1/*
2 * Copyright (c) 2016 Alexander Motin <mav@FreeBSD.org>
3 * Copyright (c) 2015 Peter Grehan <grehan@freebsd.org>
4 * Copyright (c) 2013 Jeremiah Lott, Avere Systems
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer
12 *    in this position and unchanged.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD$");
32
33#include <sys/types.h>
34#include <sys/limits.h>
35#include <sys/ioctl.h>
36#include <sys/uio.h>
37#include <net/ethernet.h>
38#include <netinet/in.h>
39#include <netinet/tcp.h>
40
41#include <errno.h>
42#include <fcntl.h>
43#include <md5.h>
44#include <stdio.h>
45#include <stdlib.h>
46#include <string.h>
47#include <unistd.h>
48#include <pthread.h>
49#include <pthread_np.h>
50
51#include "e1000_regs.h"
52#include "e1000_defines.h"
53#include "mii.h"
54
55#include "bhyverun.h"
56#include "pci_emul.h"
57#include "mevent.h"
58
59/* Hardware/register definitions XXX: move some to common code. */
60#define E82545_VENDOR_ID_INTEL			0x8086
61#define E82545_DEV_ID_82545EM_COPPER		0x100F
62#define E82545_SUBDEV_ID			0x1008
63
64#define E82545_REVISION_4			4
65
66#define E82545_MDIC_DATA_MASK			0x0000FFFF
67#define E82545_MDIC_OP_MASK			0x0c000000
68#define E82545_MDIC_IE				0x20000000
69
70#define E82545_EECD_FWE_DIS	0x00000010 /* Flash writes disabled */
71#define E82545_EECD_FWE_EN	0x00000020 /* Flash writes enabled */
72#define E82545_EECD_FWE_MASK	0x00000030 /* Flash writes mask */
73
74#define E82545_BAR_REGISTER			0
75#define E82545_BAR_REGISTER_LEN			(128*1024)
76#define E82545_BAR_FLASH			1
77#define E82545_BAR_FLASH_LEN			(64*1024)
78#define E82545_BAR_IO				2
79#define E82545_BAR_IO_LEN			8
80
81#define E82545_IOADDR				0x00000000
82#define E82545_IODATA				0x00000004
83#define E82545_IO_REGISTER_MAX			0x0001FFFF
84#define E82545_IO_FLASH_BASE			0x00080000
85#define E82545_IO_FLASH_MAX			0x000FFFFF
86
87#define E82545_ARRAY_ENTRY(reg, offset)		(reg + (offset<<2))
88#define E82545_RAR_MAX				15
89#define E82545_MTA_MAX				127
90#define E82545_VFTA_MAX				127
91
92/* Slightly modified from the driver versions, hardcoded for 3 opcode bits,
93 * followed by 6 address bits.
94 * TODO: make opcode bits and addr bits configurable?
95 * NVM Commands - Microwire */
96#define E82545_NVM_OPCODE_BITS	3
97#define E82545_NVM_ADDR_BITS	6
98#define E82545_NVM_DATA_BITS	16
99#define E82545_NVM_OPADDR_BITS	(E82545_NVM_OPCODE_BITS + E82545_NVM_ADDR_BITS)
100#define E82545_NVM_ADDR_MASK	((1 << E82545_NVM_ADDR_BITS)-1)
101#define E82545_NVM_OPCODE_MASK	\
102    (((1 << E82545_NVM_OPCODE_BITS) - 1) << E82545_NVM_ADDR_BITS)
103#define E82545_NVM_OPCODE_READ	(0x6 << E82545_NVM_ADDR_BITS)	/* read */
104#define E82545_NVM_OPCODE_WRITE	(0x5 << E82545_NVM_ADDR_BITS)	/* write */
105#define E82545_NVM_OPCODE_ERASE	(0x7 << E82545_NVM_ADDR_BITS)	/* erase */
106#define	E82545_NVM_OPCODE_EWEN	(0x4 << E82545_NVM_ADDR_BITS)	/* wr-enable */
107
108#define	E82545_NVM_EEPROM_SIZE	64 /* 64 * 16-bit values == 128K */
109
110#define E1000_ICR_SRPD		0x00010000
111
112/* This is an arbitrary number.  There is no hard limit on the chip. */
113#define I82545_MAX_TXSEGS	64
114
115/* Legacy receive descriptor */
116struct e1000_rx_desc {
117	uint64_t buffer_addr;	/* Address of the descriptor's data buffer */
118	uint16_t length;	/* Length of data DMAed into data buffer */
119	uint16_t csum;		/* Packet checksum */
120	uint8_t	 status;       	/* Descriptor status */
121	uint8_t  errors;	/* Descriptor Errors */
122	uint16_t special;
123};
124
125/* Transmit descriptor types */
126#define	E1000_TXD_MASK		(E1000_TXD_CMD_DEXT | 0x00F00000)
127#define E1000_TXD_TYP_L		(0)
128#define E1000_TXD_TYP_C		(E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_C)
129#define E1000_TXD_TYP_D		(E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)
130
131/* Legacy transmit descriptor */
132struct e1000_tx_desc {
133	uint64_t buffer_addr;   /* Address of the descriptor's data buffer */
134	union {
135		uint32_t data;
136		struct {
137			uint16_t length;  /* Data buffer length */
138			uint8_t  cso;  /* Checksum offset */
139			uint8_t  cmd;  /* Descriptor control */
140		} flags;
141	} lower;
142	union {
143		uint32_t data;
144		struct {
145			uint8_t status; /* Descriptor status */
146			uint8_t css;  /* Checksum start */
147			uint16_t special;
148		} fields;
149	} upper;
150};
151
152/* Context descriptor */
153struct e1000_context_desc {
154	union {
155		uint32_t ip_config;
156		struct {
157			uint8_t ipcss;  /* IP checksum start */
158			uint8_t ipcso;  /* IP checksum offset */
159			uint16_t ipcse;  /* IP checksum end */
160		} ip_fields;
161	} lower_setup;
162	union {
163		uint32_t tcp_config;
164		struct {
165			uint8_t tucss;  /* TCP checksum start */
166			uint8_t tucso;  /* TCP checksum offset */
167			uint16_t tucse;  /* TCP checksum end */
168		} tcp_fields;
169	} upper_setup;
170	uint32_t cmd_and_length;
171	union {
172		uint32_t data;
173		struct {
174			uint8_t status;  /* Descriptor status */
175			uint8_t hdr_len;  /* Header length */
176			uint16_t mss;  /* Maximum segment size */
177		} fields;
178	} tcp_seg_setup;
179};
180
181/* Data descriptor */
182struct e1000_data_desc {
183	uint64_t buffer_addr;  /* Address of the descriptor's buffer address */
184	union {
185		uint32_t data;
186		struct {
187			uint16_t length;  /* Data buffer length */
188			uint8_t typ_len_ext;
189			uint8_t cmd;
190		} flags;
191	} lower;
192	union {
193		uint32_t data;
194		struct {
195			uint8_t status;  /* Descriptor status */
196			uint8_t popts;  /* Packet Options */
197			uint16_t special;
198		} fields;
199	} upper;
200};
201
202union e1000_tx_udesc {
203	struct e1000_tx_desc td;
204	struct e1000_context_desc cd;
205	struct e1000_data_desc dd;
206};
207
208/* Tx checksum info for a packet. */
209struct ck_info {
210	int	ck_valid;	/* ck_info is valid */
211	uint8_t	ck_start;	/* start byte of cksum calcuation */
212	uint8_t	ck_off;		/* offset of cksum insertion */
213	uint16_t ck_len;	/* length of cksum calc: 0 is to packet-end */
214};
215
216/*
217 * Debug printf
218 */
219static int e82545_debug = 0;
220#define DPRINTF(msg,params...) if (e82545_debug) fprintf(stderr, "e82545: " msg, params)
221#define WPRINTF(msg,params...) fprintf(stderr, "e82545: " msg, params)
222
223#define	MIN(a,b) (((a)<(b))?(a):(b))
224#define	MAX(a,b) (((a)>(b))?(a):(b))
225
226/* s/w representation of the RAL/RAH regs */
227struct  eth_uni {
228	int		eu_valid;
229	int		eu_addrsel;
230	struct ether_addr eu_eth;
231};
232
233
234struct e82545_softc {
235	struct pci_devinst *esc_pi;
236	struct vmctx	*esc_ctx;
237	struct mevent   *esc_mevp;
238	struct mevent   *esc_mevpitr;
239	pthread_mutex_t	esc_mtx;
240	struct ether_addr esc_mac;
241	int		esc_tapfd;
242
243	/* General */
244	uint32_t	esc_CTRL;	/* x0000 device ctl */
245	uint32_t	esc_FCAL;	/* x0028 flow ctl addr lo */
246	uint32_t	esc_FCAH;	/* x002C flow ctl addr hi */
247	uint32_t	esc_FCT;	/* x0030 flow ctl type */
248	uint32_t	esc_VET;	/* x0038 VLAN eth type */
249	uint32_t	esc_FCTTV;	/* x0170 flow ctl tx timer */
250	uint32_t	esc_LEDCTL;	/* x0E00 LED control */
251	uint32_t	esc_PBA;	/* x1000 pkt buffer allocation */
252
253	/* Interrupt control */
254	int		esc_irq_asserted;
255	uint32_t	esc_ICR;	/* x00C0 cause read/clear */
256	uint32_t	esc_ITR;	/* x00C4 intr throttling */
257	uint32_t	esc_ICS;	/* x00C8 cause set */
258	uint32_t	esc_IMS;	/* x00D0 mask set/read */
259	uint32_t	esc_IMC;	/* x00D8 mask clear */
260
261	/* Transmit */
262	union e1000_tx_udesc *esc_txdesc;
263	struct e1000_context_desc esc_txctx;
264	pthread_t	esc_tx_tid;
265	pthread_cond_t	esc_tx_cond;
266	int		esc_tx_enabled;
267	int		esc_tx_active;
268	uint32_t	esc_TXCW;	/* x0178 transmit config */
269	uint32_t	esc_TCTL;	/* x0400 transmit ctl */
270	uint32_t	esc_TIPG;	/* x0410 inter-packet gap */
271	uint16_t	esc_AIT;	/* x0458 Adaptive Interframe Throttle */
272	uint64_t	esc_tdba;      	/* verified 64-bit desc table addr */
273	uint32_t	esc_TDBAL;	/* x3800 desc table addr, low bits */
274	uint32_t	esc_TDBAH;	/* x3804 desc table addr, hi 32-bits */
275	uint32_t	esc_TDLEN;	/* x3808 # descriptors in bytes */
276	uint16_t	esc_TDH;	/* x3810 desc table head idx */
277	uint16_t	esc_TDHr;	/* internal read version of TDH */
278	uint16_t	esc_TDT;	/* x3818 desc table tail idx */
279	uint32_t	esc_TIDV;	/* x3820 intr delay */
280	uint32_t	esc_TXDCTL;	/* x3828 desc control */
281	uint32_t	esc_TADV;	/* x382C intr absolute delay */
282
283	/* L2 frame acceptance */
284	struct eth_uni	esc_uni[16];	/* 16 x unicast MAC addresses */
285	uint32_t	esc_fmcast[128]; /* Multicast filter bit-match */
286	uint32_t	esc_fvlan[128]; /* VLAN 4096-bit filter */
287
288	/* Receive */
289	struct e1000_rx_desc *esc_rxdesc;
290	pthread_cond_t	esc_rx_cond;
291	int		esc_rx_enabled;
292	int		esc_rx_active;
293	int		esc_rx_loopback;
294	uint32_t	esc_RCTL;	/* x0100 receive ctl */
295	uint32_t	esc_FCRTL;	/* x2160 flow cntl thresh, low */
296	uint32_t	esc_FCRTH;	/* x2168 flow cntl thresh, hi */
297	uint64_t	esc_rdba;	/* verified 64-bit desc table addr */
298	uint32_t	esc_RDBAL;	/* x2800 desc table addr, low bits */
299	uint32_t	esc_RDBAH;	/* x2804 desc table addr, hi 32-bits*/
300	uint32_t	esc_RDLEN;	/* x2808 #descriptors */
301	uint16_t	esc_RDH;	/* x2810 desc table head idx */
302	uint16_t	esc_RDT;	/* x2818 desc table tail idx */
303	uint32_t	esc_RDTR;	/* x2820 intr delay */
304	uint32_t	esc_RXDCTL;	/* x2828 desc control */
305	uint32_t	esc_RADV;	/* x282C intr absolute delay */
306	uint32_t	esc_RSRPD;	/* x2C00 recv small packet detect */
307	uint32_t	esc_RXCSUM;     /* x5000 receive cksum ctl */
308
309	/* IO Port register access */
310	uint32_t io_addr;
311
312	/* Shadow copy of MDIC */
313	uint32_t mdi_control;
314	/* Shadow copy of EECD */
315	uint32_t eeprom_control;
316	/* Latest NVM in/out */
317	uint16_t nvm_data;
318	uint16_t nvm_opaddr;
319	/* stats */
320	uint32_t missed_pkt_count; /* dropped for no room in rx queue */
321	uint32_t pkt_rx_by_size[6];
322	uint32_t pkt_tx_by_size[6];
323	uint32_t good_pkt_rx_count;
324	uint32_t bcast_pkt_rx_count;
325	uint32_t mcast_pkt_rx_count;
326	uint32_t good_pkt_tx_count;
327	uint32_t bcast_pkt_tx_count;
328	uint32_t mcast_pkt_tx_count;
329	uint32_t oversize_rx_count;
330	uint32_t tso_tx_count;
331	uint64_t good_octets_rx;
332	uint64_t good_octets_tx;
333	uint64_t missed_octets; /* counts missed and oversized */
334
335	uint8_t nvm_bits:6; /* number of bits remaining in/out */
336	uint8_t nvm_mode:2;
337#define E82545_NVM_MODE_OPADDR  0x0
338#define E82545_NVM_MODE_DATAIN  0x1
339#define E82545_NVM_MODE_DATAOUT 0x2
340        /* EEPROM data */
341        uint16_t eeprom_data[E82545_NVM_EEPROM_SIZE];
342};
343
344static void e82545_reset(struct e82545_softc *sc, int dev);
345static void e82545_rx_enable(struct e82545_softc *sc);
346static void e82545_rx_disable(struct e82545_softc *sc);
347static void e82545_tap_callback(int fd, enum ev_type type, void *param);
348static void e82545_tx_start(struct e82545_softc *sc);
349static void e82545_tx_enable(struct e82545_softc *sc);
350static void e82545_tx_disable(struct e82545_softc *sc);
351
352static inline int
353e82545_size_stat_index(uint32_t size)
354{
355	if (size <= 64) {
356		return 0;
357	} else if (size >= 1024) {
358		return 5;
359	} else {
360		/* should be 1-4 */
361		return (ffs(size) - 6);
362	}
363}
364
365static void
366e82545_init_eeprom(struct e82545_softc *sc)
367{
368	uint16_t checksum, i;
369
370        /* mac addr */
371	sc->eeprom_data[NVM_MAC_ADDR] = ((uint16_t)sc->esc_mac.octet[0]) |
372		(((uint16_t)sc->esc_mac.octet[1]) << 8);
373	sc->eeprom_data[NVM_MAC_ADDR+1] = ((uint16_t)sc->esc_mac.octet[2]) |
374		(((uint16_t)sc->esc_mac.octet[3]) << 8);
375	sc->eeprom_data[NVM_MAC_ADDR+2] = ((uint16_t)sc->esc_mac.octet[4]) |
376		(((uint16_t)sc->esc_mac.octet[5]) << 8);
377
378	/* pci ids */
379	sc->eeprom_data[NVM_SUB_DEV_ID] = E82545_SUBDEV_ID;
380	sc->eeprom_data[NVM_SUB_VEN_ID] = E82545_VENDOR_ID_INTEL;
381	sc->eeprom_data[NVM_DEV_ID] = E82545_DEV_ID_82545EM_COPPER;
382	sc->eeprom_data[NVM_VEN_ID] = E82545_VENDOR_ID_INTEL;
383
384	/* fill in the checksum */
385        checksum = 0;
386	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
387		checksum += sc->eeprom_data[i];
388	}
389	checksum = NVM_SUM - checksum;
390	sc->eeprom_data[NVM_CHECKSUM_REG] = checksum;
391	DPRINTF("eeprom checksum: 0x%x\r\n", checksum);
392}
393
394static void
395e82545_write_mdi(struct e82545_softc *sc, uint8_t reg_addr,
396			uint8_t phy_addr, uint32_t data)
397{
398	DPRINTF("Write mdi reg:0x%x phy:0x%x data: 0x%x\r\n", reg_addr, phy_addr, data);
399}
400
401static uint32_t
402e82545_read_mdi(struct e82545_softc *sc, uint8_t reg_addr,
403			uint8_t phy_addr)
404{
405	//DPRINTF("Read mdi reg:0x%x phy:0x%x\r\n", reg_addr, phy_addr);
406	switch (reg_addr) {
407	case PHY_STATUS:
408		return (MII_SR_LINK_STATUS | MII_SR_AUTONEG_CAPS |
409			MII_SR_AUTONEG_COMPLETE);
410	case PHY_AUTONEG_ADV:
411		return NWAY_AR_SELECTOR_FIELD;
412	case PHY_LP_ABILITY:
413		return 0;
414	case PHY_1000T_STATUS:
415		return (SR_1000T_LP_FD_CAPS | SR_1000T_REMOTE_RX_STATUS |
416			SR_1000T_LOCAL_RX_STATUS);
417	case PHY_ID1:
418		return (M88E1011_I_PHY_ID >> 16) & 0xFFFF;
419	case PHY_ID2:
420		return (M88E1011_I_PHY_ID | E82545_REVISION_4) & 0xFFFF;
421	default:
422		DPRINTF("Unknown mdi read reg:0x%x phy:0x%x\r\n", reg_addr, phy_addr);
423		return 0;
424	}
425	/* not reached */
426}
427
428static void
429e82545_eecd_strobe(struct e82545_softc *sc)
430{
431	/* Microwire state machine */
432	/*
433	DPRINTF("eeprom state machine srtobe "
434		"0x%x 0x%x 0x%x 0x%x\r\n",
435		sc->nvm_mode, sc->nvm_bits,
436		sc->nvm_opaddr, sc->nvm_data);*/
437
438	if (sc->nvm_bits == 0) {
439		DPRINTF("eeprom state machine not expecting data! "
440			"0x%x 0x%x 0x%x 0x%x\r\n",
441			sc->nvm_mode, sc->nvm_bits,
442			sc->nvm_opaddr, sc->nvm_data);
443		return;
444	}
445	sc->nvm_bits--;
446	if (sc->nvm_mode == E82545_NVM_MODE_DATAOUT) {
447		/* shifting out */
448		if (sc->nvm_data & 0x8000) {
449			sc->eeprom_control |= E1000_EECD_DO;
450		} else {
451			sc->eeprom_control &= ~E1000_EECD_DO;
452		}
453		sc->nvm_data <<= 1;
454		if (sc->nvm_bits == 0) {
455			/* read done, back to opcode mode. */
456			sc->nvm_opaddr = 0;
457			sc->nvm_mode = E82545_NVM_MODE_OPADDR;
458			sc->nvm_bits = E82545_NVM_OPADDR_BITS;
459		}
460	} else if (sc->nvm_mode == E82545_NVM_MODE_DATAIN) {
461		/* shifting in */
462		sc->nvm_data <<= 1;
463		if (sc->eeprom_control & E1000_EECD_DI) {
464			sc->nvm_data |= 1;
465		}
466		if (sc->nvm_bits == 0) {
467			/* eeprom write */
468			uint16_t op = sc->nvm_opaddr & E82545_NVM_OPCODE_MASK;
469			uint16_t addr = sc->nvm_opaddr & E82545_NVM_ADDR_MASK;
470			if (op != E82545_NVM_OPCODE_WRITE) {
471				DPRINTF("Illegal eeprom write op 0x%x\r\n",
472					sc->nvm_opaddr);
473			} else if (addr >= E82545_NVM_EEPROM_SIZE) {
474				DPRINTF("Illegal eeprom write addr 0x%x\r\n",
475					sc->nvm_opaddr);
476			} else {
477				DPRINTF("eeprom write eeprom[0x%x] = 0x%x\r\n",
478				addr, sc->nvm_data);
479				sc->eeprom_data[addr] = sc->nvm_data;
480			}
481			/* back to opcode mode */
482			sc->nvm_opaddr = 0;
483			sc->nvm_mode = E82545_NVM_MODE_OPADDR;
484			sc->nvm_bits = E82545_NVM_OPADDR_BITS;
485		}
486	} else if (sc->nvm_mode == E82545_NVM_MODE_OPADDR) {
487		sc->nvm_opaddr <<= 1;
488		if (sc->eeprom_control & E1000_EECD_DI) {
489			sc->nvm_opaddr |= 1;
490		}
491		if (sc->nvm_bits == 0) {
492			uint16_t op = sc->nvm_opaddr & E82545_NVM_OPCODE_MASK;
493			switch (op) {
494			case E82545_NVM_OPCODE_EWEN:
495				DPRINTF("eeprom write enable: 0x%x\r\n",
496					sc->nvm_opaddr);
497				/* back to opcode mode */
498				sc->nvm_opaddr = 0;
499				sc->nvm_mode = E82545_NVM_MODE_OPADDR;
500				sc->nvm_bits = E82545_NVM_OPADDR_BITS;
501				break;
502			case E82545_NVM_OPCODE_READ:
503			{
504				uint16_t addr = sc->nvm_opaddr &
505					E82545_NVM_ADDR_MASK;
506				sc->nvm_mode = E82545_NVM_MODE_DATAOUT;
507				sc->nvm_bits = E82545_NVM_DATA_BITS;
508				if (addr < E82545_NVM_EEPROM_SIZE) {
509					sc->nvm_data = sc->eeprom_data[addr];
510					DPRINTF("eeprom read: eeprom[0x%x] = 0x%x\r\n",
511						addr, sc->nvm_data);
512				} else {
513					DPRINTF("eeprom illegal read: 0x%x\r\n",
514						sc->nvm_opaddr);
515					sc->nvm_data = 0;
516				}
517				break;
518			}
519			case E82545_NVM_OPCODE_WRITE:
520				sc->nvm_mode = E82545_NVM_MODE_DATAIN;
521				sc->nvm_bits = E82545_NVM_DATA_BITS;
522				sc->nvm_data = 0;
523				break;
524			default:
525				DPRINTF("eeprom unknown op: 0x%x\r\r",
526					sc->nvm_opaddr);
527				/* back to opcode mode */
528				sc->nvm_opaddr = 0;
529				sc->nvm_mode = E82545_NVM_MODE_OPADDR;
530				sc->nvm_bits = E82545_NVM_OPADDR_BITS;
531			}
532		}
533	} else {
534		DPRINTF("eeprom state machine wrong state! "
535			"0x%x 0x%x 0x%x 0x%x\r\n",
536			sc->nvm_mode, sc->nvm_bits,
537			sc->nvm_opaddr, sc->nvm_data);
538	}
539}
540
541static void
542e82545_itr_callback(int fd, enum ev_type type, void *param)
543{
544	uint32_t new;
545	struct e82545_softc *sc = param;
546
547	pthread_mutex_lock(&sc->esc_mtx);
548	new = sc->esc_ICR & sc->esc_IMS;
549	if (new && !sc->esc_irq_asserted) {
550		DPRINTF("itr callback: lintr assert %x\r\n", new);
551		sc->esc_irq_asserted = 1;
552		pci_lintr_assert(sc->esc_pi);
553	} else {
554		mevent_delete(sc->esc_mevpitr);
555		sc->esc_mevpitr = NULL;
556	}
557	pthread_mutex_unlock(&sc->esc_mtx);
558}
559
560static void
561e82545_icr_assert(struct e82545_softc *sc, uint32_t bits)
562{
563	uint32_t new;
564
565	DPRINTF("icr assert: 0x%x\r\n", bits);
566
567	/*
568	 * An interrupt is only generated if bits are set that
569	 * aren't already in the ICR, these bits are unmasked,
570	 * and there isn't an interrupt already pending.
571	 */
572	new = bits & ~sc->esc_ICR & sc->esc_IMS;
573	sc->esc_ICR |= bits;
574
575	if (new == 0) {
576		DPRINTF("icr assert: masked %x, ims %x\r\n", new, sc->esc_IMS);
577	} else if (sc->esc_mevpitr != NULL) {
578		DPRINTF("icr assert: throttled %x, ims %x\r\n", new, sc->esc_IMS);
579	} else if (!sc->esc_irq_asserted) {
580		DPRINTF("icr assert: lintr assert %x\r\n", new);
581		sc->esc_irq_asserted = 1;
582		pci_lintr_assert(sc->esc_pi);
583		if (sc->esc_ITR != 0) {
584			sc->esc_mevpitr = mevent_add(
585			    (sc->esc_ITR + 3905) / 3906,  /* 256ns -> 1ms */
586			    EVF_TIMER, e82545_itr_callback, sc);
587		}
588	}
589}
590
591static void
592e82545_ims_change(struct e82545_softc *sc, uint32_t bits)
593{
594	uint32_t new;
595
596	/*
597	 * Changing the mask may allow previously asserted
598	 * but masked interrupt requests to generate an interrupt.
599	 */
600	new = bits & sc->esc_ICR & ~sc->esc_IMS;
601	sc->esc_IMS |= bits;
602
603	if (new == 0) {
604		DPRINTF("ims change: masked %x, ims %x\r\n", new, sc->esc_IMS);
605	} else if (sc->esc_mevpitr != NULL) {
606		DPRINTF("ims change: throttled %x, ims %x\r\n", new, sc->esc_IMS);
607	} else if (!sc->esc_irq_asserted) {
608		DPRINTF("ims change: lintr assert %x\n\r", new);
609		sc->esc_irq_asserted = 1;
610		pci_lintr_assert(sc->esc_pi);
611		if (sc->esc_ITR != 0) {
612			sc->esc_mevpitr = mevent_add(
613			    (sc->esc_ITR + 3905) / 3906,  /* 256ns -> 1ms */
614			    EVF_TIMER, e82545_itr_callback, sc);
615		}
616	}
617}
618
619static void
620e82545_icr_deassert(struct e82545_softc *sc, uint32_t bits)
621{
622
623	DPRINTF("icr deassert: 0x%x\r\n", bits);
624	sc->esc_ICR &= ~bits;
625
626	/*
627	 * If there are no longer any interrupt sources and there
628	 * was an asserted interrupt, clear it
629	 */
630	if (sc->esc_irq_asserted && !(sc->esc_ICR & sc->esc_IMS)) {
631		DPRINTF("icr deassert: lintr deassert %x\r\n", bits);
632		pci_lintr_deassert(sc->esc_pi);
633		sc->esc_irq_asserted = 0;
634	}
635}
636
637static void
638e82545_intr_write(struct e82545_softc *sc, uint32_t offset, uint32_t value)
639{
640
641	DPRINTF("intr_write: off %x, val %x\n\r", offset, value);
642
643	switch (offset) {
644	case E1000_ICR:
645		e82545_icr_deassert(sc, value);
646		break;
647	case E1000_ITR:
648		sc->esc_ITR = value;
649		break;
650	case E1000_ICS:
651		sc->esc_ICS = value;	/* not used: store for debug */
652		e82545_icr_assert(sc, value);
653		break;
654	case E1000_IMS:
655		e82545_ims_change(sc, value);
656		break;
657	case E1000_IMC:
658		sc->esc_IMC = value;	/* for debug */
659		sc->esc_IMS &= ~value;
660		// XXX clear interrupts if all ICR bits now masked
661		// and interrupt was pending ?
662		break;
663	default:
664		break;
665	}
666}
667
668static uint32_t
669e82545_intr_read(struct e82545_softc *sc, uint32_t offset)
670{
671	uint32_t retval;
672
673	retval = 0;
674
675	DPRINTF("intr_read: off %x\n\r", offset);
676
677	switch (offset) {
678	case E1000_ICR:
679		retval = sc->esc_ICR;
680		sc->esc_ICR = 0;
681		e82545_icr_deassert(sc, ~0);
682		break;
683	case E1000_ITR:
684		retval = sc->esc_ITR;
685		break;
686	case E1000_ICS:
687		/* write-only register */
688		break;
689	case E1000_IMS:
690		retval = sc->esc_IMS;
691		break;
692	case E1000_IMC:
693		/* write-only register */
694		break;
695	default:
696		break;
697	}
698
699	return (retval);
700}
701
702static void
703e82545_devctl(struct e82545_softc *sc, uint32_t val)
704{
705
706	sc->esc_CTRL = val & ~E1000_CTRL_RST;
707
708	if (val & E1000_CTRL_RST) {
709		DPRINTF("e1k: s/w reset, ctl %x\n", val);
710		e82545_reset(sc, 1);
711	}
712	/* XXX check for phy reset ? */
713}
714
715static void
716e82545_rx_update_rdba(struct e82545_softc *sc)
717{
718
719	/* XXX verify desc base/len within phys mem range */
720	sc->esc_rdba = (uint64_t)sc->esc_RDBAH << 32 |
721	    sc->esc_RDBAL;
722
723	/* Cache host mapping of guest descriptor array */
724	sc->esc_rxdesc = paddr_guest2host(sc->esc_ctx,
725	    sc->esc_rdba, sc->esc_RDLEN);
726}
727
728static void
729e82545_rx_ctl(struct e82545_softc *sc, uint32_t val)
730{
731	int on;
732
733	on = ((val & E1000_RCTL_EN) == E1000_RCTL_EN);
734
735	/* Save RCTL after stripping reserved bits 31:27,24,21,14,11:10,0 */
736	sc->esc_RCTL = val & ~0xF9204c01;
737
738	DPRINTF("rx_ctl - %s RCTL %x, val %x\n",
739		on ? "on" : "off", sc->esc_RCTL, val);
740
741	/* state change requested */
742	if (on != sc->esc_rx_enabled) {
743		if (on) {
744			/* Catch disallowed/unimplemented settings */
745			//assert(!(val & E1000_RCTL_LBM_TCVR));
746
747			if (sc->esc_RCTL & E1000_RCTL_LBM_TCVR) {
748				sc->esc_rx_loopback = 1;
749			} else {
750				sc->esc_rx_loopback = 0;
751			}
752
753			e82545_rx_update_rdba(sc);
754			e82545_rx_enable(sc);
755		} else {
756			e82545_rx_disable(sc);
757			sc->esc_rx_loopback = 0;
758			sc->esc_rdba = 0;
759			sc->esc_rxdesc = NULL;
760		}
761	}
762}
763
764static void
765e82545_tx_update_tdba(struct e82545_softc *sc)
766{
767
768	/* XXX verify desc base/len within phys mem range */
769	sc->esc_tdba = (uint64_t)sc->esc_TDBAH << 32 | sc->esc_TDBAL;
770
771	/* Cache host mapping of guest descriptor array */
772	sc->esc_txdesc = paddr_guest2host(sc->esc_ctx, sc->esc_tdba,
773            sc->esc_TDLEN);
774}
775
776static void
777e82545_tx_ctl(struct e82545_softc *sc, uint32_t val)
778{
779	int on;
780
781	on = ((val & E1000_TCTL_EN) == E1000_TCTL_EN);
782
783	/* ignore TCTL_EN settings that don't change state */
784	if (on == sc->esc_tx_enabled)
785		return;
786
787	if (on) {
788		e82545_tx_update_tdba(sc);
789		e82545_tx_enable(sc);
790	} else {
791		e82545_tx_disable(sc);
792		sc->esc_tdba = 0;
793		sc->esc_txdesc = NULL;
794	}
795
796	/* Save TCTL value after stripping reserved bits 31:25,23,2,0 */
797	sc->esc_TCTL = val & ~0xFE800005;
798}
799
800int
801e82545_bufsz(uint32_t rctl)
802{
803
804	switch (rctl & (E1000_RCTL_BSEX | E1000_RCTL_SZ_256)) {
805	case (E1000_RCTL_SZ_2048): return (2048);
806	case (E1000_RCTL_SZ_1024): return (1024);
807	case (E1000_RCTL_SZ_512): return (512);
808	case (E1000_RCTL_SZ_256): return (256);
809	case (E1000_RCTL_BSEX|E1000_RCTL_SZ_16384): return (16384);
810	case (E1000_RCTL_BSEX|E1000_RCTL_SZ_8192): return (8192);
811	case (E1000_RCTL_BSEX|E1000_RCTL_SZ_4096): return (4096);
812	}
813	return (256);	/* Forbidden value. */
814}
815
816static uint8_t dummybuf[2048];
817
818/* XXX one packet at a time until this is debugged */
819static void
820e82545_tap_callback(int fd, enum ev_type type, void *param)
821{
822	struct e82545_softc *sc = param;
823	struct e1000_rx_desc *rxd;
824	struct iovec vec[64];
825	int left, len, lim, maxpktsz, maxpktdesc, bufsz, i, n, size;
826	uint32_t cause = 0;
827	uint16_t *tp, tag, head;
828
829	pthread_mutex_lock(&sc->esc_mtx);
830	DPRINTF("rx_run: head %x, tail %x\r\n", sc->esc_RDH, sc->esc_RDT);
831
832	if (!sc->esc_rx_enabled || sc->esc_rx_loopback) {
833		DPRINTF("rx disabled (!%d || %d) -- packet(s) dropped\r\n",
834		    sc->esc_rx_enabled, sc->esc_rx_loopback);
835		while (read(sc->esc_tapfd, dummybuf, sizeof(dummybuf)) > 0) {
836		}
837		goto done1;
838	}
839	bufsz = e82545_bufsz(sc->esc_RCTL);
840	maxpktsz = (sc->esc_RCTL & E1000_RCTL_LPE) ? 16384 : 1522;
841	maxpktdesc = (maxpktsz + bufsz - 1) / bufsz;
842	size = sc->esc_RDLEN / 16;
843	head = sc->esc_RDH;
844	left = (size + sc->esc_RDT - head) % size;
845	if (left < maxpktdesc) {
846		DPRINTF("rx overflow (%d < %d) -- packet(s) dropped\r\n",
847		    left, maxpktdesc);
848		while (read(sc->esc_tapfd, dummybuf, sizeof(dummybuf)) > 0) {
849		}
850		goto done1;
851	}
852
853	sc->esc_rx_active = 1;
854	pthread_mutex_unlock(&sc->esc_mtx);
855
856	for (lim = size / 4; lim > 0 && left >= maxpktdesc; lim -= n) {
857
858		/* Grab rx descriptor pointed to by the head pointer */
859		for (i = 0; i < maxpktdesc; i++) {
860			rxd = &sc->esc_rxdesc[(head + i) % size];
861			vec[i].iov_base = paddr_guest2host(sc->esc_ctx,
862			    rxd->buffer_addr, bufsz);
863			vec[i].iov_len = bufsz;
864		}
865		len = readv(sc->esc_tapfd, vec, maxpktdesc);
866		if (len <= 0) {
867			DPRINTF("tap: readv() returned %d\n", len);
868			goto done;
869		}
870
871		/*
872		 * Adjust the packet length based on whether the CRC needs
873		 * to be stripped or if the packet is less than the minimum
874		 * eth packet size.
875		 */
876		if (len < ETHER_MIN_LEN - ETHER_CRC_LEN)
877			len = ETHER_MIN_LEN - ETHER_CRC_LEN;
878		if (!(sc->esc_RCTL & E1000_RCTL_SECRC))
879			len += ETHER_CRC_LEN;
880		n = (len + bufsz - 1) / bufsz;
881
882		DPRINTF("packet read %d bytes, %d segs, head %d\r\n",
883		    len, n, head);
884
885		/* Apply VLAN filter. */
886		tp = (uint16_t *)vec[0].iov_base + 6;
887		if ((sc->esc_RCTL & E1000_RCTL_VFE) &&
888		    (ntohs(tp[0]) == sc->esc_VET)) {
889			tag = ntohs(tp[1]) & 0x0fff;
890			if ((sc->esc_fvlan[tag >> 5] &
891			    (1 << (tag & 0x1f))) != 0) {
892				DPRINTF("known VLAN %d\r\n", tag);
893			} else {
894				DPRINTF("unknown VLAN %d\r\n", tag);
895				n = 0;
896				continue;
897			}
898		}
899
900		/* Update all consumed descriptors. */
901		for (i = 0; i < n - 1; i++) {
902			rxd = &sc->esc_rxdesc[(head + i) % size];
903			rxd->length = bufsz;
904			rxd->csum = 0;
905			rxd->errors = 0;
906			rxd->special = 0;
907			rxd->status = E1000_RXD_STAT_DD;
908		}
909		rxd = &sc->esc_rxdesc[(head + i) % size];
910		rxd->length = len % bufsz;
911		rxd->csum = 0;
912		rxd->errors = 0;
913		rxd->special = 0;
914		/* XXX signal no checksum for now */
915		rxd->status = E1000_RXD_STAT_PIF | E1000_RXD_STAT_IXSM |
916		    E1000_RXD_STAT_EOP | E1000_RXD_STAT_DD;
917
918		/* Schedule receive interrupts. */
919		if (len <= sc->esc_RSRPD) {
920			cause |= E1000_ICR_SRPD | E1000_ICR_RXT0;
921		} else {
922			/* XXX: RDRT and RADV timers should be here. */
923			cause |= E1000_ICR_RXT0;
924		}
925
926		head = (head + n) % size;
927		left -= n;
928	}
929
930done:
931	pthread_mutex_lock(&sc->esc_mtx);
932	sc->esc_rx_active = 0;
933	if (sc->esc_rx_enabled == 0)
934		pthread_cond_signal(&sc->esc_rx_cond);
935
936	sc->esc_RDH = head;
937	/* Respect E1000_RCTL_RDMTS */
938	left = (size + sc->esc_RDT - head) % size;
939	if (left < (size >> (((sc->esc_RCTL >> 8) & 3) + 1)))
940		cause |= E1000_ICR_RXDMT0;
941	/* Assert all accumulated interrupts. */
942	if (cause != 0)
943		e82545_icr_assert(sc, cause);
944done1:
945	DPRINTF("rx_run done: head %x, tail %x\r\n", sc->esc_RDH, sc->esc_RDT);
946	pthread_mutex_unlock(&sc->esc_mtx);
947}
948
949static uint16_t
950e82545_carry(uint32_t sum)
951{
952
953	sum = (sum & 0xFFFF) + (sum >> 16);
954	if (sum > 0xFFFF)
955		sum -= 0xFFFF;
956	return (sum);
957}
958
959static uint16_t
960e82545_buf_checksum(uint8_t *buf, int len)
961{
962	int i;
963	uint32_t sum = 0;
964
965	/* Checksum all the pairs of bytes first... */
966	for (i = 0; i < (len & ~1U); i += 2)
967		sum += *((u_int16_t *)(buf + i));
968
969	/*
970	 * If there's a single byte left over, checksum it, too.
971	 * Network byte order is big-endian, so the remaining byte is
972	 * the high byte.
973	 */
974	if (i < len)
975		sum += htons(buf[i] << 8);
976
977	return (e82545_carry(sum));
978}
979
980static uint16_t
981e82545_iov_checksum(struct iovec *iov, int iovcnt, int off, int len)
982{
983	int now, odd;
984	uint32_t sum = 0, s;
985
986	/* Skip completely unneeded vectors. */
987	while (iovcnt > 0 && iov->iov_len <= off && off > 0) {
988		off -= iov->iov_len;
989		iov++;
990		iovcnt--;
991	}
992
993	/* Calculate checksum of requested range. */
994	odd = 0;
995	while (len > 0 && iovcnt > 0) {
996		now = MIN(len, iov->iov_len - off);
997		s = e82545_buf_checksum(iov->iov_base + off, now);
998		sum += odd ? (s << 8) : s;
999		odd ^= (now & 1);
1000		len -= now;
1001		off = 0;
1002		iov++;
1003		iovcnt--;
1004	}
1005
1006	return (e82545_carry(sum));
1007}
1008
1009/*
1010 * Return the transmit descriptor type.
1011 */
1012int
1013e82545_txdesc_type(uint32_t lower)
1014{
1015	int type;
1016
1017	type = 0;
1018
1019	if (lower & E1000_TXD_CMD_DEXT)
1020		type = lower & E1000_TXD_MASK;
1021
1022	return (type);
1023}
1024
1025static void
1026e82545_transmit_checksum(struct iovec *iov, int iovcnt, struct ck_info *ck)
1027{
1028	uint16_t cksum;
1029	int cklen;
1030
1031	DPRINTF("tx cksum: iovcnt/s/off/len %d/%d/%d/%d\r\n",
1032	    iovcnt, ck->ck_start, ck->ck_off, ck->ck_len);
1033	cklen = ck->ck_len ? ck->ck_len - ck->ck_start + 1 : INT_MAX;
1034	cksum = e82545_iov_checksum(iov, iovcnt, ck->ck_start, cklen);
1035	*(uint16_t *)((uint8_t *)iov[0].iov_base + ck->ck_off) = ~cksum;
1036}
1037
1038static void
1039e82545_transmit_backend(struct e82545_softc *sc, struct iovec *iov, int iovcnt)
1040{
1041
1042	if (sc->esc_tapfd == -1)
1043		return;
1044
1045	(void) writev(sc->esc_tapfd, iov, iovcnt);
1046}
1047
1048static void
1049e82545_transmit_done(struct e82545_softc *sc, uint16_t head, uint16_t tail,
1050    uint16_t dsize, int *tdwb)
1051{
1052	union e1000_tx_udesc *dsc;
1053
1054	for ( ; head != tail; head = (head + 1) % dsize) {
1055		dsc = &sc->esc_txdesc[head];
1056		if (dsc->td.lower.data & E1000_TXD_CMD_RS) {
1057			dsc->td.upper.data |= E1000_TXD_STAT_DD;
1058			*tdwb = 1;
1059		}
1060	}
1061}
1062
1063static int
1064e82545_transmit(struct e82545_softc *sc, uint16_t head, uint16_t tail,
1065    uint16_t dsize, uint16_t *rhead, int *tdwb)
1066{
1067	uint8_t *hdr, *hdrp;
1068	struct iovec iovb[I82545_MAX_TXSEGS + 2];
1069	struct iovec tiov[I82545_MAX_TXSEGS + 2];
1070	struct e1000_context_desc *cd;
1071	struct ck_info ckinfo[2];
1072	struct iovec *iov;
1073	union  e1000_tx_udesc *dsc;
1074	int desc, dtype, len, ntype, iovcnt, tlen, hdrlen, vlen, tcp, tso;
1075	int mss, paylen, seg, tiovcnt, left, now, nleft, nnow, pv, pvoff;
1076	uint32_t tcpsum, tcpseq;
1077	uint16_t ipcs, tcpcs, ipid, ohead;
1078
1079	ckinfo[0].ck_valid = ckinfo[1].ck_valid = 0;
1080	iovcnt = 0;
1081	tlen = 0;
1082	ntype = 0;
1083	tso = 0;
1084	ohead = head;
1085
1086	/* iovb[0/1] may be used for writable copy of headers. */
1087	iov = &iovb[2];
1088
1089	for (desc = 0; ; desc++, head = (head + 1) % dsize) {
1090		if (head == tail) {
1091			*rhead = head;
1092			return (0);
1093		}
1094		dsc = &sc->esc_txdesc[head];
1095		dtype = e82545_txdesc_type(dsc->td.lower.data);
1096
1097		if (desc == 0) {
1098			switch (dtype) {
1099			case E1000_TXD_TYP_C:
1100				DPRINTF("tx ctxt desc idx %d: %016jx "
1101				    "%08x%08x\r\n",
1102				    head, dsc->td.buffer_addr,
1103				    dsc->td.upper.data, dsc->td.lower.data);
1104				/* Save context and return */
1105				sc->esc_txctx = dsc->cd;
1106				goto done;
1107			case E1000_TXD_TYP_L:
1108				DPRINTF("tx legacy desc idx %d: %08x%08x\r\n",
1109				    head, dsc->td.upper.data, dsc->td.lower.data);
1110				/*
1111				 * legacy cksum start valid in first descriptor
1112				 */
1113				ntype = dtype;
1114				ckinfo[0].ck_start = dsc->td.upper.fields.css;
1115				break;
1116			case E1000_TXD_TYP_D:
1117				DPRINTF("tx data desc idx %d: %08x%08x\r\n",
1118				    head, dsc->td.upper.data, dsc->td.lower.data);
1119				ntype = dtype;
1120				break;
1121			default:
1122				break;
1123			}
1124		} else {
1125			/* Descriptor type must be consistent */
1126			assert(dtype == ntype);
1127			DPRINTF("tx next desc idx %d: %08x%08x\r\n",
1128			    head, dsc->td.upper.data, dsc->td.lower.data);
1129		}
1130
1131		len = (dtype == E1000_TXD_TYP_L) ? dsc->td.lower.flags.length :
1132		    dsc->dd.lower.data & 0xFFFFF;
1133
1134		if (len > 0) {
1135			/* Strip checksum supplied by guest. */
1136			if ((dsc->td.lower.data & E1000_TXD_CMD_EOP) != 0 &&
1137			    (dsc->td.lower.data & E1000_TXD_CMD_IFCS) == 0)
1138				len -= 2;
1139			tlen += len;
1140			if (iovcnt < I82545_MAX_TXSEGS) {
1141				iov[iovcnt].iov_base = paddr_guest2host(
1142				    sc->esc_ctx, dsc->td.buffer_addr, len);
1143				iov[iovcnt].iov_len = len;
1144			}
1145			iovcnt++;
1146		}
1147
1148		/*
1149		 * Pull out info that is valid in the final descriptor
1150		 * and exit descriptor loop.
1151		 */
1152		if (dsc->td.lower.data & E1000_TXD_CMD_EOP) {
1153			if (dtype == E1000_TXD_TYP_L) {
1154				if (dsc->td.lower.data & E1000_TXD_CMD_IC) {
1155					ckinfo[0].ck_valid = 1;
1156					ckinfo[0].ck_off =
1157					    dsc->td.lower.flags.cso;
1158					ckinfo[0].ck_len = 0;
1159				}
1160			} else {
1161				cd = &sc->esc_txctx;
1162				if (dsc->dd.lower.data & E1000_TXD_CMD_TSE)
1163					tso = 1;
1164				if (dsc->dd.upper.fields.popts &
1165				    E1000_TXD_POPTS_IXSM)
1166					ckinfo[0].ck_valid = 1;
1167				if (dsc->dd.upper.fields.popts &
1168				    E1000_TXD_POPTS_IXSM || tso) {
1169					ckinfo[0].ck_start =
1170					    cd->lower_setup.ip_fields.ipcss;
1171					ckinfo[0].ck_off =
1172					    cd->lower_setup.ip_fields.ipcso;
1173					ckinfo[0].ck_len =
1174					    cd->lower_setup.ip_fields.ipcse;
1175				}
1176				if (dsc->dd.upper.fields.popts &
1177				    E1000_TXD_POPTS_TXSM)
1178					ckinfo[1].ck_valid = 1;
1179				if (dsc->dd.upper.fields.popts &
1180				    E1000_TXD_POPTS_TXSM || tso) {
1181					ckinfo[1].ck_start =
1182					    cd->upper_setup.tcp_fields.tucss;
1183					ckinfo[1].ck_off =
1184					    cd->upper_setup.tcp_fields.tucso;
1185					ckinfo[1].ck_len =
1186					    cd->upper_setup.tcp_fields.tucse;
1187				}
1188			}
1189			break;
1190		}
1191	}
1192
1193	if (iovcnt > I82545_MAX_TXSEGS) {
1194		WPRINTF("tx too many descriptors (%d > %d) -- dropped\r\n",
1195		    iovcnt, I82545_MAX_TXSEGS);
1196		goto done;
1197	}
1198
1199	hdrlen = vlen = 0;
1200	/* Estimate writable space for VLAN header insertion. */
1201	if ((sc->esc_CTRL & E1000_CTRL_VME) &&
1202	    (dsc->td.lower.data & E1000_TXD_CMD_VLE)) {
1203		hdrlen = ETHER_ADDR_LEN*2;
1204		vlen = ETHER_VLAN_ENCAP_LEN;
1205	}
1206	if (!tso) {
1207		/* Estimate required writable space for checksums. */
1208		if (ckinfo[0].ck_valid)
1209			hdrlen = MAX(hdrlen, ckinfo[0].ck_off + 2);
1210		if (ckinfo[1].ck_valid)
1211			hdrlen = MAX(hdrlen, ckinfo[1].ck_off + 2);
1212		/* Round up writable space to the first vector. */
1213		if (hdrlen != 0 && iov[0].iov_len > hdrlen &&
1214		    iov[0].iov_len < hdrlen + 100)
1215			hdrlen = iov[0].iov_len;
1216	} else {
1217		/* In case of TSO header length provided by software. */
1218		hdrlen = sc->esc_txctx.tcp_seg_setup.fields.hdr_len;
1219	}
1220
1221	/* Allocate, fill and prepend writable header vector. */
1222	if (hdrlen != 0) {
1223		hdr = __builtin_alloca(hdrlen + vlen);
1224		hdr += vlen;
1225		for (left = hdrlen, hdrp = hdr; left > 0;
1226		    left -= now, hdrp += now) {
1227			now = MIN(left, iov->iov_len);
1228			memcpy(hdrp, iov->iov_base, now);
1229			iov->iov_base += now;
1230			iov->iov_len -= now;
1231			if (iov->iov_len == 0) {
1232				iov++;
1233				iovcnt--;
1234			}
1235		}
1236		iov--;
1237		iovcnt++;
1238		iov->iov_base = hdr;
1239		iov->iov_len = hdrlen;
1240	}
1241
1242	/* Insert VLAN tag. */
1243	if (vlen != 0) {
1244		hdr -= ETHER_VLAN_ENCAP_LEN;
1245		memmove(hdr, hdr + ETHER_VLAN_ENCAP_LEN, ETHER_ADDR_LEN*2);
1246		hdrlen += ETHER_VLAN_ENCAP_LEN;
1247		hdr[ETHER_ADDR_LEN*2 + 0] = sc->esc_VET >> 8;
1248		hdr[ETHER_ADDR_LEN*2 + 1] = sc->esc_VET & 0xff;
1249		hdr[ETHER_ADDR_LEN*2 + 2] = dsc->td.upper.fields.special >> 8;
1250		hdr[ETHER_ADDR_LEN*2 + 3] = dsc->td.upper.fields.special & 0xff;
1251		iov->iov_base = hdr;
1252		iov->iov_len += ETHER_VLAN_ENCAP_LEN;
1253		/* Correct checksum offsets after VLAN tag insertion. */
1254		ckinfo[0].ck_start += ETHER_VLAN_ENCAP_LEN;
1255		ckinfo[0].ck_off += ETHER_VLAN_ENCAP_LEN;
1256		if (ckinfo[0].ck_len != 0)
1257			ckinfo[0].ck_len += ETHER_VLAN_ENCAP_LEN;
1258		ckinfo[1].ck_start += ETHER_VLAN_ENCAP_LEN;
1259		ckinfo[1].ck_off += ETHER_VLAN_ENCAP_LEN;
1260		if (ckinfo[1].ck_len != 0)
1261			ckinfo[1].ck_len += ETHER_VLAN_ENCAP_LEN;
1262	}
1263
1264	/* Simple non-TSO case. */
1265	if (!tso) {
1266		/* Calculate checksums and transmit. */
1267		if (ckinfo[0].ck_valid)
1268			e82545_transmit_checksum(iov, iovcnt, &ckinfo[0]);
1269		if (ckinfo[1].ck_valid)
1270			e82545_transmit_checksum(iov, iovcnt, &ckinfo[1]);
1271		e82545_transmit_backend(sc, iov, iovcnt);
1272		goto done;
1273	}
1274
1275	/* Doing TSO. */
1276	tcp = (sc->esc_txctx.cmd_and_length & E1000_TXD_CMD_TCP) != 0;
1277	mss = sc->esc_txctx.tcp_seg_setup.fields.mss;
1278	paylen = (sc->esc_txctx.cmd_and_length & 0x000fffff);
1279	DPRINTF("tx %s segmentation offload %d+%d/%d bytes %d iovs\r\n",
1280	    tcp ? "TCP" : "UDP", hdrlen, paylen, mss, iovcnt);
1281	ipid = ntohs(*(uint16_t *)&hdr[ckinfo[0].ck_start + 4]);
1282	tcpseq = ntohl(*(uint32_t *)&hdr[ckinfo[1].ck_start + 4]);
1283	ipcs = *(uint16_t *)&hdr[ckinfo[0].ck_off];
1284	tcpcs = 0;
1285	if (ckinfo[1].ck_valid)	/* Save partial pseudo-header checksum. */
1286		tcpcs = *(uint16_t *)&hdr[ckinfo[1].ck_off];
1287	pv = 1;
1288	pvoff = 0;
1289	for (seg = 0, left = paylen; left > 0; seg++, left -= now) {
1290		now = MIN(left, mss);
1291
1292		/* Construct IOVs for the segment. */
1293		/* Include whole original header. */
1294		tiov[0].iov_base = hdr;
1295		tiov[0].iov_len = hdrlen;
1296		tiovcnt = 1;
1297		/* Include respective part of payload IOV. */
1298		for (nleft = now; pv < iovcnt && nleft > 0; nleft -= nnow) {
1299			nnow = MIN(nleft, iov[pv].iov_len - pvoff);
1300			tiov[tiovcnt].iov_base = iov[pv].iov_base + pvoff;
1301			tiov[tiovcnt++].iov_len = nnow;
1302			if (pvoff + nnow == iov[pv].iov_len) {
1303				pv++;
1304				pvoff = 0;
1305			} else
1306				pvoff += nnow;
1307		}
1308		DPRINTF("tx segment %d %d+%d bytes %d iovs\r\n",
1309		    seg, hdrlen, now, tiovcnt);
1310
1311		/* Update IP header. */
1312		if (sc->esc_txctx.cmd_and_length & E1000_TXD_CMD_IP) {
1313			/* IPv4 -- set length and ID */
1314			*(uint16_t *)&hdr[ckinfo[0].ck_start + 2] =
1315			    htons(hdrlen - ckinfo[0].ck_start + now);
1316			*(uint16_t *)&hdr[ckinfo[0].ck_start + 4] =
1317			    htons(ipid + seg);
1318		} else {
1319			/* IPv6 -- set length */
1320			*(uint16_t *)&hdr[ckinfo[0].ck_start + 4] =
1321			    htons(hdrlen - ckinfo[0].ck_start - 40 +
1322				  now);
1323		}
1324
1325		/* Update pseudo-header checksum. */
1326		tcpsum = tcpcs;
1327		tcpsum += htons(hdrlen - ckinfo[1].ck_start + now);
1328
1329		/* Update TCP/UDP headers. */
1330		if (tcp) {
1331			/* Update sequence number and FIN/PUSH flags. */
1332			*(uint32_t *)&hdr[ckinfo[1].ck_start + 4] =
1333			    htonl(tcpseq + paylen - left);
1334			if (now < left) {
1335				hdr[ckinfo[1].ck_start + 13] &=
1336				    ~(TH_FIN | TH_PUSH);
1337			}
1338		} else {
1339			/* Update payload length. */
1340			*(uint32_t *)&hdr[ckinfo[1].ck_start + 4] =
1341			    hdrlen - ckinfo[1].ck_start + now;
1342		}
1343
1344		/* Calculate checksums and transmit. */
1345		if (ckinfo[0].ck_valid) {
1346			*(uint16_t *)&hdr[ckinfo[0].ck_off] = ipcs;
1347			e82545_transmit_checksum(tiov, tiovcnt, &ckinfo[0]);
1348		}
1349		if (ckinfo[1].ck_valid) {
1350			*(uint16_t *)&hdr[ckinfo[1].ck_off] =
1351			    e82545_carry(tcpsum);
1352			e82545_transmit_checksum(tiov, tiovcnt, &ckinfo[1]);
1353		}
1354		e82545_transmit_backend(sc, tiov, tiovcnt);
1355	}
1356
1357done:
1358	head = (head + 1) % dsize;
1359	e82545_transmit_done(sc, ohead, head, dsize, tdwb);
1360
1361	*rhead = head;
1362	return (desc + 1);
1363}
1364
1365static void
1366e82545_tx_run(struct e82545_softc *sc)
1367{
1368	uint32_t cause;
1369	uint16_t head, rhead, tail, size;
1370	int lim, tdwb, sent;
1371
1372	head = sc->esc_TDH;
1373	tail = sc->esc_TDT;
1374	size = sc->esc_TDLEN / 16;
1375	DPRINTF("tx_run: head %x, rhead %x, tail %x\r\n",
1376	    sc->esc_TDH, sc->esc_TDHr, sc->esc_TDT);
1377
1378	pthread_mutex_unlock(&sc->esc_mtx);
1379	rhead = head;
1380	tdwb = 0;
1381	for (lim = size / 4; sc->esc_tx_enabled && lim > 0; lim -= sent) {
1382		sent = e82545_transmit(sc, head, tail, size, &rhead, &tdwb);
1383		if (sent == 0)
1384			break;
1385		head = rhead;
1386	}
1387	pthread_mutex_lock(&sc->esc_mtx);
1388
1389	sc->esc_TDH = head;
1390	sc->esc_TDHr = rhead;
1391	cause = 0;
1392	if (tdwb)
1393		cause |= E1000_ICR_TXDW;
1394	if (lim != size / 4 && sc->esc_TDH == sc->esc_TDT)
1395		cause |= E1000_ICR_TXQE;
1396	if (cause)
1397		e82545_icr_assert(sc, cause);
1398
1399	DPRINTF("tx_run done: head %x, rhead %x, tail %x\r\n",
1400	    sc->esc_TDH, sc->esc_TDHr, sc->esc_TDT);
1401}
1402
1403static void *
1404e82545_tx_thread(void *param)
1405{
1406	struct e82545_softc *sc = param;
1407
1408	pthread_mutex_lock(&sc->esc_mtx);
1409	for (;;) {
1410		while (!sc->esc_tx_enabled || sc->esc_TDHr == sc->esc_TDT) {
1411			if (sc->esc_tx_enabled && sc->esc_TDHr != sc->esc_TDT)
1412				break;
1413			sc->esc_tx_active = 0;
1414			if (sc->esc_tx_enabled == 0)
1415				pthread_cond_signal(&sc->esc_tx_cond);
1416			pthread_cond_wait(&sc->esc_tx_cond, &sc->esc_mtx);
1417		}
1418		sc->esc_tx_active = 1;
1419
1420		/* Process some tx descriptors.  Lock dropped inside. */
1421		e82545_tx_run(sc);
1422	}
1423}
1424
1425static void
1426e82545_tx_start(struct e82545_softc *sc)
1427{
1428
1429	if (sc->esc_tx_active == 0)
1430		pthread_cond_signal(&sc->esc_tx_cond);
1431}
1432
1433static void
1434e82545_tx_enable(struct e82545_softc *sc)
1435{
1436
1437	sc->esc_tx_enabled = 1;
1438}
1439
1440static void
1441e82545_tx_disable(struct e82545_softc *sc)
1442{
1443
1444	sc->esc_tx_enabled = 0;
1445	while (sc->esc_tx_active)
1446		pthread_cond_wait(&sc->esc_tx_cond, &sc->esc_mtx);
1447}
1448
1449static void
1450e82545_rx_enable(struct e82545_softc *sc)
1451{
1452
1453	sc->esc_rx_enabled = 1;
1454}
1455
1456static void
1457e82545_rx_disable(struct e82545_softc *sc)
1458{
1459
1460	sc->esc_rx_enabled = 0;
1461	while (sc->esc_rx_active)
1462		pthread_cond_wait(&sc->esc_rx_cond, &sc->esc_mtx);
1463}
1464
1465static void
1466e82545_write_ra(struct e82545_softc *sc, int reg, uint32_t wval)
1467{
1468        struct eth_uni *eu;
1469	int idx;
1470
1471	idx = reg >> 1;
1472	assert(idx < 15);
1473
1474	eu = &sc->esc_uni[idx];
1475
1476	if (reg & 0x1) {
1477		/* RAH */
1478		eu->eu_valid = ((wval & E1000_RAH_AV) == E1000_RAH_AV);
1479		eu->eu_addrsel = (wval >> 16) & 0x3;
1480		eu->eu_eth.octet[5] = wval >> 8;
1481		eu->eu_eth.octet[4] = wval;
1482	} else {
1483		/* RAL */
1484		eu->eu_eth.octet[3] = wval >> 24;
1485		eu->eu_eth.octet[2] = wval >> 16;
1486		eu->eu_eth.octet[1] = wval >> 8;
1487		eu->eu_eth.octet[0] = wval;
1488	}
1489}
1490
1491static uint32_t
1492e82545_read_ra(struct e82545_softc *sc, int reg)
1493{
1494        struct eth_uni *eu;
1495	uint32_t retval;
1496	int idx;
1497
1498	idx = reg >> 1;
1499	assert(idx < 15);
1500
1501	eu = &sc->esc_uni[idx];
1502
1503	if (reg & 0x1) {
1504		/* RAH */
1505		retval = (eu->eu_valid << 31) |
1506			 (eu->eu_addrsel << 16) |
1507			 (eu->eu_eth.octet[5] << 8) |
1508			 eu->eu_eth.octet[4];
1509	} else {
1510		/* RAL */
1511		retval = (eu->eu_eth.octet[3] << 24) |
1512			 (eu->eu_eth.octet[2] << 16) |
1513			 (eu->eu_eth.octet[1] << 8) |
1514			 eu->eu_eth.octet[0];
1515	}
1516
1517	return (retval);
1518}
1519
1520static void
1521e82545_write_register(struct e82545_softc *sc, uint32_t offset, uint32_t value)
1522{
1523	int ridx;
1524
1525	if (offset & 0x3) {
1526		DPRINTF("Unaligned register write offset:0x%x value:0x%x\r\n", offset, value);
1527		return;
1528	}
1529	DPRINTF("Register write: 0x%x value: 0x%x\r\n", offset, value);
1530
1531	switch (offset) {
1532	case E1000_CTRL:
1533	case E1000_CTRL_DUP:
1534		e82545_devctl(sc, value);
1535		break;
1536	case E1000_FCAL:
1537		sc->esc_FCAL = value;
1538		break;
1539	case E1000_FCAH:
1540		sc->esc_FCAH = value & ~0xFFFF0000;
1541		break;
1542	case E1000_FCT:
1543		sc->esc_FCT = value & ~0xFFFF0000;
1544		break;
1545	case E1000_VET:
1546		sc->esc_VET = value & ~0xFFFF0000;
1547		break;
1548	case E1000_FCTTV:
1549		sc->esc_FCTTV = value & ~0xFFFF0000;
1550		break;
1551	case E1000_LEDCTL:
1552		sc->esc_LEDCTL = value & ~0x30303000;
1553		break;
1554	case E1000_PBA:
1555		sc->esc_PBA = value & 0x0000FF80;
1556		break;
1557	case E1000_ICR:
1558	case E1000_ITR:
1559	case E1000_ICS:
1560	case E1000_IMS:
1561	case E1000_IMC:
1562		e82545_intr_write(sc, offset, value);
1563		break;
1564	case E1000_RCTL:
1565		e82545_rx_ctl(sc, value);
1566		break;
1567	case E1000_FCRTL:
1568		sc->esc_FCRTL = value & ~0xFFFF0007;
1569		break;
1570	case E1000_FCRTH:
1571		sc->esc_FCRTH = value & ~0xFFFF0007;
1572		break;
1573	case E1000_RDBAL(0):
1574		sc->esc_RDBAL = value & ~0xF;
1575		if (sc->esc_rx_enabled) {
1576			/* Apparently legal: update cached address */
1577			e82545_rx_update_rdba(sc);
1578		}
1579		break;
1580	case E1000_RDBAH(0):
1581		assert(!sc->esc_rx_enabled);
1582		sc->esc_RDBAH = value;
1583		break;
1584	case E1000_RDLEN(0):
1585		assert(!sc->esc_rx_enabled);
1586		sc->esc_RDLEN = value & ~0xFFF0007F;
1587		break;
1588	case E1000_RDH(0):
1589		/* XXX should only ever be zero ? Range check ? */
1590		sc->esc_RDH = value;
1591		break;
1592	case E1000_RDT(0):
1593		/* XXX if this opens up the rx ring, do something ? */
1594		sc->esc_RDT = value;
1595		break;
1596	case E1000_RDTR:
1597		/* ignore FPD bit 31 */
1598		sc->esc_RDTR = value & ~0xFFFF0000;
1599		break;
1600	case E1000_RXDCTL(0):
1601		sc->esc_RXDCTL = value & ~0xFEC0C0C0;
1602		break;
1603	case E1000_RADV:
1604		sc->esc_RADV = value & ~0xFFFF0000;
1605		break;
1606	case E1000_RSRPD:
1607		sc->esc_RSRPD = value & ~0xFFFFF000;
1608		break;
1609	case E1000_RXCSUM:
1610		sc->esc_RXCSUM = value & ~0xFFFFF800;
1611		break;
1612	case E1000_TXCW:
1613		sc->esc_TXCW = value & ~0x3FFF0000;
1614		break;
1615	case E1000_TCTL:
1616		e82545_tx_ctl(sc, value);
1617		break;
1618	case E1000_TIPG:
1619		sc->esc_TIPG = value;
1620		break;
1621	case E1000_AIT:
1622		sc->esc_AIT = value;
1623		break;
1624	case E1000_TDBAL(0):
1625		sc->esc_TDBAL = value & ~0xF;
1626		if (sc->esc_tx_enabled) {
1627			/* Apparently legal */
1628			e82545_tx_update_tdba(sc);
1629		}
1630		break;
1631	case E1000_TDBAH(0):
1632		//assert(!sc->esc_tx_enabled);
1633		sc->esc_TDBAH = value;
1634		break;
1635	case E1000_TDLEN(0):
1636		//assert(!sc->esc_tx_enabled);
1637		sc->esc_TDLEN = value & ~0xFFF0007F;
1638		break;
1639	case E1000_TDH(0):
1640		//assert(!sc->esc_tx_enabled);
1641		/* XXX should only ever be zero ? Range check ? */
1642		sc->esc_TDHr = sc->esc_TDH = value;
1643		break;
1644	case E1000_TDT(0):
1645		/* XXX range check ? */
1646		sc->esc_TDT = value;
1647		if (sc->esc_tx_enabled)
1648			e82545_tx_start(sc);
1649		break;
1650	case E1000_TIDV:
1651		sc->esc_TIDV = value & ~0xFFFF0000;
1652		break;
1653	case E1000_TXDCTL(0):
1654		//assert(!sc->esc_tx_enabled);
1655		sc->esc_TXDCTL = value & ~0xC0C0C0;
1656		break;
1657	case E1000_TADV:
1658		sc->esc_TADV = value & ~0xFFFF0000;
1659		break;
1660	case E1000_RAL(0) ... E1000_RAH(15):
1661		/* convert to u32 offset */
1662		ridx = (offset - E1000_RAL(0)) >> 2;
1663		e82545_write_ra(sc, ridx, value);
1664		break;
1665	case E1000_MTA ... (E1000_MTA + (127*4)):
1666		sc->esc_fmcast[(offset - E1000_MTA) >> 2] = value;
1667		break;
1668	case E1000_VFTA ... (E1000_VFTA + (127*4)):
1669		sc->esc_fvlan[(offset - E1000_VFTA) >> 2] = value;
1670		break;
1671	case E1000_EECD:
1672	{
1673		//DPRINTF("EECD write 0x%x -> 0x%x\r\n", sc->eeprom_control, value);
1674		/* edge triggered low->high */
1675		uint32_t eecd_strobe = ((sc->eeprom_control & E1000_EECD_SK) ?
1676			0 : (value & E1000_EECD_SK));
1677		uint32_t eecd_mask = (E1000_EECD_SK|E1000_EECD_CS|
1678					E1000_EECD_DI|E1000_EECD_REQ);
1679		sc->eeprom_control &= ~eecd_mask;
1680		sc->eeprom_control |= (value & eecd_mask);
1681		/* grant/revoke immediately */
1682		if (value & E1000_EECD_REQ) {
1683			sc->eeprom_control |= E1000_EECD_GNT;
1684		} else {
1685                        sc->eeprom_control &= ~E1000_EECD_GNT;
1686		}
1687		if (eecd_strobe && (sc->eeprom_control & E1000_EECD_CS)) {
1688			e82545_eecd_strobe(sc);
1689		}
1690		return;
1691	}
1692	case E1000_MDIC:
1693	{
1694		uint8_t reg_addr = (uint8_t)((value & E1000_MDIC_REG_MASK) >>
1695						E1000_MDIC_REG_SHIFT);
1696		uint8_t phy_addr = (uint8_t)((value & E1000_MDIC_PHY_MASK) >>
1697						E1000_MDIC_PHY_SHIFT);
1698		sc->mdi_control =
1699			(value & ~(E1000_MDIC_ERROR|E1000_MDIC_DEST));
1700		if ((value & E1000_MDIC_READY) != 0) {
1701			DPRINTF("Incorrect MDIC ready bit: 0x%x\r\n", value);
1702			return;
1703		}
1704		switch (value & E82545_MDIC_OP_MASK) {
1705		case E1000_MDIC_OP_READ:
1706			sc->mdi_control &= ~E82545_MDIC_DATA_MASK;
1707			sc->mdi_control |= e82545_read_mdi(sc, reg_addr, phy_addr);
1708			break;
1709		case E1000_MDIC_OP_WRITE:
1710			e82545_write_mdi(sc, reg_addr, phy_addr,
1711				value & E82545_MDIC_DATA_MASK);
1712			break;
1713		default:
1714			DPRINTF("Unknown MDIC op: 0x%x\r\n", value);
1715			return;
1716		}
1717		/* TODO: barrier? */
1718		sc->mdi_control |= E1000_MDIC_READY;
1719		if (value & E82545_MDIC_IE) {
1720			// TODO: generate interrupt
1721		}
1722		return;
1723	}
1724	case E1000_MANC:
1725	case E1000_STATUS:
1726		return;
1727	default:
1728		DPRINTF("Unknown write register: 0x%x value:%x\r\n", offset, value);
1729		return;
1730	}
1731}
1732
1733static uint32_t
1734e82545_read_register(struct e82545_softc *sc, uint32_t offset)
1735{
1736	uint32_t retval;
1737	int ridx;
1738
1739	if (offset & 0x3) {
1740		DPRINTF("Unaligned register read offset:0x%x\r\n", offset);
1741		return 0;
1742	}
1743
1744	DPRINTF("Register read: 0x%x\r\n", offset);
1745
1746	switch (offset) {
1747	case E1000_CTRL:
1748		retval = sc->esc_CTRL;
1749		break;
1750	case E1000_STATUS:
1751		retval = E1000_STATUS_FD | E1000_STATUS_LU |
1752		    E1000_STATUS_SPEED_1000;
1753		break;
1754	case E1000_FCAL:
1755		retval = sc->esc_FCAL;
1756		break;
1757	case E1000_FCAH:
1758		retval = sc->esc_FCAH;
1759		break;
1760	case E1000_FCT:
1761		retval = sc->esc_FCT;
1762		break;
1763	case E1000_VET:
1764		retval = sc->esc_VET;
1765		break;
1766	case E1000_FCTTV:
1767		retval = sc->esc_FCTTV;
1768		break;
1769	case E1000_LEDCTL:
1770		retval = sc->esc_LEDCTL;
1771		break;
1772	case E1000_PBA:
1773		retval = sc->esc_PBA;
1774		break;
1775	case E1000_ICR:
1776	case E1000_ITR:
1777	case E1000_ICS:
1778	case E1000_IMS:
1779	case E1000_IMC:
1780		retval = e82545_intr_read(sc, offset);
1781		break;
1782	case E1000_RCTL:
1783		retval = sc->esc_RCTL;
1784		break;
1785	case E1000_FCRTL:
1786		retval = sc->esc_FCRTL;
1787		break;
1788	case E1000_FCRTH:
1789		retval = sc->esc_FCRTH;
1790		break;
1791	case E1000_RDBAL(0):
1792		retval = sc->esc_RDBAL;
1793		break;
1794	case E1000_RDBAH(0):
1795		retval = sc->esc_RDBAH;
1796		break;
1797	case E1000_RDLEN(0):
1798		retval = sc->esc_RDLEN;
1799		break;
1800	case E1000_RDH(0):
1801		retval = sc->esc_RDH;
1802		break;
1803	case E1000_RDT(0):
1804		retval = sc->esc_RDT;
1805		break;
1806	case E1000_RDTR:
1807		retval = sc->esc_RDTR;
1808		break;
1809	case E1000_RXDCTL(0):
1810		retval = sc->esc_RXDCTL;
1811		break;
1812	case E1000_RADV:
1813		retval = sc->esc_RADV;
1814		break;
1815	case E1000_RSRPD:
1816		retval = sc->esc_RSRPD;
1817		break;
1818	case E1000_RXCSUM:
1819		retval = sc->esc_RXCSUM;
1820		break;
1821	case E1000_TXCW:
1822		retval = sc->esc_TXCW;
1823		break;
1824	case E1000_TCTL:
1825		retval = sc->esc_TCTL;
1826		break;
1827	case E1000_TIPG:
1828		retval = sc->esc_TIPG;
1829		break;
1830	case E1000_AIT:
1831		retval = sc->esc_AIT;
1832		break;
1833	case E1000_TDBAL(0):
1834		retval = sc->esc_TDBAL;
1835		break;
1836	case E1000_TDBAH(0):
1837		retval = sc->esc_TDBAH;
1838		break;
1839	case E1000_TDLEN(0):
1840		retval = sc->esc_TDLEN;
1841		break;
1842	case E1000_TDH(0):
1843		retval = sc->esc_TDH;
1844		break;
1845	case E1000_TDT(0):
1846		retval = sc->esc_TDT;
1847		break;
1848	case E1000_TIDV:
1849		retval = sc->esc_TIDV;
1850		break;
1851	case E1000_TXDCTL(0):
1852		retval = sc->esc_TXDCTL;
1853		break;
1854	case E1000_TADV:
1855		retval = sc->esc_TADV;
1856		break;
1857	case E1000_RAL(0) ... E1000_RAH(15):
1858		/* convert to u32 offset */
1859		ridx = (offset - E1000_RAL(0)) >> 2;
1860		retval = e82545_read_ra(sc, ridx);
1861		break;
1862	case E1000_MTA ... (E1000_MTA + (127*4)):
1863		retval = sc->esc_fmcast[(offset - E1000_MTA) >> 2];
1864		break;
1865	case E1000_VFTA ... (E1000_VFTA + (127*4)):
1866		retval = sc->esc_fvlan[(offset - E1000_VFTA) >> 2];
1867		break;
1868	case E1000_EECD:
1869		//DPRINTF("EECD read %x\r\n", sc->eeprom_control);
1870		retval = sc->eeprom_control;
1871		break;
1872	case E1000_MDIC:
1873		retval = sc->mdi_control;
1874		break;
1875	case E1000_MANC:
1876		retval = 0;
1877		break;
1878	/* stats that we emulate. */
1879	case E1000_MPC:
1880		retval = sc->missed_pkt_count;
1881		break;
1882	case E1000_PRC64:
1883		retval = sc->pkt_rx_by_size[0];
1884		break;
1885	case E1000_PRC127:
1886		retval = sc->pkt_rx_by_size[1];
1887		break;
1888	case E1000_PRC255:
1889		retval = sc->pkt_rx_by_size[2];
1890		break;
1891	case E1000_PRC511:
1892		retval = sc->pkt_rx_by_size[3];
1893		break;
1894	case E1000_PRC1023:
1895		retval = sc->pkt_rx_by_size[4];
1896		break;
1897	case E1000_PRC1522:
1898		retval = sc->pkt_rx_by_size[5];
1899		break;
1900	case E1000_GPRC:
1901		retval = sc->good_pkt_rx_count;
1902		break;
1903	case E1000_BPRC:
1904		retval = sc->bcast_pkt_rx_count;
1905		break;
1906	case E1000_MPRC:
1907		retval = sc->mcast_pkt_rx_count;
1908		break;
1909	case E1000_GPTC:
1910	case E1000_TPT:
1911		retval = sc->good_pkt_tx_count;
1912		break;
1913	case E1000_GORCL:
1914		retval = (uint32_t)sc->good_octets_rx;
1915		break;
1916	case E1000_GORCH:
1917		retval = (uint32_t)(sc->good_octets_rx >> 32);
1918		break;
1919	case E1000_TOTL:
1920	case E1000_GOTCL:
1921		retval = (uint32_t)sc->good_octets_tx;
1922		break;
1923	case E1000_TOTH:
1924	case E1000_GOTCH:
1925		retval = (uint32_t)(sc->good_octets_tx >> 32);
1926		break;
1927	case E1000_ROC:
1928		retval = sc->oversize_rx_count;
1929		break;
1930	case E1000_TORL:
1931		retval = (uint32_t)(sc->good_octets_rx + sc->missed_octets);
1932		break;
1933	case E1000_TORH:
1934		retval = (uint32_t)((sc->good_octets_rx +
1935		    sc->missed_octets) >> 32);
1936		break;
1937	case E1000_TPR:
1938		retval = sc->good_pkt_rx_count + sc->missed_pkt_count +
1939		    sc->oversize_rx_count;
1940		break;
1941	case E1000_PTC64:
1942		retval = sc->pkt_tx_by_size[0];
1943		break;
1944	case E1000_PTC127:
1945		retval = sc->pkt_tx_by_size[1];
1946		break;
1947	case E1000_PTC255:
1948		retval = sc->pkt_tx_by_size[2];
1949		break;
1950	case E1000_PTC511:
1951		retval = sc->pkt_tx_by_size[3];
1952		break;
1953	case E1000_PTC1023:
1954		retval = sc->pkt_tx_by_size[4];
1955		break;
1956	case E1000_PTC1522:
1957		retval = sc->pkt_tx_by_size[5];
1958		break;
1959	case E1000_MPTC:
1960		retval = sc->mcast_pkt_tx_count;
1961		break;
1962	case E1000_BPTC:
1963		retval = sc->bcast_pkt_tx_count;
1964		break;
1965	case E1000_TSCTC:
1966		retval = sc->tso_tx_count;
1967		break;
1968	/* stats that are always 0. */
1969	case E1000_CRCERRS:
1970	case E1000_ALGNERRC:
1971	case E1000_SYMERRS:
1972	case E1000_RXERRC:
1973	case E1000_SCC:
1974	case E1000_ECOL:
1975	case E1000_MCC:
1976	case E1000_LATECOL:
1977	case E1000_COLC:
1978	case E1000_DC:
1979	case E1000_TNCRS:
1980	case E1000_SEC:
1981	case E1000_CEXTERR:
1982	case E1000_RLEC:
1983	case E1000_XONRXC:
1984	case E1000_XONTXC:
1985	case E1000_XOFFRXC:
1986	case E1000_XOFFTXC:
1987	case E1000_FCRUC:
1988	case E1000_RNBC:
1989	case E1000_RUC:
1990	case E1000_RFC:
1991	case E1000_RJC:
1992	case E1000_MGTPRC:
1993	case E1000_MGTPDC:
1994	case E1000_MGTPTC:
1995	case E1000_TSCTFC:
1996		retval = 0;
1997		break;
1998	default:
1999		DPRINTF("Unknown read register: 0x%x\r\n", offset);
2000		retval = 0;
2001		break;
2002	}
2003
2004	return (retval);
2005}
2006
2007static void
2008e82545_write(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
2009	     uint64_t offset, int size, uint64_t value)
2010{
2011	struct e82545_softc *sc;
2012
2013	//DPRINTF("Write bar:%d offset:0x%lx value:0x%lx size:%d\r\n", baridx, offset, value, size);
2014
2015	sc = pi->pi_arg;
2016
2017	pthread_mutex_lock(&sc->esc_mtx);
2018
2019	switch (baridx) {
2020	case E82545_BAR_IO:
2021		switch (offset) {
2022		case E82545_IOADDR:
2023			if (size != 4) {
2024				DPRINTF("Wrong io addr write sz:%d value:0x%lx\r\n", size, value);
2025			} else
2026				sc->io_addr = (uint32_t)value;
2027			break;
2028		case E82545_IODATA:
2029			if (size != 4) {
2030				DPRINTF("Wrong io data write size:%d value:0x%lx\r\n", size, value);
2031			} else if (sc->io_addr > E82545_IO_REGISTER_MAX) {
2032				DPRINTF("Non-register io write addr:0x%x value:0x%lx\r\n", sc->io_addr, value);
2033			} else
2034				e82545_write_register(sc, sc->io_addr,
2035						      (uint32_t)value);
2036			break;
2037		default:
2038			DPRINTF("Unknown io bar write offset:0x%lx value:0x%lx size:%d\r\n", offset, value, size);
2039			break;
2040		}
2041		break;
2042	case E82545_BAR_REGISTER:
2043		if (size != 4) {
2044			DPRINTF("Wrong register write size:%d offset:0x%lx value:0x%lx\r\n", size, offset, value);
2045		} else
2046			e82545_write_register(sc, (uint32_t)offset,
2047					      (uint32_t)value);
2048		break;
2049	default:
2050		DPRINTF("Unknown write bar:%d off:0x%lx val:0x%lx size:%d\r\n",
2051			baridx, offset, value, size);
2052	}
2053
2054	pthread_mutex_unlock(&sc->esc_mtx);
2055}
2056
2057static uint64_t
2058e82545_read(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
2059	    uint64_t offset, int size)
2060{
2061	struct e82545_softc *sc;
2062	uint64_t retval;
2063
2064	//DPRINTF("Read  bar:%d offset:0x%lx size:%d\r\n", baridx, offset, size);
2065	sc = pi->pi_arg;
2066	retval = 0;
2067
2068	pthread_mutex_lock(&sc->esc_mtx);
2069
2070	switch (baridx) {
2071	case E82545_BAR_IO:
2072		switch (offset) {
2073		case E82545_IOADDR:
2074			if (size != 4) {
2075				DPRINTF("Wrong io addr read sz:%d\r\n", size);
2076			} else
2077				retval = sc->io_addr;
2078			break;
2079		case E82545_IODATA:
2080			if (size != 4) {
2081				DPRINTF("Wrong io data read sz:%d\r\n", size);
2082			}
2083			if (sc->io_addr > E82545_IO_REGISTER_MAX) {
2084				DPRINTF("Non-register io read addr:0x%x\r\n",
2085					sc->io_addr);
2086			} else
2087				retval = e82545_read_register(sc, sc->io_addr);
2088			break;
2089		default:
2090			DPRINTF("Unknown io bar read offset:0x%lx size:%d\r\n",
2091				offset, size);
2092			break;
2093		}
2094		break;
2095	case E82545_BAR_REGISTER:
2096		if (size != 4) {
2097			DPRINTF("Wrong register read size:%d offset:0x%lx\r\n",
2098				size, offset);
2099		} else
2100			retval = e82545_read_register(sc, (uint32_t)offset);
2101		break;
2102	default:
2103		DPRINTF("Unknown read bar:%d offset:0x%lx size:%d\r\n",
2104			baridx, offset, size);
2105		break;
2106	}
2107
2108	pthread_mutex_unlock(&sc->esc_mtx);
2109
2110	return (retval);
2111}
2112
2113static void
2114e82545_reset(struct e82545_softc *sc, int drvr)
2115{
2116	int i;
2117
2118	e82545_rx_disable(sc);
2119	e82545_tx_disable(sc);
2120
2121	/* clear outstanding interrupts */
2122	if (sc->esc_irq_asserted)
2123		pci_lintr_deassert(sc->esc_pi);
2124
2125	/* misc */
2126	if (!drvr) {
2127		sc->esc_FCAL = 0;
2128		sc->esc_FCAH = 0;
2129		sc->esc_FCT = 0;
2130		sc->esc_VET = 0;
2131		sc->esc_FCTTV = 0;
2132	}
2133	sc->esc_LEDCTL = 0x07061302;
2134	sc->esc_PBA = 0x00100030;
2135
2136	/* start nvm in opcode mode. */
2137	sc->nvm_opaddr = 0;
2138	sc->nvm_mode = E82545_NVM_MODE_OPADDR;
2139	sc->nvm_bits = E82545_NVM_OPADDR_BITS;
2140	sc->eeprom_control = E1000_EECD_PRES | E82545_EECD_FWE_EN;
2141	e82545_init_eeprom(sc);
2142
2143	/* interrupt */
2144	sc->esc_ICR = 0;
2145	sc->esc_ITR = 250;
2146	sc->esc_ICS = 0;
2147	sc->esc_IMS = 0;
2148	sc->esc_IMC = 0;
2149
2150	/* L2 filters */
2151	if (!drvr) {
2152		memset(sc->esc_fvlan, 0, sizeof(sc->esc_fvlan));
2153		memset(sc->esc_fmcast, 0, sizeof(sc->esc_fmcast));
2154		memset(sc->esc_uni, 0, sizeof(sc->esc_uni));
2155
2156		/* XXX not necessary on 82545 ?? */
2157		sc->esc_uni[0].eu_valid = 1;
2158		memcpy(sc->esc_uni[0].eu_eth.octet, sc->esc_mac.octet,
2159		    ETHER_ADDR_LEN);
2160	} else {
2161		/* Clear RAH valid bits */
2162		for (i = 0; i < 16; i++)
2163			sc->esc_uni[i].eu_valid = 0;
2164	}
2165
2166	/* receive */
2167	if (!drvr) {
2168		sc->esc_RDBAL = 0;
2169		sc->esc_RDBAH = 0;
2170	}
2171	sc->esc_RCTL = 0;
2172	sc->esc_FCRTL = 0;
2173	sc->esc_FCRTH = 0;
2174	sc->esc_RDLEN = 0;
2175	sc->esc_RDH = 0;
2176	sc->esc_RDT = 0;
2177	sc->esc_RDTR = 0;
2178	sc->esc_RXDCTL = (1 << 24) | (1 << 16); /* default GRAN/WTHRESH */
2179	sc->esc_RADV = 0;
2180	sc->esc_RXCSUM = 0;
2181
2182	/* transmit */
2183	if (!drvr) {
2184		sc->esc_TDBAL = 0;
2185		sc->esc_TDBAH = 0;
2186		sc->esc_TIPG = 0;
2187		sc->esc_AIT = 0;
2188		sc->esc_TIDV = 0;
2189		sc->esc_TADV = 0;
2190	}
2191	sc->esc_tdba = 0;
2192	sc->esc_txdesc = NULL;
2193	sc->esc_TXCW = 0;
2194	sc->esc_TCTL = 0;
2195	sc->esc_TDLEN = 0;
2196	sc->esc_TDT = 0;
2197	sc->esc_TDHr = sc->esc_TDH = 0;
2198	sc->esc_TXDCTL = 0;
2199}
2200
2201static void
2202e82545_open_tap(struct e82545_softc *sc, char *opts)
2203{
2204	char tbuf[80];
2205
2206	if (opts == NULL) {
2207		sc->esc_tapfd = -1;
2208		return;
2209	}
2210
2211	strcpy(tbuf, "/dev/");
2212	strlcat(tbuf, opts, sizeof(tbuf));
2213
2214	sc->esc_tapfd = open(tbuf, O_RDWR);
2215	if (sc->esc_tapfd == -1) {
2216		DPRINTF("unable to open tap device %s\n", opts);
2217		exit(1);
2218	}
2219
2220	/*
2221	 * Set non-blocking and register for read
2222	 * notifications with the event loop
2223	 */
2224	int opt = 1;
2225	if (ioctl(sc->esc_tapfd, FIONBIO, &opt) < 0) {
2226		WPRINTF("tap device O_NONBLOCK failed: %d\n", errno);
2227		close(sc->esc_tapfd);
2228		sc->esc_tapfd = -1;
2229	}
2230
2231	sc->esc_mevp = mevent_add(sc->esc_tapfd,
2232				  EVF_READ,
2233				  e82545_tap_callback,
2234				  sc);
2235	if (sc->esc_mevp == NULL) {
2236		DPRINTF("Could not register mevent %d\n", EVF_READ);
2237		close(sc->esc_tapfd);
2238		sc->esc_tapfd = -1;
2239	}
2240}
2241
2242static int
2243e82545_parsemac(char *mac_str, uint8_t *mac_addr)
2244{
2245	struct ether_addr *ea;
2246	char *tmpstr;
2247	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
2248
2249	tmpstr = strsep(&mac_str,"=");
2250	if ((mac_str != NULL) && (!strcmp(tmpstr,"mac"))) {
2251		ea = ether_aton(mac_str);
2252		if (ea == NULL || ETHER_IS_MULTICAST(ea->octet) ||
2253		    memcmp(ea->octet, zero_addr, ETHER_ADDR_LEN) == 0) {
2254			fprintf(stderr, "Invalid MAC %s\n", mac_str);
2255			return (1);
2256		} else
2257			memcpy(mac_addr, ea->octet, ETHER_ADDR_LEN);
2258	}
2259	return (0);
2260}
2261
2262static int
2263e82545_init(struct vmctx *ctx, struct pci_devinst *pi, char *opts)
2264{
2265	DPRINTF("Loading with options: %s\r\n", opts);
2266
2267	MD5_CTX mdctx;
2268	unsigned char digest[16];
2269	char nstr[80];
2270	struct e82545_softc *sc;
2271	char *devname;
2272	char *vtopts;
2273	int mac_provided;
2274
2275	/* Setup our softc */
2276	sc = calloc(sizeof(*sc), 1);
2277
2278	pi->pi_arg = sc;
2279	sc->esc_pi = pi;
2280	sc->esc_ctx = ctx;
2281
2282	pthread_mutex_init(&sc->esc_mtx, NULL);
2283	pthread_cond_init(&sc->esc_rx_cond, NULL);
2284	pthread_cond_init(&sc->esc_tx_cond, NULL);
2285	pthread_create(&sc->esc_tx_tid, NULL, e82545_tx_thread, sc);
2286	snprintf(nstr, sizeof(nstr), "e82545-%d:%d tx", pi->pi_slot,
2287	    pi->pi_func);
2288        pthread_set_name_np(sc->esc_tx_tid, nstr);
2289
2290	pci_set_cfgdata16(pi, PCIR_DEVICE, E82545_DEV_ID_82545EM_COPPER);
2291	pci_set_cfgdata16(pi, PCIR_VENDOR, E82545_VENDOR_ID_INTEL);
2292	pci_set_cfgdata8(pi,  PCIR_CLASS, PCIC_NETWORK);
2293	pci_set_cfgdata8(pi, PCIR_SUBCLASS, PCIS_NETWORK_ETHERNET);
2294	pci_set_cfgdata16(pi, PCIR_SUBDEV_0, E82545_SUBDEV_ID);
2295	pci_set_cfgdata16(pi, PCIR_SUBVEND_0, E82545_VENDOR_ID_INTEL);
2296
2297	pci_set_cfgdata8(pi,  PCIR_HDRTYPE, PCIM_HDRTYPE_NORMAL);
2298	pci_set_cfgdata8(pi,  PCIR_INTPIN, 0x1);
2299
2300	/* TODO: this card also supports msi, but the freebsd driver for it
2301	 * does not, so I have not implemented it. */
2302	pci_lintr_request(pi);
2303
2304	pci_emul_alloc_bar(pi, E82545_BAR_REGISTER, PCIBAR_MEM32,
2305		E82545_BAR_REGISTER_LEN);
2306	pci_emul_alloc_bar(pi, E82545_BAR_FLASH, PCIBAR_MEM32,
2307		E82545_BAR_FLASH_LEN);
2308	pci_emul_alloc_bar(pi, E82545_BAR_IO, PCIBAR_IO,
2309		E82545_BAR_IO_LEN);
2310
2311	/*
2312	 * Attempt to open the tap device and read the MAC address
2313	 * if specified.  Copied from virtio-net, slightly modified.
2314	 */
2315	mac_provided = 0;
2316	sc->esc_tapfd = -1;
2317	if (opts != NULL) {
2318		int err;
2319
2320		devname = vtopts = strdup(opts);
2321		(void) strsep(&vtopts, ",");
2322
2323		if (vtopts != NULL) {
2324			err = e82545_parsemac(vtopts, sc->esc_mac.octet);
2325			if (err != 0) {
2326				free(devname);
2327				return (err);
2328			}
2329			mac_provided = 1;
2330		}
2331
2332		if (strncmp(devname, "tap", 3) == 0 ||
2333		    strncmp(devname, "vmnet", 5) == 0)
2334			e82545_open_tap(sc, devname);
2335
2336		free(devname);
2337	}
2338
2339	/*
2340	 * The default MAC address is the standard NetApp OUI of 00-a0-98,
2341	 * followed by an MD5 of the PCI slot/func number and dev name
2342	 */
2343	if (!mac_provided) {
2344		snprintf(nstr, sizeof(nstr), "%d-%d-%s", pi->pi_slot,
2345		    pi->pi_func, vmname);
2346
2347		MD5Init(&mdctx);
2348		MD5Update(&mdctx, nstr, strlen(nstr));
2349		MD5Final(digest, &mdctx);
2350
2351		sc->esc_mac.octet[0] = 0x00;
2352		sc->esc_mac.octet[1] = 0xa0;
2353		sc->esc_mac.octet[2] = 0x98;
2354		sc->esc_mac.octet[3] = digest[0];
2355		sc->esc_mac.octet[4] = digest[1];
2356		sc->esc_mac.octet[5] = digest[2];
2357	}
2358
2359	/* H/w initiated reset */
2360	e82545_reset(sc, 0);
2361
2362	return (0);
2363}
2364
2365struct pci_devemu pci_de_e82545 = {
2366	.pe_emu = 	"e1000",
2367	.pe_init =	e82545_init,
2368	.pe_barwrite =	e82545_write,
2369	.pe_barread =	e82545_read
2370};
2371PCI_EMUL_SET(pci_de_e82545);
2372
2373