[INSN_UID (prev)]
1175		   && ! (varying_length[INSN_UID (prev)] & 1);
1176		   prev = PREV_INSN (prev))
1177		if (varying_length[INSN_UID (prev)] & 2)
1178		  {
1179		    rel_align = LABEL_TO_ALIGNMENT (prev);
1180		    break;
1181		  }
1182
1183	      /* See the comment on addr_diff_vec_flags in rtl.h for the
1184		 meaning of the flags values.  base: REL_LAB   vec: INSN  */
1185	      /* Anything after INSN has still addresses from the last
1186		 pass; adjust these so that they reflect our current
1187		 estimate for this pass.  */
1188	      if (flags.base_after_vec)
1189		rel_addr += insn_current_address - insn_last_address;
1190	      if (flags.min_after_vec)
1191		min_addr += insn_current_address - insn_last_address;
1192	      if (flags.max_after_vec)
1193		max_addr += insn_current_address - insn_last_address;
1194	      /* We want to know the worst case, i.e. lowest possible value
1195		 for the offset of MIN_LAB.  If MIN_LAB is after REL_LAB,
1196		 its offset is positive, and we have to be wary of code shrink;
1197		 otherwise, it is negative, and we have to be vary of code
1198		 size increase.  */
1199	      if (flags.min_after_base)
1200		{
1201		  /* If INSN is between REL_LAB and MIN_LAB, the size
1202		     changes we are about to make can change the alignment
1203		     within the observed offset, therefore we have to break
1204		     it up into two parts that are independent.  */
1205		  if (! flags.base_after_vec && flags.min_after_vec)
1206		    {
1207		      min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1208		      min_addr -= align_fuzz (insn, min_lab, 0, 0);
1209		    }
1210		  else
1211		    min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1212		}
1213	      else
1214		{
1215		  if (flags.base_after_vec && ! flags.min_after_vec)
1216		    {
1217		      min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1218		      min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1219		    }
1220		  else
1221		    min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1222		}
1223	      /* Likewise, determine the highest lowest possible value
1224		 for the offset of MAX_LAB.  */
1225	      if (flags.max_after_base)
1226		{
1227		  if (! flags.base_after_vec && flags.max_after_vec)
1228		    {
1229		      max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1230		      max_addr += align_fuzz (insn, max_lab, 0, ~0);
1231		    }
1232		  else
1233		    max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1234		}
1235	      else
1236		{
1237		  if (flags.base_after_vec && ! flags.max_after_vec)
1238		    {
1239		      max_addr += align_fuzz (max_lab, insn, 0, 0);
1240		      max_addr += align_fuzz (insn, rel_lab, 0, 0);
1241		    }
1242		  else
1243		    max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1244		}
1245	      PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1246							max_addr - rel_addr,
1247							body));
1248	      if (JUMP_TABLES_IN_TEXT_SECTION
1249		  || readonly_data_section == text_section)
1250		{
1251		  insn_lengths[uid]
1252		    = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1253		  insn_current_address += insn_lengths[uid];
1254		  if (insn_lengths[uid] != old_length)
1255		    something_changed = 1;
1256		}
1257
1258	      continue;
1259	    }
1260#endif /* CASE_VECTOR_SHORTEN_MODE */
1261
1262	  if (! (varying_length[uid]))
1263	    {
1264	      if (NONJUMP_INSN_P (insn)
1265		  && GET_CODE (PATTERN (insn)) == SEQUENCE)
1266		{
1267		  int i;
1268
1269		  body = PATTERN (insn);
1270		  for (i = 0; i < XVECLEN (body, 0); i++)
1271		    {
1272		      rtx inner_insn = XVECEXP (body, 0, i);
1273		      int inner_uid = INSN_UID (inner_insn);
1274
1275		      INSN_ADDRESSES (inner_uid) = insn_current_address;
1276
1277		      insn_current_address += insn_lengths[inner_uid];
1278		    }
1279		}
1280	      else
1281		insn_current_address += insn_lengths[uid];
1282
1283	      continue;
1284	    }
1285
1286	  if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1287	    {
1288	      int i;
1289
1290	      body = PATTERN (insn);
1291	      new_length = 0;
1292	      for (i = 0; i < XVECLEN (body, 0); i++)
1293		{
1294		  rtx inner_insn = XVECEXP (body, 0, i);
1295		  int inner_uid = INSN_UID (inner_insn);
1296		  int inner_length;
1297
1298		  INSN_ADDRESSES (inner_uid) = insn_current_address;
1299
1300		  /* insn_current_length returns 0 for insns with a
1301		     non-varying length.  */
1302		  if (! varying_length[inner_uid])
1303		    inner_length = insn_lengths[inner_uid];
1304		  else
1305		    inner_length = insn_current_length (inner_insn);
1306
1307		  if (inner_length != insn_lengths[inner_uid])
1308		    {
1309		      insn_lengths[inner_uid] = inner_length;
1310		      something_changed = 1;
1311		    }
1312		  insn_current_address += insn_lengths[inner_uid];
1313		  new_length += inner_length;
1314		}
1315	    }
1316	  else
1317	    {
1318	      new_length = insn_current_length (insn);
1319	      insn_current_address += new_length;
1320	    }
1321
1322#ifdef ADJUST_INSN_LENGTH
1323	  /* If needed, do any adjustment.  */
1324	  tmp_length = new_length;
1325	  ADJUST_INSN_LENGTH (insn, new_length);
1326	  insn_current_address += (new_length - tmp_length);
1327#endif
1328
1329	  if (new_length != insn_lengths[uid])
1330	    {
1331	      insn_lengths[uid] = new_length;
1332	      something_changed = 1;
1333	    }
1334	}
1335      /* For a non-optimizing compile, do only a single pass.  */
1336      if (!optimize)
1337	break;
1338    }
1339
1340  free (varying_length);
1341
1342#endif /* HAVE_ATTR_length */
1343}
1344
1345#ifdef HAVE_ATTR_length
1346/* Given the body of an INSN known to be generated by an ASM statement, return
1347   the number of machine instructions likely to be generated for this insn.
1348   This is used to compute its length.  */
1349
1350static int
1351asm_insn_count (rtx body)
1352{
1353  const char *template;
1354  int count = 1;
1355
1356  if (GET_CODE (body) == ASM_INPUT)
1357    template = XSTR (body, 0);
1358  else
1359    template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1360
1361  for (; *template; template++)
1362    if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1363      count++;
1364
1365  return count;
1366}
1367#endif
1368
1369/* Output assembler code for the start of a function,
1370   and initialize some of the variables in this file
1371   for the new function.  The label for the function and associated
1372   assembler pseudo-ops have already been output in `assemble_start_function'.
1373
1374   FIRST is the first insn of the rtl for the function being compiled.
1375   FILE is the file to write assembler code to.
1376   OPTIMIZE is nonzero if we should eliminate redundant
1377     test and compare insns.  */
1378
1379void
1380final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1381		      int optimize ATTRIBUTE_UNUSED)
1382{
1383  block_depth = 0;
1384
1385  this_is_asm_operands = 0;
1386
1387  last_filename = locator_file (prologue_locator);
1388  last_linenum = locator_line (prologue_locator);
1389
1390  high_block_linenum = high_function_linenum = last_linenum;
1391
1392  (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1393
1394#if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1395  if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1396    dwarf2out_begin_prologue (0, NULL);
1397#endif
1398
1399#ifdef LEAF_REG_REMAP
1400  if (current_function_uses_only_leaf_regs)
1401    leaf_renumber_regs (first);
1402#endif
1403
1404  /* The Sun386i and perhaps other machines don't work right
1405     if the profiling code comes after the prologue.  */
1406#ifdef PROFILE_BEFORE_PROLOGUE
1407  if (current_function_profile)
1408    profile_function (file);
1409#endif /* PROFILE_BEFORE_PROLOGUE */
1410
1411#if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1412  if (dwarf2out_do_frame ())
1413    dwarf2out_frame_debug (NULL_RTX, false);
1414#endif
1415
1416  /* If debugging, assign block numbers to all of the blocks in this
1417     function.  */
1418  if (write_symbols)
1419    {
1420      reemit_insn_block_notes ();
1421      number_blocks (current_function_decl);
1422      /* We never actually put out begin/end notes for the top-level
1423	 block in the function.  But, conceptually, that block is
1424	 always needed.  */
1425      TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1426    }
1427
1428  /* First output the function prologue: code to set up the stack frame.  */
1429  targetm.asm_out.function_prologue (file, get_frame_size ());
1430
1431  /* If the machine represents the prologue as RTL, the profiling code must
1432     be emitted when NOTE_INSN_PROLOGUE_END is scanned.  */
1433#ifdef HAVE_prologue
1434  if (! HAVE_prologue)
1435#endif
1436    profile_after_prologue (file);
1437}
1438
1439static void
1440profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1441{
1442#ifndef PROFILE_BEFORE_PROLOGUE
1443  if (current_function_profile)
1444    profile_function (file);
1445#endif /* not PROFILE_BEFORE_PROLOGUE */
1446}
1447
1448static void
1449profile_function (FILE *file ATTRIBUTE_UNUSED)
1450{
1451#ifndef NO_PROFILE_COUNTERS
1452# define NO_PROFILE_COUNTERS	0
1453#endif
1454#if defined(ASM_OUTPUT_REG_PUSH)
1455  int sval = current_function_returns_struct;
1456  rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1457#if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1458  int cxt = cfun->static_chain_decl != NULL;
1459#endif
1460#endif /* ASM_OUTPUT_REG_PUSH */
1461
1462  if (! NO_PROFILE_COUNTERS)
1463    {
1464      int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1465      switch_to_section (data_section);
1466      ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1467      targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1468      assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1469    }
1470
1471  switch_to_section (current_function_section ());
1472
1473#if defined(ASM_OUTPUT_REG_PUSH)
1474  if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1475    ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1476#endif
1477
1478#if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1479  if (cxt)
1480    ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1481#else
1482#if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1483  if (cxt)
1484    {
1485      ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1486    }
1487#endif
1488#endif
1489
1490  FUNCTION_PROFILER (file, current_function_funcdef_no);
1491
1492#if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1493  if (cxt)
1494    ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1495#else
1496#if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1497  if (cxt)
1498    {
1499      ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1500    }
1501#endif
1502#endif
1503
1504#if defined(ASM_OUTPUT_REG_PUSH)
1505  if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1506    ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1507#endif
1508}
1509
1510/* Output assembler code for the end of a function.
1511   For clarity, args are same as those of `final_start_function'
1512   even though not all of them are needed.  */
1513
1514void
1515final_end_function (void)
1516{
1517  app_disable ();
1518
1519  (*debug_hooks->end_function) (high_function_linenum);
1520
1521  /* Finally, output the function epilogue:
1522     code to restore the stack frame and return to the caller.  */
1523  targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1524
1525  /* And debug output.  */
1526  (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1527
1528#if defined (DWARF2_UNWIND_INFO)
1529  if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1530      && dwarf2out_do_frame ())
1531    dwarf2out_end_epilogue (last_linenum, last_filename);
1532#endif
1533}
1534
1535/* Output assembler code for some insns: all or part of a function.
1536   For description of args, see `final_start_function', above.  */
1537
1538void
1539final (rtx first, FILE *file, int optimize)
1540{
1541  rtx insn;
1542  int max_uid = 0;
1543  int seen = 0;
1544
1545  last_ignored_compare = 0;
1546
1547#ifdef SDB_DEBUGGING_INFO
1548  /* When producing SDB debugging info, delete troublesome line number
1549     notes from inlined functions in other files as well as duplicate
1550     line number notes.  */
1551  if (write_symbols == SDB_DEBUG)
1552    {
1553      rtx last = 0;
1554      for (insn = first; insn; insn = NEXT_INSN (insn))
1555	if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
1556	  {
1557	    if (last != 0
1558#ifdef USE_MAPPED_LOCATION
1559		&& NOTE_SOURCE_LOCATION (insn) == NOTE_SOURCE_LOCATION (last)
1560#else
1561		&& NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1562		&& NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)
1563#endif
1564	      )
1565	      {
1566		delete_insn (insn);	/* Use delete_note.  */
1567		continue;
1568	      }
1569	    last = insn;
1570	  }
1571    }
1572#endif
1573
1574  for (insn = first; insn; insn = NEXT_INSN (insn))
1575    {
1576      if (INSN_UID (insn) > max_uid)       /* Find largest UID.  */
1577	max_uid = INSN_UID (insn);
1578#ifdef HAVE_cc0
1579      /* If CC tracking across branches is enabled, record the insn which
1580	 jumps to each branch only reached from one place.  */
1581      if (optimize && JUMP_P (insn))
1582	{
1583	  rtx lab = JUMP_LABEL (insn);
1584	  if (lab && LABEL_NUSES (lab) == 1)
1585	    {
1586	      LABEL_REFS (lab) = insn;
1587	    }
1588	}
1589#endif
1590    }
1591
1592  init_recog ();
1593
1594  CC_STATUS_INIT;
1595
1596  /* Output the insns.  */
1597  for (insn = NEXT_INSN (first); insn;)
1598    {
1599#ifdef HAVE_ATTR_length
1600      if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1601	{
1602	  /* This can be triggered by bugs elsewhere in the compiler if
1603	     new insns are created after init_insn_lengths is called.  */
1604	  gcc_assert (NOTE_P (insn));
1605	  insn_current_address = -1;
1606	}
1607      else
1608	insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1609#endif /* HAVE_ATTR_length */
1610
1611      insn = final_scan_insn (insn, file, optimize, 0, &seen);
1612    }
1613}
1614
1615const char *
1616get_insn_template (int code, rtx insn)
1617{
1618  switch (insn_data[code].output_format)
1619    {
1620    case INSN_OUTPUT_FORMAT_SINGLE:
1621      return insn_data[code].output.single;
1622    case INSN_OUTPUT_FORMAT_MULTI:
1623      return insn_data[code].output.multi[which_alternative];
1624    case INSN_OUTPUT_FORMAT_FUNCTION:
1625      gcc_assert (insn);
1626      return (*insn_data[code].output.function) (recog_data.operand, insn);
1627
1628    default:
1629      gcc_unreachable ();
1630    }
1631}
1632
1633/* Emit the appropriate declaration for an alternate-entry-point
1634   symbol represented by INSN, to FILE.  INSN is a CODE_LABEL with
1635   LABEL_KIND != LABEL_NORMAL.
1636
1637   The case fall-through in this function is intentional.  */
1638static void
1639output_alternate_entry_point (FILE *file, rtx insn)
1640{
1641  const char *name = LABEL_NAME (insn);
1642
1643  switch (LABEL_KIND (insn))
1644    {
1645    case LABEL_WEAK_ENTRY:
1646#ifdef ASM_WEAKEN_LABEL
1647      ASM_WEAKEN_LABEL (file, name);
1648#endif
1649    case LABEL_GLOBAL_ENTRY:
1650      targetm.asm_out.globalize_label (file, name);
1651    case LABEL_STATIC_ENTRY:
1652#ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1653      ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1654#endif
1655      ASM_OUTPUT_LABEL (file, name);
1656      break;
1657
1658    case LABEL_NORMAL:
1659    default:
1660      gcc_unreachable ();
1661    }
1662}
1663
1664/* The final scan for one insn, INSN.
1665   Args are same as in `final', except that INSN
1666   is the insn being scanned.
1667   Value returned is the next insn to be scanned.
1668
1669   NOPEEPHOLES is the flag to disallow peephole processing (currently
1670   used for within delayed branch sequence output).
1671
1672   SEEN is used to track the end of the prologue, for emitting
1673   debug information.  We force the emission of a line note after
1674   both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1675   at the beginning of the second basic block, whichever comes
1676   first.  */
1677
1678rtx
1679final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1680		 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
1681{
1682#ifdef HAVE_cc0
1683  rtx set;
1684#endif
1685  rtx next;
1686
1687  insn_counter++;
1688
1689  /* Ignore deleted insns.  These can occur when we split insns (due to a
1690     template of "#") while not optimizing.  */
1691  if (INSN_DELETED_P (insn))
1692    return NEXT_INSN (insn);
1693
1694  switch (GET_CODE (insn))
1695    {
1696    case NOTE:
1697      switch (NOTE_LINE_NUMBER (insn))
1698	{
1699	case NOTE_INSN_DELETED:
1700	case NOTE_INSN_FUNCTION_END:
1701	case NOTE_INSN_REPEATED_LINE_NUMBER:
1702	case NOTE_INSN_EXPECTED_VALUE:
1703	  break;
1704
1705	case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1706	  in_cold_section_p = !in_cold_section_p;
1707	  (*debug_hooks->switch_text_section) ();
1708	  switch_to_section (current_function_section ());
1709	  break;
1710
1711	case NOTE_INSN_BASIC_BLOCK:
1712#ifdef TARGET_UNWIND_INFO
1713	  targetm.asm_out.unwind_emit (asm_out_file, insn);
1714#endif
1715
1716	  if (flag_debug_asm)
1717	    fprintf (asm_out_file, "\t%s basic block %d\n",
1718		     ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1719
1720	  if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1721	    {
1722	      *seen |= SEEN_EMITTED;
1723	      force_source_line = true;
1724	    }
1725	  else
1726	    *seen |= SEEN_BB;
1727
1728	  break;
1729
1730	case NOTE_INSN_EH_REGION_BEG:
1731	  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1732				  NOTE_EH_HANDLER (insn));
1733	  break;
1734
1735	case NOTE_INSN_EH_REGION_END:
1736	  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1737				  NOTE_EH_HANDLER (insn));
1738	  break;
1739
1740	case NOTE_INSN_PROLOGUE_END:
1741	  targetm.asm_out.function_end_prologue (file);
1742	  profile_after_prologue (file);
1743
1744	  if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1745	    {
1746	      *seen |= SEEN_EMITTED;
1747	      force_source_line = true;
1748	    }
1749	  else
1750	    *seen |= SEEN_NOTE;
1751
1752	  break;
1753
1754	case NOTE_INSN_EPILOGUE_BEG:
1755	  targetm.asm_out.function_begin_epilogue (file);
1756	  break;
1757
1758	case NOTE_INSN_FUNCTION_BEG:
1759	  app_disable ();
1760	  (*debug_hooks->end_prologue) (last_linenum, last_filename);
1761
1762	  if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1763	    {
1764	      *seen |= SEEN_EMITTED;
1765	      force_source_line = true;
1766	    }
1767	  else
1768	    *seen |= SEEN_NOTE;
1769
1770	  break;
1771
1772	case NOTE_INSN_BLOCK_BEG:
1773	  if (debug_info_level == DINFO_LEVEL_NORMAL
1774	      || debug_info_level == DINFO_LEVEL_VERBOSE
1775	      || write_symbols == DWARF2_DEBUG
1776	      || write_symbols == VMS_AND_DWARF2_DEBUG
1777	      || write_symbols == VMS_DEBUG)
1778	    {
1779	      int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1780
1781	      app_disable ();
1782	      ++block_depth;
1783	      high_block_linenum = last_linenum;
1784
1785	      /* Output debugging info about the symbol-block beginning.  */
1786	      (*debug_hooks->begin_block) (last_linenum, n);
1787
1788	      /* Mark this block as output.  */
1789	      TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1790	    }
1791	  break;
1792
1793	case NOTE_INSN_BLOCK_END:
1794	  if (debug_info_level == DINFO_LEVEL_NORMAL
1795	      || debug_info_level == DINFO_LEVEL_VERBOSE
1796	      || write_symbols == DWARF2_DEBUG
1797	      || write_symbols == VMS_AND_DWARF2_DEBUG
1798	      || write_symbols == VMS_DEBUG)
1799	    {
1800	      int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1801
1802	      app_disable ();
1803
1804	      /* End of a symbol-block.  */
1805	      --block_depth;
1806	      gcc_assert (block_depth >= 0);
1807
1808	      (*debug_hooks->end_block) (high_block_linenum, n);
1809	    }
1810	  break;
1811
1812	case NOTE_INSN_DELETED_LABEL:
1813	  /* Emit the label.  We may have deleted the CODE_LABEL because
1814	     the label could be proved to be unreachable, though still
1815	     referenced (in the form of having its address taken.  */
1816	  ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1817	  break;
1818
1819	case NOTE_INSN_VAR_LOCATION:
1820	  (*debug_hooks->var_location) (insn);
1821	  break;
1822
1823	case 0:
1824	  break;
1825
1826	default:
1827	  gcc_assert (NOTE_LINE_NUMBER (insn) > 0);
1828	  break;
1829	}
1830      break;
1831
1832    case BARRIER:
1833#if defined (DWARF2_UNWIND_INFO)
1834      if (dwarf2out_do_frame ())
1835	dwarf2out_frame_debug (insn, false);
1836#endif
1837      break;
1838
1839    case CODE_LABEL:
1840      /* The target port might emit labels in the output function for
1841	 some insn, e.g. sh.c output_branchy_insn.  */
1842      if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1843	{
1844	  int align = LABEL_TO_ALIGNMENT (insn);
1845#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1846	  int max_skip = LABEL_TO_MAX_SKIP (insn);
1847#endif
1848
1849	  if (align && NEXT_INSN (insn))
1850	    {
1851#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1852	      ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1853#else
1854#ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1855              ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1856#else
1857	      ASM_OUTPUT_ALIGN (file, align);
1858#endif
1859#endif
1860	    }
1861	}
1862#ifdef HAVE_cc0
1863      CC_STATUS_INIT;
1864      /* If this label is reached from only one place, set the condition
1865	 codes from the instruction just before the branch.  */
1866
1867      /* Disabled because some insns set cc_status in the C output code
1868	 and NOTICE_UPDATE_CC alone can set incorrect status.  */
1869      if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1870	{
1871	  rtx jump = LABEL_REFS (insn);
1872	  rtx barrier = prev_nonnote_insn (insn);
1873	  rtx prev;
1874	  /* If the LABEL_REFS field of this label has been set to point
1875	     at a branch, the predecessor of the branch is a regular
1876	     insn, and that branch is the only way to reach this label,
1877	     set the condition codes based on the branch and its
1878	     predecessor.  */
1879	  if (barrier && BARRIER_P (barrier)
1880	      && jump && JUMP_P (jump)
1881	      && (prev = prev_nonnote_insn (jump))
1882	      && NONJUMP_INSN_P (prev))
1883	    {
1884	      NOTICE_UPDATE_CC (PATTERN (prev), prev);
1885	      NOTICE_UPDATE_CC (PATTERN (jump), jump);
1886	    }
1887	}
1888#endif
1889
1890      if (LABEL_NAME (insn))
1891	(*debug_hooks->label) (insn);
1892
1893      if (app_on)
1894	{
1895	  fputs (ASM_APP_OFF, file);
1896	  app_on = 0;
1897	}
1898
1899      next = next_nonnote_insn (insn);
1900      if (next != 0 && JUMP_P (next))
1901	{
1902	  rtx nextbody = PATTERN (next);
1903
1904	  /* If this label is followed by a jump-table,
1905	     make sure we put the label in the read-only section.  Also
1906	     possibly write the label and jump table together.  */
1907
1908	  if (GET_CODE (nextbody) == ADDR_VEC
1909	      || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1910	    {
1911#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1912	      /* In this case, the case vector is being moved by the
1913		 target, so don't output the label at all.  Leave that
1914		 to the back end macros.  */
1915#else
1916	      if (! JUMP_TABLES_IN_TEXT_SECTION)
1917		{
1918		  int log_align;
1919
1920		  switch_to_section (targetm.asm_out.function_rodata_section
1921				     (current_function_decl));
1922
1923#ifdef ADDR_VEC_ALIGN
1924		  log_align = ADDR_VEC_ALIGN (next);
1925#else
1926		  log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1927#endif
1928		  ASM_OUTPUT_ALIGN (file, log_align);
1929		}
1930	      else
1931		switch_to_section (current_function_section ());
1932
1933#ifdef ASM_OUTPUT_CASE_LABEL
1934	      ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1935				     next);
1936#else
1937	      targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1938#endif
1939#endif
1940	      break;
1941	    }
1942	}
1943      if (LABEL_ALT_ENTRY_P (insn))
1944	output_alternate_entry_point (file, insn);
1945      else
1946	targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1947      break;
1948
1949    default:
1950      {
1951	rtx body = PATTERN (insn);
1952	int insn_code_number;
1953	const char *template;
1954
1955#ifdef HAVE_conditional_execution
1956	/* Reset this early so it is correct for ASM statements.  */
1957	current_insn_predicate = NULL_RTX;
1958#endif
1959	/* An INSN, JUMP_INSN or CALL_INSN.
1960	   First check for special kinds that recog doesn't recognize.  */
1961
1962	if (GET_CODE (body) == USE /* These are just declarations.  */
1963	    || GET_CODE (body) == CLOBBER)
1964	  break;
1965
1966#ifdef HAVE_cc0
1967	{
1968	  /* If there is a REG_CC_SETTER note on this insn, it means that
1969	     the setting of the condition code was done in the delay slot
1970	     of the insn that branched here.  So recover the cc status
1971	     from the insn that set it.  */
1972
1973	  rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
1974	  if (note)
1975	    {
1976	      NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
1977	      cc_prev_status = cc_status;
1978	    }
1979	}
1980#endif
1981
1982	/* Detect insns that are really jump-tables
1983	   and output them as such.  */
1984
1985	if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1986	  {
1987#if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
1988	    int vlen, idx;
1989#endif
1990
1991	    if (! JUMP_TABLES_IN_TEXT_SECTION)
1992	      switch_to_section (targetm.asm_out.function_rodata_section
1993				 (current_function_decl));
1994	    else
1995	      switch_to_section (current_function_section ());
1996
1997	    if (app_on)
1998	      {
1999		fputs (ASM_APP_OFF, file);
2000		app_on = 0;
2001	      }
2002
2003#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2004	    if (GET_CODE (body) == ADDR_VEC)
2005	      {
2006#ifdef ASM_OUTPUT_ADDR_VEC
2007		ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2008#else
2009		gcc_unreachable ();
2010#endif
2011	      }
2012	    else
2013	      {
2014#ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2015		ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2016#else
2017		gcc_unreachable ();
2018#endif
2019	      }
2020#else
2021	    vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2022	    for (idx = 0; idx < vlen; idx++)
2023	      {
2024		if (GET_CODE (body) == ADDR_VEC)
2025		  {
2026#ifdef ASM_OUTPUT_ADDR_VEC_ELT
2027		    ASM_OUTPUT_ADDR_VEC_ELT
2028		      (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2029#else
2030		    gcc_unreachable ();
2031#endif
2032		  }
2033		else
2034		  {
2035#ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2036		    ASM_OUTPUT_ADDR_DIFF_ELT
2037		      (file,
2038		       body,
2039		       CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2040		       CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2041#else
2042		    gcc_unreachable ();
2043#endif
2044		  }
2045	      }
2046#ifdef ASM_OUTPUT_CASE_END
2047	    ASM_OUTPUT_CASE_END (file,
2048				 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2049				 insn);
2050#endif
2051#endif
2052
2053	    switch_to_section (current_function_section ());
2054
2055	    break;
2056	  }
2057	/* Output this line note if it is the first or the last line
2058	   note in a row.  */
2059	if (notice_source_line (insn))
2060	  {
2061	    (*debug_hooks->source_line) (last_linenum, last_filename);
2062	  }
2063
2064	if (GET_CODE (body) == ASM_INPUT)
2065	  {
2066	    const char *string = XSTR (body, 0);
2067
2068	    /* There's no telling what that did to the condition codes.  */
2069	    CC_STATUS_INIT;
2070
2071	    if (string[0])
2072	      {
2073		if (! app_on)
2074		  {
2075		    fputs (ASM_APP_ON, file);
2076		    app_on = 1;
2077		  }
2078		fprintf (asm_out_file, "\t%s\n", string);
2079	      }
2080	    break;
2081	  }
2082
2083	/* Detect `asm' construct with operands.  */
2084	if (asm_noperands (body) >= 0)
2085	  {
2086	    unsigned int noperands = asm_noperands (body);
2087	    rtx *ops = alloca (noperands * sizeof (rtx));
2088	    const char *string;
2089
2090	    /* There's no telling what that did to the condition codes.  */
2091	    CC_STATUS_INIT;
2092
2093	    /* Get out the operand values.  */
2094	    string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2095	    /* Inhibit dieing on what would otherwise be compiler bugs.  */
2096	    insn_noperands = noperands;
2097	    this_is_asm_operands = insn;
2098
2099#ifdef FINAL_PRESCAN_INSN
2100	    FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2101#endif
2102
2103	    /* Output the insn using them.  */
2104	    if (string[0])
2105	      {
2106		if (! app_on)
2107		  {
2108		    fputs (ASM_APP_ON, file);
2109		    app_on = 1;
2110		  }
2111	        output_asm_insn (string, ops);
2112	      }
2113
2114	    this_is_asm_operands = 0;
2115	    break;
2116	  }
2117
2118	if (app_on)
2119	  {
2120	    fputs (ASM_APP_OFF, file);
2121	    app_on = 0;
2122	  }
2123
2124	if (GET_CODE (body) == SEQUENCE)
2125	  {
2126	    /* A delayed-branch sequence */
2127	    int i;
2128
2129	    final_sequence = body;
2130
2131	    /* Record the delay slots' frame information before the branch.
2132	       This is needed for delayed calls: see execute_cfa_program().  */
2133#if defined (DWARF2_UNWIND_INFO)
2134	    if (dwarf2out_do_frame ())
2135	      for (i = 1; i < XVECLEN (body, 0); i++)
2136		dwarf2out_frame_debug (XVECEXP (body, 0, i), false);
2137#endif
2138
2139	    /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2140	       force the restoration of a comparison that was previously
2141	       thought unnecessary.  If that happens, cancel this sequence
2142	       and cause that insn to be restored.  */
2143
2144	    next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, 1, seen);
2145	    if (next != XVECEXP (body, 0, 1))
2146	      {
2147		final_sequence = 0;
2148		return next;
2149	      }
2150
2151	    for (i = 1; i < XVECLEN (body, 0); i++)
2152	      {
2153		rtx insn = XVECEXP (body, 0, i);
2154		rtx next = NEXT_INSN (insn);
2155		/* We loop in case any instruction in a delay slot gets
2156		   split.  */
2157		do
2158		  insn = final_scan_insn (insn, file, 0, 1, seen);
2159		while (insn != next);
2160	      }
2161#ifdef DBR_OUTPUT_SEQEND
2162	    DBR_OUTPUT_SEQEND (file);
2163#endif
2164	    final_sequence = 0;
2165
2166	    /* If the insn requiring the delay slot was a CALL_INSN, the
2167	       insns in the delay slot are actually executed before the
2168	       called function.  Hence we don't preserve any CC-setting
2169	       actions in these insns and the CC must be marked as being
2170	       clobbered by the function.  */
2171	    if (CALL_P (XVECEXP (body, 0, 0)))
2172	      {
2173		CC_STATUS_INIT;
2174	      }
2175	    break;
2176	  }
2177
2178	/* We have a real machine instruction as rtl.  */
2179
2180	body = PATTERN (insn);
2181
2182#ifdef HAVE_cc0
2183	set = single_set (insn);
2184
2185	/* Check for redundant test and compare instructions
2186	   (when the condition codes are already set up as desired).
2187	   This is done only when optimizing; if not optimizing,
2188	   it should be possible for the user to alter a variable
2189	   with the debugger in between statements
2190	   and the next statement should reexamine the variable
2191	   to compute the condition codes.  */
2192
2193	if (optimize)
2194	  {
2195	    if (set
2196		&& GET_CODE (SET_DEST (set)) == CC0
2197		&& insn != last_ignored_compare)
2198	      {
2199		if (GET_CODE (SET_SRC (set)) == SUBREG)
2200		  SET_SRC (set) = alter_subreg (&SET_SRC (set));
2201		else if (GET_CODE (SET_SRC (set)) == COMPARE)
2202		  {
2203		    if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2204		      XEXP (SET_SRC (set), 0)
2205			= alter_subreg (&XEXP (SET_SRC (set), 0));
2206		    if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2207		      XEXP (SET_SRC (set), 1)
2208			= alter_subreg (&XEXP (SET_SRC (set), 1));
2209		  }
2210		if ((cc_status.value1 != 0
2211		     && rtx_equal_p (SET_SRC (set), cc_status.value1))
2212		    || (cc_status.value2 != 0
2213			&& rtx_equal_p (SET_SRC (set), cc_status.value2)))
2214		  {
2215		    /* Don't delete insn if it has an addressing side-effect.  */
2216		    if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2217			/* or if anything in it is volatile.  */
2218			&& ! volatile_refs_p (PATTERN (insn)))
2219		      {
2220			/* We don't really delete the insn; just ignore it.  */
2221			last_ignored_compare = insn;
2222			break;
2223		      }
2224		  }
2225	      }
2226	  }
2227#endif
2228
2229#ifdef HAVE_cc0
2230	/* If this is a conditional branch, maybe modify it
2231	   if the cc's are in a nonstandard state
2232	   so that it accomplishes the same thing that it would
2233	   do straightforwardly if the cc's were set up normally.  */
2234
2235	if (cc_status.flags != 0
2236	    && JUMP_P (insn)
2237	    && GET_CODE (body) == SET
2238	    && SET_DEST (body) == pc_rtx
2239	    && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2240	    && COMPARISON_P (XEXP (SET_SRC (body), 0))
2241	    && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2242	  {
2243	    /* This function may alter the contents of its argument
2244	       and clear some of the cc_status.flags bits.
2245	       It may also return 1 meaning condition now always true
2246	       or -1 meaning condition now always false
2247	       or 2 meaning condition nontrivial but altered.  */
2248	    int result = alter_cond (XEXP (SET_SRC (body), 0));
2249	    /* If condition now has fixed value, replace the IF_THEN_ELSE
2250	       with its then-operand or its else-operand.  */
2251	    if (result == 1)
2252	      SET_SRC (body) = XEXP (SET_SRC (body), 1);
2253	    if (result == -1)
2254	      SET_SRC (body) = XEXP (SET_SRC (body), 2);
2255
2256	    /* The jump is now either unconditional or a no-op.
2257	       If it has become a no-op, don't try to output it.
2258	       (It would not be recognized.)  */
2259	    if (SET_SRC (body) == pc_rtx)
2260	      {
2261	        delete_insn (insn);
2262		break;
2263	      }
2264	    else if (GET_CODE (SET_SRC (body)) == RETURN)
2265	      /* Replace (set (pc) (return)) with (return).  */
2266	      PATTERN (insn) = body = SET_SRC (body);
2267
2268	    /* Rerecognize the instruction if it has changed.  */
2269	    if (result != 0)
2270	      INSN_CODE (insn) = -1;
2271	  }
2272
2273	/* Make same adjustments to instructions that examine the
2274	   condition codes without jumping and instructions that
2275	   handle conditional moves (if this machine has either one).  */
2276
2277	if (cc_status.flags != 0
2278	    && set != 0)
2279	  {
2280	    rtx cond_rtx, then_rtx, else_rtx;
2281
2282	    if (!JUMP_P (insn)
2283		&& GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2284	      {
2285		cond_rtx = XEXP (SET_SRC (set), 0);
2286		then_rtx = XEXP (SET_SRC (set), 1);
2287		else_rtx = XEXP (SET_SRC (set), 2);
2288	      }
2289	    else
2290	      {
2291		cond_rtx = SET_SRC (set);
2292		then_rtx = const_true_rtx;
2293		else_rtx = const0_rtx;
2294	      }
2295
2296	    switch (GET_CODE (cond_rtx))
2297	      {
2298	      case GTU:
2299	      case GT:
2300	      case LTU:
2301	      case LT:
2302	      case GEU:
2303	      case GE:
2304	      case LEU:
2305	      case LE:
2306	      case EQ:
2307	      case NE:
2308		{
2309		  int result;
2310		  if (XEXP (cond_rtx, 0) != cc0_rtx)
2311		    break;
2312		  result = alter_cond (cond_rtx);
2313		  if (result == 1)
2314		    validate_change (insn, &SET_SRC (set), then_rtx, 0);
2315		  else if (result == -1)
2316		    validate_change (insn, &SET_SRC (set), else_rtx, 0);
2317		  else if (result == 2)
2318		    INSN_CODE (insn) = -1;
2319		  if (SET_DEST (set) == SET_SRC (set))
2320		    delete_insn (insn);
2321		}
2322		break;
2323
2324	      default:
2325		break;
2326	      }
2327	  }
2328
2329#endif
2330
2331#ifdef HAVE_peephole
2332	/* Do machine-specific peephole optimizations if desired.  */
2333
2334	if (optimize && !flag_no_peephole && !nopeepholes)
2335	  {
2336	    rtx next = peephole (insn);
2337	    /* When peepholing, if there were notes within the peephole,
2338	       emit them before the peephole.  */
2339	    if (next != 0 && next != NEXT_INSN (insn))
2340	      {
2341		rtx note, prev = PREV_INSN (insn);
2342
2343		for (note = NEXT_INSN (insn); note != next;
2344		     note = NEXT_INSN (note))
2345		  final_scan_insn (note, file, optimize, nopeepholes, seen);
2346
2347		/* Put the notes in the proper position for a later
2348		   rescan.  For example, the SH target can do this
2349		   when generating a far jump in a delayed branch
2350		   sequence.  */
2351		note = NEXT_INSN (insn);
2352		PREV_INSN (note) = prev;
2353		NEXT_INSN (prev) = note;
2354		NEXT_INSN (PREV_INSN (next)) = insn;
2355		PREV_INSN (insn) = PREV_INSN (next);
2356		NEXT_INSN (insn) = next;
2357		PREV_INSN (next) = insn;
2358	      }
2359
2360	    /* PEEPHOLE might have changed this.  */
2361	    body = PATTERN (insn);
2362	  }
2363#endif
2364
2365	/* Try to recognize the instruction.
2366	   If successful, verify that the operands satisfy the
2367	   constraints for the instruction.  Crash if they don't,
2368	   since `reload' should have changed them so that they do.  */
2369
2370	insn_code_number = recog_memoized (insn);
2371	cleanup_subreg_operands (insn);
2372
2373	/* Dump the insn in the assembly for debugging.  */
2374	if (flag_dump_rtl_in_asm)
2375	  {
2376	    print_rtx_head = ASM_COMMENT_START;
2377	    print_rtl_single (asm_out_file, insn);
2378	    print_rtx_head = "";
2379	  }
2380
2381	if (! constrain_operands_cached (1))
2382	  fatal_insn_not_found (insn);
2383
2384	/* Some target machines need to prescan each insn before
2385	   it is output.  */
2386
2387#ifdef FINAL_PRESCAN_INSN
2388	FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2389#endif
2390
2391#ifdef HAVE_conditional_execution
2392	if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2393	  current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2394#endif
2395
2396#ifdef HAVE_cc0
2397	cc_prev_status = cc_status;
2398
2399	/* Update `cc_status' for this instruction.
2400	   The instruction's output routine may change it further.
2401	   If the output routine for a jump insn needs to depend
2402	   on the cc status, it should look at cc_prev_status.  */
2403
2404	NOTICE_UPDATE_CC (body, insn);
2405#endif
2406
2407	current_output_insn = debug_insn = insn;
2408
2409#if defined (DWARF2_UNWIND_INFO)
2410	if (CALL_P (insn) && dwarf2out_do_frame ())
2411	  dwarf2out_frame_debug (insn, false);
2412#endif
2413
2414	/* Find the proper template for this insn.  */
2415	template = get_insn_template (insn_code_number, insn);
2416
2417	/* If the C code returns 0, it means that it is a jump insn
2418	   which follows a deleted test insn, and that test insn
2419	   needs to be reinserted.  */
2420	if (template == 0)
2421	  {
2422	    rtx prev;
2423
2424	    gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2425
2426	    /* We have already processed the notes between the setter and
2427	       the user.  Make sure we don't process them again, this is
2428	       particularly important if one of the notes is a block
2429	       scope note or an EH note.  */
2430	    for (prev = insn;
2431		 prev != last_ignored_compare;
2432		 prev = PREV_INSN (prev))
2433	      {
2434		if (NOTE_P (prev))
2435		  delete_insn (prev);	/* Use delete_note.  */
2436	      }
2437
2438	    return prev;
2439	  }
2440
2441	/* If the template is the string "#", it means that this insn must
2442	   be split.  */
2443	if (template[0] == '#' && template[1] == '\0')
2444	  {
2445	    rtx new = try_split (body, insn, 0);
2446
2447	    /* If we didn't split the insn, go away.  */
2448	    if (new == insn && PATTERN (new) == body)
2449	      fatal_insn ("could not split insn", insn);
2450
2451#ifdef HAVE_ATTR_length
2452	    /* This instruction should have been split in shorten_branches,
2453	       to ensure that we would have valid length info for the
2454	       splitees.  */
2455	    gcc_unreachable ();
2456#endif
2457
2458	    return new;
2459	  }
2460
2461#ifdef TARGET_UNWIND_INFO
2462	/* ??? This will put the directives in the wrong place if
2463	   get_insn_template outputs assembly directly.  However calling it
2464	   before get_insn_template breaks if the insns is split.  */
2465	targetm.asm_out.unwind_emit (asm_out_file, insn);
2466#endif
2467
2468	/* Output assembler code from the template.  */
2469	output_asm_insn (template, recog_data.operand);
2470
2471	/* If necessary, report the effect that the instruction has on
2472	   the unwind info.   We've already done this for delay slots
2473	   and call instructions.  */
2474#if defined (DWARF2_UNWIND_INFO)
2475	if (final_sequence == 0
2476#if !defined (HAVE_prologue)
2477	    && !ACCUMULATE_OUTGOING_ARGS
2478#endif
2479	    && dwarf2out_do_frame ())
2480	  dwarf2out_frame_debug (insn, true);
2481#endif
2482
2483	current_output_insn = debug_insn = 0;
2484      }
2485    }
2486  return NEXT_INSN (insn);
2487}
2488
2489/* Return whether a source line note needs to be emitted before INSN.  */
2490
2491static bool
2492notice_source_line (rtx insn)
2493{
2494  const char *filename = insn_file (insn);
2495  int linenum = insn_line (insn);
2496
2497  if (filename
2498      && (force_source_line
2499	  || filename != last_filename
2500	  || last_linenum != linenum))
2501    {
2502      force_source_line = false;
2503      last_filename = filename;
2504      last_linenum = linenum;
2505      high_block_linenum = MAX (last_linenum, high_block_linenum);
2506      high_function_linenum = MAX (last_linenum, high_function_linenum);
2507      return true;
2508    }
2509  return false;
2510}
2511
2512/* For each operand in INSN, simplify (subreg (reg)) so that it refers
2513   directly to the desired hard register.  */
2514
2515void
2516cleanup_subreg_operands (rtx insn)
2517{
2518  int i;
2519  extract_insn_cached (insn);
2520  for (i = 0; i < recog_data.n_operands; i++)
2521    {
2522      /* The following test cannot use recog_data.operand when testing
2523	 for a SUBREG: the underlying object might have been changed
2524	 already if we are inside a match_operator expression that
2525	 matches the else clause.  Instead we test the underlying
2526	 expression directly.  */
2527      if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2528	recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2529      else if (GET_CODE (recog_data.operand[i]) == PLUS
2530	       || GET_CODE (recog_data.operand[i]) == MULT
2531	       || MEM_P (recog_data.operand[i]))
2532	recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2533    }
2534
2535  for (i = 0; i < recog_data.n_dups; i++)
2536    {
2537      if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2538	*recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2539      else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2540	       || GET_CODE (*recog_data.dup_loc[i]) == MULT
2541	       || MEM_P (*recog_data.dup_loc[i]))
2542	*recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2543    }
2544}
2545
2546/* If X is a SUBREG, replace it with a REG or a MEM,
2547   based on the thing it is a subreg of.  */
2548
2549rtx
2550alter_subreg (rtx *xp)
2551{
2552  rtx x = *xp;
2553  rtx y = SUBREG_REG (x);
2554
2555  /* simplify_subreg does not remove subreg from volatile references.
2556     We are required to.  */
2557  if (MEM_P (y))
2558    {
2559      int offset = SUBREG_BYTE (x);
2560
2561      /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
2562	 contains 0 instead of the proper offset.  See simplify_subreg.  */
2563      if (offset == 0
2564	  && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
2565        {
2566          int difference = GET_MODE_SIZE (GET_MODE (y))
2567			   - GET_MODE_SIZE (GET_MODE (x));
2568          if (WORDS_BIG_ENDIAN)
2569            offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
2570          if (BYTES_BIG_ENDIAN)
2571            offset += difference % UNITS_PER_WORD;
2572        }
2573
2574      *xp = adjust_address (y, GET_MODE (x), offset);
2575    }
2576  else
2577    {
2578      rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2579				 SUBREG_BYTE (x));
2580
2581      if (new != 0)
2582	*xp = new;
2583      else if (REG_P (y))
2584	{
2585	  /* Simplify_subreg can't handle some REG cases, but we have to.  */
2586	  unsigned int regno = subreg_regno (x);
2587	  *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
2588	}
2589    }
2590
2591  return *xp;
2592}
2593
2594/* Do alter_subreg on all the SUBREGs contained in X.  */
2595
2596static rtx
2597walk_alter_subreg (rtx *xp)
2598{
2599  rtx x = *xp;
2600  switch (GET_CODE (x))
2601    {
2602    case PLUS:
2603    case MULT:
2604    case AND:
2605      XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2606      XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2607      break;
2608
2609    case MEM:
2610    case ZERO_EXTEND:
2611      XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2612      break;
2613
2614    case SUBREG:
2615      return alter_subreg (xp);
2616
2617    default:
2618      break;
2619    }
2620
2621  return *xp;
2622}
2623
2624#ifdef HAVE_cc0
2625
2626/* Given BODY, the body of a jump instruction, alter the jump condition
2627   as required by the bits that are set in cc_status.flags.
2628   Not all of the bits there can be handled at this level in all cases.
2629
2630   The value is normally 0.
2631   1 means that the condition has become always true.
2632   -1 means that the condition has become always false.
2633   2 means that COND has been altered.  */
2634
2635static int
2636alter_cond (rtx cond)
2637{
2638  int value = 0;
2639
2640  if (cc_status.flags & CC_REVERSED)
2641    {
2642      value = 2;
2643      PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2644    }
2645
2646  if (cc_status.flags & CC_INVERTED)
2647    {
2648      value = 2;
2649      PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2650    }
2651
2652  if (cc_status.flags & CC_NOT_POSITIVE)
2653    switch (GET_CODE (cond))
2654      {
2655      case LE:
2656      case LEU:
2657      case GEU:
2658	/* Jump becomes unconditional.  */
2659	return 1;
2660
2661      case GT:
2662      case GTU:
2663      case LTU:
2664	/* Jump becomes no-op.  */
2665	return -1;
2666
2667      case GE:
2668	PUT_CODE (cond, EQ);
2669	value = 2;
2670	break;
2671
2672      case LT:
2673	PUT_CODE (cond, NE);
2674	value = 2;
2675	break;
2676
2677      default:
2678	break;
2679      }
2680
2681  if (cc_status.flags & CC_NOT_NEGATIVE)
2682    switch (GET_CODE (cond))
2683      {
2684      case GE:
2685      case GEU:
2686	/* Jump becomes unconditional.  */
2687	return 1;
2688
2689      case LT:
2690      case LTU:
2691	/* Jump becomes no-op.  */
2692	return -1;
2693
2694      case LE:
2695      case LEU:
2696	PUT_CODE (cond, EQ);
2697	value = 2;
2698	break;
2699
2700      case GT:
2701      case GTU:
2702	PUT_CODE (cond, NE);
2703	value = 2;
2704	break;
2705
2706      default:
2707	break;
2708      }
2709
2710  if (cc_status.flags & CC_NO_OVERFLOW)
2711    switch (GET_CODE (cond))
2712      {
2713      case GEU:
2714	/* Jump becomes unconditional.  */
2715	return 1;
2716
2717      case LEU:
2718	PUT_CODE (cond, EQ);
2719	value = 2;
2720	break;
2721
2722      case GTU:
2723	PUT_CODE (cond, NE);
2724	value = 2;
2725	break;
2726
2727      case LTU:
2728	/* Jump becomes no-op.  */
2729	return -1;
2730
2731      default:
2732	break;
2733      }
2734
2735  if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2736    switch (GET_CODE (cond))
2737      {
2738      default:
2739	gcc_unreachable ();
2740
2741      case NE:
2742	PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2743	value = 2;
2744	break;
2745
2746      case EQ:
2747	PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2748	value = 2;
2749	break;
2750      }
2751
2752  if (cc_status.flags & CC_NOT_SIGNED)
2753    /* The flags are valid if signed condition operators are converted
2754       to unsigned.  */
2755    switch (GET_CODE (cond))
2756      {
2757      case LE:
2758	PUT_CODE (cond, LEU);
2759	value = 2;
2760	break;
2761
2762      case LT:
2763	PUT_CODE (cond, LTU);
2764	value = 2;
2765	break;
2766
2767      case GT:
2768	PUT_CODE (cond, GTU);
2769	value = 2;
2770	break;
2771
2772      case GE:
2773	PUT_CODE (cond, GEU);
2774	value = 2;
2775	break;
2776
2777      default:
2778	break;
2779      }
2780
2781  return value;
2782}
2783#endif
2784
2785/* Report inconsistency between the assembler template and the operands.
2786   In an `asm', it's the user's fault; otherwise, the compiler's fault.  */
2787
2788void
2789output_operand_lossage (const char *cmsgid, ...)
2790{
2791  char *fmt_string;
2792  char *new_message;
2793  const char *pfx_str;
2794  va_list ap;
2795
2796  va_start (ap, cmsgid);
2797
2798  pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
2799  asprintf (&fmt_string, "%s%s", pfx_str, _(cmsgid));
2800  vasprintf (&new_message, fmt_string, ap);
2801
2802  if (this_is_asm_operands)
2803    error_for_asm (this_is_asm_operands, "%s", new_message);
2804  else
2805    internal_error ("%s", new_message);
2806
2807  free (fmt_string);
2808  free (new_message);
2809  va_end (ap);
2810}
2811
2812/* Output of assembler code from a template, and its subroutines.  */
2813
2814/* Annotate the assembly with a comment describing the pattern and
2815   alternative used.  */
2816
2817static void
2818output_asm_name (void)
2819{
2820  if (debug_insn)
2821    {
2822      int num = INSN_CODE (debug_insn);
2823      fprintf (asm_out_file, "\t%s %d\t%s",
2824	       ASM_COMMENT_START, INSN_UID (debug_insn),
2825	       insn_data[num].name);
2826      if (insn_data[num].n_alternatives > 1)
2827	fprintf (asm_out_file, "/%d", which_alternative + 1);
2828#ifdef HAVE_ATTR_length
2829      fprintf (asm_out_file, "\t[length = %d]",
2830	       get_attr_length (debug_insn));
2831#endif
2832      /* Clear this so only the first assembler insn
2833	 of any rtl insn will get the special comment for -dp.  */
2834      debug_insn = 0;
2835    }
2836}
2837
2838/* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2839   or its address, return that expr .  Set *PADDRESSP to 1 if the expr
2840   corresponds to the address of the object and 0 if to the object.  */
2841
2842static tree
2843get_mem_expr_from_op (rtx op, int *paddressp)
2844{
2845  tree expr;
2846  int inner_addressp;
2847
2848  *paddressp = 0;
2849
2850  if (REG_P (op))
2851    return REG_EXPR (op);
2852  else if (!MEM_P (op))
2853    return 0;
2854
2855  if (MEM_EXPR (op) != 0)
2856    return MEM_EXPR (op);
2857
2858  /* Otherwise we have an address, so indicate it and look at the address.  */
2859  *paddressp = 1;
2860  op = XEXP (op, 0);
2861
2862  /* First check if we have a decl for the address, then look at the right side
2863     if it is a PLUS.  Otherwise, strip off arithmetic and keep looking.
2864     But don't allow the address to itself be indirect.  */
2865  if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2866    return expr;
2867  else if (GET_CODE (op) == PLUS
2868	   && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2869    return expr;
2870
2871  while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
2872	 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
2873    op = XEXP (op, 0);
2874
2875  expr = get_mem_expr_from_op (op, &inner_addressp);
2876  return inner_addressp ? 0 : expr;
2877}
2878
2879/* Output operand names for assembler instructions.  OPERANDS is the
2880   operand vector, OPORDER is the order to write the operands, and NOPS
2881   is the number of operands to write.  */
2882
2883static void
2884output_asm_operand_names (rtx *operands, int *oporder, int nops)
2885{
2886  int wrote = 0;
2887  int i;
2888
2889  for (i = 0; i < nops; i++)
2890    {
2891      int addressp;
2892      rtx op = operands[oporder[i]];
2893      tree expr = get_mem_expr_from_op (op, &addressp);
2894
2895      fprintf (asm_out_file, "%c%s",
2896	       wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
2897      wrote = 1;
2898      if (expr)
2899	{
2900	  fprintf (asm_out_file, "%s",
2901		   addressp ? "*" : "");
2902	  print_mem_expr (asm_out_file, expr);
2903	  wrote = 1;
2904	}
2905      else if (REG_P (op) && ORIGINAL_REGNO (op)
2906	       && ORIGINAL_REGNO (op) != REGNO (op))
2907	fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
2908    }
2909}
2910
2911/* Output text from TEMPLATE to the assembler output file,
2912   obeying %-directions to substitute operands taken from
2913   the vector OPERANDS.
2914
2915   %N (for N a digit) means print operand N in usual manner.
2916   %lN means require operand N to be a CODE_LABEL or LABEL_REF
2917      and print the label name with no punctuation.
2918   %cN means require operand N to be a constant
2919      and print the constant expression with no punctuation.
2920   %aN means expect operand N to be a memory address
2921      (not a memory reference!) and print a reference
2922      to that address.
2923   %nN means expect operand N to be a constant
2924      and print a constant expression for minus the value
2925      of the operand, with no other punctuation.  */
2926
2927void
2928output_asm_insn (const char *template, rtx *operands)
2929{
2930  const char *p;
2931  int c;
2932#ifdef ASSEMBLER_DIALECT
2933  int dialect = 0;
2934#endif
2935  int oporder[MAX_RECOG_OPERANDS];
2936  char opoutput[MAX_RECOG_OPERANDS];
2937  int ops = 0;
2938
2939  /* An insn may return a null string template
2940     in a case where no assembler code is needed.  */
2941  if (*template == 0)
2942    return;
2943
2944  memset (opoutput, 0, sizeof opoutput);
2945  p = template;
2946  putc ('\t', asm_out_file);
2947
2948#ifdef ASM_OUTPUT_OPCODE
2949  ASM_OUTPUT_OPCODE (asm_out_file, p);
2950#endif
2951
2952  while ((c = *p++))
2953    switch (c)
2954      {
2955      case '\n':
2956	if (flag_verbose_asm)
2957	  output_asm_operand_names (operands, oporder, ops);
2958	if (flag_print_asm_name)
2959	  output_asm_name ();
2960
2961	ops = 0;
2962	memset (opoutput, 0, sizeof opoutput);
2963
2964	putc (c, asm_out_file);
2965#ifdef ASM_OUTPUT_OPCODE
2966	while ((c = *p) == '\t')
2967	  {
2968	    putc (c, asm_out_file);
2969	    p++;
2970	  }
2971	ASM_OUTPUT_OPCODE (asm_out_file, p);
2972#endif
2973	break;
2974
2975#ifdef ASSEMBLER_DIALECT
2976      case '{':
2977	{
2978	  int i;
2979
2980	  if (dialect)
2981	    output_operand_lossage ("nested assembly dialect alternatives");
2982	  else
2983	    dialect = 1;
2984
2985	  /* If we want the first dialect, do nothing.  Otherwise, skip
2986	     DIALECT_NUMBER of strings ending with '|'.  */
2987	  for (i = 0; i < dialect_number; i++)
2988	    {
2989	      while (*p && *p != '}' && *p++ != '|')
2990		;
2991	      if (*p == '}')
2992		break;
2993	      if (*p == '|')
2994		p++;
2995	    }
2996
2997	  if (*p == '\0')
2998	    output_operand_lossage ("unterminated assembly dialect alternative");
2999	}
3000	break;
3001
3002      case '|':
3003	if (dialect)
3004	  {
3005	    /* Skip to close brace.  */
3006	    do
3007	      {
3008		if (*p == '\0')
3009		  {
3010		    output_operand_lossage ("unterminated assembly dialect alternative");
3011		    break;
3012		  }
3013	      }
3014	    while (*p++ != '}');
3015	    dialect = 0;
3016	  }
3017	else
3018	  putc (c, asm_out_file);
3019	break;
3020
3021      case '}':
3022	if (! dialect)
3023	  putc (c, asm_out_file);
3024	dialect = 0;
3025	break;
3026#endif
3027
3028      case '%':
3029	/* %% outputs a single %.  */
3030	if (*p == '%')
3031	  {
3032	    p++;
3033	    putc (c, asm_out_file);
3034	  }
3035	/* %= outputs a number which is unique to each insn in the entire
3036	   compilation.  This is useful for making local labels that are
3037	   referred to more than once in a given insn.  */
3038	else if (*p == '=')
3039	  {
3040	    p++;
3041	    fprintf (asm_out_file, "%d", insn_counter);
3042	  }
3043	/* % followed by a letter and some digits
3044	   outputs an operand in a special way depending on the letter.
3045	   Letters `acln' are implemented directly.
3046	   Other letters are passed to `output_operand' so that
3047	   the PRINT_OPERAND macro can define them.  */
3048	else if (ISALPHA (*p))
3049	  {
3050	    int letter = *p++;
3051	    unsigned long opnum;
3052	    char *endptr;
3053
3054	    opnum = strtoul (p, &endptr, 10);
3055
3056	    if (endptr == p)
3057	      output_operand_lossage ("operand number missing "
3058				      "after %%-letter");
3059	    else if (this_is_asm_operands && opnum >= insn_noperands)
3060	      output_operand_lossage ("operand number out of range");
3061	    else if (letter == 'l')
3062	      output_asm_label (operands[opnum]);
3063	    else if (letter == 'a')
3064	      output_address (operands[opnum]);
3065	    else if (letter == 'c')
3066	      {
3067		if (CONSTANT_ADDRESS_P (operands[opnum]))
3068		  output_addr_const (asm_out_file, operands[opnum]);
3069		else
3070		  output_operand (operands[opnum], 'c');
3071	      }
3072	    else if (letter == 'n')
3073	      {
3074		if (GET_CODE (operands[opnum]) == CONST_INT)
3075		  fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3076			   - INTVAL (operands[opnum]));
3077		else
3078		  {
3079		    putc ('-', asm_out_file);
3080		    output_addr_const (asm_out_file, operands[opnum]);
3081		  }
3082	      }
3083	    else
3084	      output_operand (operands[opnum], letter);
3085
3086	    if (!opoutput[opnum])
3087	      oporder[ops++] = opnum;
3088	    opoutput[opnum] = 1;
3089
3090	    p = endptr;
3091	    c = *p;
3092	  }
3093	/* % followed by a digit outputs an operand the default way.  */
3094	else if (ISDIGIT (*p))
3095	  {
3096	    unsigned long opnum;
3097	    char *endptr;
3098
3099	    opnum = strtoul (p, &endptr, 10);
3100	    if (this_is_asm_operands && opnum >= insn_noperands)
3101	      output_operand_lossage ("operand number out of range");
3102	    else
3103	      output_operand (operands[opnum], 0);
3104
3105	    if (!opoutput[opnum])
3106	      oporder[ops++] = opnum;
3107	    opoutput[opnum] = 1;
3108
3109	    p = endptr;
3110	    c = *p;
3111	  }
3112	/* % followed by punctuation: output something for that
3113	   punctuation character alone, with no operand.
3114	   The PRINT_OPERAND macro decides what is actually done.  */
3115#ifdef PRINT_OPERAND_PUNCT_VALID_P
3116	else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3117	  output_operand (NULL_RTX, *p++);
3118#endif
3119	else
3120	  output_operand_lossage ("invalid %%-code");
3121	break;
3122
3123      default:
3124	putc (c, asm_out_file);
3125      }
3126
3127  /* Write out the variable names for operands, if we know them.  */
3128  if (flag_verbose_asm)
3129    output_asm_operand_names (operands, oporder, ops);
3130  if (flag_print_asm_name)
3131    output_asm_name ();
3132
3133  putc ('\n', asm_out_file);
3134}
3135
3136/* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol.  */
3137
3138void
3139output_asm_label (rtx x)
3140{
3141  char buf[256];
3142
3143  if (GET_CODE (x) == LABEL_REF)
3144    x = XEXP (x, 0);
3145  if (LABEL_P (x)
3146      || (NOTE_P (x)
3147	  && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3148    ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3149  else
3150    output_operand_lossage ("'%%l' operand isn't a label");
3151
3152  assemble_name (asm_out_file, buf);
3153}
3154
3155/* Print operand X using machine-dependent assembler syntax.
3156   The macro PRINT_OPERAND is defined just to control this function.
3157   CODE is a non-digit that preceded the operand-number in the % spec,
3158   such as 'z' if the spec was `%z3'.  CODE is 0 if there was no char
3159   between the % and the digits.
3160   When CODE is a non-letter, X is 0.
3161
3162   The meanings of the letters are machine-dependent and controlled
3163   by PRINT_OPERAND.  */
3164
3165static void
3166output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3167{
3168  if (x && GET_CODE (x) == SUBREG)
3169    x = alter_subreg (&x);
3170
3171  /* X must not be a pseudo reg.  */
3172  gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3173
3174  PRINT_OPERAND (asm_out_file, x, code);
3175}
3176
3177/* Print a memory reference operand for address X
3178   using machine-dependent assembler syntax.
3179   The macro PRINT_OPERAND_ADDRESS exists just to control this function.  */
3180
3181void
3182output_address (rtx x)
3183{
3184  walk_alter_subreg (&x);
3185  PRINT_OPERAND_ADDRESS (asm_out_file, x);
3186}
3187
3188/* Print an integer constant expression in assembler syntax.
3189   Addition and subtraction are the only arithmetic
3190   that may appear in these expressions.  */
3191
3192void
3193output_addr_const (FILE *file, rtx x)
3194{
3195  char buf[256];
3196
3197 restart:
3198  switch (GET_CODE (x))
3199    {
3200    case PC:
3201      putc ('.', file);
3202      break;
3203
3204    case SYMBOL_REF:
3205      if (SYMBOL_REF_DECL (x))
3206	mark_decl_referenced (SYMBOL_REF_DECL (x));
3207#ifdef ASM_OUTPUT_SYMBOL_REF
3208      ASM_OUTPUT_SYMBOL_REF (file, x);
3209#else
3210      assemble_name (file, XSTR (x, 0));
3211#endif
3212      break;
3213
3214    case LABEL_REF:
3215      x = XEXP (x, 0);
3216      /* Fall through.  */
3217    case CODE_LABEL:
3218      ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3219#ifdef ASM_OUTPUT_LABEL_REF
3220      ASM_OUTPUT_LABEL_REF (file, buf);
3221#else
3222      assemble_name (file, buf);
3223#endif
3224      break;
3225
3226    case CONST_INT:
3227      fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3228      break;
3229
3230    case CONST:
3231      /* This used to output parentheses around the expression,
3232	 but that does not work on the 386 (either ATT or BSD assembler).  */
3233      output_addr_const (file, XEXP (x, 0));
3234      break;
3235
3236    case CONST_DOUBLE:
3237      if (GET_MODE (x) == VOIDmode)
3238	{
3239	  /* We can use %d if the number is one word and positive.  */
3240	  if (CONST_DOUBLE_HIGH (x))
3241	    fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3242		     CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3243	  else if (CONST_DOUBLE_LOW (x) < 0)
3244	    fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3245	  else
3246	    fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3247	}
3248      else
3249	/* We can't handle floating point constants;
3250	   PRINT_OPERAND must handle them.  */
3251	output_operand_lossage ("floating constant misused");
3252      break;
3253
3254    case PLUS:
3255      /* Some assemblers need integer constants to appear last (eg masm).  */
3256      if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3257	{
3258	  output_addr_const (file, XEXP (x, 1));
3259	  if (INTVAL (XEXP (x, 0)) >= 0)
3260	    fprintf (file, "+");
3261	  output_addr_const (file, XEXP (x, 0));
3262	}
3263      else
3264	{
3265	  output_addr_const (file, XEXP (x, 0));
3266	  if (GET_CODE (XEXP (x, 1)) != CONST_INT
3267	      || INTVAL (XEXP (x, 1)) >= 0)
3268	    fprintf (file, "+");
3269	  output_addr_const (file, XEXP (x, 1));
3270	}
3271      break;
3272
3273    case MINUS:
3274      /* Avoid outputting things like x-x or x+5-x,
3275	 since some assemblers can't handle that.  */
3276      x = simplify_subtraction (x);
3277      if (GET_CODE (x) != MINUS)
3278	goto restart;
3279
3280      output_addr_const (file, XEXP (x, 0));
3281      fprintf (file, "-");
3282      if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3283	  || GET_CODE (XEXP (x, 1)) == PC
3284	  || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3285	output_addr_const (file, XEXP (x, 1));
3286      else
3287	{
3288	  fputs (targetm.asm_out.open_paren, file);
3289	  output_addr_const (file, XEXP (x, 1));
3290	  fputs (targetm.asm_out.close_paren, file);
3291	}
3292      break;
3293
3294    case ZERO_EXTEND:
3295    case SIGN_EXTEND:
3296    case SUBREG:
3297      output_addr_const (file, XEXP (x, 0));
3298      break;
3299
3300    default:
3301#ifdef OUTPUT_ADDR_CONST_EXTRA
3302      OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3303      break;
3304
3305    fail:
3306#endif
3307      output_operand_lossage ("invalid expression as operand");
3308    }
3309}
3310
3311/* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3312   %R prints the value of REGISTER_PREFIX.
3313   %L prints the value of LOCAL_LABEL_PREFIX.
3314   %U prints the value of USER_LABEL_PREFIX.
3315   %I prints the value of IMMEDIATE_PREFIX.
3316   %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3317   Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3318
3319   We handle alternate assembler dialects here, just like output_asm_insn.  */
3320
3321void
3322asm_fprintf (FILE *file, const char *p, ...)
3323{
3324  char buf[10];
3325  char *q, c;
3326  va_list argptr;
3327
3328  va_start (argptr, p);
3329
3330  buf[0] = '%';
3331
3332  while ((c = *p++))
3333    switch (c)
3334      {
3335#ifdef ASSEMBLER_DIALECT
3336      case '{':
3337	{
3338	  int i;
3339
3340	  /* If we want the first dialect, do nothing.  Otherwise, skip
3341	     DIALECT_NUMBER of strings ending with '|'.  */
3342	  for (i = 0; i < dialect_number; i++)
3343	    {
3344	      while (*p && *p++ != '|')
3345		;
3346
3347	      if (*p == '|')
3348		p++;
3349	    }
3350	}
3351	break;
3352
3353      case '|':
3354	/* Skip to close brace.  */
3355	while (*p && *p++ != '}')
3356	  ;
3357	break;
3358
3359      case '}':
3360	break;
3361#endif
3362
3363      case '%':
3364	c = *p++;
3365	q = &buf[1];
3366	while (strchr ("-+ #0", c))
3367	  {
3368	    *q++ = c;
3369	    c = *p++;
3370	  }
3371	while (ISDIGIT (c) || c == '.')
3372	  {
3373	    *q++ = c;
3374	    c = *p++;
3375	  }
3376	switch (c)
3377	  {
3378	  case '%':
3379	    putc ('%', file);
3380	    break;
3381
3382	  case 'd':  case 'i':  case 'u':
3383	  case 'x':  case 'X':  case 'o':
3384	  case 'c':
3385	    *q++ = c;
3386	    *q = 0;
3387	    fprintf (file, buf, va_arg (argptr, int));
3388	    break;
3389
3390	  case 'w':
3391	    /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3392	       'o' cases, but we do not check for those cases.  It
3393	       means that the value is a HOST_WIDE_INT, which may be
3394	       either `long' or `long long'.  */
3395	    memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3396	    q += strlen (HOST_WIDE_INT_PRINT);
3397	    *q++ = *p++;
3398	    *q = 0;
3399	    fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3400	    break;
3401
3402	  case 'l':
3403	    *q++ = c;
3404#ifdef HAVE_LONG_LONG
3405	    if (*p == 'l')
3406	      {
3407		*q++ = *p++;
3408		*q++ = *p++;
3409		*q = 0;
3410		fprintf (file, buf, va_arg (argptr, long long));
3411	      }
3412	    else
3413#endif
3414	      {
3415		*q++ = *p++;
3416		*q = 0;
3417		fprintf (file, buf, va_arg (argptr, long));
3418	      }
3419
3420	    break;
3421
3422	  case 's':
3423	    *q++ = c;
3424	    *q = 0;
3425	    fprintf (file, buf, va_arg (argptr, char *));
3426	    break;
3427
3428	  case 'O':
3429#ifdef ASM_OUTPUT_OPCODE
3430	    ASM_OUTPUT_OPCODE (asm_out_file, p);
3431#endif
3432	    break;
3433
3434	  case 'R':
3435#ifdef REGISTER_PREFIX
3436	    fprintf (file, "%s", REGISTER_PREFIX);
3437#endif
3438	    break;
3439
3440	  case 'I':
3441#ifdef IMMEDIATE_PREFIX
3442	    fprintf (file, "%s", IMMEDIATE_PREFIX);
3443#endif
3444	    break;
3445
3446	  case 'L':
3447#ifdef LOCAL_LABEL_PREFIX
3448	    fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3449#endif
3450	    break;
3451
3452	  case 'U':
3453	    fputs (user_label_prefix, file);
3454	    break;
3455
3456#ifdef ASM_FPRINTF_EXTENSIONS
3457	    /* Uppercase letters are reserved for general use by asm_fprintf
3458	       and so are not available to target specific code.  In order to
3459	       prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3460	       they are defined here.  As they get turned into real extensions
3461	       to asm_fprintf they should be removed from this list.  */
3462	  case 'A': case 'B': case 'C': case 'D': case 'E':
3463	  case 'F': case 'G': case 'H': case 'J': case 'K':
3464	  case 'M': case 'N': case 'P': case 'Q': case 'S':
3465	  case 'T': case 'V': case 'W': case 'Y': case 'Z':
3466	    break;
3467
3468	  ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3469#endif
3470	  default:
3471	    gcc_unreachable ();
3472	  }
3473	break;
3474
3475      default:
3476	putc (c, file);
3477      }
3478  va_end (argptr);
3479}
3480
3481/* Split up a CONST_DOUBLE or integer constant rtx
3482   into two rtx's for single words,
3483   storing in *FIRST the word that comes first in memory in the target
3484   and in *SECOND the other.  */
3485
3486void
3487split_double (rtx value, rtx *first, rtx *second)
3488{
3489  if (GET_CODE (value) == CONST_INT)
3490    {
3491      if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3492	{
3493	  /* In this case the CONST_INT holds both target words.
3494	     Extract the bits from it into two word-sized pieces.
3495	     Sign extend each half to HOST_WIDE_INT.  */
3496	  unsigned HOST_WIDE_INT low, high;
3497	  unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3498
3499	  /* Set sign_bit to the most significant bit of a word.  */
3500	  sign_bit = 1;
3501	  sign_bit <<= BITS_PER_WORD - 1;
3502
3503	  /* Set mask so that all bits of the word are set.  We could
3504	     have used 1 << BITS_PER_WORD instead of basing the
3505	     calculation on sign_bit.  However, on machines where
3506	     HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3507	     compiler warning, even though the code would never be
3508	     executed.  */
3509	  mask = sign_bit << 1;
3510	  mask--;
3511
3512	  /* Set sign_extend as any remaining bits.  */
3513	  sign_extend = ~mask;
3514
3515	  /* Pick the lower word and sign-extend it.  */
3516	  low = INTVAL (value);
3517	  low &= mask;
3518	  if (low & sign_bit)
3519	    low |= sign_extend;
3520
3521	  /* Pick the higher word, shifted to the least significant
3522	     bits, and sign-extend it.  */
3523	  high = INTVAL (value);
3524	  high >>= BITS_PER_WORD - 1;
3525	  high >>= 1;
3526	  high &= mask;
3527	  if (high & sign_bit)
3528	    high |= sign_extend;
3529
3530	  /* Store the words in the target machine order.  */
3531	  if (WORDS_BIG_ENDIAN)
3532	    {
3533	      *first = GEN_INT (high);
3534	      *second = GEN_INT (low);
3535	    }
3536	  else
3537	    {
3538	      *first = GEN_INT (low);
3539	      *second = GEN_INT (high);
3540	    }
3541	}
3542      else
3543	{
3544	  /* The rule for using CONST_INT for a wider mode
3545	     is that we regard the value as signed.
3546	     So sign-extend it.  */
3547	  rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3548	  if (WORDS_BIG_ENDIAN)
3549	    {
3550	      *first = high;
3551	      *second = value;
3552	    }
3553	  else
3554	    {
3555	      *first = value;
3556	      *second = high;
3557	    }
3558	}
3559    }
3560  else if (GET_CODE (value) != CONST_DOUBLE)
3561    {
3562      if (WORDS_BIG_ENDIAN)
3563	{
3564	  *first = const0_rtx;
3565	  *second = value;
3566	}
3567      else
3568	{
3569	  *first = value;
3570	  *second = const0_rtx;
3571	}
3572    }
3573  else if (GET_MODE (value) == VOIDmode
3574	   /* This is the old way we did CONST_DOUBLE integers.  */
3575	   || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3576    {
3577      /* In an integer, the words are defined as most and least significant.
3578	 So order them by the target's convention.  */
3579      if (WORDS_BIG_ENDIAN)
3580	{
3581	  *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3582	  *second = GEN_INT (CONST_DOUBLE_LOW (value));
3583	}
3584      else
3585	{
3586	  *first = GEN_INT (CONST_DOUBLE_LOW (value));
3587	  *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3588	}
3589    }
3590  else
3591    {
3592      REAL_VALUE_TYPE r;
3593      long l[2];
3594      REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3595
3596      /* Note, this converts the REAL_VALUE_TYPE to the target's
3597	 format, splits up the floating point double and outputs
3598	 exactly 32 bits of it into each of l[0] and l[1] --
3599	 not necessarily BITS_PER_WORD bits.  */
3600      REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3601
3602      /* If 32 bits is an entire word for the target, but not for the host,
3603	 then sign-extend on the host so that the number will look the same
3604	 way on the host that it would on the target.  See for instance
3605	 simplify_unary_operation.  The #if is needed to avoid compiler
3606	 warnings.  */
3607
3608#if HOST_BITS_PER_LONG > 32
3609      if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3610	{
3611	  if (l[0] & ((long) 1 << 31))
3612	    l[0] |= ((long) (-1) << 32);
3613	  if (l[1] & ((long) 1 << 31))
3614	    l[1] |= ((long) (-1) << 32);
3615	}
3616#endif
3617
3618      *first = GEN_INT (l[0]);
3619      *second = GEN_INT (l[1]);
3620    }
3621}
3622
3623/* Return nonzero if this function has no function calls.  */
3624
3625int
3626leaf_function_p (void)
3627{
3628  rtx insn;
3629  rtx link;
3630
3631  if (current_function_profile || profile_arc_flag)
3632    return 0;
3633
3634  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3635    {
3636      if (CALL_P (insn)
3637	  && ! SIBLING_CALL_P (insn))
3638	return 0;
3639      if (NONJUMP_INSN_P (insn)
3640	  && GET_CODE (PATTERN (insn)) == SEQUENCE
3641	  && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3642	  && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3643	return 0;
3644    }
3645  for (link = current_function_epilogue_delay_list;
3646       link;
3647       link = XEXP (link, 1))
3648    {
3649      insn = XEXP (link, 0);
3650
3651      if (CALL_P (insn)
3652	  && ! SIBLING_CALL_P (insn))
3653	return 0;
3654      if (NONJUMP_INSN_P (insn)
3655	  && GET_CODE (PATTERN (insn)) == SEQUENCE
3656	  && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3657	  && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3658	return 0;
3659    }
3660
3661  return 1;
3662}
3663
3664/* Return 1 if branch is a forward branch.
3665   Uses insn_shuid array, so it works only in the final pass.  May be used by
3666   output templates to customary add branch prediction hints.
3667 */
3668int
3669final_forward_branch_p (rtx insn)
3670{
3671  int insn_id, label_id;
3672
3673  gcc_assert (uid_shuid);
3674  insn_id = INSN_SHUID (insn);
3675  label_id = INSN_SHUID (JUMP_LABEL (insn));
3676  /* We've hit some insns that does not have id information available.  */
3677  gcc_assert (insn_id && label_id);
3678  return insn_id < label_id;
3679}
3680
3681/* On some machines, a function with no call insns
3682   can run faster if it doesn't create its own register window.
3683   When output, the leaf function should use only the "output"
3684   registers.  Ordinarily, the function would be compiled to use
3685   the "input" registers to find its arguments; it is a candidate
3686   for leaf treatment if it uses only the "input" registers.
3687   Leaf function treatment means renumbering so the function
3688   uses the "output" registers instead.  */
3689
3690#ifdef LEAF_REGISTERS
3691
3692/* Return 1 if this function uses only the registers that can be
3693   safely renumbered.  */
3694
3695int
3696only_leaf_regs_used (void)
3697{
3698  int i;
3699  const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3700
3701  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3702    if ((regs_ever_live[i] || global_regs[i])
3703	&& ! permitted_reg_in_leaf_functions[i])
3704      return 0;
3705
3706  if (current_function_uses_pic_offset_table
3707      && pic_offset_table_rtx != 0
3708      && REG_P (pic_offset_table_rtx)
3709      && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3710    return 0;
3711
3712  return 1;
3713}
3714
3715/* Scan all instructions and renumber all registers into those
3716   available in leaf functions.  */
3717
3718static void
3719leaf_renumber_regs (rtx first)
3720{
3721  rtx insn;
3722
3723  /* Renumber only the actual patterns.
3724     The reg-notes can contain frame pointer refs,
3725     and renumbering them could crash, and should not be needed.  */
3726  for (insn = first; insn; insn = NEXT_INSN (insn))
3727    if (INSN_P (insn))
3728      leaf_renumber_regs_insn (PATTERN (insn));
3729  for (insn = current_function_epilogue_delay_list;
3730       insn;
3731       insn = XEXP (insn, 1))
3732    if (INSN_P (XEXP (insn, 0)))
3733      leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3734}
3735
3736/* Scan IN_RTX and its subexpressions, and renumber all regs into those
3737   available in leaf functions.  */
3738
3739void
3740leaf_renumber_regs_insn (rtx in_rtx)
3741{
3742  int i, j;
3743  const char *format_ptr;
3744
3745  if (in_rtx == 0)
3746    return;
3747
3748  /* Renumber all input-registers into output-registers.
3749     renumbered_regs would be 1 for an output-register;
3750     they  */
3751
3752  if (REG_P (in_rtx))
3753    {
3754      int newreg;
3755
3756      /* Don't renumber the same reg twice.  */
3757      if (in_rtx->used)
3758	return;
3759
3760      newreg = REGNO (in_rtx);
3761      /* Don't try to renumber pseudo regs.  It is possible for a pseudo reg
3762	 to reach here as part of a REG_NOTE.  */
3763      if (newreg >= FIRST_PSEUDO_REGISTER)
3764	{
3765	  in_rtx->used = 1;
3766	  return;
3767	}
3768      newreg = LEAF_REG_REMAP (newreg);
3769      gcc_assert (newreg >= 0);
3770      regs_ever_live[REGNO (in_rtx)] = 0;
3771      regs_ever_live[newreg] = 1;
3772      REGNO (in_rtx) = newreg;
3773      in_rtx->used = 1;
3774    }
3775
3776  if (INSN_P (in_rtx))
3777    {
3778      /* Inside a SEQUENCE, we find insns.
3779	 Renumber just the patterns of these insns,
3780	 just as we do for the top-level insns.  */
3781      leaf_renumber_regs_insn (PATTERN (in_rtx));
3782      return;
3783    }
3784
3785  format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3786
3787  for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3788    switch (*format_ptr++)
3789      {
3790      case 'e':
3791	leaf_renumber_regs_insn (XEXP (in_rtx, i));
3792	break;
3793
3794      case 'E':
3795	if (NULL != XVEC (in_rtx, i))
3796	  {
3797	    for (j = 0; j < XVECLEN (in_rtx, i); j++)
3798	      leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3799	  }
3800	break;
3801
3802      case 'S':
3803      case 's':
3804      case '0':
3805      case 'i':
3806      case 'w':
3807      case 'n':
3808      case 'u':
3809	break;
3810
3811      default:
3812	gcc_unreachable ();
3813      }
3814}
3815#endif
3816
3817
3818/* When -gused is used, emit debug info for only used symbols. But in
3819   addition to the standard intercepted debug_hooks there are some direct
3820   calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3821   Those routines may also be called from a higher level intercepted routine. So
3822   to prevent recording data for an inner call to one of these for an intercept,
3823   we maintain an intercept nesting counter (debug_nesting). We only save the
3824   intercepted arguments if the nesting is 1.  */
3825int debug_nesting = 0;
3826
3827static tree *symbol_queue;
3828int symbol_queue_index = 0;
3829static int symbol_queue_size = 0;
3830
3831/* Generate the symbols for any queued up type symbols we encountered
3832   while generating the type info for some originally used symbol.
3833   This might generate additional entries in the queue.  Only when
3834   the nesting depth goes to 0 is this routine called.  */
3835
3836void
3837debug_flush_symbol_queue (void)
3838{
3839  int i;
3840
3841  /* Make sure that additionally queued items are not flushed
3842     prematurely.  */
3843
3844  ++debug_nesting;
3845
3846  for (i = 0; i < symbol_queue_index; ++i)
3847    {
3848      /* If we pushed queued symbols then such symbols must be
3849         output no matter what anyone else says.  Specifically,
3850         we need to make sure dbxout_symbol() thinks the symbol was
3851         used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3852         which may be set for outside reasons.  */
3853      int saved_tree_used = TREE_USED (symbol_queue[i]);
3854      int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
3855      TREE_USED (symbol_queue[i]) = 1;
3856      TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
3857
3858#ifdef DBX_DEBUGGING_INFO
3859      dbxout_symbol (symbol_queue[i], 0);
3860#endif
3861
3862      TREE_USED (symbol_queue[i]) = saved_tree_used;
3863      TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
3864    }
3865
3866  symbol_queue_index = 0;
3867  --debug_nesting;
3868}
3869
3870/* Queue a type symbol needed as part of the definition of a decl
3871   symbol.  These symbols are generated when debug_flush_symbol_queue()
3872   is called.  */
3873
3874void
3875debug_queue_symbol (tree decl)
3876{
3877  if (symbol_queue_index >= symbol_queue_size)
3878    {
3879      symbol_queue_size += 10;
3880      symbol_queue = xrealloc (symbol_queue,
3881			       symbol_queue_size * sizeof (tree));
3882    }
3883
3884  symbol_queue[symbol_queue_index++] = decl;
3885}
3886
3887/* Free symbol queue.  */
3888void
3889debug_free_queue (void)
3890{
3891  if (symbol_queue)
3892    {
3893      free (symbol_queue);
3894      symbol_queue = NULL;
3895      symbol_queue_size = 0;
3896    }
3897}
3898
3899/* Turn the RTL into assembly.  */
3900static unsigned int
3901rest_of_handle_final (void)
3902{
3903  rtx x;
3904  const char *fnname;
3905
3906  /* Get the function's name, as described by its RTL.  This may be
3907     different from the DECL_NAME name used in the source file.  */
3908
3909  x = DECL_RTL (current_function_decl);
3910  gcc_assert (MEM_P (x));
3911  x = XEXP (x, 0);
3912  gcc_assert (GET_CODE (x) == SYMBOL_REF);
3913  fnname = XSTR (x, 0);
3914
3915  assemble_start_function (current_function_decl, fnname);
3916  final_start_function (get_insns (), asm_out_file, optimize);
3917  final (get_insns (), asm_out_file, optimize);
3918  final_end_function ();
3919
3920#ifdef TARGET_UNWIND_INFO
3921  /* ??? The IA-64 ".handlerdata" directive must be issued before
3922     the ".endp" directive that closes the procedure descriptor.  */
3923  output_function_exception_table ();
3924#endif
3925
3926  assemble_end_function (current_function_decl, fnname);
3927
3928#ifndef TARGET_UNWIND_INFO
3929  /* Otherwise, it feels unclean to switch sections in the middle.  */
3930  output_function_exception_table ();
3931#endif
3932
3933  user_defined_section_attribute = false;
3934
3935  if (! quiet_flag)
3936    fflush (asm_out_file);
3937
3938  /* Release all memory allocated by flow.  */
3939  free_basic_block_vars ();
3940
3941  /* Write DBX symbols if requested.  */
3942
3943  /* Note that for those inline functions where we don't initially
3944     know for certain that we will be generating an out-of-line copy,
3945     the first invocation of this routine (rest_of_compilation) will
3946     skip over this code by doing a `goto exit_rest_of_compilation;'.
3947     Later on, wrapup_global_declarations will (indirectly) call
3948     rest_of_compilation again for those inline functions that need
3949     to have out-of-line copies generated.  During that call, we
3950     *will* be routed past here.  */
3951
3952  timevar_push (TV_SYMOUT);
3953  (*debug_hooks->function_decl) (current_function_decl);
3954  timevar_pop (TV_SYMOUT);
3955  return 0;
3956}
3957
3958struct tree_opt_pass pass_final =
3959{
3960  NULL,                                 /* name */
3961  NULL,                                 /* gate */
3962  rest_of_handle_final,                 /* execute */
3963  NULL,                                 /* sub */
3964  NULL,                                 /* next */
3965  0,                                    /* static_pass_number */
3966  TV_FINAL,                             /* tv_id */
3967  0,                                    /* properties_required */
3968  0,                                    /* properties_provided */
3969  0,                                    /* properties_destroyed */
3970  0,                                    /* todo_flags_start */
3971  TODO_ggc_collect,                     /* todo_flags_finish */
3972  0                                     /* letter */
3973};
3974
3975
3976static unsigned int
3977rest_of_handle_shorten_branches (void)
3978{
3979  /* Shorten branches.  */
3980  shorten_branches (get_insns ());
3981  return 0;
3982}
3983
3984struct tree_opt_pass pass_shorten_branches =
3985{
3986  "shorten",                            /* name */
3987  NULL,                                 /* gate */
3988  rest_of_handle_shorten_branches,      /* execute */
3989  NULL,                                 /* sub */
3990  NULL,                                 /* next */
3991  0,                                    /* static_pass_number */
3992  TV_FINAL,                             /* tv_id */
3993  0,                                    /* properties_required */
3994  0,                                    /* properties_provided */
3995  0,                                    /* properties_destroyed */
3996  0,                                    /* todo_flags_start */
3997  TODO_dump_func,                       /* todo_flags_finish */
3998  0                                     /* letter */
3999};
4000
4001
4002static unsigned int
4003rest_of_clean_state (void)
4004{
4005  rtx insn, next;
4006
4007  /* It is very important to decompose the RTL instruction chain here:
4008     debug information keeps pointing into CODE_LABEL insns inside the function
4009     body.  If these remain pointing to the other insns, we end up preserving
4010     whole RTL chain and attached detailed debug info in memory.  */
4011  for (insn = get_insns (); insn; insn = next)
4012    {
4013      next = NEXT_INSN (insn);
4014      NEXT_INSN (insn) = NULL;
4015      PREV_INSN (insn) = NULL;
4016    }
4017
4018  /* In case the function was not output,
4019     don't leave any temporary anonymous types
4020     queued up for sdb output.  */
4021#ifdef SDB_DEBUGGING_INFO
4022  if (write_symbols == SDB_DEBUG)
4023    sdbout_types (NULL_TREE);
4024#endif
4025
4026  reload_completed = 0;
4027  epilogue_completed = 0;
4028  flow2_completed = 0;
4029  no_new_pseudos = 0;
4030#ifdef STACK_REGS
4031  regstack_completed = 0;
4032#endif
4033
4034  /* Clear out the insn_length contents now that they are no
4035     longer valid.  */
4036  init_insn_lengths ();
4037
4038  /* Show no temporary slots allocated.  */
4039  init_temp_slots ();
4040
4041  free_basic_block_vars ();
4042  free_bb_for_insn ();
4043
4044
4045  if (targetm.binds_local_p (current_function_decl))
4046    {
4047      int pref = cfun->preferred_stack_boundary;
4048      if (cfun->stack_alignment_needed > cfun->preferred_stack_boundary)
4049        pref = cfun->stack_alignment_needed;
4050      cgraph_rtl_info (current_function_decl)->preferred_incoming_stack_boundary
4051        = pref;
4052    }
4053
4054  /* Make sure volatile mem refs aren't considered valid operands for
4055     arithmetic insns.  We must call this here if this is a nested inline
4056     function, since the above code leaves us in the init_recog state,
4057     and the function context push/pop code does not save/restore volatile_ok.
4058
4059     ??? Maybe it isn't necessary for expand_start_function to call this
4060     anymore if we do it here?  */
4061
4062  init_recog_no_volatile ();
4063
4064  /* We're done with this function.  Free up memory if we can.  */
4065  free_after_parsing (cfun);
4066  free_after_compilation (cfun);
4067  return 0;
4068}
4069
4070struct tree_opt_pass pass_clean_state =
4071{
4072  NULL,                                 /* name */
4073  NULL,                                 /* gate */
4074  rest_of_clean_state,                  /* execute */
4075  NULL,                                 /* sub */
4076  NULL,                                 /* next */
4077  0,                                    /* static_pass_number */
4078  TV_FINAL,                             /* tv_id */
4079  0,                                    /* properties_required */
4080  0,                                    /* properties_provided */
4081  PROP_rtl,                             /* properties_destroyed */
4082  0,                                    /* todo_flags_start */
4083  0,                                    /* todo_flags_finish */
4084  0                                     /* letter */
4085};
4086
4087