1/*-
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 *    redistribution must be conditioned upon including a substantially
14 *    similar Disclaimer requirement for further binary redistribution.
15 *
16 * NO WARRANTY
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27 * THE POSSIBILITY OF SUCH DAMAGES.
28 *
29 * $FreeBSD$
30 */
31
32#include "opt_ah.h"
33
34/*
35 * ath statistics class.
36 */
37#include <sys/types.h>
38#include <sys/file.h>
39#include <sys/sockio.h>
40#include <sys/socket.h>
41#include <net/if.h>
42#include <net/if_media.h>
43#include <net/if_var.h>
44
45#include <stdio.h>
46#include <stdlib.h>
47#include <signal.h>
48#include <string.h>
49#include <unistd.h>
50#include <err.h>
51
52#include "ah.h"
53#include "ah_desc.h"
54#include "net80211/ieee80211_ioctl.h"
55#include "net80211/ieee80211_radiotap.h"
56#include "if_athioctl.h"
57
58#include "athstats.h"
59
60#ifdef ATH_SUPPORT_ANI
61#define HAL_EP_RND(x,mul) \
62	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
63#define HAL_RSSI(x)     HAL_EP_RND(x, HAL_RSSI_EP_MULTIPLIER)
64#endif
65
66#define	NOTPRESENT	{ 0, "", "" }
67
68#define	AFTER(prev)	((prev)+1)
69
70static const struct fmt athstats[] = {
71#define	S_INPUT		0
72	{ 8,	"input",	"input",	"data frames received" },
73#define	S_OUTPUT	AFTER(S_INPUT)
74	{ 8,	"output",	"output",	"data frames transmit" },
75#define	S_TX_ALTRATE	AFTER(S_OUTPUT)
76	{ 7,	"altrate",	"altrate",	"tx frames with an alternate rate" },
77#define	S_TX_SHORTRETRY	AFTER(S_TX_ALTRATE)
78	{ 7,	"short",	"short",	"short on-chip tx retries" },
79#define	S_TX_LONGRETRY	AFTER(S_TX_SHORTRETRY)
80	{ 7,	"long",		"long",		"long on-chip tx retries" },
81#define	S_TX_XRETRIES	AFTER(S_TX_LONGRETRY)
82	{ 6,	"xretry",	"xretry",	"tx failed 'cuz too many retries" },
83#define	S_MIB		AFTER(S_TX_XRETRIES)
84	{ 5,	"mib",		"mib",		"mib overflow interrupts" },
85#ifndef __linux__
86#define	S_TX_LINEAR	AFTER(S_MIB)
87	{ 5,	"txlinear",	"txlinear",	"tx linearized to cluster" },
88#define	S_BSTUCK	AFTER(S_TX_LINEAR)
89	{ 6,	"bstuck",	"bstuck",	"stuck beacon conditions" },
90#define	S_INTRCOAL	AFTER(S_BSTUCK)
91	{ 5,	"intrcoal",	"intrcoal",	"interrupts coalesced" },
92#define	S_RATE		AFTER(S_INTRCOAL)
93#else
94#define	S_RATE		AFTER(S_MIB)
95#endif
96	{ 5,	"rate",		"rate",		"current transmit rate" },
97#define	S_WATCHDOG	AFTER(S_RATE)
98	{ 5,	"wdog",		"wdog",		"watchdog timeouts" },
99#define	S_FATAL		AFTER(S_WATCHDOG)
100	{ 5,	"fatal",	"fatal",	"hardware error interrupts" },
101#define	S_BMISS		AFTER(S_FATAL)
102	{ 5,	"bmiss",	"bmiss",	"beacon miss interrupts" },
103#define	S_RXORN		AFTER(S_BMISS)
104	{ 5,	"rxorn",	"rxorn",	"recv overrun interrupts" },
105#define	S_RXEOL		AFTER(S_RXORN)
106	{ 5,	"rxeol",	"rxeol",	"recv eol interrupts" },
107#define	S_TXURN		AFTER(S_RXEOL)
108	{ 5,	"txurn",	"txurn",	"txmit underrun interrupts" },
109#define	S_TX_MGMT	AFTER(S_TXURN)
110	{ 5,	"txmgt",	"txmgt",	"tx management frames" },
111#define	S_TX_DISCARD	AFTER(S_TX_MGMT)
112	{ 5,	"txdisc",	"txdisc",	"tx frames discarded prior to association" },
113#define	S_TX_INVALID	AFTER(S_TX_DISCARD)
114	{ 5,	"txinv",	"txinv",	"tx invalid (19)" },
115#define	S_TX_QSTOP	AFTER(S_TX_INVALID)
116	{ 5,	"qstop",	"qstop",	"tx stopped 'cuz no xmit buffer" },
117#define	S_TX_ENCAP	AFTER(S_TX_QSTOP)
118	{ 5,	"txencode",	"txencode",	"tx encapsulation failed" },
119#define	S_TX_NONODE	AFTER(S_TX_ENCAP)
120	{ 5,	"txnonode",	"txnonode",	"tx failed 'cuz no node" },
121#define	S_TX_NOBUF	AFTER(S_TX_NONODE)
122	{ 5,	"txnobuf",	"txnobuf",	"tx failed 'cuz dma buffer allocation failed" },
123#define	S_TX_NOFRAG	AFTER(S_TX_NOBUF)
124	{ 5,	"txnofrag",	"txnofrag",	"tx failed 'cuz frag buffer allocation(s) failed" },
125#define	S_TX_NOMBUF	AFTER(S_TX_NOFRAG)
126	{ 5,	"txnombuf",	"txnombuf",	"tx failed 'cuz mbuf allocation failed" },
127#ifndef __linux__
128#define	S_TX_NOMCL	AFTER(S_TX_NOMBUF)
129	{ 5,	"txnomcl",	"txnomcl",	"tx failed 'cuz cluster allocation failed" },
130#define	S_TX_FIFOERR	AFTER(S_TX_NOMCL)
131#else
132#define	S_TX_FIFOERR	AFTER(S_TX_NOMBUF)
133#endif
134	{ 5,	"efifo",	"efifo",	"tx failed 'cuz FIFO underrun" },
135#define	S_TX_FILTERED	AFTER(S_TX_FIFOERR)
136	{ 5,	"efilt",	"efilt",	"tx failed 'cuz destination filtered" },
137#define	S_TX_BADRATE	AFTER(S_TX_FILTERED)
138	{ 5,	"txbadrate",	"txbadrate",	"tx failed 'cuz bogus xmit rate" },
139#define	S_TX_NOACK	AFTER(S_TX_BADRATE)
140	{ 5,	"noack",	"noack",	"tx frames with no ack marked" },
141#define	S_TX_RTS	AFTER(S_TX_NOACK)
142	{ 5,	"rts",		"rts",		"tx frames with rts enabled" },
143#define	S_TX_CTS	AFTER(S_TX_RTS)
144	{ 5,	"cts",		"cts",		"tx frames with cts enabled" },
145#define	S_TX_SHORTPRE	AFTER(S_TX_CTS)
146	{ 5,	"shpre",	"shpre",	"tx frames with short preamble" },
147#define	S_TX_PROTECT	AFTER(S_TX_SHORTPRE)
148	{ 5,	"protect",	"protect",	"tx frames with 11g protection" },
149#define	S_RX_ORN	AFTER(S_TX_PROTECT)
150	{ 5,	"rxorn",	"rxorn",	"rx failed 'cuz of desc overrun" },
151#define	S_RX_CRC_ERR	AFTER(S_RX_ORN)
152	{ 6,	"crcerr",	"crcerr",	"rx failed 'cuz of bad CRC" },
153#define	S_RX_FIFO_ERR	AFTER(S_RX_CRC_ERR)
154	{ 5,	"rxfifo",	"rxfifo",	"rx failed 'cuz of FIFO overrun" },
155#define	S_RX_CRYPTO_ERR	AFTER(S_RX_FIFO_ERR)
156	{ 5,	"crypt",	"crypt",	"rx failed 'cuz decryption" },
157#define	S_RX_MIC_ERR	AFTER(S_RX_CRYPTO_ERR)
158	{ 4,	"mic",		"mic",		"rx failed 'cuz MIC failure" },
159#define	S_RX_TOOSHORT	AFTER(S_RX_MIC_ERR)
160	{ 5,	"rxshort",	"rxshort",	"rx failed 'cuz frame too short" },
161#define	S_RX_NOMBUF	AFTER(S_RX_TOOSHORT)
162	{ 5,	"rxnombuf",	"rxnombuf",	"rx setup failed 'cuz no mbuf" },
163#define	S_RX_MGT	AFTER(S_RX_NOMBUF)
164	{ 5,	"rxmgt",	"rxmgt",	"rx management frames" },
165#define	S_RX_CTL	AFTER(S_RX_MGT)
166	{ 5,	"rxctl",	"rxctl",	"rx control frames" },
167#define	S_RX_PHY_ERR	AFTER(S_RX_CTL)
168	{ 7,	"phyerr",	"phyerr",	"rx failed 'cuz of PHY err" },
169#define	S_RX_PHY_UNDERRUN		AFTER(S_RX_PHY_ERR)
170	{ 4,	"phyund",	"TUnd",	"transmit underrun" },
171#define	S_RX_PHY_TIMING			AFTER(S_RX_PHY_UNDERRUN)
172	{ 4,	"phytim",	"Tim",	"timing error" },
173#define	S_RX_PHY_PARITY			AFTER(S_RX_PHY_TIMING)
174	{ 4,	"phypar",	"IPar",	"illegal parity" },
175#define	S_RX_PHY_RATE			AFTER(S_RX_PHY_PARITY)
176	{ 4,	"phyrate",	"IRate",	"illegal rate" },
177#define	S_RX_PHY_LENGTH			AFTER(S_RX_PHY_RATE)
178	{ 4,	"phylen",	"ILen",		"illegal length" },
179#define	S_RX_PHY_RADAR			AFTER(S_RX_PHY_LENGTH)
180	{ 4,	"phyradar",	"Radar",	"radar detect" },
181#define	S_RX_PHY_SERVICE		AFTER(S_RX_PHY_RADAR)
182	{ 4,	"physervice",	"Service",	"illegal service" },
183#define	S_RX_PHY_TOR			AFTER(S_RX_PHY_SERVICE)
184	{ 4,	"phytor",	"TOR",		"transmit override receive" },
185#define	S_RX_PHY_OFDM_TIMING		AFTER(S_RX_PHY_TOR)
186	{ 6,	"ofdmtim",	"ofdmtim",	"OFDM timing" },
187#define	S_RX_PHY_OFDM_SIGNAL_PARITY	AFTER(S_RX_PHY_OFDM_TIMING)
188	{ 6,	"ofdmsig",	"ofdmsig",	"OFDM illegal parity" },
189#define	S_RX_PHY_OFDM_RATE_ILLEGAL	AFTER(S_RX_PHY_OFDM_SIGNAL_PARITY)
190	{ 6,	"ofdmrate",	"ofdmrate",	"OFDM illegal rate" },
191#define	S_RX_PHY_OFDM_POWER_DROP	AFTER(S_RX_PHY_OFDM_RATE_ILLEGAL)
192	{ 6,	"ofdmpow",	"ofdmpow",	"OFDM power drop" },
193#define	S_RX_PHY_OFDM_SERVICE		AFTER(S_RX_PHY_OFDM_POWER_DROP)
194	{ 6,	"ofdmservice",	"ofdmservice",	"OFDM illegal service" },
195#define	S_RX_PHY_OFDM_RESTART		AFTER(S_RX_PHY_OFDM_SERVICE)
196	{ 6,	"ofdmrestart",	"ofdmrestart",	"OFDM restart" },
197#define	S_RX_PHY_CCK_TIMING		AFTER(S_RX_PHY_OFDM_RESTART)
198	{ 6,	"ccktim",	"ccktim",	"CCK timing" },
199#define	S_RX_PHY_CCK_HEADER_CRC		AFTER(S_RX_PHY_CCK_TIMING)
200	{ 6,	"cckhead",	"cckhead",	"CCK header crc" },
201#define	S_RX_PHY_CCK_RATE_ILLEGAL	AFTER(S_RX_PHY_CCK_HEADER_CRC)
202	{ 6,	"cckrate",	"cckrate",	"CCK illegal rate" },
203#define	S_RX_PHY_CCK_SERVICE		AFTER(S_RX_PHY_CCK_RATE_ILLEGAL)
204	{ 6,	"cckservice",	"cckservice",	"CCK illegal service" },
205#define	S_RX_PHY_CCK_RESTART		AFTER(S_RX_PHY_CCK_SERVICE)
206	{ 6,	"cckrestar",	"cckrestar",	"CCK restart" },
207#define	S_BE_NOMBUF	AFTER(S_RX_PHY_CCK_RESTART)
208	{ 4,	"benombuf",	"benombuf",	"beacon setup failed 'cuz no mbuf" },
209#define	S_BE_XMIT	AFTER(S_BE_NOMBUF)
210	{ 7,	"bexmit",	"bexmit",	"beacons transmitted" },
211#define	S_PER_CAL	AFTER(S_BE_XMIT)
212	{ 4,	"pcal",		"pcal",		"periodic calibrations" },
213#define	S_PER_CALFAIL	AFTER(S_PER_CAL)
214	{ 4,	"pcalf",	"pcalf",	"periodic calibration failures" },
215#define	S_PER_RFGAIN	AFTER(S_PER_CALFAIL)
216	{ 4,	"prfga",	"prfga",	"rfgain value change" },
217#if ATH_SUPPORT_TDMA
218#define	S_TDMA_UPDATE	AFTER(S_PER_RFGAIN)
219	{ 5,	"tdmau",	"tdmau",	"TDMA slot timing updates" },
220#define	S_TDMA_TIMERS	AFTER(S_TDMA_UPDATE)
221	{ 5,	"tdmab",	"tdmab",	"TDMA slot update set beacon timers" },
222#define	S_TDMA_TSF	AFTER(S_TDMA_TIMERS)
223	{ 5,	"tdmat",	"tdmat",	"TDMA slot update set TSF" },
224#define	S_TDMA_TSFADJ	AFTER(S_TDMA_TSF)
225	{ 8,	"tdmadj",	"tdmadj",	"TDMA slot adjust (usecs, smoothed)" },
226#define	S_TDMA_ACK	AFTER(S_TDMA_TSFADJ)
227	{ 5,	"tdmack",	"tdmack",	"TDMA tx failed 'cuz ACK required" },
228#define	S_RATE_CALLS	AFTER(S_TDMA_ACK)
229#else
230#define	S_RATE_CALLS	AFTER(S_PER_RFGAIN)
231#endif
232	{ 5,	"ratec",	"ratec",	"rate control checks" },
233#define	S_RATE_RAISE	AFTER(S_RATE_CALLS)
234	{ 5,	"rate+",	"rate+",	"rate control raised xmit rate" },
235#define	S_RATE_DROP	AFTER(S_RATE_RAISE)
236	{ 5,	"rate-",	"rate-",	"rate control dropped xmit rate" },
237#define	S_TX_RSSI	AFTER(S_RATE_DROP)
238	{ 4,	"arssi",	"arssi",	"rssi of last ack" },
239#define	S_RX_RSSI	AFTER(S_TX_RSSI)
240	{ 4,	"rssi",		"rssi",		"avg recv rssi" },
241#define	S_RX_NOISE	AFTER(S_RX_RSSI)
242	{ 5,	"noise",	"noise",	"rx noise floor" },
243#define	S_BMISS_PHANTOM	AFTER(S_RX_NOISE)
244	{ 5,	"bmissphantom",	"bmissphantom",	"phantom beacon misses" },
245#define	S_TX_RAW	AFTER(S_BMISS_PHANTOM)
246	{ 5,	"txraw",	"txraw",	"tx frames through raw api" },
247#define	S_TX_RAW_FAIL	AFTER(S_TX_RAW)
248	{ 5,	"txrawfail",	"txrawfail",	"raw tx failed 'cuz interface/hw down" },
249#define	S_RX_TOOBIG	AFTER(S_TX_RAW_FAIL)
250	{ 5,	"rx2big",	"rx2big",	"rx failed 'cuz frame too large"  },
251#define	S_RX_AGG	AFTER(S_RX_TOOBIG)
252	{ 5,	"rxagg",	"rxagg",	"A-MPDU sub-frames received" },
253#define	S_RX_HALFGI	AFTER(S_RX_AGG)
254	{ 5,	"rxhalfgi",	"rxhgi",	"Half-GI frames received" },
255#define	S_RX_2040	AFTER(S_RX_HALFGI)
256	{ 6,	"rx2040",	"rx2040",	"40MHz frames received" },
257#define	S_RX_PRE_CRC_ERR	AFTER(S_RX_2040)
258	{ 11,	"rxprecrcerr",	"rxprecrcerr",	"CRC errors for non-last A-MPDU subframes" },
259#define	S_RX_POST_CRC_ERR	AFTER(S_RX_PRE_CRC_ERR)
260	{ 12,	"rxpostcrcerr",	"rxpostcrcerr",	"CRC errors for last subframe in an A-MPDU" },
261#define	S_RX_DECRYPT_BUSY_ERR	AFTER(S_RX_POST_CRC_ERR)
262	{ 10,	"rxdescbusy",	"rxdescbusy",	"Decryption engine busy" },
263#define	S_RX_HI_CHAIN	AFTER(S_RX_DECRYPT_BUSY_ERR)
264	{ 4,	"rxhi",	"rxhi",	"Frames received with RX chain in high power mode" },
265#define	S_RX_STBC	AFTER(S_RX_HI_CHAIN)
266	{ 6,	"rxstbc", "rxstbc", "Frames received w/ STBC encoding" },
267#define	S_TX_HTPROTECT	AFTER(S_RX_STBC)
268	{ 7,	"txhtprot",	"txhtprot",	"Frames transmitted with HT Protection" },
269#define	S_RX_QEND	AFTER(S_TX_HTPROTECT)
270	{ 7,	"rxquend",	"rxquend",	"Hit end of RX descriptor queue" },
271#define	S_TX_TIMEOUT	AFTER(S_RX_QEND)
272	{ 4,	"txtimeout",	"TXTX",	"TX Timeout" },
273#define	S_TX_CSTIMEOUT	AFTER(S_TX_TIMEOUT)
274	{ 4,	"csttimeout",	"CSTX",	"Carrier Sense Timeout" },
275#define	S_TX_XTXOP_ERR	AFTER(S_TX_CSTIMEOUT)
276	{ 5,	"xtxoperr",	"TXOPX",	"TXOP exceed" },
277#define	S_TX_TIMEREXPIRED_ERR	AFTER(S_TX_XTXOP_ERR)
278	{ 7,	"texperr",	"texperr",	"TX Timer expired" },
279#define	S_TX_DESCCFG_ERR	AFTER(S_TX_TIMEREXPIRED_ERR)
280	{ 10,	"desccfgerr",	"desccfgerr",	"TX descriptor error" },
281#define	S_TX_SWRETRIES	AFTER(S_TX_DESCCFG_ERR)
282	{ 9,	"txswretry",	"txswretry",	"Number of frames retransmitted in software" },
283#define	S_TX_SWRETRIES_MAX	AFTER(S_TX_SWRETRIES)
284	{ 7,	"txswmax",	"txswmax",	"Number of frames exceeding software retry" },
285#define	S_TX_DATA_UNDERRUN	AFTER(S_TX_SWRETRIES_MAX)
286	{ 5,	"txdataunderrun",	"TXDAU",	"A-MPDU TX FIFO data underrun" },
287#define	S_TX_DELIM_UNDERRUN	AFTER(S_TX_DATA_UNDERRUN)
288	{ 5,	"txdelimunderrun",	"TXDEU",	"A-MPDU TX Delimiter underrun" },
289#define	S_TX_AGGR_OK		AFTER(S_TX_DELIM_UNDERRUN)
290	{ 5,	"txaggrok",	"TXAOK",	"A-MPDU sub-frame TX attempt success" },
291#define	S_TX_AGGR_FAIL		AFTER(S_TX_AGGR_OK)
292	{ 4,	"txaggrfail",	"TXAF",	"A-MPDU sub-frame TX attempt failures" },
293#define	S_TX_AGGR_FAILALL	AFTER(S_TX_AGGR_FAIL)
294	{ 7,	"txaggrfailall",	"TXAFALL",	"A-MPDU TX frame failures" },
295#ifndef __linux__
296#define	S_CABQ_XMIT	AFTER(S_TX_AGGR_FAILALL)
297	{ 7,	"cabxmit",	"cabxmit",	"cabq frames transmitted" },
298#define	S_CABQ_BUSY	AFTER(S_CABQ_XMIT)
299	{ 8,	"cabqbusy",	"cabqbusy",	"cabq xmit overflowed beacon interval" },
300#define	S_TX_NODATA	AFTER(S_CABQ_BUSY)
301	{ 8,	"txnodata",	"txnodata",	"tx discarded empty frame" },
302#define	S_TX_BUSDMA	AFTER(S_TX_NODATA)
303	{ 8,	"txbusdma",	"txbusdma",	"tx failed for dma resrcs" },
304#define	S_RX_BUSDMA	AFTER(S_TX_BUSDMA)
305	{ 8,	"rxbusdma",	"rxbusdma",	"rx setup failed for dma resrcs" },
306#define	S_FF_TXOK	AFTER(S_RX_BUSDMA)
307#else
308#define	S_FF_TXOK	AFTER(S_TX_AGGR_FAILALL)
309#endif
310	{ 5,	"fftxok",	"fftxok",	"fast frames xmit successfully" },
311#define	S_FF_TXERR	AFTER(S_FF_TXOK)
312	{ 5,	"fftxerr",	"fftxerr",	"fast frames not xmit due to error" },
313#define	S_FF_RX		AFTER(S_FF_TXERR)
314	{ 5,	"ffrx",		"ffrx",		"fast frames received" },
315#define	S_FF_FLUSH	AFTER(S_FF_RX)
316	{ 5,	"ffflush",	"ffflush",	"fast frames flushed from staging q" },
317#define	S_TX_QFULL	AFTER(S_FF_FLUSH)
318	{ 5,	"txqfull",	"txqfull",	"tx discarded 'cuz queue is full" },
319#define	S_ANT_DEFSWITCH	AFTER(S_TX_QFULL)
320	{ 5,	"defsw",	"defsw",	"switched default/rx antenna" },
321#define	S_ANT_TXSWITCH	AFTER(S_ANT_DEFSWITCH)
322	{ 5,	"txsw",		"txsw",		"tx used alternate antenna" },
323#ifdef ATH_SUPPORT_ANI
324#define	S_ANI_NOISE	AFTER(S_ANT_TXSWITCH)
325	{ 2,	"ni",	"NI",		"noise immunity level" },
326#define	S_ANI_SPUR	AFTER(S_ANI_NOISE)
327	{ 2,	"si",	"SI",		"spur immunity level" },
328#define	S_ANI_STEP	AFTER(S_ANI_SPUR)
329	{ 2,	"step",	"ST",		"first step level" },
330#define	S_ANI_OFDM	AFTER(S_ANI_STEP)
331	{ 4,	"owsd",	"OWSD",		"OFDM weak signal detect" },
332#define	S_ANI_CCK	AFTER(S_ANI_OFDM)
333	{ 4,	"cwst",	"CWST",		"CCK weak signal threshold" },
334#define	S_ANI_MAXSPUR	AFTER(S_ANI_CCK)
335	{ 3,	"maxsi","MSI",		"max spur immunity level" },
336#define	S_ANI_LISTEN	AFTER(S_ANI_MAXSPUR)
337	{ 6,	"listen","LISTEN",	"listen time" },
338#define	S_ANI_NIUP	AFTER(S_ANI_LISTEN)
339	{ 4,	"ni+",	"NI-",		"ANI increased noise immunity" },
340#define	S_ANI_NIDOWN	AFTER(S_ANI_NIUP)
341	{ 4,	"ni-",	"NI-",		"ANI decrease noise immunity" },
342#define	S_ANI_SIUP	AFTER(S_ANI_NIDOWN)
343	{ 4,	"si+",	"SI+",		"ANI increased spur immunity" },
344#define	S_ANI_SIDOWN	AFTER(S_ANI_SIUP)
345	{ 4,	"si-",	"SI-",		"ANI decrease spur immunity" },
346#define	S_ANI_OFDMON	AFTER(S_ANI_SIDOWN)
347	{ 5,	"ofdm+","OFDM+",	"ANI enabled OFDM weak signal detect" },
348#define	S_ANI_OFDMOFF	AFTER(S_ANI_OFDMON)
349	{ 5,	"ofdm-","OFDM-",	"ANI disabled OFDM weak signal detect" },
350#define	S_ANI_CCKHI	AFTER(S_ANI_OFDMOFF)
351	{ 5,	"cck+",	"CCK+",		"ANI enabled CCK weak signal threshold" },
352#define	S_ANI_CCKLO	AFTER(S_ANI_CCKHI)
353	{ 5,	"cck-",	"CCK-",		"ANI disabled CCK weak signal threshold" },
354#define	S_ANI_STEPUP	AFTER(S_ANI_CCKLO)
355	{ 5,	"step+","STEP+",	"ANI increased first step level" },
356#define	S_ANI_STEPDOWN	AFTER(S_ANI_STEPUP)
357	{ 5,	"step-","STEP-",	"ANI decreased first step level" },
358#define	S_ANI_OFDMERRS	AFTER(S_ANI_STEPDOWN)
359	{ 8,	"ofdm",	"OFDM",		"cumulative OFDM phy error count" },
360#define	S_ANI_CCKERRS	AFTER(S_ANI_OFDMERRS)
361	{ 8,	"cck",	"CCK",		"cumulative CCK phy error count" },
362#define	S_ANI_RESET	AFTER(S_ANI_CCKERRS)
363	{ 5,	"reset","RESET",	"ANI parameters zero'd for non-STA operation" },
364#define	S_ANI_LZERO	AFTER(S_ANI_RESET)
365	{ 5,	"lzero","LZERO",	"ANI forced listen time to zero" },
366#define	S_ANI_LNEG	AFTER(S_ANI_LZERO)
367	{ 5,	"lneg",	"LNEG",		"ANI calculated listen time < 0" },
368#define	S_MIB_ACKBAD	AFTER(S_ANI_LNEG)
369	{ 5,	"ackbad","ACKBAD",	"missing ACK's" },
370#define	S_MIB_RTSBAD	AFTER(S_MIB_ACKBAD)
371	{ 5,	"rtsbad","RTSBAD",	"RTS without CTS" },
372#define	S_MIB_RTSGOOD	AFTER(S_MIB_RTSBAD)
373	{ 5,	"rtsgood","RTSGOOD",	"successful RTS" },
374#define	S_MIB_FCSBAD	AFTER(S_MIB_RTSGOOD)
375	{ 5,	"fcsbad","FCSBAD",	"bad FCS" },
376#define	S_MIB_BEACONS	AFTER(S_MIB_FCSBAD)
377	{ 5,	"beacons","beacons",	"beacons received" },
378#define	S_NODE_AVGBRSSI	AFTER(S_MIB_BEACONS)
379	{ 3,	"avgbrssi","BSI",	"average rssi (beacons only)" },
380#define	S_NODE_AVGRSSI	AFTER(S_NODE_AVGBRSSI)
381	{ 3,	"avgrssi","DSI",	"average rssi (all rx'd frames)" },
382#define	S_NODE_AVGARSSI	AFTER(S_NODE_AVGRSSI)
383	{ 3,	"avgtxrssi","TSI",	"average rssi (ACKs only)" },
384#define	S_ANT_TX0	AFTER(S_NODE_AVGARSSI)
385#else
386#define	S_ANT_TX0	AFTER(S_ANT_TXSWITCH)
387#endif /* ATH_SUPPORT_ANI */
388	{ 8,	"tx0",	"ant0(tx)",	"frames tx on antenna 0" },
389#define	S_ANT_TX1	AFTER(S_ANT_TX0)
390	{ 8,	"tx1",	"ant1(tx)",	"frames tx on antenna 1"  },
391#define	S_ANT_TX2	AFTER(S_ANT_TX1)
392	{ 8,	"tx2",	"ant2(tx)",	"frames tx on antenna 2"  },
393#define	S_ANT_TX3	AFTER(S_ANT_TX2)
394	{ 8,	"tx3",	"ant3(tx)",	"frames tx on antenna 3"  },
395#define	S_ANT_TX4	AFTER(S_ANT_TX3)
396	{ 8,	"tx4",	"ant4(tx)",	"frames tx on antenna 4"  },
397#define	S_ANT_TX5	AFTER(S_ANT_TX4)
398	{ 8,	"tx5",	"ant5(tx)",	"frames tx on antenna 5"  },
399#define	S_ANT_TX6	AFTER(S_ANT_TX5)
400	{ 8,	"tx6",	"ant6(tx)",	"frames tx on antenna 6"  },
401#define	S_ANT_TX7	AFTER(S_ANT_TX6)
402	{ 8,	"tx7",	"ant7(tx)",	"frames tx on antenna 7"  },
403#define	S_ANT_RX0	AFTER(S_ANT_TX7)
404	{ 8,	"rx0",	"ant0(rx)",	"frames rx on antenna 0"  },
405#define	S_ANT_RX1	AFTER(S_ANT_RX0)
406	{ 8,	"rx1",	"ant1(rx)",	"frames rx on antenna 1"   },
407#define	S_ANT_RX2	AFTER(S_ANT_RX1)
408	{ 8,	"rx2",	"ant2(rx)",	"frames rx on antenna 2"   },
409#define	S_ANT_RX3	AFTER(S_ANT_RX2)
410	{ 8,	"rx3",	"ant3(rx)",	"frames rx on antenna 3"   },
411#define	S_ANT_RX4	AFTER(S_ANT_RX3)
412	{ 8,	"rx4",	"ant4(rx)",	"frames rx on antenna 4"   },
413#define	S_ANT_RX5	AFTER(S_ANT_RX4)
414	{ 8,	"rx5",	"ant5(rx)",	"frames rx on antenna 5"   },
415#define	S_ANT_RX6	AFTER(S_ANT_RX5)
416	{ 8,	"rx6",	"ant6(rx)",	"frames rx on antenna 6"   },
417#define	S_ANT_RX7	AFTER(S_ANT_RX6)
418	{ 8,	"rx7",	"ant7(rx)",	"frames rx on antenna 7"   },
419#define	S_TX_SIGNAL	AFTER(S_ANT_RX7)
420	{ 4,	"asignal",	"asig",	"signal of last ack (dBm)" },
421#define	S_RX_SIGNAL	AFTER(S_TX_SIGNAL)
422	{ 4,	"signal",	"sig",	"avg recv signal (dBm)" },
423#define	S_BMISSCOUNT		AFTER(S_RX_SIGNAL)
424	{ 8,	"bmisscount",	"bmisscnt",	"beacon miss count" },
425};
426#define	S_PHY_MIN	S_RX_PHY_UNDERRUN
427#define	S_PHY_MAX	S_RX_PHY_CCK_RESTART
428#define	S_LAST		S_ANT_TX0
429#define	S_MAX		S_BMISSCOUNT+1
430
431/*
432 * XXX fold this into the external HAL definitions! -adrian
433 */
434struct _athstats {
435	struct ath_stats ath;
436#ifdef ATH_SUPPORT_ANI
437	struct {
438		uint32_t ast_ani_niup;		/* increased noise immunity */
439		uint32_t ast_ani_nidown;	/* decreased noise immunity */
440		uint32_t ast_ani_spurup;	/* increased spur immunity */
441		uint32_t ast_ani_spurdown;	/* descreased spur immunity */
442		uint32_t ast_ani_ofdmon;	/* OFDM weak signal detect on */
443		uint32_t ast_ani_ofdmoff;	/* OFDM weak signal detect off*/
444		uint32_t ast_ani_cckhigh;	/* CCK weak signal thr high */
445		uint32_t ast_ani_ccklow;	/* CCK weak signal thr low */
446		uint32_t ast_ani_stepup;	/* increased first step level */
447		uint32_t ast_ani_stepdown;	/* decreased first step level */
448		uint32_t ast_ani_ofdmerrs;	/* cumulative ofdm phy err cnt*/
449		uint32_t ast_ani_cckerrs;	/* cumulative cck phy err cnt */
450		uint32_t ast_ani_reset;	/* params zero'd for non-STA */
451		uint32_t ast_ani_lzero;	/* listen time forced to zero */
452		uint32_t ast_ani_lneg;		/* listen time calculated < 0 */
453		HAL_MIB_STATS ast_mibstats;	/* MIB counter stats */
454		HAL_NODE_STATS ast_nodestats;	/* latest rssi stats */
455	} ani_stats;
456	struct {
457		uint8_t	noiseImmunityLevel;
458		uint8_t	spurImmunityLevel;
459		uint8_t	firstepLevel;
460		uint8_t	ofdmWeakSigDetectOff;
461		uint8_t	cckWeakSigThreshold;
462		uint32_t listenTime;
463	} ani_state;
464#endif
465};
466
467struct athstatfoo_p {
468	struct athstatfoo base;
469	int s;
470	int optstats;
471#define	ATHSTATS_ANI	0x0001
472	struct ifreq ifr;
473	struct ath_diag atd;
474	struct _athstats cur;
475	struct _athstats total;
476};
477
478static void
479ath_setifname(struct athstatfoo *wf0, const char *ifname)
480{
481	struct athstatfoo_p *wf = (struct athstatfoo_p *) wf0;
482
483	strncpy(wf->ifr.ifr_name, ifname, sizeof (wf->ifr.ifr_name));
484#ifdef ATH_SUPPORT_ANI
485	strncpy(wf->atd.ad_name, ifname, sizeof (wf->atd.ad_name));
486	wf->optstats |= ATHSTATS_ANI;
487#endif
488}
489
490static void
491ath_zerostats(struct athstatfoo *wf0)
492{
493	struct athstatfoo_p *wf = (struct athstatfoo_p *) wf0;
494
495	if (ioctl(wf->s, SIOCZATHSTATS, &wf->ifr) < 0)
496		err(-1, "ioctl: %s", wf->ifr.ifr_name);
497}
498
499static void
500ath_collect(struct athstatfoo_p *wf, struct _athstats *stats)
501{
502	wf->ifr.ifr_data = (caddr_t) &stats->ath;
503	if (ioctl(wf->s, SIOCGATHSTATS, &wf->ifr) < 0)
504		err(1, "ioctl: %s", wf->ifr.ifr_name);
505#ifdef ATH_SUPPORT_ANI
506	if (wf->optstats & ATHSTATS_ANI) {
507		wf->atd.ad_id = 5;
508		wf->atd.ad_out_data = (caddr_t) &stats->ani_state;
509		wf->atd.ad_out_size = sizeof(stats->ani_state);
510		if (ioctl(wf->s, SIOCGATHDIAG, &wf->atd) < 0) {
511			warn("ioctl: %s", wf->atd.ad_name);
512			wf->optstats &= ~ATHSTATS_ANI;
513		}
514		wf->atd.ad_id = 8;
515		wf->atd.ad_out_data = (caddr_t) &stats->ani_stats;
516		wf->atd.ad_out_size = sizeof(stats->ani_stats);
517		if (ioctl(wf->s, SIOCGATHDIAG, &wf->atd) < 0)
518			warn("ioctl: %s", wf->atd.ad_name);
519	}
520#endif /* ATH_SUPPORT_ANI */
521}
522
523static void
524ath_collect_cur(struct statfoo *sf)
525{
526	struct athstatfoo_p *wf = (struct athstatfoo_p *) sf;
527
528	ath_collect(wf, &wf->cur);
529}
530
531static void
532ath_collect_tot(struct statfoo *sf)
533{
534	struct athstatfoo_p *wf = (struct athstatfoo_p *) sf;
535
536	ath_collect(wf, &wf->total);
537}
538
539static void
540ath_update_tot(struct statfoo *sf)
541{
542	struct athstatfoo_p *wf = (struct athstatfoo_p *) sf;
543
544	wf->total = wf->cur;
545}
546
547static void
548snprintrate(char b[], size_t bs, int rate)
549{
550	if (rate & IEEE80211_RATE_MCS)
551		snprintf(b, bs, "MCS%u", rate &~ IEEE80211_RATE_MCS);
552	else if (rate & 1)
553		snprintf(b, bs, "%u.5M", rate / 2);
554	else
555		snprintf(b, bs, "%uM", rate / 2);
556}
557
558static int
559ath_get_curstat(struct statfoo *sf, int s, char b[], size_t bs)
560{
561	struct athstatfoo_p *wf = (struct athstatfoo_p *) sf;
562#define	STAT(x) \
563	snprintf(b, bs, "%u", wf->cur.ath.ast_##x - wf->total.ath.ast_##x); return 1
564#define	PHY(x) \
565	snprintf(b, bs, "%u", wf->cur.ath.ast_rx_phy[x] - wf->total.ath.ast_rx_phy[x]); return 1
566#define	ANI(x) \
567	snprintf(b, bs, "%u", wf->cur.ani_state.x); return 1
568#define	ANISTAT(x) \
569	snprintf(b, bs, "%u", wf->cur.ani_stats.ast_ani_##x - wf->total.ani_stats.ast_ani_##x); return 1
570#define	MIBSTAT(x) \
571	snprintf(b, bs, "%u", wf->cur.ani_stats.ast_mibstats.x - wf->total.ani_stats.ast_mibstats.x); return 1
572#define	TXANT(x) \
573	snprintf(b, bs, "%u", wf->cur.ath.ast_ant_tx[x] - wf->total.ath.ast_ant_tx[x]); return 1
574#define	RXANT(x) \
575	snprintf(b, bs, "%u", wf->cur.ath.ast_ant_rx[x] - wf->total.ath.ast_ant_rx[x]); return 1
576
577	switch (s) {
578	case S_INPUT:
579		snprintf(b, bs, "%lu",
580		    (unsigned long)
581		    ((wf->cur.ath.ast_rx_packets - wf->total.ath.ast_rx_packets) -
582		    (wf->cur.ath.ast_rx_mgt - wf->total.ath.ast_rx_mgt)));
583		return 1;
584	case S_OUTPUT:
585		snprintf(b, bs, "%lu",
586		    (unsigned long)
587		    (wf->cur.ath.ast_tx_packets - wf->total.ath.ast_tx_packets));
588		return 1;
589	case S_RATE:
590		snprintrate(b, bs, wf->cur.ath.ast_tx_rate);
591		return 1;
592	case S_WATCHDOG:	STAT(watchdog);
593	case S_FATAL:		STAT(hardware);
594	case S_BMISS:		STAT(bmiss);
595	case S_BMISS_PHANTOM:	STAT(bmiss_phantom);
596#ifdef S_BSTUCK
597	case S_BSTUCK:		STAT(bstuck);
598#endif
599	case S_RXORN:		STAT(rxorn);
600	case S_RXEOL:		STAT(rxeol);
601	case S_TXURN:		STAT(txurn);
602	case S_MIB:		STAT(mib);
603#ifdef S_INTRCOAL
604	case S_INTRCOAL:	STAT(intrcoal);
605#endif
606	case S_TX_MGMT:		STAT(tx_mgmt);
607	case S_TX_DISCARD:	STAT(tx_discard);
608	case S_TX_QSTOP:	STAT(tx_qstop);
609	case S_TX_ENCAP:	STAT(tx_encap);
610	case S_TX_NONODE:	STAT(tx_nonode);
611	case S_TX_NOBUF:	STAT(tx_nobuf);
612	case S_TX_NOFRAG:	STAT(tx_nofrag);
613	case S_TX_NOMBUF:	STAT(tx_nombuf);
614#ifdef S_TX_NOMCL
615	case S_TX_NOMCL:	STAT(tx_nomcl);
616	case S_TX_LINEAR:	STAT(tx_linear);
617	case S_TX_NODATA:	STAT(tx_nodata);
618	case S_TX_BUSDMA:	STAT(tx_busdma);
619#endif
620	case S_TX_XRETRIES:	STAT(tx_xretries);
621	case S_TX_FIFOERR:	STAT(tx_fifoerr);
622	case S_TX_FILTERED:	STAT(tx_filtered);
623	case S_TX_SHORTRETRY:	STAT(tx_shortretry);
624	case S_TX_LONGRETRY:	STAT(tx_longretry);
625	case S_TX_BADRATE:	STAT(tx_badrate);
626	case S_TX_NOACK:	STAT(tx_noack);
627	case S_TX_RTS:		STAT(tx_rts);
628	case S_TX_CTS:		STAT(tx_cts);
629	case S_TX_SHORTPRE:	STAT(tx_shortpre);
630	case S_TX_ALTRATE:	STAT(tx_altrate);
631	case S_TX_PROTECT:	STAT(tx_protect);
632	case S_TX_RAW:		STAT(tx_raw);
633	case S_TX_RAW_FAIL:	STAT(tx_raw_fail);
634	case S_RX_NOMBUF:	STAT(rx_nombuf);
635#ifdef S_RX_BUSDMA
636	case S_RX_BUSDMA:	STAT(rx_busdma);
637#endif
638	case S_RX_ORN:		STAT(rx_orn);
639	case S_RX_CRC_ERR:	STAT(rx_crcerr);
640	case S_RX_FIFO_ERR: 	STAT(rx_fifoerr);
641	case S_RX_CRYPTO_ERR: 	STAT(rx_badcrypt);
642	case S_RX_MIC_ERR:	STAT(rx_badmic);
643	case S_RX_PHY_ERR:	STAT(rx_phyerr);
644	case S_RX_PHY_UNDERRUN:	PHY(HAL_PHYERR_UNDERRUN);
645	case S_RX_PHY_TIMING:	PHY(HAL_PHYERR_TIMING);
646	case S_RX_PHY_PARITY:	PHY(HAL_PHYERR_PARITY);
647	case S_RX_PHY_RATE:	PHY(HAL_PHYERR_RATE);
648	case S_RX_PHY_LENGTH:	PHY(HAL_PHYERR_LENGTH);
649	case S_RX_PHY_RADAR:	PHY(HAL_PHYERR_RADAR);
650	case S_RX_PHY_SERVICE:	PHY(HAL_PHYERR_SERVICE);
651	case S_RX_PHY_TOR:	PHY(HAL_PHYERR_TOR);
652	case S_RX_PHY_OFDM_TIMING:	  PHY(HAL_PHYERR_OFDM_TIMING);
653	case S_RX_PHY_OFDM_SIGNAL_PARITY: PHY(HAL_PHYERR_OFDM_SIGNAL_PARITY);
654	case S_RX_PHY_OFDM_RATE_ILLEGAL:  PHY(HAL_PHYERR_OFDM_RATE_ILLEGAL);
655	case S_RX_PHY_OFDM_POWER_DROP:	  PHY(HAL_PHYERR_OFDM_POWER_DROP);
656	case S_RX_PHY_OFDM_SERVICE:	  PHY(HAL_PHYERR_OFDM_SERVICE);
657	case S_RX_PHY_OFDM_RESTART:	  PHY(HAL_PHYERR_OFDM_RESTART);
658	case S_RX_PHY_CCK_TIMING:	  PHY(HAL_PHYERR_CCK_TIMING);
659	case S_RX_PHY_CCK_HEADER_CRC:	  PHY(HAL_PHYERR_CCK_HEADER_CRC);
660	case S_RX_PHY_CCK_RATE_ILLEGAL:	  PHY(HAL_PHYERR_CCK_RATE_ILLEGAL);
661	case S_RX_PHY_CCK_SERVICE:	  PHY(HAL_PHYERR_CCK_SERVICE);
662	case S_RX_PHY_CCK_RESTART:	  PHY(HAL_PHYERR_CCK_RESTART);
663	case S_RX_TOOSHORT:	STAT(rx_tooshort);
664	case S_RX_TOOBIG:	STAT(rx_toobig);
665	case S_RX_MGT:		STAT(rx_mgt);
666	case S_RX_CTL:		STAT(rx_ctl);
667	case S_TX_RSSI:
668		snprintf(b, bs, "%d", wf->cur.ath.ast_tx_rssi);
669		return 1;
670	case S_RX_RSSI:
671		snprintf(b, bs, "%d", wf->cur.ath.ast_rx_rssi);
672		return 1;
673	case S_BE_XMIT:		STAT(be_xmit);
674	case S_BE_NOMBUF:	STAT(be_nombuf);
675	case S_PER_CAL:		STAT(per_cal);
676	case S_PER_CALFAIL:	STAT(per_calfail);
677	case S_PER_RFGAIN:	STAT(per_rfgain);
678#ifdef S_TDMA_UPDATE
679	case S_TDMA_UPDATE:	STAT(tdma_update);
680	case S_TDMA_TIMERS:	STAT(tdma_timers);
681	case S_TDMA_TSF:	STAT(tdma_tsf);
682	case S_TDMA_TSFADJ:
683		snprintf(b, bs, "-%d/+%d",
684		    wf->cur.ath.ast_tdma_tsfadjm, wf->cur.ath.ast_tdma_tsfadjp);
685		return 1;
686	case S_TDMA_ACK:	STAT(tdma_ack);
687#endif
688	case S_RATE_CALLS:	STAT(rate_calls);
689	case S_RATE_RAISE:	STAT(rate_raise);
690	case S_RATE_DROP:	STAT(rate_drop);
691	case S_ANT_DEFSWITCH:	STAT(ant_defswitch);
692	case S_ANT_TXSWITCH:	STAT(ant_txswitch);
693#ifdef S_ANI_NOISE
694	case S_ANI_NOISE:	ANI(noiseImmunityLevel);
695	case S_ANI_SPUR:	ANI(spurImmunityLevel);
696	case S_ANI_STEP:	ANI(firstepLevel);
697	case S_ANI_OFDM:	ANI(ofdmWeakSigDetectOff);
698	case S_ANI_CCK:		ANI(cckWeakSigThreshold);
699	case S_ANI_LISTEN:	ANI(listenTime);
700	case S_ANI_NIUP:	ANISTAT(niup);
701	case S_ANI_NIDOWN:	ANISTAT(nidown);
702	case S_ANI_SIUP:	ANISTAT(spurup);
703	case S_ANI_SIDOWN:	ANISTAT(spurdown);
704	case S_ANI_OFDMON:	ANISTAT(ofdmon);
705	case S_ANI_OFDMOFF:	ANISTAT(ofdmoff);
706	case S_ANI_CCKHI:	ANISTAT(cckhigh);
707	case S_ANI_CCKLO:	ANISTAT(ccklow);
708	case S_ANI_STEPUP:	ANISTAT(stepup);
709	case S_ANI_STEPDOWN:	ANISTAT(stepdown);
710	case S_ANI_OFDMERRS:	ANISTAT(ofdmerrs);
711	case S_ANI_CCKERRS:	ANISTAT(cckerrs);
712	case S_ANI_RESET:	ANISTAT(reset);
713	case S_ANI_LZERO:	ANISTAT(lzero);
714	case S_ANI_LNEG:	ANISTAT(lneg);
715	case S_MIB_ACKBAD:	MIBSTAT(ackrcv_bad);
716	case S_MIB_RTSBAD:	MIBSTAT(rts_bad);
717	case S_MIB_RTSGOOD:	MIBSTAT(rts_good);
718	case S_MIB_FCSBAD:	MIBSTAT(fcs_bad);
719	case S_MIB_BEACONS:	MIBSTAT(beacons);
720	case S_NODE_AVGBRSSI:
721		snprintf(b, bs, "%u",
722		    HAL_RSSI(wf->cur.ani_stats.ast_nodestats.ns_avgbrssi));
723		return 1;
724	case S_NODE_AVGRSSI:
725		snprintf(b, bs, "%u",
726		    HAL_RSSI(wf->cur.ani_stats.ast_nodestats.ns_avgrssi));
727		return 1;
728	case S_NODE_AVGARSSI:
729		snprintf(b, bs, "%u",
730		    HAL_RSSI(wf->cur.ani_stats.ast_nodestats.ns_avgtxrssi));
731		return 1;
732#endif
733	case S_ANT_TX0:		TXANT(0);
734	case S_ANT_TX1:		TXANT(1);
735	case S_ANT_TX2:		TXANT(2);
736	case S_ANT_TX3:		TXANT(3);
737	case S_ANT_TX4:		TXANT(4);
738	case S_ANT_TX5:		TXANT(5);
739	case S_ANT_TX6:		TXANT(6);
740	case S_ANT_TX7:		TXANT(7);
741	case S_ANT_RX0:		RXANT(0);
742	case S_ANT_RX1:		RXANT(1);
743	case S_ANT_RX2:		RXANT(2);
744	case S_ANT_RX3:		RXANT(3);
745	case S_ANT_RX4:		RXANT(4);
746	case S_ANT_RX5:		RXANT(5);
747	case S_ANT_RX6:		RXANT(6);
748	case S_ANT_RX7:		RXANT(7);
749#ifdef S_CABQ_XMIT
750	case S_CABQ_XMIT:	STAT(cabq_xmit);
751	case S_CABQ_BUSY:	STAT(cabq_busy);
752#endif
753	case S_FF_TXOK:		STAT(ff_txok);
754	case S_FF_TXERR:	STAT(ff_txerr);
755	case S_FF_RX:		STAT(ff_rx);
756	case S_FF_FLUSH:	STAT(ff_flush);
757	case S_TX_QFULL:	STAT(tx_qfull);
758	case S_BMISSCOUNT:	STAT(be_missed);
759	case S_RX_NOISE:
760		snprintf(b, bs, "%d", wf->cur.ath.ast_rx_noise);
761		return 1;
762	case S_TX_SIGNAL:
763		snprintf(b, bs, "%d",
764			wf->cur.ath.ast_tx_rssi + wf->cur.ath.ast_rx_noise);
765		return 1;
766	case S_RX_SIGNAL:
767		snprintf(b, bs, "%d",
768			wf->cur.ath.ast_rx_rssi + wf->cur.ath.ast_rx_noise);
769		return 1;
770	case S_RX_AGG:		STAT(rx_agg);
771	case S_RX_HALFGI:	STAT(rx_halfgi);
772	case S_RX_2040:		STAT(rx_2040);
773	case S_RX_PRE_CRC_ERR:	STAT(rx_pre_crc_err);
774	case S_RX_POST_CRC_ERR:	STAT(rx_post_crc_err);
775	case S_RX_DECRYPT_BUSY_ERR:	STAT(rx_decrypt_busy_err);
776	case S_RX_HI_CHAIN:	STAT(rx_hi_rx_chain);
777	case S_RX_STBC:		STAT(rx_stbc);
778	case S_TX_HTPROTECT:	STAT(tx_htprotect);
779	case S_RX_QEND:		STAT(rx_hitqueueend);
780	case S_TX_TIMEOUT:	STAT(tx_timeout);
781	case S_TX_CSTIMEOUT:	STAT(tx_cst);
782	case S_TX_XTXOP_ERR:	STAT(tx_xtxop);
783	case S_TX_TIMEREXPIRED_ERR:	STAT(tx_timerexpired);
784	case S_TX_DESCCFG_ERR:	STAT(tx_desccfgerr);
785	case S_TX_SWRETRIES:	STAT(tx_swretries);
786	case S_TX_SWRETRIES_MAX:	STAT(tx_swretrymax);
787	case S_TX_DATA_UNDERRUN:	STAT(tx_data_underrun);
788	case S_TX_DELIM_UNDERRUN:	STAT(tx_delim_underrun);
789	case S_TX_AGGR_OK:		STAT(tx_aggr_ok);
790	case S_TX_AGGR_FAIL:		STAT(tx_aggr_fail);
791	case S_TX_AGGR_FAILALL:		STAT(tx_aggr_failall);
792	}
793	b[0] = '\0';
794	return 0;
795#undef RXANT
796#undef TXANT
797#undef ANI
798#undef ANISTAT
799#undef MIBSTAT
800#undef PHY
801#undef STAT
802}
803
804static int
805ath_get_totstat(struct statfoo *sf, int s, char b[], size_t bs)
806{
807	struct athstatfoo_p *wf = (struct athstatfoo_p *) sf;
808#define	STAT(x) \
809	snprintf(b, bs, "%u", wf->total.ath.ast_##x); return 1
810#define	PHY(x) \
811	snprintf(b, bs, "%u", wf->total.ath.ast_rx_phy[x]); return 1
812#define	ANI(x) \
813	snprintf(b, bs, "%u", wf->total.ani_state.x); return 1
814#define	ANISTAT(x) \
815	snprintf(b, bs, "%u", wf->total.ani_stats.ast_ani_##x); return 1
816#define	MIBSTAT(x) \
817	snprintf(b, bs, "%u", wf->total.ani_stats.ast_mibstats.x); return 1
818#define	TXANT(x) \
819	snprintf(b, bs, "%u", wf->total.ath.ast_ant_tx[x]); return 1
820#define	RXANT(x) \
821	snprintf(b, bs, "%u", wf->total.ath.ast_ant_rx[x]); return 1
822
823	switch (s) {
824	case S_INPUT:
825		snprintf(b, bs, "%lu",
826		    wf->total.ath.ast_rx_packets - wf->total.ath.ast_rx_mgt);
827		return 1;
828	case S_OUTPUT:
829		snprintf(b, bs, "%lu", wf->total.ath.ast_tx_packets);
830		return 1;
831	case S_RATE:
832		snprintrate(b, bs, wf->total.ath.ast_tx_rate);
833		return 1;
834	case S_WATCHDOG:	STAT(watchdog);
835	case S_FATAL:		STAT(hardware);
836	case S_BMISS:		STAT(bmiss);
837	case S_BMISS_PHANTOM:	STAT(bmiss_phantom);
838#ifdef S_BSTUCK
839	case S_BSTUCK:		STAT(bstuck);
840#endif
841	case S_RXORN:		STAT(rxorn);
842	case S_RXEOL:		STAT(rxeol);
843	case S_TXURN:		STAT(txurn);
844	case S_MIB:		STAT(mib);
845#ifdef S_INTRCOAL
846	case S_INTRCOAL:	STAT(intrcoal);
847#endif
848	case S_TX_MGMT:		STAT(tx_mgmt);
849	case S_TX_DISCARD:	STAT(tx_discard);
850	case S_TX_QSTOP:	STAT(tx_qstop);
851	case S_TX_ENCAP:	STAT(tx_encap);
852	case S_TX_NONODE:	STAT(tx_nonode);
853	case S_TX_NOBUF:	STAT(tx_nobuf);
854	case S_TX_NOFRAG:	STAT(tx_nofrag);
855	case S_TX_NOMBUF:	STAT(tx_nombuf);
856#ifdef S_TX_NOMCL
857	case S_TX_NOMCL:	STAT(tx_nomcl);
858	case S_TX_LINEAR:	STAT(tx_linear);
859	case S_TX_NODATA:	STAT(tx_nodata);
860	case S_TX_BUSDMA:	STAT(tx_busdma);
861#endif
862	case S_TX_XRETRIES:	STAT(tx_xretries);
863	case S_TX_FIFOERR:	STAT(tx_fifoerr);
864	case S_TX_FILTERED:	STAT(tx_filtered);
865	case S_TX_SHORTRETRY:	STAT(tx_shortretry);
866	case S_TX_LONGRETRY:	STAT(tx_longretry);
867	case S_TX_BADRATE:	STAT(tx_badrate);
868	case S_TX_NOACK:	STAT(tx_noack);
869	case S_TX_RTS:		STAT(tx_rts);
870	case S_TX_CTS:		STAT(tx_cts);
871	case S_TX_SHORTPRE:	STAT(tx_shortpre);
872	case S_TX_ALTRATE:	STAT(tx_altrate);
873	case S_TX_PROTECT:	STAT(tx_protect);
874	case S_TX_RAW:		STAT(tx_raw);
875	case S_TX_RAW_FAIL:	STAT(tx_raw_fail);
876	case S_RX_NOMBUF:	STAT(rx_nombuf);
877#ifdef S_RX_BUSDMA
878	case S_RX_BUSDMA:	STAT(rx_busdma);
879#endif
880	case S_RX_ORN:		STAT(rx_orn);
881	case S_RX_CRC_ERR:	STAT(rx_crcerr);
882	case S_RX_FIFO_ERR: 	STAT(rx_fifoerr);
883	case S_RX_CRYPTO_ERR: 	STAT(rx_badcrypt);
884	case S_RX_MIC_ERR:	STAT(rx_badmic);
885	case S_RX_PHY_ERR:	STAT(rx_phyerr);
886	case S_RX_PHY_UNDERRUN:	PHY(HAL_PHYERR_UNDERRUN);
887	case S_RX_PHY_TIMING:	PHY(HAL_PHYERR_TIMING);
888	case S_RX_PHY_PARITY:	PHY(HAL_PHYERR_PARITY);
889	case S_RX_PHY_RATE:	PHY(HAL_PHYERR_RATE);
890	case S_RX_PHY_LENGTH:	PHY(HAL_PHYERR_LENGTH);
891	case S_RX_PHY_RADAR:	PHY(HAL_PHYERR_RADAR);
892	case S_RX_PHY_SERVICE:	PHY(HAL_PHYERR_SERVICE);
893	case S_RX_PHY_TOR:	PHY(HAL_PHYERR_TOR);
894	case S_RX_PHY_OFDM_TIMING:	  PHY(HAL_PHYERR_OFDM_TIMING);
895	case S_RX_PHY_OFDM_SIGNAL_PARITY: PHY(HAL_PHYERR_OFDM_SIGNAL_PARITY);
896	case S_RX_PHY_OFDM_RATE_ILLEGAL:  PHY(HAL_PHYERR_OFDM_RATE_ILLEGAL);
897	case S_RX_PHY_OFDM_POWER_DROP:	  PHY(HAL_PHYERR_OFDM_POWER_DROP);
898	case S_RX_PHY_OFDM_SERVICE:	  PHY(HAL_PHYERR_OFDM_SERVICE);
899	case S_RX_PHY_OFDM_RESTART:	  PHY(HAL_PHYERR_OFDM_RESTART);
900	case S_RX_PHY_CCK_TIMING:	  PHY(HAL_PHYERR_CCK_TIMING);
901	case S_RX_PHY_CCK_HEADER_CRC:	  PHY(HAL_PHYERR_CCK_HEADER_CRC);
902	case S_RX_PHY_CCK_RATE_ILLEGAL:	  PHY(HAL_PHYERR_CCK_RATE_ILLEGAL);
903	case S_RX_PHY_CCK_SERVICE:	  PHY(HAL_PHYERR_CCK_SERVICE);
904	case S_RX_PHY_CCK_RESTART:	  PHY(HAL_PHYERR_CCK_RESTART);
905	case S_RX_TOOSHORT:	STAT(rx_tooshort);
906	case S_RX_TOOBIG:	STAT(rx_toobig);
907	case S_RX_MGT:		STAT(rx_mgt);
908	case S_RX_CTL:		STAT(rx_ctl);
909	case S_TX_RSSI:
910		snprintf(b, bs, "%d", wf->total.ath.ast_tx_rssi);
911		return 1;
912	case S_RX_RSSI:
913		snprintf(b, bs, "%d", wf->total.ath.ast_rx_rssi);
914		return 1;
915	case S_BE_XMIT:		STAT(be_xmit);
916	case S_BE_NOMBUF:	STAT(be_nombuf);
917	case S_PER_CAL:		STAT(per_cal);
918	case S_PER_CALFAIL:	STAT(per_calfail);
919	case S_PER_RFGAIN:	STAT(per_rfgain);
920#ifdef S_TDMA_UPDATE
921	case S_TDMA_UPDATE:	STAT(tdma_update);
922	case S_TDMA_TIMERS:	STAT(tdma_timers);
923	case S_TDMA_TSF:	STAT(tdma_tsf);
924	case S_TDMA_TSFADJ:
925		snprintf(b, bs, "-%d/+%d",
926		    wf->total.ath.ast_tdma_tsfadjm,
927		    wf->total.ath.ast_tdma_tsfadjp);
928		return 1;
929	case S_TDMA_ACK:	STAT(tdma_ack);
930#endif
931	case S_RATE_CALLS:	STAT(rate_calls);
932	case S_RATE_RAISE:	STAT(rate_raise);
933	case S_RATE_DROP:	STAT(rate_drop);
934	case S_ANT_DEFSWITCH:	STAT(ant_defswitch);
935	case S_ANT_TXSWITCH:	STAT(ant_txswitch);
936#ifdef S_ANI_NOISE
937	case S_ANI_NOISE:	ANI(noiseImmunityLevel);
938	case S_ANI_SPUR:	ANI(spurImmunityLevel);
939	case S_ANI_STEP:	ANI(firstepLevel);
940	case S_ANI_OFDM:	ANI(ofdmWeakSigDetectOff);
941	case S_ANI_CCK:		ANI(cckWeakSigThreshold);
942	case S_ANI_LISTEN:	ANI(listenTime);
943	case S_ANI_NIUP:	ANISTAT(niup);
944	case S_ANI_NIDOWN:	ANISTAT(nidown);
945	case S_ANI_SIUP:	ANISTAT(spurup);
946	case S_ANI_SIDOWN:	ANISTAT(spurdown);
947	case S_ANI_OFDMON:	ANISTAT(ofdmon);
948	case S_ANI_OFDMOFF:	ANISTAT(ofdmoff);
949	case S_ANI_CCKHI:	ANISTAT(cckhigh);
950	case S_ANI_CCKLO:	ANISTAT(ccklow);
951	case S_ANI_STEPUP:	ANISTAT(stepup);
952	case S_ANI_STEPDOWN:	ANISTAT(stepdown);
953	case S_ANI_OFDMERRS:	ANISTAT(ofdmerrs);
954	case S_ANI_CCKERRS:	ANISTAT(cckerrs);
955	case S_ANI_RESET:	ANISTAT(reset);
956	case S_ANI_LZERO:	ANISTAT(lzero);
957	case S_ANI_LNEG:	ANISTAT(lneg);
958	case S_MIB_ACKBAD:	MIBSTAT(ackrcv_bad);
959	case S_MIB_RTSBAD:	MIBSTAT(rts_bad);
960	case S_MIB_RTSGOOD:	MIBSTAT(rts_good);
961	case S_MIB_FCSBAD:	MIBSTAT(fcs_bad);
962	case S_MIB_BEACONS:	MIBSTAT(beacons);
963	case S_NODE_AVGBRSSI:
964		snprintf(b, bs, "%u",
965		    HAL_RSSI(wf->total.ani_stats.ast_nodestats.ns_avgbrssi));
966		return 1;
967	case S_NODE_AVGRSSI:
968		snprintf(b, bs, "%u",
969		    HAL_RSSI(wf->total.ani_stats.ast_nodestats.ns_avgrssi));
970		return 1;
971	case S_NODE_AVGARSSI:
972		snprintf(b, bs, "%u",
973		    HAL_RSSI(wf->total.ani_stats.ast_nodestats.ns_avgtxrssi));
974		return 1;
975#endif
976	case S_ANT_TX0:		TXANT(0);
977	case S_ANT_TX1:		TXANT(1);
978	case S_ANT_TX2:		TXANT(2);
979	case S_ANT_TX3:		TXANT(3);
980	case S_ANT_TX4:		TXANT(4);
981	case S_ANT_TX5:		TXANT(5);
982	case S_ANT_TX6:		TXANT(6);
983	case S_ANT_TX7:		TXANT(7);
984	case S_ANT_RX0:		RXANT(0);
985	case S_ANT_RX1:		RXANT(1);
986	case S_ANT_RX2:		RXANT(2);
987	case S_ANT_RX3:		RXANT(3);
988	case S_ANT_RX4:		RXANT(4);
989	case S_ANT_RX5:		RXANT(5);
990	case S_ANT_RX6:		RXANT(6);
991	case S_ANT_RX7:		RXANT(7);
992#ifdef S_CABQ_XMIT
993	case S_CABQ_XMIT:	STAT(cabq_xmit);
994	case S_CABQ_BUSY:	STAT(cabq_busy);
995#endif
996	case S_FF_TXOK:		STAT(ff_txok);
997	case S_FF_TXERR:	STAT(ff_txerr);
998	case S_FF_RX:		STAT(ff_rx);
999	case S_FF_FLUSH:	STAT(ff_flush);
1000	case S_TX_QFULL:	STAT(tx_qfull);
1001	case S_BMISSCOUNT:	STAT(be_missed);
1002	case S_RX_NOISE:
1003		snprintf(b, bs, "%d", wf->total.ath.ast_rx_noise);
1004		return 1;
1005	case S_TX_SIGNAL:
1006		snprintf(b, bs, "%d",
1007			wf->total.ath.ast_tx_rssi + wf->total.ath.ast_rx_noise);
1008		return 1;
1009	case S_RX_SIGNAL:
1010		snprintf(b, bs, "%d",
1011			wf->total.ath.ast_rx_rssi + wf->total.ath.ast_rx_noise);
1012		return 1;
1013	case S_RX_AGG:		STAT(rx_agg);
1014	case S_RX_HALFGI:	STAT(rx_halfgi);
1015	case S_RX_2040:		STAT(rx_2040);
1016	case S_RX_PRE_CRC_ERR:	STAT(rx_pre_crc_err);
1017	case S_RX_POST_CRC_ERR:	STAT(rx_post_crc_err);
1018	case S_RX_DECRYPT_BUSY_ERR:	STAT(rx_decrypt_busy_err);
1019	case S_RX_HI_CHAIN:	STAT(rx_hi_rx_chain);
1020	case S_RX_STBC:		STAT(rx_stbc);
1021	case S_TX_HTPROTECT:	STAT(tx_htprotect);
1022	case S_RX_QEND:		STAT(rx_hitqueueend);
1023	case S_TX_TIMEOUT:	STAT(tx_timeout);
1024	case S_TX_CSTIMEOUT:	STAT(tx_cst);
1025	case S_TX_XTXOP_ERR:	STAT(tx_xtxop);
1026	case S_TX_TIMEREXPIRED_ERR:	STAT(tx_timerexpired);
1027	case S_TX_DESCCFG_ERR:	STAT(tx_desccfgerr);
1028	case S_TX_SWRETRIES:	STAT(tx_swretries);
1029	case S_TX_SWRETRIES_MAX:	STAT(tx_swretrymax);
1030	case S_TX_DATA_UNDERRUN:	STAT(tx_data_underrun);
1031	case S_TX_DELIM_UNDERRUN:	STAT(tx_delim_underrun);
1032	case S_TX_AGGR_OK:		STAT(tx_aggr_ok);
1033	case S_TX_AGGR_FAIL:		STAT(tx_aggr_fail);
1034	case S_TX_AGGR_FAILALL:		STAT(tx_aggr_failall);
1035	}
1036	b[0] = '\0';
1037	return 0;
1038#undef RXANT
1039#undef TXANT
1040#undef ANI
1041#undef ANISTAT
1042#undef MIBSTAT
1043#undef PHY
1044#undef STAT
1045}
1046
1047static void
1048ath_print_verbose(struct statfoo *sf, FILE *fd)
1049{
1050	struct athstatfoo_p *wf = (struct athstatfoo_p *) sf;
1051#define	isphyerr(i)	(S_PHY_MIN <= i && i <= S_PHY_MAX)
1052	const struct fmt *f;
1053	char s[32];
1054	const char *indent;
1055	int i, width;
1056
1057	width = 0;
1058	for (i = 0; i < S_LAST; i++) {
1059		f = &sf->stats[i];
1060		if (!isphyerr(i) && f->width > width)
1061			width = f->width;
1062	}
1063	for (i = 0; i < S_LAST; i++) {
1064		if (ath_get_totstat(sf, i, s, sizeof(s)) && strcmp(s, "0")) {
1065			if (isphyerr(i))
1066				indent = "    ";
1067			else
1068				indent = "";
1069			fprintf(fd, "%s%-*s %s\n", indent, width, s, athstats[i].desc);
1070		}
1071	}
1072	fprintf(fd, "Antenna profile:\n");
1073	for (i = 0; i < 8; i++)
1074		if (wf->total.ath.ast_ant_rx[i] || wf->total.ath.ast_ant_tx[i])
1075			fprintf(fd, "[%u] tx %8u rx %8u\n", i,
1076				wf->total.ath.ast_ant_tx[i],
1077				wf->total.ath.ast_ant_rx[i]);
1078#undef isphyerr
1079}
1080
1081STATFOO_DEFINE_BOUNCE(athstatfoo)
1082
1083struct athstatfoo *
1084athstats_new(const char *ifname, const char *fmtstring)
1085{
1086#define	N(a)	(sizeof(a) / sizeof(a[0]))
1087	struct athstatfoo_p *wf;
1088
1089	wf = calloc(1, sizeof(struct athstatfoo_p));
1090	if (wf != NULL) {
1091		statfoo_init(&wf->base.base, "athstats", athstats, N(athstats));
1092		/* override base methods */
1093		wf->base.base.collect_cur = ath_collect_cur;
1094		wf->base.base.collect_tot = ath_collect_tot;
1095		wf->base.base.get_curstat = ath_get_curstat;
1096		wf->base.base.get_totstat = ath_get_totstat;
1097		wf->base.base.update_tot = ath_update_tot;
1098		wf->base.base.print_verbose = ath_print_verbose;
1099
1100		/* setup bounce functions for public methods */
1101		STATFOO_BOUNCE(wf, athstatfoo);
1102
1103		/* setup our public methods */
1104		wf->base.setifname = ath_setifname;
1105#if 0
1106		wf->base.setstamac = wlan_setstamac;
1107#endif
1108		wf->base.zerostats = ath_zerostats;
1109		wf->s = socket(AF_INET, SOCK_DGRAM, 0);
1110		if (wf->s < 0)
1111			err(1, "socket");
1112
1113		ath_setifname(&wf->base, ifname);
1114		wf->base.setfmt(&wf->base, fmtstring);
1115	}
1116	return &wf->base;
1117#undef N
1118}
1119