1/* atof_generic.c - turn a string of digits into a Flonum
2   Copyright 1987, 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999, 2000,
3   2001, 2003, 2005, 2006 Free Software Foundation, Inc.
4
5   This file is part of GAS, the GNU Assembler.
6
7   GAS is free software; you can redistribute it and/or modify
8   it under the terms of the GNU General Public License as published by
9   the Free Software Foundation; either version 2, or (at your option)
10   any later version.
11
12   GAS is distributed in the hope that it will be useful,
13   but WITHOUT ANY WARRANTY; without even the implied warranty of
14   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15   GNU General Public License for more details.
16
17   You should have received a copy of the GNU General Public License
18   along with GAS; see the file COPYING.  If not, write to the Free
19   Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
20   02110-1301, USA.  */
21
22#include "as.h"
23#include "safe-ctype.h"
24
25#ifndef FALSE
26#define FALSE (0)
27#endif
28#ifndef TRUE
29#define TRUE  (1)
30#endif
31
32#ifdef TRACE
33static void flonum_print (const FLONUM_TYPE *);
34#endif
35
36#define ASSUME_DECIMAL_MARK_IS_DOT
37
38/***********************************************************************\
39 *									*
40 *	Given a string of decimal digits , with optional decimal	*
41 *	mark and optional decimal exponent (place value) of the		*
42 *	lowest_order decimal digit: produce a floating point		*
43 *	number. The number is 'generic' floating point: our		*
44 *	caller will encode it for a specific machine architecture.	*
45 *									*
46 *	Assumptions							*
47 *		uses base (radix) 2					*
48 *		this machine uses 2's complement binary integers	*
49 *		target flonums use "      "         "       "		*
50 *		target flonums exponents fit in a long			*
51 *									*
52 \***********************************************************************/
53
54/*
55
56  Syntax:
57
58  <flonum> ::= <optional-sign> <decimal-number> <optional-exponent>
59  <optional-sign> ::= '+' | '-' | {empty}
60  <decimal-number> ::= <integer>
61  | <integer> <radix-character>
62  | <integer> <radix-character> <integer>
63  | <radix-character> <integer>
64
65  <optional-exponent> ::= {empty}
66  | <exponent-character> <optional-sign> <integer>
67
68  <integer> ::= <digit> | <digit> <integer>
69  <digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
70  <exponent-character> ::= {one character from "string_of_decimal_exponent_marks"}
71  <radix-character> ::= {one character from "string_of_decimal_marks"}
72
73  */
74
75int
76atof_generic (/* return pointer to just AFTER number we read.  */
77	      char **address_of_string_pointer,
78	      /* At most one per number.  */
79	      const char *string_of_decimal_marks,
80	      const char *string_of_decimal_exponent_marks,
81	      FLONUM_TYPE *address_of_generic_floating_point_number)
82{
83  int return_value;		/* 0 means OK.  */
84  char *first_digit;
85  unsigned int number_of_digits_before_decimal;
86  unsigned int number_of_digits_after_decimal;
87  long decimal_exponent;
88  unsigned int number_of_digits_available;
89  char digits_sign_char;
90
91  /*
92   * Scan the input string, abstracting (1)digits (2)decimal mark (3) exponent.
93   * It would be simpler to modify the string, but we don't; just to be nice
94   * to caller.
95   * We need to know how many digits we have, so we can allocate space for
96   * the digits' value.
97   */
98
99  char *p;
100  char c;
101  int seen_significant_digit;
102
103#ifdef ASSUME_DECIMAL_MARK_IS_DOT
104  assert (string_of_decimal_marks[0] == '.'
105	  && string_of_decimal_marks[1] == 0);
106#define IS_DECIMAL_MARK(c)	((c) == '.')
107#else
108#define IS_DECIMAL_MARK(c)	(0 != strchr (string_of_decimal_marks, (c)))
109#endif
110
111  first_digit = *address_of_string_pointer;
112  c = *first_digit;
113
114  if (c == '-' || c == '+')
115    {
116      digits_sign_char = c;
117      first_digit++;
118    }
119  else
120    digits_sign_char = '+';
121
122  switch (first_digit[0])
123    {
124    case 'n':
125    case 'N':
126      if (!strncasecmp ("nan", first_digit, 3))
127	{
128	  address_of_generic_floating_point_number->sign = 0;
129	  address_of_generic_floating_point_number->exponent = 0;
130	  address_of_generic_floating_point_number->leader =
131	    address_of_generic_floating_point_number->low;
132	  *address_of_string_pointer = first_digit + 3;
133	  return 0;
134	}
135      break;
136
137    case 'i':
138    case 'I':
139      if (!strncasecmp ("inf", first_digit, 3))
140	{
141	  address_of_generic_floating_point_number->sign =
142	    digits_sign_char == '+' ? 'P' : 'N';
143	  address_of_generic_floating_point_number->exponent = 0;
144	  address_of_generic_floating_point_number->leader =
145	    address_of_generic_floating_point_number->low;
146
147	  first_digit += 3;
148	  if (!strncasecmp ("inity", first_digit, 5))
149	    first_digit += 5;
150
151	  *address_of_string_pointer = first_digit;
152
153	  return 0;
154	}
155      break;
156    }
157
158  number_of_digits_before_decimal = 0;
159  number_of_digits_after_decimal = 0;
160  decimal_exponent = 0;
161  seen_significant_digit = 0;
162  for (p = first_digit;
163       (((c = *p) != '\0')
164	&& (!c || !IS_DECIMAL_MARK (c))
165	&& (!c || !strchr (string_of_decimal_exponent_marks, c)));
166       p++)
167    {
168      if (ISDIGIT (c))
169	{
170	  if (seen_significant_digit || c > '0')
171	    {
172	      ++number_of_digits_before_decimal;
173	      seen_significant_digit = 1;
174	    }
175	  else
176	    {
177	      first_digit++;
178	    }
179	}
180      else
181	{
182	  break;		/* p -> char after pre-decimal digits.  */
183	}
184    }				/* For each digit before decimal mark.  */
185
186#ifndef OLD_FLOAT_READS
187  /* Ignore trailing 0's after the decimal point.  The original code here
188   * (ifdef'd out) does not do this, and numbers like
189   *	4.29496729600000000000e+09	(2**31)
190   * come out inexact for some reason related to length of the digit
191   * string.
192   */
193  if (c && IS_DECIMAL_MARK (c))
194    {
195      unsigned int zeros = 0;	/* Length of current string of zeros */
196
197      for (p++; (c = *p) && ISDIGIT (c); p++)
198	{
199	  if (c == '0')
200	    {
201	      zeros++;
202	    }
203	  else
204	    {
205	      number_of_digits_after_decimal += 1 + zeros;
206	      zeros = 0;
207	    }
208	}
209    }
210#else
211  if (c && IS_DECIMAL_MARK (c))
212    {
213      for (p++;
214	   (((c = *p) != '\0')
215	    && (!c || !strchr (string_of_decimal_exponent_marks, c)));
216	   p++)
217	{
218	  if (ISDIGIT (c))
219	    {
220	      /* This may be retracted below.  */
221	      number_of_digits_after_decimal++;
222
223	      if ( /* seen_significant_digit || */ c > '0')
224		{
225		  seen_significant_digit = TRUE;
226		}
227	    }
228	  else
229	    {
230	      if (!seen_significant_digit)
231		{
232		  number_of_digits_after_decimal = 0;
233		}
234	      break;
235	    }
236	}			/* For each digit after decimal mark.  */
237    }
238
239  while (number_of_digits_after_decimal
240	 && first_digit[number_of_digits_before_decimal
241			+ number_of_digits_after_decimal] == '0')
242    --number_of_digits_after_decimal;
243#endif
244
245  if (flag_m68k_mri)
246    {
247      while (c == '_')
248	c = *++p;
249    }
250  if (c && strchr (string_of_decimal_exponent_marks, c))
251    {
252      char digits_exponent_sign_char;
253
254      c = *++p;
255      if (flag_m68k_mri)
256	{
257	  while (c == '_')
258	    c = *++p;
259	}
260      if (c && strchr ("+-", c))
261	{
262	  digits_exponent_sign_char = c;
263	  c = *++p;
264	}
265      else
266	{
267	  digits_exponent_sign_char = '+';
268	}
269
270      for (; (c); c = *++p)
271	{
272	  if (ISDIGIT (c))
273	    {
274	      decimal_exponent = decimal_exponent * 10 + c - '0';
275	      /*
276	       * BUG! If we overflow here, we lose!
277	       */
278	    }
279	  else
280	    {
281	      break;
282	    }
283	}
284
285      if (digits_exponent_sign_char == '-')
286	{
287	  decimal_exponent = -decimal_exponent;
288	}
289    }
290
291  *address_of_string_pointer = p;
292
293  number_of_digits_available =
294    number_of_digits_before_decimal + number_of_digits_after_decimal;
295  return_value = 0;
296  if (number_of_digits_available == 0)
297    {
298      address_of_generic_floating_point_number->exponent = 0;	/* Not strictly necessary */
299      address_of_generic_floating_point_number->leader
300	= -1 + address_of_generic_floating_point_number->low;
301      address_of_generic_floating_point_number->sign = digits_sign_char;
302      /* We have just concocted (+/-)0.0E0 */
303
304    }
305  else
306    {
307      int count;		/* Number of useful digits left to scan.  */
308
309      LITTLENUM_TYPE *digits_binary_low;
310      unsigned int precision;
311      unsigned int maximum_useful_digits;
312      unsigned int number_of_digits_to_use;
313      unsigned int more_than_enough_bits_for_digits;
314      unsigned int more_than_enough_littlenums_for_digits;
315      unsigned int size_of_digits_in_littlenums;
316      unsigned int size_of_digits_in_chars;
317      FLONUM_TYPE power_of_10_flonum;
318      FLONUM_TYPE digits_flonum;
319
320      precision = (address_of_generic_floating_point_number->high
321		   - address_of_generic_floating_point_number->low
322		   + 1);	/* Number of destination littlenums.  */
323
324      /* Includes guard bits (two littlenums worth) */
325      maximum_useful_digits = (((precision - 2))
326			       * ( (LITTLENUM_NUMBER_OF_BITS))
327			       * 1000000 / 3321928)
328	+ 2;			/* 2 :: guard digits.  */
329
330      if (number_of_digits_available > maximum_useful_digits)
331	{
332	  number_of_digits_to_use = maximum_useful_digits;
333	}
334      else
335	{
336	  number_of_digits_to_use = number_of_digits_available;
337	}
338
339      /* Cast these to SIGNED LONG first, otherwise, on systems with
340	 LONG wider than INT (such as Alpha OSF/1), unsignedness may
341	 cause unexpected results.  */
342      decimal_exponent += ((long) number_of_digits_before_decimal
343			   - (long) number_of_digits_to_use);
344
345      more_than_enough_bits_for_digits
346	= (number_of_digits_to_use * 3321928 / 1000000 + 1);
347
348      more_than_enough_littlenums_for_digits
349	= (more_than_enough_bits_for_digits
350	   / LITTLENUM_NUMBER_OF_BITS)
351	+ 2;
352
353      /* Compute (digits) part. In "12.34E56" this is the "1234" part.
354	 Arithmetic is exact here. If no digits are supplied then this
355	 part is a 0 valued binary integer.  Allocate room to build up
356	 the binary number as littlenums.  We want this memory to
357	 disappear when we leave this function.  Assume no alignment
358	 problems => (room for n objects) == n * (room for 1
359	 object).  */
360
361      size_of_digits_in_littlenums = more_than_enough_littlenums_for_digits;
362      size_of_digits_in_chars = size_of_digits_in_littlenums
363	* sizeof (LITTLENUM_TYPE);
364
365      digits_binary_low = (LITTLENUM_TYPE *)
366	alloca (size_of_digits_in_chars);
367
368      memset ((char *) digits_binary_low, '\0', size_of_digits_in_chars);
369
370      /* Digits_binary_low[] is allocated and zeroed.  */
371
372      /*
373       * Parse the decimal digits as if * digits_low was in the units position.
374       * Emit a binary number into digits_binary_low[].
375       *
376       * Use a large-precision version of:
377       * (((1st-digit) * 10 + 2nd-digit) * 10 + 3rd-digit ...) * 10 + last-digit
378       */
379
380      for (p = first_digit, count = number_of_digits_to_use; count; p++, --count)
381	{
382	  c = *p;
383	  if (ISDIGIT (c))
384	    {
385	      /*
386	       * Multiply by 10. Assume can never overflow.
387	       * Add this digit to digits_binary_low[].
388	       */
389
390	      long carry;
391	      LITTLENUM_TYPE *littlenum_pointer;
392	      LITTLENUM_TYPE *littlenum_limit;
393
394	      littlenum_limit = digits_binary_low
395		+ more_than_enough_littlenums_for_digits
396		- 1;
397
398	      carry = c - '0';	/* char -> binary */
399
400	      for (littlenum_pointer = digits_binary_low;
401		   littlenum_pointer <= littlenum_limit;
402		   littlenum_pointer++)
403		{
404		  long work;
405
406		  work = carry + 10 * (long) (*littlenum_pointer);
407		  *littlenum_pointer = work & LITTLENUM_MASK;
408		  carry = work >> LITTLENUM_NUMBER_OF_BITS;
409		}
410
411	      if (carry != 0)
412		{
413		  /*
414		   * We have a GROSS internal error.
415		   * This should never happen.
416		   */
417		  as_fatal (_("failed sanity check"));
418		}
419	    }
420	  else
421	    {
422	      ++count;		/* '.' doesn't alter digits used count.  */
423	    }
424	}
425
426      /*
427       * Digits_binary_low[] properly encodes the value of the digits.
428       * Forget about any high-order littlenums that are 0.
429       */
430      while (digits_binary_low[size_of_digits_in_littlenums - 1] == 0
431	     && size_of_digits_in_littlenums >= 2)
432	size_of_digits_in_littlenums--;
433
434      digits_flonum.low = digits_binary_low;
435      digits_flonum.high = digits_binary_low + size_of_digits_in_littlenums - 1;
436      digits_flonum.leader = digits_flonum.high;
437      digits_flonum.exponent = 0;
438      /*
439       * The value of digits_flonum . sign should not be important.
440       * We have already decided the output's sign.
441       * We trust that the sign won't influence the other parts of the number!
442       * So we give it a value for these reasons:
443       * (1) courtesy to humans reading/debugging
444       *     these numbers so they don't get excited about strange values
445       * (2) in future there may be more meaning attached to sign,
446       *     and what was
447       *     harmless noise may become disruptive, ill-conditioned (or worse)
448       *     input.
449       */
450      digits_flonum.sign = '+';
451
452      {
453	/*
454	 * Compute the mantssa (& exponent) of the power of 10.
455	 * If successful, then multiply the power of 10 by the digits
456	 * giving return_binary_mantissa and return_binary_exponent.
457	 */
458
459	LITTLENUM_TYPE *power_binary_low;
460	int decimal_exponent_is_negative;
461	/* This refers to the "-56" in "12.34E-56".  */
462	/* FALSE: decimal_exponent is positive (or 0) */
463	/* TRUE:  decimal_exponent is negative */
464	FLONUM_TYPE temporary_flonum;
465	LITTLENUM_TYPE *temporary_binary_low;
466	unsigned int size_of_power_in_littlenums;
467	unsigned int size_of_power_in_chars;
468
469	size_of_power_in_littlenums = precision;
470	/* Precision has a built-in fudge factor so we get a few guard bits.  */
471
472	decimal_exponent_is_negative = decimal_exponent < 0;
473	if (decimal_exponent_is_negative)
474	  {
475	    decimal_exponent = -decimal_exponent;
476	  }
477
478	/* From now on: the decimal exponent is > 0. Its sign is separate.  */
479
480	size_of_power_in_chars = size_of_power_in_littlenums
481	  * sizeof (LITTLENUM_TYPE) + 2;
482
483	power_binary_low = (LITTLENUM_TYPE *) alloca (size_of_power_in_chars);
484	temporary_binary_low = (LITTLENUM_TYPE *) alloca (size_of_power_in_chars);
485	memset ((char *) power_binary_low, '\0', size_of_power_in_chars);
486	*power_binary_low = 1;
487	power_of_10_flonum.exponent = 0;
488	power_of_10_flonum.low = power_binary_low;
489	power_of_10_flonum.leader = power_binary_low;
490	power_of_10_flonum.high = power_binary_low + size_of_power_in_littlenums - 1;
491	power_of_10_flonum.sign = '+';
492	temporary_flonum.low = temporary_binary_low;
493	temporary_flonum.high = temporary_binary_low + size_of_power_in_littlenums - 1;
494	/*
495	 * (power) == 1.
496	 * Space for temporary_flonum allocated.
497	 */
498
499	/*
500	 * ...
501	 *
502	 * WHILE	more bits
503	 * DO	find next bit (with place value)
504	 *	multiply into power mantissa
505	 * OD
506	 */
507	{
508	  int place_number_limit;
509	  /* Any 10^(2^n) whose "n" exceeds this */
510	  /* value will fall off the end of */
511	  /* flonum_XXXX_powers_of_ten[].  */
512	  int place_number;
513	  const FLONUM_TYPE *multiplicand;	/* -> 10^(2^n) */
514
515	  place_number_limit = table_size_of_flonum_powers_of_ten;
516
517	  multiplicand = (decimal_exponent_is_negative
518			  ? flonum_negative_powers_of_ten
519			  : flonum_positive_powers_of_ten);
520
521	  for (place_number = 1;/* Place value of this bit of exponent.  */
522	       decimal_exponent;/* Quit when no more 1 bits in exponent.  */
523	       decimal_exponent >>= 1, place_number++)
524	    {
525	      if (decimal_exponent & 1)
526		{
527		  if (place_number > place_number_limit)
528		    {
529		      /* The decimal exponent has a magnitude so great
530			 that our tables can't help us fragment it.
531			 Although this routine is in error because it
532			 can't imagine a number that big, signal an
533			 error as if it is the user's fault for
534			 presenting such a big number.  */
535		      return_value = ERROR_EXPONENT_OVERFLOW;
536		      /* quit out of loop gracefully */
537		      decimal_exponent = 0;
538		    }
539		  else
540		    {
541#ifdef TRACE
542		      printf ("before multiply, place_number = %d., power_of_10_flonum:\n",
543			      place_number);
544
545		      flonum_print (&power_of_10_flonum);
546		      (void) putchar ('\n');
547#endif
548#ifdef TRACE
549		      printf ("multiplier:\n");
550		      flonum_print (multiplicand + place_number);
551		      (void) putchar ('\n');
552#endif
553		      flonum_multip (multiplicand + place_number,
554				     &power_of_10_flonum, &temporary_flonum);
555#ifdef TRACE
556		      printf ("after multiply:\n");
557		      flonum_print (&temporary_flonum);
558		      (void) putchar ('\n');
559#endif
560		      flonum_copy (&temporary_flonum, &power_of_10_flonum);
561#ifdef TRACE
562		      printf ("after copy:\n");
563		      flonum_print (&power_of_10_flonum);
564		      (void) putchar ('\n');
565#endif
566		    } /* If this bit of decimal_exponent was computable.*/
567		} /* If this bit of decimal_exponent was set.  */
568	    } /* For each bit of binary representation of exponent */
569#ifdef TRACE
570	  printf ("after computing power_of_10_flonum:\n");
571	  flonum_print (&power_of_10_flonum);
572	  (void) putchar ('\n');
573#endif
574	}
575
576      }
577
578      /*
579       * power_of_10_flonum is power of ten in binary (mantissa) , (exponent).
580       * It may be the number 1, in which case we don't NEED to multiply.
581       *
582       * Multiply (decimal digits) by power_of_10_flonum.
583       */
584
585      flonum_multip (&power_of_10_flonum, &digits_flonum, address_of_generic_floating_point_number);
586      /* Assert sign of the number we made is '+'.  */
587      address_of_generic_floating_point_number->sign = digits_sign_char;
588
589    }
590  return return_value;
591}
592
593#ifdef TRACE
594static void
595flonum_print (f)
596     const FLONUM_TYPE *f;
597{
598  LITTLENUM_TYPE *lp;
599  char littlenum_format[10];
600  sprintf (littlenum_format, " %%0%dx", sizeof (LITTLENUM_TYPE) * 2);
601#define print_littlenum(LP)	(printf (littlenum_format, LP))
602  printf ("flonum @%p %c e%ld", f, f->sign, f->exponent);
603  if (f->low < f->high)
604    for (lp = f->high; lp >= f->low; lp--)
605      print_littlenum (*lp);
606  else
607    for (lp = f->low; lp <= f->high; lp++)
608      print_littlenum (*lp);
609  printf ("\n");
610  fflush (stdout);
611}
612#endif
613
614/* end of atof_generic.c */
615