athstats.c revision 188560
1/*-
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 *    redistribution must be conditioned upon including a substantially
14 *    similar Disclaimer requirement for further binary redistribution.
15 *
16 * NO WARRANTY
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27 * THE POSSIBILITY OF SUCH DAMAGES.
28 *
29 * $FreeBSD: head/tools/tools/ath/athstats/athstats.c 188560 2009-02-13 05:45:23Z sam $
30 */
31
32/*
33 * ath statistics class.
34 */
35#include <sys/types.h>
36#include <sys/file.h>
37#include <sys/sockio.h>
38#include <sys/socket.h>
39#include <net/if.h>
40#include <net/if_media.h>
41#include <net/if_var.h>
42
43#include <stdio.h>
44#include <stdlib.h>
45#include <signal.h>
46#include <string.h>
47#include <unistd.h>
48#include <err.h>
49
50#include "ah.h"
51#include "ah_desc.h"
52#include "ieee80211_ioctl.h"
53#include "ieee80211_radiotap.h"
54#include "if_athioctl.h"
55
56#include "athstats.h"
57
58#ifdef ATH_SUPPORT_ANI
59#define HAL_EP_RND(x,mul) \
60	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
61#define HAL_RSSI(x)     HAL_EP_RND(x, HAL_RSSI_EP_MULTIPLIER)
62#endif
63
64#define	NOTPRESENT	{ 0, "", "" }
65
66#define	AFTER(prev)	((prev)+1)
67
68static const struct fmt athstats[] = {
69#define	S_INPUT		0
70	{ 8,	"input",	"input",	"data frames received" },
71#define	S_OUTPUT	AFTER(S_INPUT)
72	{ 8,	"output",	"output",	"data frames transmit" },
73#define	S_TX_ALTRATE	AFTER(S_OUTPUT)
74	{ 7,	"altrate",	"altrate",	"tx frames with an alternate rate" },
75#define	S_TX_SHORTRETRY	AFTER(S_TX_ALTRATE)
76	{ 7,	"short",	"short",	"short on-chip tx retries" },
77#define	S_TX_LONGRETRY	AFTER(S_TX_SHORTRETRY)
78	{ 7,	"long",		"long",		"long on-chip tx retries" },
79#define	S_TX_XRETRIES	AFTER(S_TX_LONGRETRY)
80	{ 6,	"xretry",	"xretry",	"tx failed 'cuz too many retries" },
81#define	S_MIB		AFTER(S_TX_XRETRIES)
82	{ 5,	"mib",		"mib",		"mib overflow interrupts" },
83#ifndef __linux__
84#define	S_TX_LINEAR	AFTER(S_MIB)
85	{ 5,	"txlinear",	"txlinear",	"tx linearized to cluster" },
86#define	S_BSTUCK	AFTER(S_TX_LINEAR)
87	{ 5,	"bstuck",	"bstuck",	"stuck beacon conditions" },
88#define	S_INTRCOAL	AFTER(S_BSTUCK)
89	{ 5,	"intrcoal",	"intrcoal",	"interrupts coalesced" },
90#define	S_RATE		AFTER(S_INTRCOAL)
91#else
92#define	S_RATE		AFTER(S_MIB)
93#endif
94	{ 5,	"rate",		"rate",		"current transmit rate" },
95#define	S_WATCHDOG	AFTER(S_RATE)
96	{ 5,	"wdog",		"wdog",		"watchdog timeouts" },
97#define	S_FATAL		AFTER(S_WATCHDOG)
98	{ 5,	"fatal",	"fatal",	"hardware error interrupts" },
99#define	S_BMISS		AFTER(S_FATAL)
100	{ 5,	"bmiss",	"bmiss",	"beacon miss interrupts" },
101#define	S_RXORN		AFTER(S_BMISS)
102	{ 5,	"rxorn",	"rxorn",	"recv overrun interrupts" },
103#define	S_RXEOL		AFTER(S_RXORN)
104	{ 5,	"rxeol",	"rxeol",	"recv eol interrupts" },
105#define	S_TXURN		AFTER(S_RXEOL)
106	{ 5,	"txurn",	"txurn",	"txmit underrun interrupts" },
107#define	S_TX_MGMT	AFTER(S_TXURN)
108	{ 5,	"txmgt",	"txmgt",	"tx management frames" },
109#define	S_TX_DISCARD	AFTER(S_TX_MGMT)
110	{ 5,	"txdisc",	"txdisc",	"tx frames discarded prior to association" },
111#define	S_TX_INVALID	AFTER(S_TX_DISCARD)
112	{ 5,	"txinv",	"txinv",	"tx invalid (19)" },
113#define	S_TX_QSTOP	AFTER(S_TX_INVALID)
114	{ 5,	"qstop",	"qstop",	"tx stopped 'cuz no xmit buffer" },
115#define	S_TX_ENCAP	AFTER(S_TX_QSTOP)
116	{ 5,	"txencode",	"txencode",	"tx encapsulation failed" },
117#define	S_TX_NONODE	AFTER(S_TX_ENCAP)
118	{ 5,	"txnonode",	"txnonode",	"tx failed 'cuz no node" },
119#define	S_TX_NOBUF	AFTER(S_TX_NONODE)
120	{ 5,	"txnobuf",	"txnobuf",	"tx failed 'cuz dma buffer allocation failed" },
121#define	S_TX_NOFRAG	AFTER(S_TX_NOBUF)
122	{ 5,	"txnofrag",	"txnofrag",	"tx failed 'cuz frag buffer allocation(s) failed" },
123#define	S_TX_NOMBUF	AFTER(S_TX_NOFRAG)
124	{ 5,	"txnombuf",	"txnombuf",	"tx failed 'cuz mbuf allocation failed" },
125#ifndef __linux__
126#define	S_TX_NOMCL	AFTER(S_TX_NOMBUF)
127	{ 5,	"txnomcl",	"txnomcl",	"tx failed 'cuz cluster allocation failed" },
128#define	S_TX_FIFOERR	AFTER(S_TX_NOMCL)
129#else
130#define	S_TX_FIFOERR	AFTER(S_TX_NOMBUF)
131#endif
132	{ 5,	"efifo",	"efifo",	"tx failed 'cuz FIFO underrun" },
133#define	S_TX_FILTERED	AFTER(S_TX_FIFOERR)
134	{ 5,	"efilt",	"efilt",	"tx failed 'cuz destination filtered" },
135#define	S_TX_BADRATE	AFTER(S_TX_FILTERED)
136	{ 5,	"txbadrate",	"txbadrate",	"tx failed 'cuz bogus xmit rate" },
137#define	S_TX_NOACK	AFTER(S_TX_BADRATE)
138	{ 5,	"noack",	"noack",	"tx frames with no ack marked" },
139#define	S_TX_RTS	AFTER(S_TX_NOACK)
140	{ 5,	"rts",		"rts",		"tx frames with rts enabled" },
141#define	S_TX_CTS	AFTER(S_TX_RTS)
142	{ 5,	"cts",		"cts",		"tx frames with cts enabled" },
143#define	S_TX_SHORTPRE	AFTER(S_TX_CTS)
144	{ 5,	"shpre",	"shpre",	"tx frames with short preamble" },
145#define	S_TX_PROTECT	AFTER(S_TX_SHORTPRE)
146	{ 5,	"protect",	"protect",	"tx frames with 11g protection" },
147#define	S_RX_ORN	AFTER(S_TX_PROTECT)
148	{ 5,	"rxorn",	"rxorn",	"rx failed 'cuz of desc overrun" },
149#define	S_RX_CRC_ERR	AFTER(S_RX_ORN)
150	{ 6,	"crcerr",	"crcerr",	"rx failed 'cuz of bad CRC" },
151#define	S_RX_FIFO_ERR	AFTER(S_RX_CRC_ERR)
152	{ 5,	"rxfifo",	"rxfifo",	"rx failed 'cuz of FIFO overrun" },
153#define	S_RX_CRYPTO_ERR	AFTER(S_RX_FIFO_ERR)
154	{ 5,	"crypt",	"crypt",	"rx failed 'cuz decryption" },
155#define	S_RX_MIC_ERR	AFTER(S_RX_CRYPTO_ERR)
156	{ 4,	"mic",		"mic",		"rx failed 'cuz MIC failure" },
157#define	S_RX_TOOSHORT	AFTER(S_RX_MIC_ERR)
158	{ 5,	"rxshort",	"rxshort",	"rx failed 'cuz frame too short" },
159#define	S_RX_NOMBUF	AFTER(S_RX_TOOSHORT)
160	{ 5,	"rxnombuf",	"rxnombuf",	"rx setup failed 'cuz no mbuf" },
161#define	S_RX_MGT	AFTER(S_RX_NOMBUF)
162	{ 5,	"rxmgt",	"rxmgt",	"rx management frames" },
163#define	S_RX_CTL	AFTER(S_RX_MGT)
164	{ 5,	"rxctl",	"rxctl",	"rx control frames" },
165#define	S_RX_PHY_ERR	AFTER(S_RX_CTL)
166	{ 7,	"phyerr",	"phyerr",	"rx failed 'cuz of PHY err" },
167#define	S_RX_PHY_UNDERRUN		AFTER(S_RX_PHY_ERR)
168	{ 4,	"phyund",	"TUnd",	"transmit underrun" },
169#define	S_RX_PHY_TIMING			AFTER(S_RX_PHY_UNDERRUN)
170	{ 4,	"phytim",	"Tim",	"timing error" },
171#define	S_RX_PHY_PARITY			AFTER(S_RX_PHY_TIMING)
172	{ 4,	"phypar",	"IPar",	"illegal parity" },
173#define	S_RX_PHY_RATE			AFTER(S_RX_PHY_PARITY)
174	{ 4,	"phyrate",	"IRate",	"illegal rate" },
175#define	S_RX_PHY_LENGTH			AFTER(S_RX_PHY_RATE)
176	{ 4,	"phylen",	"ILen",		"illegal length" },
177#define	S_RX_PHY_RADAR			AFTER(S_RX_PHY_LENGTH)
178	{ 4,	"phyradar",	"Radar",	"radar detect" },
179#define	S_RX_PHY_SERVICE		AFTER(S_RX_PHY_RADAR)
180	{ 4,	"physervice",	"Service",	"illegal service" },
181#define	S_RX_PHY_TOR			AFTER(S_RX_PHY_SERVICE)
182	{ 4,	"phytor",	"TOR",		"transmit override receive" },
183#define	S_RX_PHY_OFDM_TIMING		AFTER(S_RX_PHY_TOR)
184	{ 6,	"ofdmtim",	"ofdmtim",	"OFDM timing" },
185#define	S_RX_PHY_OFDM_SIGNAL_PARITY	AFTER(S_RX_PHY_OFDM_TIMING)
186	{ 6,	"ofdmsig",	"ofdmsig",	"OFDM illegal parity" },
187#define	S_RX_PHY_OFDM_RATE_ILLEGAL	AFTER(S_RX_PHY_OFDM_SIGNAL_PARITY)
188	{ 6,	"ofdmrate",	"ofdmrate",	"OFDM illegal rate" },
189#define	S_RX_PHY_OFDM_POWER_DROP	AFTER(S_RX_PHY_OFDM_RATE_ILLEGAL)
190	{ 6,	"ofdmpow",	"ofdmpow",	"OFDM power drop" },
191#define	S_RX_PHY_OFDM_SERVICE		AFTER(S_RX_PHY_OFDM_POWER_DROP)
192	{ 6,	"ofdmservice",	"ofdmservice",	"OFDM illegal service" },
193#define	S_RX_PHY_OFDM_RESTART		AFTER(S_RX_PHY_OFDM_SERVICE)
194	{ 6,	"ofdmrestart",	"ofdmrestart",	"OFDM restart" },
195#define	S_RX_PHY_CCK_TIMING		AFTER(S_RX_PHY_OFDM_RESTART)
196	{ 6,	"ccktim",	"ccktim",	"CCK timing" },
197#define	S_RX_PHY_CCK_HEADER_CRC		AFTER(S_RX_PHY_CCK_TIMING)
198	{ 6,	"cckhead",	"cckhead",	"CCK header crc" },
199#define	S_RX_PHY_CCK_RATE_ILLEGAL	AFTER(S_RX_PHY_CCK_HEADER_CRC)
200	{ 6,	"cckrate",	"cckrate",	"CCK illegal rate" },
201#define	S_RX_PHY_CCK_SERVICE		AFTER(S_RX_PHY_CCK_RATE_ILLEGAL)
202	{ 6,	"cckservice",	"cckservice",	"CCK illegal service" },
203#define	S_RX_PHY_CCK_RESTART		AFTER(S_RX_PHY_CCK_SERVICE)
204	{ 6,	"cckrestar",	"cckrestar",	"CCK restart" },
205#define	S_BE_NOMBUF	AFTER(S_RX_PHY_CCK_RESTART)
206	{ 4,	"benombuf",	"benombuf",	"beacon setup failed 'cuz no mbuf" },
207#define	S_BE_XMIT	AFTER(S_BE_NOMBUF)
208	{ 7,	"bexmit",	"bexmit",	"beacons transmitted" },
209#define	S_PER_CAL	AFTER(S_BE_XMIT)
210	{ 4,	"pcal",		"pcal",		"periodic calibrations" },
211#define	S_PER_CALFAIL	AFTER(S_PER_CAL)
212	{ 4,	"pcalf",	"pcalf",	"periodic calibration failures" },
213#define	S_PER_RFGAIN	AFTER(S_PER_CALFAIL)
214	{ 4,	"prfga",	"prfga",	"rfgain value change" },
215#if ATH_SUPPORT_TDMA
216#define	S_TDMA_UPDATE	AFTER(S_PER_RFGAIN)
217	{ 5,	"tdmau",	"tdmau",	"TDMA slot timing updates" },
218#define	S_TDMA_TIMERS	AFTER(S_TDMA_UPDATE)
219	{ 5,	"tdmab",	"tdmab",	"TDMA slot update set beacon timers" },
220#define	S_TDMA_TSF	AFTER(S_TDMA_TIMERS)
221	{ 5,	"tdmat",	"tdmat",	"TDMA slot update set TSF" },
222#define	S_TDMA_TSFADJ	AFTER(S_TDMA_TSF)
223	{ 8,	"tdmadj",	"tdmadj",	"TDMA slot adjust (usecs, smoothed)" },
224#define	S_TDMA_ACK	AFTER(S_TDMA_TSFADJ)
225	{ 5,	"tdmack",	"tdmack",	"TDMA tx failed 'cuz ACK required" },
226#define	S_RATE_CALLS	AFTER(S_TDMA_ACK)
227#else
228#define	S_RATE_CALLS	AFTER(S_PER_RFGAIN)
229#endif
230	{ 5,	"ratec",	"ratec",	"rate control checks" },
231#define	S_RATE_RAISE	AFTER(S_RATE_CALLS)
232	{ 5,	"rate+",	"rate+",	"rate control raised xmit rate" },
233#define	S_RATE_DROP	AFTER(S_RATE_RAISE)
234	{ 5,	"rate-",	"rate-",	"rate control dropped xmit rate" },
235#define	S_TX_RSSI	AFTER(S_RATE_DROP)
236	{ 4,	"arssi",	"arssi",	"rssi of last ack" },
237#define	S_RX_RSSI	AFTER(S_TX_RSSI)
238	{ 4,	"rssi",		"rssi",		"avg recv rssi" },
239#define	S_RX_NOISE	AFTER(S_RX_RSSI)
240	{ 5,	"noise",	"noise",	"rx noise floor" },
241#define	S_BMISS_PHANTOM	AFTER(S_RX_NOISE)
242	{ 5,	"bmissphantom",	"bmissphantom",	"phantom beacon misses" },
243#define	S_TX_RAW	AFTER(S_BMISS_PHANTOM)
244	{ 5,	"txraw",	"txraw",	"tx frames through raw api" },
245#define	S_TX_RAW_FAIL	AFTER(S_TX_RAW)
246	{ 5,	"txrawfail",	"txrawfail",	"raw tx failed 'cuz interface/hw down" },
247#define	S_RX_TOOBIG	AFTER(S_TX_RAW_FAIL)
248	{ 5,	"rx2big",	"rx2big",	"rx failed 'cuz frame too large"  },
249#ifndef __linux__
250#define	S_CABQ_XMIT	AFTER(S_RX_TOOBIG)
251	{ 5,	"cabxmit",	"cabxmit",	"cabq frames transmitted" },
252#define	S_CABQ_BUSY	AFTER(S_CABQ_XMIT)
253	{ 5,	"cabqbusy",	"cabqbusy",	"cabq xmit overflowed beacon interval" },
254#define	S_TX_NODATA	AFTER(S_CABQ_BUSY)
255	{ 5,	"txnodata",	"txnodata",	"tx discarded empty frame" },
256#define	S_TX_BUSDMA	AFTER(S_TX_NODATA)
257	{ 5,	"txbusdma",	"txbusdma",	"tx failed for dma resrcs" },
258#define	S_RX_BUSDMA	AFTER(S_TX_BUSDMA)
259	{ 5,	"rxbusdma",	"rxbusdma",	"rx setup failed for dma resrcs" },
260#define	S_FF_TXOK	AFTER(S_RX_BUSDMA)
261#else
262#define	S_FF_TXOK	AFTER(S_RX_PHY_UNDERRUN)
263#endif
264	{ 5,	"fftxok",	"fftxok",	"fast frames xmit successfully" },
265#define	S_FF_TXERR	AFTER(S_FF_TXOK)
266	{ 5,	"fftxerr",	"fftxerr",	"fast frames not xmit due to error" },
267#define	S_FF_RX		AFTER(S_FF_TXERR)
268	{ 5,	"ffrx",		"ffrx",		"fast frames received" },
269#define	S_FF_FLUSH	AFTER(S_FF_RX)
270	{ 5,	"ffflush",	"ffflush",	"fast frames flushed from staging q" },
271#define	S_TX_QFULL	AFTER(S_FF_FLUSH)
272	{ 5,	"txqfull",	"txqfull",	"tx discarded 'cuz queue is full" },
273#define	S_ANT_DEFSWITCH	AFTER(S_TX_QFULL)
274	{ 5,	"defsw",	"defsw",	"switched default/rx antenna" },
275#define	S_ANT_TXSWITCH	AFTER(S_ANT_DEFSWITCH)
276	{ 5,	"txsw",		"txsw",		"tx used alternate antenna" },
277#ifdef ATH_SUPPORT_ANI
278#define	S_ANI_NOISE	AFTER(S_ANT_TXSWITCH)
279	{ 2,	"ni",	"NI",		"noise immunity level" },
280#define	S_ANI_SPUR	AFTER(S_ANI_NOISE)
281	{ 2,	"si",	"SI",		"spur immunity level" },
282#define	S_ANI_STEP	AFTER(S_ANI_SPUR)
283	{ 2,	"step",	"ST",		"first step level" },
284#define	S_ANI_OFDM	AFTER(S_ANI_STEP)
285	{ 4,	"owsd",	"OWSD",		"OFDM weak signal detect" },
286#define	S_ANI_CCK	AFTER(S_ANI_OFDM)
287	{ 4,	"cwst",	"CWST",		"CCK weak signal threshold" },
288#define	S_ANI_MAXSPUR	AFTER(S_ANI_CCK)
289	{ 3,	"maxsi","MSI",		"max spur immunity level" },
290#define	S_ANI_LISTEN	AFTER(S_ANI_MAXSPUR)
291	{ 6,	"listen","LISTEN",	"listen time" },
292#define	S_ANI_NIUP	AFTER(S_ANI_LISTEN)
293	{ 4,	"ni+",	"NI-",		"ANI increased noise immunity" },
294#define	S_ANI_NIDOWN	AFTER(S_ANI_NIUP)
295	{ 4,	"ni-",	"NI-",		"ANI decrease noise immunity" },
296#define	S_ANI_SIUP	AFTER(S_ANI_NIDOWN)
297	{ 4,	"si+",	"SI+",		"ANI increased spur immunity" },
298#define	S_ANI_SIDOWN	AFTER(S_ANI_SIUP)
299	{ 4,	"si-",	"SI-",		"ANI decrease spur immunity" },
300#define	S_ANI_OFDMON	AFTER(S_ANI_SIDOWN)
301	{ 5,	"ofdm+","OFDM+",	"ANI enabled OFDM weak signal detect" },
302#define	S_ANI_OFDMOFF	AFTER(S_ANI_OFDMON)
303	{ 5,	"ofdm-","OFDM-",	"ANI disabled OFDM weak signal detect" },
304#define	S_ANI_CCKHI	AFTER(S_ANI_OFDMOFF)
305	{ 5,	"cck+",	"CCK+",		"ANI enabled CCK weak signal threshold" },
306#define	S_ANI_CCKLO	AFTER(S_ANI_CCKHI)
307	{ 5,	"cck-",	"CCK-",		"ANI disabled CCK weak signal threshold" },
308#define	S_ANI_STEPUP	AFTER(S_ANI_CCKLO)
309	{ 5,	"step+","STEP+",	"ANI increased first step level" },
310#define	S_ANI_STEPDOWN	AFTER(S_ANI_STEPUP)
311	{ 5,	"step-","STEP-",	"ANI decreased first step level" },
312#define	S_ANI_OFDMERRS	AFTER(S_ANI_STEPDOWN)
313	{ 8,	"ofdm",	"OFDM",		"cumulative OFDM phy error count" },
314#define	S_ANI_CCKERRS	AFTER(S_ANI_OFDMERRS)
315	{ 8,	"cck",	"CCK",		"cumulative CCK phy error count" },
316#define	S_ANI_RESET	AFTER(S_ANI_CCKERRS)
317	{ 5,	"reset","RESET",	"ANI parameters zero'd for non-STA operation" },
318#define	S_ANI_LZERO	AFTER(S_ANI_RESET)
319	{ 5,	"lzero","LZERO",	"ANI forced listen time to zero" },
320#define	S_ANI_LNEG	AFTER(S_ANI_LZERO)
321	{ 5,	"lneg",	"LNEG",		"ANI calculated listen time < 0" },
322#define	S_MIB_ACKBAD	AFTER(S_ANI_LNEG)
323	{ 5,	"ackbad","ACKBAD",	"missing ACK's" },
324#define	S_MIB_RTSBAD	AFTER(S_MIB_ACKBAD)
325	{ 5,	"rtsbad","RTSBAD",	"RTS without CTS" },
326#define	S_MIB_RTSGOOD	AFTER(S_MIB_RTSBAD)
327	{ 5,	"rtsgood","RTSGOOD",	"successful RTS" },
328#define	S_MIB_FCSBAD	AFTER(S_MIB_RTSGOOD)
329	{ 5,	"fcsbad","FCSBAD",	"bad FCS" },
330#define	S_MIB_BEACONS	AFTER(S_MIB_FCSBAD)
331	{ 5,	"beacons","beacons",	"beacons received" },
332#define	S_NODE_AVGBRSSI	AFTER(S_MIB_BEACONS)
333	{ 3,	"avgbrssi","BSI",	"average rssi (beacons only)" },
334#define	S_NODE_AVGRSSI	AFTER(S_NODE_AVGBRSSI)
335	{ 3,	"avgrssi","DSI",	"average rssi (all rx'd frames)" },
336#define	S_NODE_AVGARSSI	AFTER(S_NODE_AVGRSSI)
337	{ 3,	"avgtxrssi","TSI",	"average rssi (ACKs only)" },
338#define	S_ANT_TX0	AFTER(S_NODE_AVGARSSI)
339#else
340#define	S_ANT_TX0	AFTER(S_ANT_TXSWITCH)
341#endif /* ATH_SUPPORT_ANI */
342	{ 8,	"tx0",	"ant0(tx)",	"frames tx on antenna 0" },
343#define	S_ANT_TX1	AFTER(S_ANT_TX0)
344	{ 8,	"tx1",	"ant1(tx)",	"frames tx on antenna 1"  },
345#define	S_ANT_TX2	AFTER(S_ANT_TX1)
346	{ 8,	"tx2",	"ant2(tx)",	"frames tx on antenna 2"  },
347#define	S_ANT_TX3	AFTER(S_ANT_TX2)
348	{ 8,	"tx3",	"ant3(tx)",	"frames tx on antenna 3"  },
349#define	S_ANT_TX4	AFTER(S_ANT_TX3)
350	{ 8,	"tx4",	"ant4(tx)",	"frames tx on antenna 4"  },
351#define	S_ANT_TX5	AFTER(S_ANT_TX4)
352	{ 8,	"tx5",	"ant5(tx)",	"frames tx on antenna 5"  },
353#define	S_ANT_TX6	AFTER(S_ANT_TX5)
354	{ 8,	"tx6",	"ant6(tx)",	"frames tx on antenna 6"  },
355#define	S_ANT_TX7	AFTER(S_ANT_TX6)
356	{ 8,	"tx7",	"ant7(tx)",	"frames tx on antenna 7"  },
357#define	S_ANT_RX0	AFTER(S_ANT_TX7)
358	{ 8,	"rx0",	"ant0(rx)",	"frames rx on antenna 0"  },
359#define	S_ANT_RX1	AFTER(S_ANT_RX0)
360	{ 8,	"rx1",	"ant1(rx)",	"frames rx on antenna 1"   },
361#define	S_ANT_RX2	AFTER(S_ANT_RX1)
362	{ 8,	"rx2",	"ant2(rx)",	"frames rx on antenna 2"   },
363#define	S_ANT_RX3	AFTER(S_ANT_RX2)
364	{ 8,	"rx3",	"ant3(rx)",	"frames rx on antenna 3"   },
365#define	S_ANT_RX4	AFTER(S_ANT_RX3)
366	{ 8,	"rx4",	"ant4(rx)",	"frames rx on antenna 4"   },
367#define	S_ANT_RX5	AFTER(S_ANT_RX4)
368	{ 8,	"rx5",	"ant5(rx)",	"frames rx on antenna 5"   },
369#define	S_ANT_RX6	AFTER(S_ANT_RX5)
370	{ 8,	"rx6",	"ant6(rx)",	"frames rx on antenna 6"   },
371#define	S_ANT_RX7	AFTER(S_ANT_RX6)
372	{ 8,	"rx7",	"ant7(rx)",	"frames rx on antenna 7"   },
373#define	S_TX_SIGNAL	AFTER(S_ANT_RX7)
374	{ 4,	"asignal",	"asig",	"signal of last ack (dBm)" },
375#define	S_RX_SIGNAL	AFTER(S_TX_SIGNAL)
376	{ 4,	"signal",	"sig",	"avg recv signal (dBm)" },
377};
378#define	S_PHY_MIN	S_RX_PHY_UNDERRUN
379#define	S_PHY_MAX	S_RX_PHY_CCK_RESTART
380#define	S_LAST		S_ANT_TX0
381#define	S_MAX	S_ANT_RX7+1
382
383struct _athstats {
384	struct ath_stats ath;
385#ifdef ATH_SUPPORT_ANI
386	struct {
387		uint32_t ast_ani_niup;		/* increased noise immunity */
388		uint32_t ast_ani_nidown;	/* decreased noise immunity */
389		uint32_t ast_ani_spurup;	/* increased spur immunity */
390		uint32_t ast_ani_spurdown;	/* descreased spur immunity */
391		uint32_t ast_ani_ofdmon;	/* OFDM weak signal detect on */
392		uint32_t ast_ani_ofdmoff;	/* OFDM weak signal detect off*/
393		uint32_t ast_ani_cckhigh;	/* CCK weak signal thr high */
394		uint32_t ast_ani_ccklow;	/* CCK weak signal thr low */
395		uint32_t ast_ani_stepup;	/* increased first step level */
396		uint32_t ast_ani_stepdown;	/* decreased first step level */
397		uint32_t ast_ani_ofdmerrs;	/* cumulative ofdm phy err cnt*/
398		uint32_t ast_ani_cckerrs;	/* cumulative cck phy err cnt */
399		uint32_t ast_ani_reset;	/* params zero'd for non-STA */
400		uint32_t ast_ani_lzero;	/* listen time forced to zero */
401		uint32_t ast_ani_lneg;		/* listen time calculated < 0 */
402		HAL_MIB_STATS ast_mibstats;	/* MIB counter stats */
403		HAL_NODE_STATS ast_nodestats;	/* latest rssi stats */
404	} ani_stats;
405	struct {
406		uint8_t	noiseImmunityLevel;
407		uint8_t	spurImmunityLevel;
408		uint8_t	firstepLevel;
409		uint8_t	ofdmWeakSigDetectOff;
410		uint8_t	cckWeakSigThreshold;
411		uint32_t listenTime;
412	} ani_state;
413#endif
414};
415
416struct athstatfoo_p {
417	struct athstatfoo base;
418	int s;
419	int optstats;
420#define	ATHSTATS_ANI	0x0001
421	struct ifreq ifr;
422	struct ath_diag atd;
423	struct _athstats cur;
424	struct _athstats total;
425};
426
427static void
428ath_setifname(struct athstatfoo *wf0, const char *ifname)
429{
430	struct athstatfoo_p *wf = (struct athstatfoo_p *) wf0;
431
432	strncpy(wf->ifr.ifr_name, ifname, sizeof (wf->ifr.ifr_name));
433#ifdef ATH_SUPPORT_ANI
434	strncpy(wf->atd.ad_name, ifname, sizeof (wf->atd.ad_name));
435	wf->optstats |= ATHSTATS_ANI;
436#endif
437}
438
439static void
440ath_zerostats(struct athstatfoo *wf0)
441{
442	struct athstatfoo_p *wf = (struct athstatfoo_p *) wf0;
443
444	if (ioctl(wf->s, SIOCZATHSTATS, &wf->ifr) < 0)
445		err(-1, wf->ifr.ifr_name);
446}
447
448static void
449ath_collect(struct athstatfoo_p *wf, struct _athstats *stats)
450{
451	wf->ifr.ifr_data = (caddr_t) &stats->ath;
452	if (ioctl(wf->s, SIOCGATHSTATS, &wf->ifr) < 0)
453		err(1, wf->ifr.ifr_name);
454#ifdef ATH_SUPPORT_ANI
455	if (wf->optstats & ATHSTATS_ANI) {
456		wf->atd.ad_id = 5;
457		wf->atd.ad_out_data = (caddr_t) &stats->ani_state;
458		wf->atd.ad_out_size = sizeof(stats->ani_state);
459		if (ioctl(wf->s, SIOCGATHDIAG, &wf->atd) < 0) {
460			warn(wf->atd.ad_name);
461			wf->optstats &= ~ATHSTATS_ANI;
462		}
463		wf->atd.ad_id = 8;
464		wf->atd.ad_out_data = (caddr_t) &stats->ani_stats;
465		wf->atd.ad_out_size = sizeof(stats->ani_stats);
466		if (ioctl(wf->s, SIOCGATHDIAG, &wf->atd) < 0)
467			warn(wf->atd.ad_name);
468	}
469#endif /* ATH_SUPPORT_ANI */
470}
471
472static void
473ath_collect_cur(struct statfoo *sf)
474{
475	struct athstatfoo_p *wf = (struct athstatfoo_p *) sf;
476
477	ath_collect(wf, &wf->cur);
478}
479
480static void
481ath_collect_tot(struct statfoo *sf)
482{
483	struct athstatfoo_p *wf = (struct athstatfoo_p *) sf;
484
485	ath_collect(wf, &wf->total);
486}
487
488static void
489ath_update_tot(struct statfoo *sf)
490{
491	struct athstatfoo_p *wf = (struct athstatfoo_p *) sf;
492
493	wf->total = wf->cur;
494}
495
496static void
497snprintrate(char b[], size_t bs, int rate)
498{
499	if (rate & IEEE80211_RATE_MCS)
500		snprintf(b, bs, "MCS%u", rate &~ IEEE80211_RATE_MCS);
501	else if (rate & 1)
502		snprintf(b, bs, "%u.5M", rate / 2);
503	else
504		snprintf(b, bs, "%uM", rate / 2);
505}
506
507static int
508ath_get_curstat(struct statfoo *sf, int s, char b[], size_t bs)
509{
510	struct athstatfoo_p *wf = (struct athstatfoo_p *) sf;
511#define	STAT(x) \
512	snprintf(b, bs, "%u", wf->cur.ath.ast_##x - wf->total.ath.ast_##x); return 1
513#define	PHY(x) \
514	snprintf(b, bs, "%u", wf->cur.ath.ast_rx_phy[x] - wf->total.ath.ast_rx_phy[x]); return 1
515#define	ANI(x) \
516	snprintf(b, bs, "%u", wf->cur.ani_state.x); return 1
517#define	ANISTAT(x) \
518	snprintf(b, bs, "%u", wf->cur.ani_stats.ast_ani_##x - wf->total.ani_stats.ast_ani_##x); return 1
519#define	MIBSTAT(x) \
520	snprintf(b, bs, "%u", wf->cur.ani_stats.ast_mibstats.x - wf->total.ani_stats.ast_mibstats.x); return 1
521#define	TXANT(x) \
522	snprintf(b, bs, "%u", wf->cur.ath.ast_ant_tx[x] - wf->total.ath.ast_ant_tx[x]); return 1
523#define	RXANT(x) \
524	snprintf(b, bs, "%u", wf->cur.ath.ast_ant_rx[x] - wf->total.ath.ast_ant_rx[x]); return 1
525
526	switch (s) {
527	case S_INPUT:
528		snprintf(b, bs, "%lu",
529		    (wf->cur.ath.ast_rx_packets - wf->total.ath.ast_rx_packets) -
530		    (wf->cur.ath.ast_rx_mgt - wf->total.ath.ast_rx_mgt));
531		return 1;
532	case S_OUTPUT:
533		snprintf(b, bs, "%lu",
534		    wf->cur.ath.ast_tx_packets - wf->total.ath.ast_tx_packets);
535		return 1;
536	case S_RATE:
537		snprintrate(b, bs, wf->cur.ath.ast_tx_rate);
538		return 1;
539	case S_WATCHDOG:	STAT(watchdog);
540	case S_FATAL:		STAT(hardware);
541	case S_BMISS:		STAT(bmiss);
542	case S_BMISS_PHANTOM:	STAT(bmiss_phantom);
543#ifdef S_BSTUCK
544	case S_BSTUCK:		STAT(bstuck);
545#endif
546	case S_RXORN:		STAT(rxorn);
547	case S_RXEOL:		STAT(rxeol);
548	case S_TXURN:		STAT(txurn);
549	case S_MIB:		STAT(mib);
550#ifdef S_INTRCOAL
551	case S_INTRCOAL:	STAT(intrcoal);
552#endif
553	case S_TX_MGMT:		STAT(tx_mgmt);
554	case S_TX_DISCARD:	STAT(tx_discard);
555	case S_TX_QSTOP:	STAT(tx_qstop);
556	case S_TX_ENCAP:	STAT(tx_encap);
557	case S_TX_NONODE:	STAT(tx_nonode);
558	case S_TX_NOBUF:	STAT(tx_nobuf);
559	case S_TX_NOFRAG:	STAT(tx_nofrag);
560	case S_TX_NOMBUF:	STAT(tx_nombuf);
561#ifdef S_TX_NOMCL
562	case S_TX_NOMCL:	STAT(tx_nomcl);
563	case S_TX_LINEAR:	STAT(tx_linear);
564	case S_TX_NODATA:	STAT(tx_nodata);
565	case S_TX_BUSDMA:	STAT(tx_busdma);
566#endif
567	case S_TX_XRETRIES:	STAT(tx_xretries);
568	case S_TX_FIFOERR:	STAT(tx_fifoerr);
569	case S_TX_FILTERED:	STAT(tx_filtered);
570	case S_TX_SHORTRETRY:	STAT(tx_shortretry);
571	case S_TX_LONGRETRY:	STAT(tx_longretry);
572	case S_TX_BADRATE:	STAT(tx_badrate);
573	case S_TX_NOACK:	STAT(tx_noack);
574	case S_TX_RTS:		STAT(tx_rts);
575	case S_TX_CTS:		STAT(tx_cts);
576	case S_TX_SHORTPRE:	STAT(tx_shortpre);
577	case S_TX_ALTRATE:	STAT(tx_altrate);
578	case S_TX_PROTECT:	STAT(tx_protect);
579	case S_TX_RAW:		STAT(tx_raw);
580	case S_TX_RAW_FAIL:	STAT(tx_raw_fail);
581	case S_RX_NOMBUF:	STAT(rx_nombuf);
582#ifdef S_RX_BUSDMA
583	case S_RX_BUSDMA:	STAT(rx_busdma);
584#endif
585	case S_RX_ORN:		STAT(rx_orn);
586	case S_RX_CRC_ERR:	STAT(rx_crcerr);
587	case S_RX_FIFO_ERR: 	STAT(rx_fifoerr);
588	case S_RX_CRYPTO_ERR: 	STAT(rx_badcrypt);
589	case S_RX_MIC_ERR:	STAT(rx_badmic);
590	case S_RX_PHY_ERR:	STAT(rx_phyerr);
591	case S_RX_PHY_UNDERRUN:	PHY(HAL_PHYERR_UNDERRUN);
592	case S_RX_PHY_TIMING:	PHY(HAL_PHYERR_TIMING);
593	case S_RX_PHY_PARITY:	PHY(HAL_PHYERR_PARITY);
594	case S_RX_PHY_RATE:	PHY(HAL_PHYERR_RATE);
595	case S_RX_PHY_LENGTH:	PHY(HAL_PHYERR_LENGTH);
596	case S_RX_PHY_RADAR:	PHY(HAL_PHYERR_RADAR);
597	case S_RX_PHY_SERVICE:	PHY(HAL_PHYERR_SERVICE);
598	case S_RX_PHY_TOR:	PHY(HAL_PHYERR_TOR);
599	case S_RX_PHY_OFDM_TIMING:	  PHY(HAL_PHYERR_OFDM_TIMING);
600	case S_RX_PHY_OFDM_SIGNAL_PARITY: PHY(HAL_PHYERR_OFDM_SIGNAL_PARITY);
601	case S_RX_PHY_OFDM_RATE_ILLEGAL:  PHY(HAL_PHYERR_OFDM_RATE_ILLEGAL);
602	case S_RX_PHY_OFDM_POWER_DROP:	  PHY(HAL_PHYERR_OFDM_POWER_DROP);
603	case S_RX_PHY_OFDM_SERVICE:	  PHY(HAL_PHYERR_OFDM_SERVICE);
604	case S_RX_PHY_OFDM_RESTART:	  PHY(HAL_PHYERR_OFDM_RESTART);
605	case S_RX_PHY_CCK_TIMING:	  PHY(HAL_PHYERR_CCK_TIMING);
606	case S_RX_PHY_CCK_HEADER_CRC:	  PHY(HAL_PHYERR_CCK_HEADER_CRC);
607	case S_RX_PHY_CCK_RATE_ILLEGAL:	  PHY(HAL_PHYERR_CCK_RATE_ILLEGAL);
608	case S_RX_PHY_CCK_SERVICE:	  PHY(HAL_PHYERR_CCK_SERVICE);
609	case S_RX_PHY_CCK_RESTART:	  PHY(HAL_PHYERR_CCK_RESTART);
610	case S_RX_TOOSHORT:	STAT(rx_tooshort);
611	case S_RX_TOOBIG:	STAT(rx_toobig);
612	case S_RX_MGT:		STAT(rx_mgt);
613	case S_RX_CTL:		STAT(rx_ctl);
614	case S_TX_RSSI:
615		snprintf(b, bs, "%d", wf->cur.ath.ast_tx_rssi);
616		return 1;
617	case S_RX_RSSI:
618		snprintf(b, bs, "%d", wf->cur.ath.ast_rx_rssi);
619		return 1;
620	case S_BE_XMIT:		STAT(be_xmit);
621	case S_BE_NOMBUF:	STAT(be_nombuf);
622	case S_PER_CAL:		STAT(per_cal);
623	case S_PER_CALFAIL:	STAT(per_calfail);
624	case S_PER_RFGAIN:	STAT(per_rfgain);
625#ifdef S_TDMA_UPDATE
626	case S_TDMA_UPDATE:	STAT(tdma_update);
627	case S_TDMA_TIMERS:	STAT(tdma_timers);
628	case S_TDMA_TSF:	STAT(tdma_tsf);
629	case S_TDMA_TSFADJ:
630		snprintf(b, bs, "-%d/+%d",
631		    wf->cur.ath.ast_tdma_tsfadjm, wf->cur.ath.ast_tdma_tsfadjp);
632		return 1;
633	case S_TDMA_ACK:	STAT(tdma_ack);
634#endif
635	case S_RATE_CALLS:	STAT(rate_calls);
636	case S_RATE_RAISE:	STAT(rate_raise);
637	case S_RATE_DROP:	STAT(rate_drop);
638	case S_ANT_DEFSWITCH:	STAT(ant_defswitch);
639	case S_ANT_TXSWITCH:	STAT(ant_txswitch);
640#ifdef S_ANI_NOISE
641	case S_ANI_NOISE:	ANI(noiseImmunityLevel);
642	case S_ANI_SPUR:	ANI(spurImmunityLevel);
643	case S_ANI_STEP:	ANI(firstepLevel);
644	case S_ANI_OFDM:	ANI(ofdmWeakSigDetectOff);
645	case S_ANI_CCK:		ANI(cckWeakSigThreshold);
646	case S_ANI_LISTEN:	ANI(listenTime);
647	case S_ANI_NIUP:	ANISTAT(niup);
648	case S_ANI_NIDOWN:	ANISTAT(nidown);
649	case S_ANI_SIUP:	ANISTAT(spurup);
650	case S_ANI_SIDOWN:	ANISTAT(spurdown);
651	case S_ANI_OFDMON:	ANISTAT(ofdmon);
652	case S_ANI_OFDMOFF:	ANISTAT(ofdmoff);
653	case S_ANI_CCKHI:	ANISTAT(cckhigh);
654	case S_ANI_CCKLO:	ANISTAT(ccklow);
655	case S_ANI_STEPUP:	ANISTAT(stepup);
656	case S_ANI_STEPDOWN:	ANISTAT(stepdown);
657	case S_ANI_OFDMERRS:	ANISTAT(ofdmerrs);
658	case S_ANI_CCKERRS:	ANISTAT(cckerrs);
659	case S_ANI_RESET:	ANISTAT(reset);
660	case S_ANI_LZERO:	ANISTAT(lzero);
661	case S_ANI_LNEG:	ANISTAT(lneg);
662	case S_MIB_ACKBAD:	MIBSTAT(ackrcv_bad);
663	case S_MIB_RTSBAD:	MIBSTAT(rts_bad);
664	case S_MIB_RTSGOOD:	MIBSTAT(rts_good);
665	case S_MIB_FCSBAD:	MIBSTAT(fcs_bad);
666	case S_MIB_BEACONS:	MIBSTAT(beacons);
667	case S_NODE_AVGBRSSI:
668		snprintf(b, bs, "%u",
669		    HAL_RSSI(wf->cur.ani_stats.ast_nodestats.ns_avgbrssi));
670		return 1;
671	case S_NODE_AVGRSSI:
672		snprintf(b, bs, "%u",
673		    HAL_RSSI(wf->cur.ani_stats.ast_nodestats.ns_avgrssi));
674		return 1;
675	case S_NODE_AVGARSSI:
676		snprintf(b, bs, "%u",
677		    HAL_RSSI(wf->cur.ani_stats.ast_nodestats.ns_avgtxrssi));
678		return 1;
679#endif
680	case S_ANT_TX0:		TXANT(0);
681	case S_ANT_TX1:		TXANT(1);
682	case S_ANT_TX2:		TXANT(2);
683	case S_ANT_TX3:		TXANT(3);
684	case S_ANT_TX4:		TXANT(4);
685	case S_ANT_TX5:		TXANT(5);
686	case S_ANT_TX6:		TXANT(6);
687	case S_ANT_TX7:		TXANT(7);
688	case S_ANT_RX0:		RXANT(0);
689	case S_ANT_RX1:		RXANT(1);
690	case S_ANT_RX2:		RXANT(2);
691	case S_ANT_RX3:		RXANT(3);
692	case S_ANT_RX4:		RXANT(4);
693	case S_ANT_RX5:		RXANT(5);
694	case S_ANT_RX6:		RXANT(6);
695	case S_ANT_RX7:		RXANT(7);
696#ifdef S_CABQ_XMIT
697	case S_CABQ_XMIT:	STAT(cabq_xmit);
698	case S_CABQ_BUSY:	STAT(cabq_busy);
699#endif
700	case S_FF_TXOK:		STAT(ff_txok);
701	case S_FF_TXERR:	STAT(ff_txerr);
702	case S_FF_RX:		STAT(ff_rx);
703	case S_FF_FLUSH:	STAT(ff_flush);
704	case S_TX_QFULL:	STAT(tx_qfull);
705	case S_RX_NOISE:
706		snprintf(b, bs, "%d", wf->cur.ath.ast_rx_noise);
707		return 1;
708	case S_TX_SIGNAL:
709		snprintf(b, bs, "%d",
710			wf->cur.ath.ast_tx_rssi + wf->cur.ath.ast_rx_noise);
711		return 1;
712	case S_RX_SIGNAL:
713		snprintf(b, bs, "%d",
714			wf->cur.ath.ast_rx_rssi + wf->cur.ath.ast_rx_noise);
715		return 1;
716	}
717	b[0] = '\0';
718	return 0;
719#undef RXANT
720#undef TXANT
721#undef ANI
722#undef ANISTAT
723#undef MIBSTAT
724#undef PHY
725#undef STAT
726}
727
728static int
729ath_get_totstat(struct statfoo *sf, int s, char b[], size_t bs)
730{
731	struct athstatfoo_p *wf = (struct athstatfoo_p *) sf;
732#define	STAT(x) \
733	snprintf(b, bs, "%u", wf->total.ath.ast_##x); return 1
734#define	PHY(x) \
735	snprintf(b, bs, "%u", wf->total.ath.ast_rx_phy[x]); return 1
736#define	ANI(x) \
737	snprintf(b, bs, "%u", wf->total.ani_state.x); return 1
738#define	ANISTAT(x) \
739	snprintf(b, bs, "%u", wf->total.ani_stats.ast_ani_##x); return 1
740#define	MIBSTAT(x) \
741	snprintf(b, bs, "%u", wf->total.ani_stats.ast_mibstats.x); return 1
742#define	TXANT(x) \
743	snprintf(b, bs, "%u", wf->total.ath.ast_ant_tx[x]); return 1
744#define	RXANT(x) \
745	snprintf(b, bs, "%u", wf->total.ath.ast_ant_rx[x]); return 1
746
747	switch (s) {
748	case S_INPUT:
749		snprintf(b, bs, "%lu",
750		    wf->total.ath.ast_rx_packets - wf->total.ath.ast_rx_mgt);
751		return 1;
752	case S_OUTPUT:
753		snprintf(b, bs, "%lu", wf->total.ath.ast_tx_packets);
754		return 1;
755	case S_RATE:
756		snprintrate(b, bs, wf->total.ath.ast_tx_rate);
757		return 1;
758	case S_WATCHDOG:	STAT(watchdog);
759	case S_FATAL:		STAT(hardware);
760	case S_BMISS:		STAT(bmiss);
761	case S_BMISS_PHANTOM:	STAT(bmiss_phantom);
762#ifdef S_BSTUCK
763	case S_BSTUCK:		STAT(bstuck);
764#endif
765	case S_RXORN:		STAT(rxorn);
766	case S_RXEOL:		STAT(rxeol);
767	case S_TXURN:		STAT(txurn);
768	case S_MIB:		STAT(mib);
769#ifdef S_INTRCOAL
770	case S_INTRCOAL:	STAT(intrcoal);
771#endif
772	case S_TX_MGMT:		STAT(tx_mgmt);
773	case S_TX_DISCARD:	STAT(tx_discard);
774	case S_TX_QSTOP:	STAT(tx_qstop);
775	case S_TX_ENCAP:	STAT(tx_encap);
776	case S_TX_NONODE:	STAT(tx_nonode);
777	case S_TX_NOBUF:	STAT(tx_nobuf);
778	case S_TX_NOFRAG:	STAT(tx_nofrag);
779	case S_TX_NOMBUF:	STAT(tx_nombuf);
780#ifdef S_TX_NOMCL
781	case S_TX_NOMCL:	STAT(tx_nomcl);
782	case S_TX_LINEAR:	STAT(tx_linear);
783	case S_TX_NODATA:	STAT(tx_nodata);
784	case S_TX_BUSDMA:	STAT(tx_busdma);
785#endif
786	case S_TX_XRETRIES:	STAT(tx_xretries);
787	case S_TX_FIFOERR:	STAT(tx_fifoerr);
788	case S_TX_FILTERED:	STAT(tx_filtered);
789	case S_TX_SHORTRETRY:	STAT(tx_shortretry);
790	case S_TX_LONGRETRY:	STAT(tx_longretry);
791	case S_TX_BADRATE:	STAT(tx_badrate);
792	case S_TX_NOACK:	STAT(tx_noack);
793	case S_TX_RTS:		STAT(tx_rts);
794	case S_TX_CTS:		STAT(tx_cts);
795	case S_TX_SHORTPRE:	STAT(tx_shortpre);
796	case S_TX_ALTRATE:	STAT(tx_altrate);
797	case S_TX_PROTECT:	STAT(tx_protect);
798	case S_TX_RAW:		STAT(tx_raw);
799	case S_TX_RAW_FAIL:	STAT(tx_raw_fail);
800	case S_RX_NOMBUF:	STAT(rx_nombuf);
801#ifdef S_RX_BUSDMA
802	case S_RX_BUSDMA:	STAT(rx_busdma);
803#endif
804	case S_RX_ORN:		STAT(rx_orn);
805	case S_RX_CRC_ERR:	STAT(rx_crcerr);
806	case S_RX_FIFO_ERR: 	STAT(rx_fifoerr);
807	case S_RX_CRYPTO_ERR: 	STAT(rx_badcrypt);
808	case S_RX_MIC_ERR:	STAT(rx_badmic);
809	case S_RX_PHY_ERR:	STAT(rx_phyerr);
810	case S_RX_PHY_UNDERRUN:	PHY(HAL_PHYERR_UNDERRUN);
811	case S_RX_PHY_TIMING:	PHY(HAL_PHYERR_TIMING);
812	case S_RX_PHY_PARITY:	PHY(HAL_PHYERR_PARITY);
813	case S_RX_PHY_RATE:	PHY(HAL_PHYERR_RATE);
814	case S_RX_PHY_LENGTH:	PHY(HAL_PHYERR_LENGTH);
815	case S_RX_PHY_RADAR:	PHY(HAL_PHYERR_RADAR);
816	case S_RX_PHY_SERVICE:	PHY(HAL_PHYERR_SERVICE);
817	case S_RX_PHY_TOR:	PHY(HAL_PHYERR_TOR);
818	case S_RX_PHY_OFDM_TIMING:	  PHY(HAL_PHYERR_OFDM_TIMING);
819	case S_RX_PHY_OFDM_SIGNAL_PARITY: PHY(HAL_PHYERR_OFDM_SIGNAL_PARITY);
820	case S_RX_PHY_OFDM_RATE_ILLEGAL:  PHY(HAL_PHYERR_OFDM_RATE_ILLEGAL);
821	case S_RX_PHY_OFDM_POWER_DROP:	  PHY(HAL_PHYERR_OFDM_POWER_DROP);
822	case S_RX_PHY_OFDM_SERVICE:	  PHY(HAL_PHYERR_OFDM_SERVICE);
823	case S_RX_PHY_OFDM_RESTART:	  PHY(HAL_PHYERR_OFDM_RESTART);
824	case S_RX_PHY_CCK_TIMING:	  PHY(HAL_PHYERR_CCK_TIMING);
825	case S_RX_PHY_CCK_HEADER_CRC:	  PHY(HAL_PHYERR_CCK_HEADER_CRC);
826	case S_RX_PHY_CCK_RATE_ILLEGAL:	  PHY(HAL_PHYERR_CCK_RATE_ILLEGAL);
827	case S_RX_PHY_CCK_SERVICE:	  PHY(HAL_PHYERR_CCK_SERVICE);
828	case S_RX_PHY_CCK_RESTART:	  PHY(HAL_PHYERR_CCK_RESTART);
829	case S_RX_TOOSHORT:	STAT(rx_tooshort);
830	case S_RX_TOOBIG:	STAT(rx_toobig);
831	case S_RX_MGT:		STAT(rx_mgt);
832	case S_RX_CTL:		STAT(rx_ctl);
833	case S_TX_RSSI:
834		snprintf(b, bs, "%d", wf->total.ath.ast_tx_rssi);
835		return 1;
836	case S_RX_RSSI:
837		snprintf(b, bs, "%d", wf->total.ath.ast_rx_rssi);
838		return 1;
839	case S_BE_XMIT:		STAT(be_xmit);
840	case S_BE_NOMBUF:	STAT(be_nombuf);
841	case S_PER_CAL:		STAT(per_cal);
842	case S_PER_CALFAIL:	STAT(per_calfail);
843	case S_PER_RFGAIN:	STAT(per_rfgain);
844#ifdef S_TDMA_UPDATE
845	case S_TDMA_UPDATE:	STAT(tdma_update);
846	case S_TDMA_TIMERS:	STAT(tdma_timers);
847	case S_TDMA_TSF:	STAT(tdma_tsf);
848	case S_TDMA_TSFADJ:
849		snprintf(b, bs, "-%d/+%d",
850		    wf->total.ath.ast_tdma_tsfadjm,
851		    wf->total.ath.ast_tdma_tsfadjp);
852		return 1;
853	case S_TDMA_ACK:	STAT(tdma_ack);
854#endif
855	case S_RATE_CALLS:	STAT(rate_calls);
856	case S_RATE_RAISE:	STAT(rate_raise);
857	case S_RATE_DROP:	STAT(rate_drop);
858	case S_ANT_DEFSWITCH:	STAT(ant_defswitch);
859	case S_ANT_TXSWITCH:	STAT(ant_txswitch);
860#ifdef S_ANI_NOISE
861	case S_ANI_NOISE:	ANI(noiseImmunityLevel);
862	case S_ANI_SPUR:	ANI(spurImmunityLevel);
863	case S_ANI_STEP:	ANI(firstepLevel);
864	case S_ANI_OFDM:	ANI(ofdmWeakSigDetectOff);
865	case S_ANI_CCK:		ANI(cckWeakSigThreshold);
866	case S_ANI_LISTEN:	ANI(listenTime);
867	case S_ANI_NIUP:	ANISTAT(niup);
868	case S_ANI_NIDOWN:	ANISTAT(nidown);
869	case S_ANI_SIUP:	ANISTAT(spurup);
870	case S_ANI_SIDOWN:	ANISTAT(spurdown);
871	case S_ANI_OFDMON:	ANISTAT(ofdmon);
872	case S_ANI_OFDMOFF:	ANISTAT(ofdmoff);
873	case S_ANI_CCKHI:	ANISTAT(cckhigh);
874	case S_ANI_CCKLO:	ANISTAT(ccklow);
875	case S_ANI_STEPUP:	ANISTAT(stepup);
876	case S_ANI_STEPDOWN:	ANISTAT(stepdown);
877	case S_ANI_OFDMERRS:	ANISTAT(ofdmerrs);
878	case S_ANI_CCKERRS:	ANISTAT(cckerrs);
879	case S_ANI_RESET:	ANISTAT(reset);
880	case S_ANI_LZERO:	ANISTAT(lzero);
881	case S_ANI_LNEG:	ANISTAT(lneg);
882	case S_MIB_ACKBAD:	MIBSTAT(ackrcv_bad);
883	case S_MIB_RTSBAD:	MIBSTAT(rts_bad);
884	case S_MIB_RTSGOOD:	MIBSTAT(rts_good);
885	case S_MIB_FCSBAD:	MIBSTAT(fcs_bad);
886	case S_MIB_BEACONS:	MIBSTAT(beacons);
887	case S_NODE_AVGBRSSI:
888		snprintf(b, bs, "%u",
889		    HAL_RSSI(wf->total.ani_stats.ast_nodestats.ns_avgbrssi));
890		return 1;
891	case S_NODE_AVGRSSI:
892		snprintf(b, bs, "%u",
893		    HAL_RSSI(wf->total.ani_stats.ast_nodestats.ns_avgrssi));
894		return 1;
895	case S_NODE_AVGARSSI:
896		snprintf(b, bs, "%u",
897		    HAL_RSSI(wf->total.ani_stats.ast_nodestats.ns_avgtxrssi));
898		return 1;
899#endif
900	case S_ANT_TX0:		TXANT(0);
901	case S_ANT_TX1:		TXANT(1);
902	case S_ANT_TX2:		TXANT(2);
903	case S_ANT_TX3:		TXANT(3);
904	case S_ANT_TX4:		TXANT(4);
905	case S_ANT_TX5:		TXANT(5);
906	case S_ANT_TX6:		TXANT(6);
907	case S_ANT_TX7:		TXANT(7);
908	case S_ANT_RX0:		RXANT(0);
909	case S_ANT_RX1:		RXANT(1);
910	case S_ANT_RX2:		RXANT(2);
911	case S_ANT_RX3:		RXANT(3);
912	case S_ANT_RX4:		RXANT(4);
913	case S_ANT_RX5:		RXANT(5);
914	case S_ANT_RX6:		RXANT(6);
915	case S_ANT_RX7:		RXANT(7);
916#ifdef S_CABQ_XMIT
917	case S_CABQ_XMIT:	STAT(cabq_xmit);
918	case S_CABQ_BUSY:	STAT(cabq_busy);
919#endif
920	case S_FF_TXOK:		STAT(ff_txok);
921	case S_FF_TXERR:	STAT(ff_txerr);
922	case S_FF_RX:		STAT(ff_rx);
923	case S_FF_FLUSH:	STAT(ff_flush);
924	case S_TX_QFULL:	STAT(tx_qfull);
925	case S_RX_NOISE:
926		snprintf(b, bs, "%d", wf->total.ath.ast_rx_noise);
927		return 1;
928	case S_TX_SIGNAL:
929		snprintf(b, bs, "%d",
930			wf->total.ath.ast_tx_rssi + wf->total.ath.ast_rx_noise);
931		return 1;
932	case S_RX_SIGNAL:
933		snprintf(b, bs, "%d",
934			wf->total.ath.ast_rx_rssi + wf->total.ath.ast_rx_noise);
935		return 1;
936	}
937	b[0] = '\0';
938	return 0;
939#undef RXANT
940#undef TXANT
941#undef ANI
942#undef ANISTAT
943#undef MIBSTAT
944#undef PHY
945#undef STAT
946}
947
948static void
949ath_print_verbose(struct statfoo *sf, FILE *fd)
950{
951	struct athstatfoo_p *wf = (struct athstatfoo_p *) sf;
952#define	isphyerr(i)	(S_PHY_MIN <= i && i <= S_PHY_MAX)
953	const struct fmt *f;
954	char s[32];
955	const char *indent;
956	int i, width;
957
958	width = 0;
959	for (i = 0; i < S_LAST; i++) {
960		f = &sf->stats[i];
961		if (!isphyerr(i) && f->width > width)
962			width = f->width;
963	}
964	for (i = 0; i < S_LAST; i++) {
965		if (ath_get_totstat(sf, i, s, sizeof(s)) && strcmp(s, "0")) {
966			if (isphyerr(i))
967				indent = "    ";
968			else
969				indent = "";
970			fprintf(fd, "%s%-*s %s\n", indent, width, s, athstats[i].desc);
971		}
972	}
973	fprintf(fd, "Antenna profile:\n");
974	for (i = 0; i < 8; i++)
975		if (wf->total.ath.ast_ant_rx[i] || wf->total.ath.ast_ant_tx[i])
976			fprintf(fd, "[%u] tx %8u rx %8u\n", i,
977				wf->total.ath.ast_ant_tx[i],
978				wf->total.ath.ast_ant_rx[i]);
979#undef isphyerr
980}
981
982STATFOO_DEFINE_BOUNCE(athstatfoo)
983
984struct athstatfoo *
985athstats_new(const char *ifname, const char *fmtstring)
986{
987#define	N(a)	(sizeof(a) / sizeof(a[0]))
988	struct athstatfoo_p *wf;
989
990	wf = calloc(1, sizeof(struct athstatfoo_p));
991	if (wf != NULL) {
992		statfoo_init(&wf->base.base, "athstats", athstats, N(athstats));
993		/* override base methods */
994		wf->base.base.collect_cur = ath_collect_cur;
995		wf->base.base.collect_tot = ath_collect_tot;
996		wf->base.base.get_curstat = ath_get_curstat;
997		wf->base.base.get_totstat = ath_get_totstat;
998		wf->base.base.update_tot = ath_update_tot;
999		wf->base.base.print_verbose = ath_print_verbose;
1000
1001		/* setup bounce functions for public methods */
1002		STATFOO_BOUNCE(wf, athstatfoo);
1003
1004		/* setup our public methods */
1005		wf->base.setifname = ath_setifname;
1006#if 0
1007		wf->base.setstamac = wlan_setstamac;
1008#endif
1009		wf->base.zerostats = ath_zerostats;
1010		wf->s = socket(AF_INET, SOCK_DGRAM, 0);
1011		if (wf->s < 0)
1012			err(1, "socket");
1013
1014		ath_setifname(&wf->base, ifname);
1015		wf->base.setfmt(&wf->base, fmtstring);
1016	}
1017	return &wf->base;
1018#undef N
1019}
1020