vm_object.c revision 270920
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Virtual memory object module.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: stable/10/sys/vm/vm_object.c 270920 2014-09-01 07:58:15Z kib $");
67
68#include "opt_vm.h"
69
70#include <sys/param.h>
71#include <sys/systm.h>
72#include <sys/lock.h>
73#include <sys/mman.h>
74#include <sys/mount.h>
75#include <sys/kernel.h>
76#include <sys/sysctl.h>
77#include <sys/mutex.h>
78#include <sys/proc.h>		/* for curproc, pageproc */
79#include <sys/socket.h>
80#include <sys/resourcevar.h>
81#include <sys/rwlock.h>
82#include <sys/vnode.h>
83#include <sys/vmmeter.h>
84#include <sys/sx.h>
85
86#include <vm/vm.h>
87#include <vm/vm_param.h>
88#include <vm/pmap.h>
89#include <vm/vm_map.h>
90#include <vm/vm_object.h>
91#include <vm/vm_page.h>
92#include <vm/vm_pageout.h>
93#include <vm/vm_pager.h>
94#include <vm/swap_pager.h>
95#include <vm/vm_kern.h>
96#include <vm/vm_extern.h>
97#include <vm/vm_radix.h>
98#include <vm/vm_reserv.h>
99#include <vm/uma.h>
100
101static int old_msync;
102SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
103    "Use old (insecure) msync behavior");
104
105static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
106		    int pagerflags, int flags, boolean_t *clearobjflags,
107		    boolean_t *eio);
108static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
109		    boolean_t *clearobjflags);
110static void	vm_object_qcollapse(vm_object_t object);
111static void	vm_object_vndeallocate(vm_object_t object);
112
113/*
114 *	Virtual memory objects maintain the actual data
115 *	associated with allocated virtual memory.  A given
116 *	page of memory exists within exactly one object.
117 *
118 *	An object is only deallocated when all "references"
119 *	are given up.  Only one "reference" to a given
120 *	region of an object should be writeable.
121 *
122 *	Associated with each object is a list of all resident
123 *	memory pages belonging to that object; this list is
124 *	maintained by the "vm_page" module, and locked by the object's
125 *	lock.
126 *
127 *	Each object also records a "pager" routine which is
128 *	used to retrieve (and store) pages to the proper backing
129 *	storage.  In addition, objects may be backed by other
130 *	objects from which they were virtual-copied.
131 *
132 *	The only items within the object structure which are
133 *	modified after time of creation are:
134 *		reference count		locked by object's lock
135 *		pager routine		locked by object's lock
136 *
137 */
138
139struct object_q vm_object_list;
140struct mtx vm_object_list_mtx;	/* lock for object list and count */
141
142struct vm_object kernel_object_store;
143struct vm_object kmem_object_store;
144
145static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
146    "VM object stats");
147
148static long object_collapses;
149SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
150    &object_collapses, 0, "VM object collapses");
151
152static long object_bypasses;
153SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
154    &object_bypasses, 0, "VM object bypasses");
155
156static uma_zone_t obj_zone;
157
158static int vm_object_zinit(void *mem, int size, int flags);
159
160#ifdef INVARIANTS
161static void vm_object_zdtor(void *mem, int size, void *arg);
162
163static void
164vm_object_zdtor(void *mem, int size, void *arg)
165{
166	vm_object_t object;
167
168	object = (vm_object_t)mem;
169	KASSERT(TAILQ_EMPTY(&object->memq),
170	    ("object %p has resident pages in its memq", object));
171	KASSERT(vm_radix_is_empty(&object->rtree),
172	    ("object %p has resident pages in its trie", object));
173#if VM_NRESERVLEVEL > 0
174	KASSERT(LIST_EMPTY(&object->rvq),
175	    ("object %p has reservations",
176	    object));
177#endif
178	KASSERT(vm_object_cache_is_empty(object),
179	    ("object %p has cached pages",
180	    object));
181	KASSERT(object->paging_in_progress == 0,
182	    ("object %p paging_in_progress = %d",
183	    object, object->paging_in_progress));
184	KASSERT(object->resident_page_count == 0,
185	    ("object %p resident_page_count = %d",
186	    object, object->resident_page_count));
187	KASSERT(object->shadow_count == 0,
188	    ("object %p shadow_count = %d",
189	    object, object->shadow_count));
190}
191#endif
192
193static int
194vm_object_zinit(void *mem, int size, int flags)
195{
196	vm_object_t object;
197
198	object = (vm_object_t)mem;
199	bzero(&object->lock, sizeof(object->lock));
200	rw_init_flags(&object->lock, "vm object", RW_DUPOK);
201
202	/* These are true for any object that has been freed */
203	object->rtree.rt_root = 0;
204	object->rtree.rt_flags = 0;
205	object->paging_in_progress = 0;
206	object->resident_page_count = 0;
207	object->shadow_count = 0;
208	object->cache.rt_root = 0;
209	object->cache.rt_flags = 0;
210	return (0);
211}
212
213static void
214_vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
215{
216
217	TAILQ_INIT(&object->memq);
218	LIST_INIT(&object->shadow_head);
219
220	object->type = type;
221	switch (type) {
222	case OBJT_DEAD:
223		panic("_vm_object_allocate: can't create OBJT_DEAD");
224	case OBJT_DEFAULT:
225	case OBJT_SWAP:
226		object->flags = OBJ_ONEMAPPING;
227		break;
228	case OBJT_DEVICE:
229	case OBJT_SG:
230		object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
231		break;
232	case OBJT_MGTDEVICE:
233		object->flags = OBJ_FICTITIOUS;
234		break;
235	case OBJT_PHYS:
236		object->flags = OBJ_UNMANAGED;
237		break;
238	case OBJT_VNODE:
239		object->flags = 0;
240		break;
241	default:
242		panic("_vm_object_allocate: type %d is undefined", type);
243	}
244	object->size = size;
245	object->generation = 1;
246	object->ref_count = 1;
247	object->memattr = VM_MEMATTR_DEFAULT;
248	object->cred = NULL;
249	object->charge = 0;
250	object->handle = NULL;
251	object->backing_object = NULL;
252	object->backing_object_offset = (vm_ooffset_t) 0;
253#if VM_NRESERVLEVEL > 0
254	LIST_INIT(&object->rvq);
255#endif
256
257	mtx_lock(&vm_object_list_mtx);
258	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
259	mtx_unlock(&vm_object_list_mtx);
260}
261
262/*
263 *	vm_object_init:
264 *
265 *	Initialize the VM objects module.
266 */
267void
268vm_object_init(void)
269{
270	TAILQ_INIT(&vm_object_list);
271	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
272
273	rw_init(&kernel_object->lock, "kernel vm object");
274	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
275	    kernel_object);
276#if VM_NRESERVLEVEL > 0
277	kernel_object->flags |= OBJ_COLORED;
278	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
279#endif
280
281	rw_init(&kmem_object->lock, "kmem vm object");
282	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
283	    kmem_object);
284#if VM_NRESERVLEVEL > 0
285	kmem_object->flags |= OBJ_COLORED;
286	kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
287#endif
288
289	/*
290	 * The lock portion of struct vm_object must be type stable due
291	 * to vm_pageout_fallback_object_lock locking a vm object
292	 * without holding any references to it.
293	 */
294	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
295#ifdef INVARIANTS
296	    vm_object_zdtor,
297#else
298	    NULL,
299#endif
300	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
301
302	vm_radix_init();
303}
304
305void
306vm_object_clear_flag(vm_object_t object, u_short bits)
307{
308
309	VM_OBJECT_ASSERT_WLOCKED(object);
310	object->flags &= ~bits;
311}
312
313/*
314 *	Sets the default memory attribute for the specified object.  Pages
315 *	that are allocated to this object are by default assigned this memory
316 *	attribute.
317 *
318 *	Presently, this function must be called before any pages are allocated
319 *	to the object.  In the future, this requirement may be relaxed for
320 *	"default" and "swap" objects.
321 */
322int
323vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
324{
325
326	VM_OBJECT_ASSERT_WLOCKED(object);
327	switch (object->type) {
328	case OBJT_DEFAULT:
329	case OBJT_DEVICE:
330	case OBJT_MGTDEVICE:
331	case OBJT_PHYS:
332	case OBJT_SG:
333	case OBJT_SWAP:
334	case OBJT_VNODE:
335		if (!TAILQ_EMPTY(&object->memq))
336			return (KERN_FAILURE);
337		break;
338	case OBJT_DEAD:
339		return (KERN_INVALID_ARGUMENT);
340	default:
341		panic("vm_object_set_memattr: object %p is of undefined type",
342		    object);
343	}
344	object->memattr = memattr;
345	return (KERN_SUCCESS);
346}
347
348void
349vm_object_pip_add(vm_object_t object, short i)
350{
351
352	VM_OBJECT_ASSERT_WLOCKED(object);
353	object->paging_in_progress += i;
354}
355
356void
357vm_object_pip_subtract(vm_object_t object, short i)
358{
359
360	VM_OBJECT_ASSERT_WLOCKED(object);
361	object->paging_in_progress -= i;
362}
363
364void
365vm_object_pip_wakeup(vm_object_t object)
366{
367
368	VM_OBJECT_ASSERT_WLOCKED(object);
369	object->paging_in_progress--;
370	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
371		vm_object_clear_flag(object, OBJ_PIPWNT);
372		wakeup(object);
373	}
374}
375
376void
377vm_object_pip_wakeupn(vm_object_t object, short i)
378{
379
380	VM_OBJECT_ASSERT_WLOCKED(object);
381	if (i)
382		object->paging_in_progress -= i;
383	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
384		vm_object_clear_flag(object, OBJ_PIPWNT);
385		wakeup(object);
386	}
387}
388
389void
390vm_object_pip_wait(vm_object_t object, char *waitid)
391{
392
393	VM_OBJECT_ASSERT_WLOCKED(object);
394	while (object->paging_in_progress) {
395		object->flags |= OBJ_PIPWNT;
396		VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
397	}
398}
399
400/*
401 *	vm_object_allocate:
402 *
403 *	Returns a new object with the given size.
404 */
405vm_object_t
406vm_object_allocate(objtype_t type, vm_pindex_t size)
407{
408	vm_object_t object;
409
410	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
411	_vm_object_allocate(type, size, object);
412	return (object);
413}
414
415
416/*
417 *	vm_object_reference:
418 *
419 *	Gets another reference to the given object.  Note: OBJ_DEAD
420 *	objects can be referenced during final cleaning.
421 */
422void
423vm_object_reference(vm_object_t object)
424{
425	if (object == NULL)
426		return;
427	VM_OBJECT_WLOCK(object);
428	vm_object_reference_locked(object);
429	VM_OBJECT_WUNLOCK(object);
430}
431
432/*
433 *	vm_object_reference_locked:
434 *
435 *	Gets another reference to the given object.
436 *
437 *	The object must be locked.
438 */
439void
440vm_object_reference_locked(vm_object_t object)
441{
442	struct vnode *vp;
443
444	VM_OBJECT_ASSERT_WLOCKED(object);
445	object->ref_count++;
446	if (object->type == OBJT_VNODE) {
447		vp = object->handle;
448		vref(vp);
449	}
450}
451
452/*
453 * Handle deallocating an object of type OBJT_VNODE.
454 */
455static void
456vm_object_vndeallocate(vm_object_t object)
457{
458	struct vnode *vp = (struct vnode *) object->handle;
459
460	VM_OBJECT_ASSERT_WLOCKED(object);
461	KASSERT(object->type == OBJT_VNODE,
462	    ("vm_object_vndeallocate: not a vnode object"));
463	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
464#ifdef INVARIANTS
465	if (object->ref_count == 0) {
466		vprint("vm_object_vndeallocate", vp);
467		panic("vm_object_vndeallocate: bad object reference count");
468	}
469#endif
470
471	if (object->ref_count > 1) {
472		object->ref_count--;
473		VM_OBJECT_WUNLOCK(object);
474		/* vrele may need the vnode lock. */
475		vrele(vp);
476	} else {
477		vhold(vp);
478		VM_OBJECT_WUNLOCK(object);
479		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
480		vdrop(vp);
481		VM_OBJECT_WLOCK(object);
482		object->ref_count--;
483		if (object->type == OBJT_DEAD) {
484			VM_OBJECT_WUNLOCK(object);
485			VOP_UNLOCK(vp, 0);
486		} else {
487			if (object->ref_count == 0)
488				VOP_UNSET_TEXT(vp);
489			VM_OBJECT_WUNLOCK(object);
490			vput(vp);
491		}
492	}
493}
494
495/*
496 *	vm_object_deallocate:
497 *
498 *	Release a reference to the specified object,
499 *	gained either through a vm_object_allocate
500 *	or a vm_object_reference call.  When all references
501 *	are gone, storage associated with this object
502 *	may be relinquished.
503 *
504 *	No object may be locked.
505 */
506void
507vm_object_deallocate(vm_object_t object)
508{
509	vm_object_t temp;
510	struct vnode *vp;
511
512	while (object != NULL) {
513		VM_OBJECT_WLOCK(object);
514		if (object->type == OBJT_VNODE) {
515			vm_object_vndeallocate(object);
516			return;
517		}
518
519		KASSERT(object->ref_count != 0,
520			("vm_object_deallocate: object deallocated too many times: %d", object->type));
521
522		/*
523		 * If the reference count goes to 0 we start calling
524		 * vm_object_terminate() on the object chain.
525		 * A ref count of 1 may be a special case depending on the
526		 * shadow count being 0 or 1.
527		 */
528		object->ref_count--;
529		if (object->ref_count > 1) {
530			VM_OBJECT_WUNLOCK(object);
531			return;
532		} else if (object->ref_count == 1) {
533			if (object->type == OBJT_SWAP &&
534			    (object->flags & OBJ_TMPFS) != 0) {
535				vp = object->un_pager.swp.swp_tmpfs;
536				vhold(vp);
537				VM_OBJECT_WUNLOCK(object);
538				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
539				VM_OBJECT_WLOCK(object);
540				if (object->type == OBJT_DEAD ||
541				    object->ref_count != 1) {
542					VM_OBJECT_WUNLOCK(object);
543					VOP_UNLOCK(vp, 0);
544					vdrop(vp);
545					return;
546				}
547				if ((object->flags & OBJ_TMPFS) != 0)
548					VOP_UNSET_TEXT(vp);
549				VOP_UNLOCK(vp, 0);
550				vdrop(vp);
551			}
552			if (object->shadow_count == 0 &&
553			    object->handle == NULL &&
554			    (object->type == OBJT_DEFAULT ||
555			    (object->type == OBJT_SWAP &&
556			    (object->flags & OBJ_TMPFS_NODE) == 0))) {
557				vm_object_set_flag(object, OBJ_ONEMAPPING);
558			} else if ((object->shadow_count == 1) &&
559			    (object->handle == NULL) &&
560			    (object->type == OBJT_DEFAULT ||
561			     object->type == OBJT_SWAP)) {
562				vm_object_t robject;
563
564				robject = LIST_FIRST(&object->shadow_head);
565				KASSERT(robject != NULL,
566				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
567					 object->ref_count,
568					 object->shadow_count));
569				KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
570				    ("shadowed tmpfs v_object %p", object));
571				if (!VM_OBJECT_TRYWLOCK(robject)) {
572					/*
573					 * Avoid a potential deadlock.
574					 */
575					object->ref_count++;
576					VM_OBJECT_WUNLOCK(object);
577					/*
578					 * More likely than not the thread
579					 * holding robject's lock has lower
580					 * priority than the current thread.
581					 * Let the lower priority thread run.
582					 */
583					pause("vmo_de", 1);
584					continue;
585				}
586				/*
587				 * Collapse object into its shadow unless its
588				 * shadow is dead.  In that case, object will
589				 * be deallocated by the thread that is
590				 * deallocating its shadow.
591				 */
592				if ((robject->flags & OBJ_DEAD) == 0 &&
593				    (robject->handle == NULL) &&
594				    (robject->type == OBJT_DEFAULT ||
595				     robject->type == OBJT_SWAP)) {
596
597					robject->ref_count++;
598retry:
599					if (robject->paging_in_progress) {
600						VM_OBJECT_WUNLOCK(object);
601						vm_object_pip_wait(robject,
602						    "objde1");
603						temp = robject->backing_object;
604						if (object == temp) {
605							VM_OBJECT_WLOCK(object);
606							goto retry;
607						}
608					} else if (object->paging_in_progress) {
609						VM_OBJECT_WUNLOCK(robject);
610						object->flags |= OBJ_PIPWNT;
611						VM_OBJECT_SLEEP(object, object,
612						    PDROP | PVM, "objde2", 0);
613						VM_OBJECT_WLOCK(robject);
614						temp = robject->backing_object;
615						if (object == temp) {
616							VM_OBJECT_WLOCK(object);
617							goto retry;
618						}
619					} else
620						VM_OBJECT_WUNLOCK(object);
621
622					if (robject->ref_count == 1) {
623						robject->ref_count--;
624						object = robject;
625						goto doterm;
626					}
627					object = robject;
628					vm_object_collapse(object);
629					VM_OBJECT_WUNLOCK(object);
630					continue;
631				}
632				VM_OBJECT_WUNLOCK(robject);
633			}
634			VM_OBJECT_WUNLOCK(object);
635			return;
636		}
637doterm:
638		temp = object->backing_object;
639		if (temp != NULL) {
640			KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
641			    ("shadowed tmpfs v_object 2 %p", object));
642			VM_OBJECT_WLOCK(temp);
643			LIST_REMOVE(object, shadow_list);
644			temp->shadow_count--;
645			VM_OBJECT_WUNLOCK(temp);
646			object->backing_object = NULL;
647		}
648		/*
649		 * Don't double-terminate, we could be in a termination
650		 * recursion due to the terminate having to sync data
651		 * to disk.
652		 */
653		if ((object->flags & OBJ_DEAD) == 0)
654			vm_object_terminate(object);
655		else
656			VM_OBJECT_WUNLOCK(object);
657		object = temp;
658	}
659}
660
661/*
662 *	vm_object_destroy removes the object from the global object list
663 *      and frees the space for the object.
664 */
665void
666vm_object_destroy(vm_object_t object)
667{
668
669	/*
670	 * Remove the object from the global object list.
671	 */
672	mtx_lock(&vm_object_list_mtx);
673	TAILQ_REMOVE(&vm_object_list, object, object_list);
674	mtx_unlock(&vm_object_list_mtx);
675
676	/*
677	 * Release the allocation charge.
678	 */
679	if (object->cred != NULL) {
680		KASSERT(object->type == OBJT_DEFAULT ||
681		    object->type == OBJT_SWAP,
682		    ("vm_object_terminate: non-swap obj %p has cred",
683		     object));
684		swap_release_by_cred(object->charge, object->cred);
685		object->charge = 0;
686		crfree(object->cred);
687		object->cred = NULL;
688	}
689
690	/*
691	 * Free the space for the object.
692	 */
693	uma_zfree(obj_zone, object);
694}
695
696/*
697 *	vm_object_terminate actually destroys the specified object, freeing
698 *	up all previously used resources.
699 *
700 *	The object must be locked.
701 *	This routine may block.
702 */
703void
704vm_object_terminate(vm_object_t object)
705{
706	vm_page_t p, p_next;
707
708	VM_OBJECT_ASSERT_WLOCKED(object);
709
710	/*
711	 * Make sure no one uses us.
712	 */
713	vm_object_set_flag(object, OBJ_DEAD);
714
715	/*
716	 * wait for the pageout daemon to be done with the object
717	 */
718	vm_object_pip_wait(object, "objtrm");
719
720	KASSERT(!object->paging_in_progress,
721		("vm_object_terminate: pageout in progress"));
722
723	/*
724	 * Clean and free the pages, as appropriate. All references to the
725	 * object are gone, so we don't need to lock it.
726	 */
727	if (object->type == OBJT_VNODE) {
728		struct vnode *vp = (struct vnode *)object->handle;
729
730		/*
731		 * Clean pages and flush buffers.
732		 */
733		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
734		VM_OBJECT_WUNLOCK(object);
735
736		vinvalbuf(vp, V_SAVE, 0, 0);
737
738		VM_OBJECT_WLOCK(object);
739	}
740
741	KASSERT(object->ref_count == 0,
742		("vm_object_terminate: object with references, ref_count=%d",
743		object->ref_count));
744
745	/*
746	 * Free any remaining pageable pages.  This also removes them from the
747	 * paging queues.  However, don't free wired pages, just remove them
748	 * from the object.  Rather than incrementally removing each page from
749	 * the object, the page and object are reset to any empty state.
750	 */
751	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
752		vm_page_assert_unbusied(p);
753		vm_page_lock(p);
754		/*
755		 * Optimize the page's removal from the object by resetting
756		 * its "object" field.  Specifically, if the page is not
757		 * wired, then the effect of this assignment is that
758		 * vm_page_free()'s call to vm_page_remove() will return
759		 * immediately without modifying the page or the object.
760		 */
761		p->object = NULL;
762		if (p->wire_count == 0) {
763			vm_page_free(p);
764			PCPU_INC(cnt.v_pfree);
765		}
766		vm_page_unlock(p);
767	}
768	/*
769	 * If the object contained any pages, then reset it to an empty state.
770	 * None of the object's fields, including "resident_page_count", were
771	 * modified by the preceding loop.
772	 */
773	if (object->resident_page_count != 0) {
774		vm_radix_reclaim_allnodes(&object->rtree);
775		TAILQ_INIT(&object->memq);
776		object->resident_page_count = 0;
777		if (object->type == OBJT_VNODE)
778			vdrop(object->handle);
779	}
780
781#if VM_NRESERVLEVEL > 0
782	if (__predict_false(!LIST_EMPTY(&object->rvq)))
783		vm_reserv_break_all(object);
784#endif
785	if (__predict_false(!vm_object_cache_is_empty(object)))
786		vm_page_cache_free(object, 0, 0);
787
788	/*
789	 * Let the pager know object is dead.
790	 */
791	vm_pager_deallocate(object);
792	VM_OBJECT_WUNLOCK(object);
793
794	vm_object_destroy(object);
795}
796
797/*
798 * Make the page read-only so that we can clear the object flags.  However, if
799 * this is a nosync mmap then the object is likely to stay dirty so do not
800 * mess with the page and do not clear the object flags.  Returns TRUE if the
801 * page should be flushed, and FALSE otherwise.
802 */
803static boolean_t
804vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
805{
806
807	/*
808	 * If we have been asked to skip nosync pages and this is a
809	 * nosync page, skip it.  Note that the object flags were not
810	 * cleared in this case so we do not have to set them.
811	 */
812	if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
813		*clearobjflags = FALSE;
814		return (FALSE);
815	} else {
816		pmap_remove_write(p);
817		return (p->dirty != 0);
818	}
819}
820
821/*
822 *	vm_object_page_clean
823 *
824 *	Clean all dirty pages in the specified range of object.  Leaves page
825 * 	on whatever queue it is currently on.   If NOSYNC is set then do not
826 *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
827 *	leaving the object dirty.
828 *
829 *	When stuffing pages asynchronously, allow clustering.  XXX we need a
830 *	synchronous clustering mode implementation.
831 *
832 *	Odd semantics: if start == end, we clean everything.
833 *
834 *	The object must be locked.
835 *
836 *	Returns FALSE if some page from the range was not written, as
837 *	reported by the pager, and TRUE otherwise.
838 */
839boolean_t
840vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
841    int flags)
842{
843	vm_page_t np, p;
844	vm_pindex_t pi, tend, tstart;
845	int curgeneration, n, pagerflags;
846	boolean_t clearobjflags, eio, res;
847
848	VM_OBJECT_ASSERT_WLOCKED(object);
849
850	/*
851	 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
852	 * objects.  The check below prevents the function from
853	 * operating on non-vnode objects.
854	 */
855	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
856	    object->resident_page_count == 0)
857		return (TRUE);
858
859	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
860	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
861	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
862
863	tstart = OFF_TO_IDX(start);
864	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
865	clearobjflags = tstart == 0 && tend >= object->size;
866	res = TRUE;
867
868rescan:
869	curgeneration = object->generation;
870
871	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
872		pi = p->pindex;
873		if (pi >= tend)
874			break;
875		np = TAILQ_NEXT(p, listq);
876		if (p->valid == 0)
877			continue;
878		if (vm_page_sleep_if_busy(p, "vpcwai")) {
879			if (object->generation != curgeneration) {
880				if ((flags & OBJPC_SYNC) != 0)
881					goto rescan;
882				else
883					clearobjflags = FALSE;
884			}
885			np = vm_page_find_least(object, pi);
886			continue;
887		}
888		if (!vm_object_page_remove_write(p, flags, &clearobjflags))
889			continue;
890
891		n = vm_object_page_collect_flush(object, p, pagerflags,
892		    flags, &clearobjflags, &eio);
893		if (eio) {
894			res = FALSE;
895			clearobjflags = FALSE;
896		}
897		if (object->generation != curgeneration) {
898			if ((flags & OBJPC_SYNC) != 0)
899				goto rescan;
900			else
901				clearobjflags = FALSE;
902		}
903
904		/*
905		 * If the VOP_PUTPAGES() did a truncated write, so
906		 * that even the first page of the run is not fully
907		 * written, vm_pageout_flush() returns 0 as the run
908		 * length.  Since the condition that caused truncated
909		 * write may be permanent, e.g. exhausted free space,
910		 * accepting n == 0 would cause an infinite loop.
911		 *
912		 * Forwarding the iterator leaves the unwritten page
913		 * behind, but there is not much we can do there if
914		 * filesystem refuses to write it.
915		 */
916		if (n == 0) {
917			n = 1;
918			clearobjflags = FALSE;
919		}
920		np = vm_page_find_least(object, pi + n);
921	}
922#if 0
923	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
924#endif
925
926	if (clearobjflags)
927		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
928	return (res);
929}
930
931static int
932vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
933    int flags, boolean_t *clearobjflags, boolean_t *eio)
934{
935	vm_page_t ma[vm_pageout_page_count], p_first, tp;
936	int count, i, mreq, runlen;
937
938	vm_page_lock_assert(p, MA_NOTOWNED);
939	VM_OBJECT_ASSERT_WLOCKED(object);
940
941	count = 1;
942	mreq = 0;
943
944	for (tp = p; count < vm_pageout_page_count; count++) {
945		tp = vm_page_next(tp);
946		if (tp == NULL || vm_page_busied(tp))
947			break;
948		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
949			break;
950	}
951
952	for (p_first = p; count < vm_pageout_page_count; count++) {
953		tp = vm_page_prev(p_first);
954		if (tp == NULL || vm_page_busied(tp))
955			break;
956		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
957			break;
958		p_first = tp;
959		mreq++;
960	}
961
962	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
963		ma[i] = tp;
964
965	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
966	return (runlen);
967}
968
969/*
970 * Note that there is absolutely no sense in writing out
971 * anonymous objects, so we track down the vnode object
972 * to write out.
973 * We invalidate (remove) all pages from the address space
974 * for semantic correctness.
975 *
976 * If the backing object is a device object with unmanaged pages, then any
977 * mappings to the specified range of pages must be removed before this
978 * function is called.
979 *
980 * Note: certain anonymous maps, such as MAP_NOSYNC maps,
981 * may start out with a NULL object.
982 */
983boolean_t
984vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
985    boolean_t syncio, boolean_t invalidate)
986{
987	vm_object_t backing_object;
988	struct vnode *vp;
989	struct mount *mp;
990	int error, flags, fsync_after;
991	boolean_t res;
992
993	if (object == NULL)
994		return (TRUE);
995	res = TRUE;
996	error = 0;
997	VM_OBJECT_WLOCK(object);
998	while ((backing_object = object->backing_object) != NULL) {
999		VM_OBJECT_WLOCK(backing_object);
1000		offset += object->backing_object_offset;
1001		VM_OBJECT_WUNLOCK(object);
1002		object = backing_object;
1003		if (object->size < OFF_TO_IDX(offset + size))
1004			size = IDX_TO_OFF(object->size) - offset;
1005	}
1006	/*
1007	 * Flush pages if writing is allowed, invalidate them
1008	 * if invalidation requested.  Pages undergoing I/O
1009	 * will be ignored by vm_object_page_remove().
1010	 *
1011	 * We cannot lock the vnode and then wait for paging
1012	 * to complete without deadlocking against vm_fault.
1013	 * Instead we simply call vm_object_page_remove() and
1014	 * allow it to block internally on a page-by-page
1015	 * basis when it encounters pages undergoing async
1016	 * I/O.
1017	 */
1018	if (object->type == OBJT_VNODE &&
1019	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1020		vp = object->handle;
1021		VM_OBJECT_WUNLOCK(object);
1022		(void) vn_start_write(vp, &mp, V_WAIT);
1023		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1024		if (syncio && !invalidate && offset == 0 &&
1025		    OFF_TO_IDX(size) == object->size) {
1026			/*
1027			 * If syncing the whole mapping of the file,
1028			 * it is faster to schedule all the writes in
1029			 * async mode, also allowing the clustering,
1030			 * and then wait for i/o to complete.
1031			 */
1032			flags = 0;
1033			fsync_after = TRUE;
1034		} else {
1035			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1036			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1037			fsync_after = FALSE;
1038		}
1039		VM_OBJECT_WLOCK(object);
1040		res = vm_object_page_clean(object, offset, offset + size,
1041		    flags);
1042		VM_OBJECT_WUNLOCK(object);
1043		if (fsync_after)
1044			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1045		VOP_UNLOCK(vp, 0);
1046		vn_finished_write(mp);
1047		if (error != 0)
1048			res = FALSE;
1049		VM_OBJECT_WLOCK(object);
1050	}
1051	if ((object->type == OBJT_VNODE ||
1052	     object->type == OBJT_DEVICE) && invalidate) {
1053		if (object->type == OBJT_DEVICE)
1054			/*
1055			 * The option OBJPR_NOTMAPPED must be passed here
1056			 * because vm_object_page_remove() cannot remove
1057			 * unmanaged mappings.
1058			 */
1059			flags = OBJPR_NOTMAPPED;
1060		else if (old_msync)
1061			flags = OBJPR_NOTWIRED;
1062		else
1063			flags = OBJPR_CLEANONLY | OBJPR_NOTWIRED;
1064		vm_object_page_remove(object, OFF_TO_IDX(offset),
1065		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1066	}
1067	VM_OBJECT_WUNLOCK(object);
1068	return (res);
1069}
1070
1071/*
1072 *	vm_object_madvise:
1073 *
1074 *	Implements the madvise function at the object/page level.
1075 *
1076 *	MADV_WILLNEED	(any object)
1077 *
1078 *	    Activate the specified pages if they are resident.
1079 *
1080 *	MADV_DONTNEED	(any object)
1081 *
1082 *	    Deactivate the specified pages if they are resident.
1083 *
1084 *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1085 *			 OBJ_ONEMAPPING only)
1086 *
1087 *	    Deactivate and clean the specified pages if they are
1088 *	    resident.  This permits the process to reuse the pages
1089 *	    without faulting or the kernel to reclaim the pages
1090 *	    without I/O.
1091 */
1092void
1093vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1094    int advise)
1095{
1096	vm_pindex_t tpindex;
1097	vm_object_t backing_object, tobject;
1098	vm_page_t m;
1099
1100	if (object == NULL)
1101		return;
1102	VM_OBJECT_WLOCK(object);
1103	/*
1104	 * Locate and adjust resident pages
1105	 */
1106	for (; pindex < end; pindex += 1) {
1107relookup:
1108		tobject = object;
1109		tpindex = pindex;
1110shadowlookup:
1111		/*
1112		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1113		 * and those pages must be OBJ_ONEMAPPING.
1114		 */
1115		if (advise == MADV_FREE) {
1116			if ((tobject->type != OBJT_DEFAULT &&
1117			     tobject->type != OBJT_SWAP) ||
1118			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1119				goto unlock_tobject;
1120			}
1121		} else if ((tobject->flags & OBJ_UNMANAGED) != 0)
1122			goto unlock_tobject;
1123		m = vm_page_lookup(tobject, tpindex);
1124		if (m == NULL && advise == MADV_WILLNEED) {
1125			/*
1126			 * If the page is cached, reactivate it.
1127			 */
1128			m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1129			    VM_ALLOC_NOBUSY);
1130		}
1131		if (m == NULL) {
1132			/*
1133			 * There may be swap even if there is no backing page
1134			 */
1135			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1136				swap_pager_freespace(tobject, tpindex, 1);
1137			/*
1138			 * next object
1139			 */
1140			backing_object = tobject->backing_object;
1141			if (backing_object == NULL)
1142				goto unlock_tobject;
1143			VM_OBJECT_WLOCK(backing_object);
1144			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1145			if (tobject != object)
1146				VM_OBJECT_WUNLOCK(tobject);
1147			tobject = backing_object;
1148			goto shadowlookup;
1149		} else if (m->valid != VM_PAGE_BITS_ALL)
1150			goto unlock_tobject;
1151		/*
1152		 * If the page is not in a normal state, skip it.
1153		 */
1154		vm_page_lock(m);
1155		if (m->hold_count != 0 || m->wire_count != 0) {
1156			vm_page_unlock(m);
1157			goto unlock_tobject;
1158		}
1159		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1160		    ("vm_object_madvise: page %p is fictitious", m));
1161		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1162		    ("vm_object_madvise: page %p is not managed", m));
1163		if (vm_page_busied(m)) {
1164			if (advise == MADV_WILLNEED) {
1165				/*
1166				 * Reference the page before unlocking and
1167				 * sleeping so that the page daemon is less
1168				 * likely to reclaim it.
1169				 */
1170				vm_page_aflag_set(m, PGA_REFERENCED);
1171			}
1172			if (object != tobject)
1173				VM_OBJECT_WUNLOCK(object);
1174			VM_OBJECT_WUNLOCK(tobject);
1175			vm_page_busy_sleep(m, "madvpo");
1176			VM_OBJECT_WLOCK(object);
1177  			goto relookup;
1178		}
1179		if (advise == MADV_WILLNEED) {
1180			vm_page_activate(m);
1181		} else {
1182			vm_page_advise(m, advise);
1183		}
1184		vm_page_unlock(m);
1185		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1186			swap_pager_freespace(tobject, tpindex, 1);
1187unlock_tobject:
1188		if (tobject != object)
1189			VM_OBJECT_WUNLOCK(tobject);
1190	}
1191	VM_OBJECT_WUNLOCK(object);
1192}
1193
1194/*
1195 *	vm_object_shadow:
1196 *
1197 *	Create a new object which is backed by the
1198 *	specified existing object range.  The source
1199 *	object reference is deallocated.
1200 *
1201 *	The new object and offset into that object
1202 *	are returned in the source parameters.
1203 */
1204void
1205vm_object_shadow(
1206	vm_object_t *object,	/* IN/OUT */
1207	vm_ooffset_t *offset,	/* IN/OUT */
1208	vm_size_t length)
1209{
1210	vm_object_t source;
1211	vm_object_t result;
1212
1213	source = *object;
1214
1215	/*
1216	 * Don't create the new object if the old object isn't shared.
1217	 */
1218	if (source != NULL) {
1219		VM_OBJECT_WLOCK(source);
1220		if (source->ref_count == 1 &&
1221		    source->handle == NULL &&
1222		    (source->type == OBJT_DEFAULT ||
1223		     source->type == OBJT_SWAP)) {
1224			VM_OBJECT_WUNLOCK(source);
1225			return;
1226		}
1227		VM_OBJECT_WUNLOCK(source);
1228	}
1229
1230	/*
1231	 * Allocate a new object with the given length.
1232	 */
1233	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1234
1235	/*
1236	 * The new object shadows the source object, adding a reference to it.
1237	 * Our caller changes his reference to point to the new object,
1238	 * removing a reference to the source object.  Net result: no change
1239	 * of reference count.
1240	 *
1241	 * Try to optimize the result object's page color when shadowing
1242	 * in order to maintain page coloring consistency in the combined
1243	 * shadowed object.
1244	 */
1245	result->backing_object = source;
1246	/*
1247	 * Store the offset into the source object, and fix up the offset into
1248	 * the new object.
1249	 */
1250	result->backing_object_offset = *offset;
1251	if (source != NULL) {
1252		VM_OBJECT_WLOCK(source);
1253		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1254		source->shadow_count++;
1255#if VM_NRESERVLEVEL > 0
1256		result->flags |= source->flags & OBJ_COLORED;
1257		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1258		    ((1 << (VM_NFREEORDER - 1)) - 1);
1259#endif
1260		VM_OBJECT_WUNLOCK(source);
1261	}
1262
1263
1264	/*
1265	 * Return the new things
1266	 */
1267	*offset = 0;
1268	*object = result;
1269}
1270
1271/*
1272 *	vm_object_split:
1273 *
1274 * Split the pages in a map entry into a new object.  This affords
1275 * easier removal of unused pages, and keeps object inheritance from
1276 * being a negative impact on memory usage.
1277 */
1278void
1279vm_object_split(vm_map_entry_t entry)
1280{
1281	vm_page_t m, m_next;
1282	vm_object_t orig_object, new_object, source;
1283	vm_pindex_t idx, offidxstart;
1284	vm_size_t size;
1285
1286	orig_object = entry->object.vm_object;
1287	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1288		return;
1289	if (orig_object->ref_count <= 1)
1290		return;
1291	VM_OBJECT_WUNLOCK(orig_object);
1292
1293	offidxstart = OFF_TO_IDX(entry->offset);
1294	size = atop(entry->end - entry->start);
1295
1296	/*
1297	 * If swap_pager_copy() is later called, it will convert new_object
1298	 * into a swap object.
1299	 */
1300	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1301
1302	/*
1303	 * At this point, the new object is still private, so the order in
1304	 * which the original and new objects are locked does not matter.
1305	 */
1306	VM_OBJECT_WLOCK(new_object);
1307	VM_OBJECT_WLOCK(orig_object);
1308	source = orig_object->backing_object;
1309	if (source != NULL) {
1310		VM_OBJECT_WLOCK(source);
1311		if ((source->flags & OBJ_DEAD) != 0) {
1312			VM_OBJECT_WUNLOCK(source);
1313			VM_OBJECT_WUNLOCK(orig_object);
1314			VM_OBJECT_WUNLOCK(new_object);
1315			vm_object_deallocate(new_object);
1316			VM_OBJECT_WLOCK(orig_object);
1317			return;
1318		}
1319		LIST_INSERT_HEAD(&source->shadow_head,
1320				  new_object, shadow_list);
1321		source->shadow_count++;
1322		vm_object_reference_locked(source);	/* for new_object */
1323		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1324		VM_OBJECT_WUNLOCK(source);
1325		new_object->backing_object_offset =
1326			orig_object->backing_object_offset + entry->offset;
1327		new_object->backing_object = source;
1328	}
1329	if (orig_object->cred != NULL) {
1330		new_object->cred = orig_object->cred;
1331		crhold(orig_object->cred);
1332		new_object->charge = ptoa(size);
1333		KASSERT(orig_object->charge >= ptoa(size),
1334		    ("orig_object->charge < 0"));
1335		orig_object->charge -= ptoa(size);
1336	}
1337retry:
1338	m = vm_page_find_least(orig_object, offidxstart);
1339	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1340	    m = m_next) {
1341		m_next = TAILQ_NEXT(m, listq);
1342
1343		/*
1344		 * We must wait for pending I/O to complete before we can
1345		 * rename the page.
1346		 *
1347		 * We do not have to VM_PROT_NONE the page as mappings should
1348		 * not be changed by this operation.
1349		 */
1350		if (vm_page_busied(m)) {
1351			VM_OBJECT_WUNLOCK(new_object);
1352			vm_page_lock(m);
1353			VM_OBJECT_WUNLOCK(orig_object);
1354			vm_page_busy_sleep(m, "spltwt");
1355			VM_OBJECT_WLOCK(orig_object);
1356			VM_OBJECT_WLOCK(new_object);
1357			goto retry;
1358		}
1359
1360		/* vm_page_rename() will handle dirty and cache. */
1361		if (vm_page_rename(m, new_object, idx)) {
1362			VM_OBJECT_WUNLOCK(new_object);
1363			VM_OBJECT_WUNLOCK(orig_object);
1364			VM_WAIT;
1365			VM_OBJECT_WLOCK(orig_object);
1366			VM_OBJECT_WLOCK(new_object);
1367			goto retry;
1368		}
1369#if VM_NRESERVLEVEL > 0
1370		/*
1371		 * If some of the reservation's allocated pages remain with
1372		 * the original object, then transferring the reservation to
1373		 * the new object is neither particularly beneficial nor
1374		 * particularly harmful as compared to leaving the reservation
1375		 * with the original object.  If, however, all of the
1376		 * reservation's allocated pages are transferred to the new
1377		 * object, then transferring the reservation is typically
1378		 * beneficial.  Determining which of these two cases applies
1379		 * would be more costly than unconditionally renaming the
1380		 * reservation.
1381		 */
1382		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1383#endif
1384		if (orig_object->type == OBJT_SWAP)
1385			vm_page_xbusy(m);
1386	}
1387	if (orig_object->type == OBJT_SWAP) {
1388		/*
1389		 * swap_pager_copy() can sleep, in which case the orig_object's
1390		 * and new_object's locks are released and reacquired.
1391		 */
1392		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1393		TAILQ_FOREACH(m, &new_object->memq, listq)
1394			vm_page_xunbusy(m);
1395
1396		/*
1397		 * Transfer any cached pages from orig_object to new_object.
1398		 * If swap_pager_copy() found swapped out pages within the
1399		 * specified range of orig_object, then it changed
1400		 * new_object's type to OBJT_SWAP when it transferred those
1401		 * pages to new_object.  Otherwise, new_object's type
1402		 * should still be OBJT_DEFAULT and orig_object should not
1403		 * contain any cached pages within the specified range.
1404		 */
1405		if (__predict_false(!vm_object_cache_is_empty(orig_object)))
1406			vm_page_cache_transfer(orig_object, offidxstart,
1407			    new_object);
1408	}
1409	VM_OBJECT_WUNLOCK(orig_object);
1410	VM_OBJECT_WUNLOCK(new_object);
1411	entry->object.vm_object = new_object;
1412	entry->offset = 0LL;
1413	vm_object_deallocate(orig_object);
1414	VM_OBJECT_WLOCK(new_object);
1415}
1416
1417#define	OBSC_TEST_ALL_SHADOWED	0x0001
1418#define	OBSC_COLLAPSE_NOWAIT	0x0002
1419#define	OBSC_COLLAPSE_WAIT	0x0004
1420
1421static int
1422vm_object_backing_scan(vm_object_t object, int op)
1423{
1424	int r = 1;
1425	vm_page_t p;
1426	vm_object_t backing_object;
1427	vm_pindex_t backing_offset_index;
1428
1429	VM_OBJECT_ASSERT_WLOCKED(object);
1430	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1431
1432	backing_object = object->backing_object;
1433	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1434
1435	/*
1436	 * Initial conditions
1437	 */
1438	if (op & OBSC_TEST_ALL_SHADOWED) {
1439		/*
1440		 * We do not want to have to test for the existence of cache
1441		 * or swap pages in the backing object.  XXX but with the
1442		 * new swapper this would be pretty easy to do.
1443		 *
1444		 * XXX what about anonymous MAP_SHARED memory that hasn't
1445		 * been ZFOD faulted yet?  If we do not test for this, the
1446		 * shadow test may succeed! XXX
1447		 */
1448		if (backing_object->type != OBJT_DEFAULT) {
1449			return (0);
1450		}
1451	}
1452	if (op & OBSC_COLLAPSE_WAIT) {
1453		vm_object_set_flag(backing_object, OBJ_DEAD);
1454	}
1455
1456	/*
1457	 * Our scan
1458	 */
1459	p = TAILQ_FIRST(&backing_object->memq);
1460	while (p) {
1461		vm_page_t next = TAILQ_NEXT(p, listq);
1462		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1463
1464		if (op & OBSC_TEST_ALL_SHADOWED) {
1465			vm_page_t pp;
1466
1467			/*
1468			 * Ignore pages outside the parent object's range
1469			 * and outside the parent object's mapping of the
1470			 * backing object.
1471			 *
1472			 * note that we do not busy the backing object's
1473			 * page.
1474			 */
1475			if (
1476			    p->pindex < backing_offset_index ||
1477			    new_pindex >= object->size
1478			) {
1479				p = next;
1480				continue;
1481			}
1482
1483			/*
1484			 * See if the parent has the page or if the parent's
1485			 * object pager has the page.  If the parent has the
1486			 * page but the page is not valid, the parent's
1487			 * object pager must have the page.
1488			 *
1489			 * If this fails, the parent does not completely shadow
1490			 * the object and we might as well give up now.
1491			 */
1492
1493			pp = vm_page_lookup(object, new_pindex);
1494			if (
1495			    (pp == NULL || pp->valid == 0) &&
1496			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1497			) {
1498				r = 0;
1499				break;
1500			}
1501		}
1502
1503		/*
1504		 * Check for busy page
1505		 */
1506		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1507			vm_page_t pp;
1508
1509			if (op & OBSC_COLLAPSE_NOWAIT) {
1510				if (!p->valid || vm_page_busied(p)) {
1511					p = next;
1512					continue;
1513				}
1514			} else if (op & OBSC_COLLAPSE_WAIT) {
1515				if (vm_page_busied(p)) {
1516					VM_OBJECT_WUNLOCK(object);
1517					vm_page_lock(p);
1518					VM_OBJECT_WUNLOCK(backing_object);
1519					vm_page_busy_sleep(p, "vmocol");
1520					VM_OBJECT_WLOCK(object);
1521					VM_OBJECT_WLOCK(backing_object);
1522					/*
1523					 * If we slept, anything could have
1524					 * happened.  Since the object is
1525					 * marked dead, the backing offset
1526					 * should not have changed so we
1527					 * just restart our scan.
1528					 */
1529					p = TAILQ_FIRST(&backing_object->memq);
1530					continue;
1531				}
1532			}
1533
1534			KASSERT(
1535			    p->object == backing_object,
1536			    ("vm_object_backing_scan: object mismatch")
1537			);
1538
1539			if (
1540			    p->pindex < backing_offset_index ||
1541			    new_pindex >= object->size
1542			) {
1543				if (backing_object->type == OBJT_SWAP)
1544					swap_pager_freespace(backing_object,
1545					    p->pindex, 1);
1546
1547				/*
1548				 * Page is out of the parent object's range, we
1549				 * can simply destroy it.
1550				 */
1551				vm_page_lock(p);
1552				KASSERT(!pmap_page_is_mapped(p),
1553				    ("freeing mapped page %p", p));
1554				if (p->wire_count == 0)
1555					vm_page_free(p);
1556				else
1557					vm_page_remove(p);
1558				vm_page_unlock(p);
1559				p = next;
1560				continue;
1561			}
1562
1563			pp = vm_page_lookup(object, new_pindex);
1564			if (
1565			    (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
1566			    (pp != NULL && pp->valid == 0)
1567			) {
1568				if (backing_object->type == OBJT_SWAP)
1569					swap_pager_freespace(backing_object,
1570					    p->pindex, 1);
1571
1572				/*
1573				 * The page in the parent is not (yet) valid.
1574				 * We don't know anything about the state of
1575				 * the original page.  It might be mapped,
1576				 * so we must avoid the next if here.
1577				 *
1578				 * This is due to a race in vm_fault() where
1579				 * we must unbusy the original (backing_obj)
1580				 * page before we can (re)lock the parent.
1581				 * Hence we can get here.
1582				 */
1583				p = next;
1584				continue;
1585			}
1586			if (
1587			    pp != NULL ||
1588			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1589			) {
1590				if (backing_object->type == OBJT_SWAP)
1591					swap_pager_freespace(backing_object,
1592					    p->pindex, 1);
1593
1594				/*
1595				 * page already exists in parent OR swap exists
1596				 * for this location in the parent.  Destroy
1597				 * the original page from the backing object.
1598				 *
1599				 * Leave the parent's page alone
1600				 */
1601				vm_page_lock(p);
1602				KASSERT(!pmap_page_is_mapped(p),
1603				    ("freeing mapped page %p", p));
1604				if (p->wire_count == 0)
1605					vm_page_free(p);
1606				else
1607					vm_page_remove(p);
1608				vm_page_unlock(p);
1609				p = next;
1610				continue;
1611			}
1612
1613			/*
1614			 * Page does not exist in parent, rename the
1615			 * page from the backing object to the main object.
1616			 *
1617			 * If the page was mapped to a process, it can remain
1618			 * mapped through the rename.
1619			 * vm_page_rename() will handle dirty and cache.
1620			 */
1621			if (vm_page_rename(p, object, new_pindex)) {
1622				if (op & OBSC_COLLAPSE_NOWAIT) {
1623					p = next;
1624					continue;
1625				}
1626				VM_OBJECT_WLOCK(backing_object);
1627				VM_OBJECT_WUNLOCK(object);
1628				VM_WAIT;
1629				VM_OBJECT_WLOCK(object);
1630				VM_OBJECT_WLOCK(backing_object);
1631				p = TAILQ_FIRST(&backing_object->memq);
1632				continue;
1633			}
1634
1635			/* Use the old pindex to free the right page. */
1636			if (backing_object->type == OBJT_SWAP)
1637				swap_pager_freespace(backing_object,
1638				    new_pindex + backing_offset_index, 1);
1639
1640#if VM_NRESERVLEVEL > 0
1641			/*
1642			 * Rename the reservation.
1643			 */
1644			vm_reserv_rename(p, object, backing_object,
1645			    backing_offset_index);
1646#endif
1647		}
1648		p = next;
1649	}
1650	return (r);
1651}
1652
1653
1654/*
1655 * this version of collapse allows the operation to occur earlier and
1656 * when paging_in_progress is true for an object...  This is not a complete
1657 * operation, but should plug 99.9% of the rest of the leaks.
1658 */
1659static void
1660vm_object_qcollapse(vm_object_t object)
1661{
1662	vm_object_t backing_object = object->backing_object;
1663
1664	VM_OBJECT_ASSERT_WLOCKED(object);
1665	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1666
1667	if (backing_object->ref_count != 1)
1668		return;
1669
1670	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1671}
1672
1673/*
1674 *	vm_object_collapse:
1675 *
1676 *	Collapse an object with the object backing it.
1677 *	Pages in the backing object are moved into the
1678 *	parent, and the backing object is deallocated.
1679 */
1680void
1681vm_object_collapse(vm_object_t object)
1682{
1683	VM_OBJECT_ASSERT_WLOCKED(object);
1684
1685	while (TRUE) {
1686		vm_object_t backing_object;
1687
1688		/*
1689		 * Verify that the conditions are right for collapse:
1690		 *
1691		 * The object exists and the backing object exists.
1692		 */
1693		if ((backing_object = object->backing_object) == NULL)
1694			break;
1695
1696		/*
1697		 * we check the backing object first, because it is most likely
1698		 * not collapsable.
1699		 */
1700		VM_OBJECT_WLOCK(backing_object);
1701		if (backing_object->handle != NULL ||
1702		    (backing_object->type != OBJT_DEFAULT &&
1703		     backing_object->type != OBJT_SWAP) ||
1704		    (backing_object->flags & OBJ_DEAD) ||
1705		    object->handle != NULL ||
1706		    (object->type != OBJT_DEFAULT &&
1707		     object->type != OBJT_SWAP) ||
1708		    (object->flags & OBJ_DEAD)) {
1709			VM_OBJECT_WUNLOCK(backing_object);
1710			break;
1711		}
1712
1713		if (
1714		    object->paging_in_progress != 0 ||
1715		    backing_object->paging_in_progress != 0
1716		) {
1717			vm_object_qcollapse(object);
1718			VM_OBJECT_WUNLOCK(backing_object);
1719			break;
1720		}
1721		/*
1722		 * We know that we can either collapse the backing object (if
1723		 * the parent is the only reference to it) or (perhaps) have
1724		 * the parent bypass the object if the parent happens to shadow
1725		 * all the resident pages in the entire backing object.
1726		 *
1727		 * This is ignoring pager-backed pages such as swap pages.
1728		 * vm_object_backing_scan fails the shadowing test in this
1729		 * case.
1730		 */
1731		if (backing_object->ref_count == 1) {
1732			/*
1733			 * If there is exactly one reference to the backing
1734			 * object, we can collapse it into the parent.
1735			 */
1736			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1737
1738#if VM_NRESERVLEVEL > 0
1739			/*
1740			 * Break any reservations from backing_object.
1741			 */
1742			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1743				vm_reserv_break_all(backing_object);
1744#endif
1745
1746			/*
1747			 * Move the pager from backing_object to object.
1748			 */
1749			if (backing_object->type == OBJT_SWAP) {
1750				/*
1751				 * swap_pager_copy() can sleep, in which case
1752				 * the backing_object's and object's locks are
1753				 * released and reacquired.
1754				 * Since swap_pager_copy() is being asked to
1755				 * destroy the source, it will change the
1756				 * backing_object's type to OBJT_DEFAULT.
1757				 */
1758				swap_pager_copy(
1759				    backing_object,
1760				    object,
1761				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1762
1763				/*
1764				 * Free any cached pages from backing_object.
1765				 */
1766				if (__predict_false(
1767				    !vm_object_cache_is_empty(backing_object)))
1768					vm_page_cache_free(backing_object, 0, 0);
1769			}
1770			/*
1771			 * Object now shadows whatever backing_object did.
1772			 * Note that the reference to
1773			 * backing_object->backing_object moves from within
1774			 * backing_object to within object.
1775			 */
1776			LIST_REMOVE(object, shadow_list);
1777			backing_object->shadow_count--;
1778			if (backing_object->backing_object) {
1779				VM_OBJECT_WLOCK(backing_object->backing_object);
1780				LIST_REMOVE(backing_object, shadow_list);
1781				LIST_INSERT_HEAD(
1782				    &backing_object->backing_object->shadow_head,
1783				    object, shadow_list);
1784				/*
1785				 * The shadow_count has not changed.
1786				 */
1787				VM_OBJECT_WUNLOCK(backing_object->backing_object);
1788			}
1789			object->backing_object = backing_object->backing_object;
1790			object->backing_object_offset +=
1791			    backing_object->backing_object_offset;
1792
1793			/*
1794			 * Discard backing_object.
1795			 *
1796			 * Since the backing object has no pages, no pager left,
1797			 * and no object references within it, all that is
1798			 * necessary is to dispose of it.
1799			 */
1800			KASSERT(backing_object->ref_count == 1, (
1801"backing_object %p was somehow re-referenced during collapse!",
1802			    backing_object));
1803			VM_OBJECT_WUNLOCK(backing_object);
1804			vm_object_destroy(backing_object);
1805
1806			object_collapses++;
1807		} else {
1808			vm_object_t new_backing_object;
1809
1810			/*
1811			 * If we do not entirely shadow the backing object,
1812			 * there is nothing we can do so we give up.
1813			 */
1814			if (object->resident_page_count != object->size &&
1815			    vm_object_backing_scan(object,
1816			    OBSC_TEST_ALL_SHADOWED) == 0) {
1817				VM_OBJECT_WUNLOCK(backing_object);
1818				break;
1819			}
1820
1821			/*
1822			 * Make the parent shadow the next object in the
1823			 * chain.  Deallocating backing_object will not remove
1824			 * it, since its reference count is at least 2.
1825			 */
1826			LIST_REMOVE(object, shadow_list);
1827			backing_object->shadow_count--;
1828
1829			new_backing_object = backing_object->backing_object;
1830			if ((object->backing_object = new_backing_object) != NULL) {
1831				VM_OBJECT_WLOCK(new_backing_object);
1832				LIST_INSERT_HEAD(
1833				    &new_backing_object->shadow_head,
1834				    object,
1835				    shadow_list
1836				);
1837				new_backing_object->shadow_count++;
1838				vm_object_reference_locked(new_backing_object);
1839				VM_OBJECT_WUNLOCK(new_backing_object);
1840				object->backing_object_offset +=
1841					backing_object->backing_object_offset;
1842			}
1843
1844			/*
1845			 * Drop the reference count on backing_object. Since
1846			 * its ref_count was at least 2, it will not vanish.
1847			 */
1848			backing_object->ref_count--;
1849			VM_OBJECT_WUNLOCK(backing_object);
1850			object_bypasses++;
1851		}
1852
1853		/*
1854		 * Try again with this object's new backing object.
1855		 */
1856	}
1857}
1858
1859/*
1860 *	vm_object_page_remove:
1861 *
1862 *	For the given object, either frees or invalidates each of the
1863 *	specified pages.  In general, a page is freed.  However, if a page is
1864 *	wired for any reason other than the existence of a managed, wired
1865 *	mapping, then it may be invalidated but not removed from the object.
1866 *	Pages are specified by the given range ["start", "end") and the option
1867 *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1868 *	extends from "start" to the end of the object.  If the option
1869 *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1870 *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1871 *	specified, then the pages within the specified range must have no
1872 *	mappings.  Otherwise, if this option is not specified, any mappings to
1873 *	the specified pages are removed before the pages are freed or
1874 *	invalidated.
1875 *
1876 *	In general, this operation should only be performed on objects that
1877 *	contain managed pages.  There are, however, two exceptions.  First, it
1878 *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1879 *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1880 *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1881 *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1882 *
1883 *	The object must be locked.
1884 */
1885void
1886vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1887    int options)
1888{
1889	vm_page_t p, next;
1890	int wirings;
1891
1892	VM_OBJECT_ASSERT_WLOCKED(object);
1893	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1894	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1895	    ("vm_object_page_remove: illegal options for object %p", object));
1896	if (object->resident_page_count == 0)
1897		goto skipmemq;
1898	vm_object_pip_add(object, 1);
1899again:
1900	p = vm_page_find_least(object, start);
1901
1902	/*
1903	 * Here, the variable "p" is either (1) the page with the least pindex
1904	 * greater than or equal to the parameter "start" or (2) NULL.
1905	 */
1906	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1907		next = TAILQ_NEXT(p, listq);
1908
1909		/*
1910		 * If the page is wired for any reason besides the existence
1911		 * of managed, wired mappings, then it cannot be freed.  For
1912		 * example, fictitious pages, which represent device memory,
1913		 * are inherently wired and cannot be freed.  They can,
1914		 * however, be invalidated if the option OBJPR_CLEANONLY is
1915		 * not specified.
1916		 */
1917		vm_page_lock(p);
1918		if (vm_page_xbusied(p)) {
1919			VM_OBJECT_WUNLOCK(object);
1920			vm_page_busy_sleep(p, "vmopax");
1921			VM_OBJECT_WLOCK(object);
1922			goto again;
1923		}
1924		if ((wirings = p->wire_count) != 0 &&
1925		    (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1926			if ((options & (OBJPR_NOTWIRED | OBJPR_NOTMAPPED)) ==
1927			    0) {
1928				pmap_remove_all(p);
1929				/* Account for removal of wired mappings. */
1930				if (wirings != 0)
1931					p->wire_count -= wirings;
1932			}
1933			if ((options & OBJPR_CLEANONLY) == 0) {
1934				p->valid = 0;
1935				vm_page_undirty(p);
1936			}
1937			goto next;
1938		}
1939		if (vm_page_busied(p)) {
1940			VM_OBJECT_WUNLOCK(object);
1941			vm_page_busy_sleep(p, "vmopar");
1942			VM_OBJECT_WLOCK(object);
1943			goto again;
1944		}
1945		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1946		    ("vm_object_page_remove: page %p is fictitious", p));
1947		if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1948			if ((options & OBJPR_NOTMAPPED) == 0)
1949				pmap_remove_write(p);
1950			if (p->dirty)
1951				goto next;
1952		}
1953		if ((options & OBJPR_NOTMAPPED) == 0) {
1954			if ((options & OBJPR_NOTWIRED) != 0 && wirings != 0)
1955				goto next;
1956			pmap_remove_all(p);
1957			/* Account for removal of wired mappings. */
1958			if (wirings != 0) {
1959				KASSERT(p->wire_count == wirings,
1960				    ("inconsistent wire count %d %d %p",
1961				    p->wire_count, wirings, p));
1962				p->wire_count = 0;
1963				atomic_subtract_int(&cnt.v_wire_count, 1);
1964			}
1965		}
1966		vm_page_free(p);
1967next:
1968		vm_page_unlock(p);
1969	}
1970	vm_object_pip_wakeup(object);
1971skipmemq:
1972	if (__predict_false(!vm_object_cache_is_empty(object)))
1973		vm_page_cache_free(object, start, end);
1974}
1975
1976/*
1977 *	vm_object_page_cache:
1978 *
1979 *	For the given object, attempt to move the specified clean
1980 *	pages to the cache queue.  If a page is wired for any reason,
1981 *	then it will not be changed.  Pages are specified by the given
1982 *	range ["start", "end").  As a special case, if "end" is zero,
1983 *	then the range extends from "start" to the end of the object.
1984 *	Any mappings to the specified pages are removed before the
1985 *	pages are moved to the cache queue.
1986 *
1987 *	This operation should only be performed on objects that
1988 *	contain non-fictitious, managed pages.
1989 *
1990 *	The object must be locked.
1991 */
1992void
1993vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1994{
1995	struct mtx *mtx, *new_mtx;
1996	vm_page_t p, next;
1997
1998	VM_OBJECT_ASSERT_WLOCKED(object);
1999	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2000	    ("vm_object_page_cache: illegal object %p", object));
2001	if (object->resident_page_count == 0)
2002		return;
2003	p = vm_page_find_least(object, start);
2004
2005	/*
2006	 * Here, the variable "p" is either (1) the page with the least pindex
2007	 * greater than or equal to the parameter "start" or (2) NULL.
2008	 */
2009	mtx = NULL;
2010	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2011		next = TAILQ_NEXT(p, listq);
2012
2013		/*
2014		 * Avoid releasing and reacquiring the same page lock.
2015		 */
2016		new_mtx = vm_page_lockptr(p);
2017		if (mtx != new_mtx) {
2018			if (mtx != NULL)
2019				mtx_unlock(mtx);
2020			mtx = new_mtx;
2021			mtx_lock(mtx);
2022		}
2023		vm_page_try_to_cache(p);
2024	}
2025	if (mtx != NULL)
2026		mtx_unlock(mtx);
2027}
2028
2029/*
2030 *	Populate the specified range of the object with valid pages.  Returns
2031 *	TRUE if the range is successfully populated and FALSE otherwise.
2032 *
2033 *	Note: This function should be optimized to pass a larger array of
2034 *	pages to vm_pager_get_pages() before it is applied to a non-
2035 *	OBJT_DEVICE object.
2036 *
2037 *	The object must be locked.
2038 */
2039boolean_t
2040vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2041{
2042	vm_page_t m, ma[1];
2043	vm_pindex_t pindex;
2044	int rv;
2045
2046	VM_OBJECT_ASSERT_WLOCKED(object);
2047	for (pindex = start; pindex < end; pindex++) {
2048		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2049		if (m->valid != VM_PAGE_BITS_ALL) {
2050			ma[0] = m;
2051			rv = vm_pager_get_pages(object, ma, 1, 0);
2052			m = vm_page_lookup(object, pindex);
2053			if (m == NULL)
2054				break;
2055			if (rv != VM_PAGER_OK) {
2056				vm_page_lock(m);
2057				vm_page_free(m);
2058				vm_page_unlock(m);
2059				break;
2060			}
2061		}
2062		/*
2063		 * Keep "m" busy because a subsequent iteration may unlock
2064		 * the object.
2065		 */
2066	}
2067	if (pindex > start) {
2068		m = vm_page_lookup(object, start);
2069		while (m != NULL && m->pindex < pindex) {
2070			vm_page_xunbusy(m);
2071			m = TAILQ_NEXT(m, listq);
2072		}
2073	}
2074	return (pindex == end);
2075}
2076
2077/*
2078 *	Routine:	vm_object_coalesce
2079 *	Function:	Coalesces two objects backing up adjoining
2080 *			regions of memory into a single object.
2081 *
2082 *	returns TRUE if objects were combined.
2083 *
2084 *	NOTE:	Only works at the moment if the second object is NULL -
2085 *		if it's not, which object do we lock first?
2086 *
2087 *	Parameters:
2088 *		prev_object	First object to coalesce
2089 *		prev_offset	Offset into prev_object
2090 *		prev_size	Size of reference to prev_object
2091 *		next_size	Size of reference to the second object
2092 *		reserved	Indicator that extension region has
2093 *				swap accounted for
2094 *
2095 *	Conditions:
2096 *	The object must *not* be locked.
2097 */
2098boolean_t
2099vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2100    vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2101{
2102	vm_pindex_t next_pindex;
2103
2104	if (prev_object == NULL)
2105		return (TRUE);
2106	VM_OBJECT_WLOCK(prev_object);
2107	if ((prev_object->type != OBJT_DEFAULT &&
2108	    prev_object->type != OBJT_SWAP) ||
2109	    (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2110		VM_OBJECT_WUNLOCK(prev_object);
2111		return (FALSE);
2112	}
2113
2114	/*
2115	 * Try to collapse the object first
2116	 */
2117	vm_object_collapse(prev_object);
2118
2119	/*
2120	 * Can't coalesce if: . more than one reference . paged out . shadows
2121	 * another object . has a copy elsewhere (any of which mean that the
2122	 * pages not mapped to prev_entry may be in use anyway)
2123	 */
2124	if (prev_object->backing_object != NULL) {
2125		VM_OBJECT_WUNLOCK(prev_object);
2126		return (FALSE);
2127	}
2128
2129	prev_size >>= PAGE_SHIFT;
2130	next_size >>= PAGE_SHIFT;
2131	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2132
2133	if ((prev_object->ref_count > 1) &&
2134	    (prev_object->size != next_pindex)) {
2135		VM_OBJECT_WUNLOCK(prev_object);
2136		return (FALSE);
2137	}
2138
2139	/*
2140	 * Account for the charge.
2141	 */
2142	if (prev_object->cred != NULL) {
2143
2144		/*
2145		 * If prev_object was charged, then this mapping,
2146		 * althought not charged now, may become writable
2147		 * later. Non-NULL cred in the object would prevent
2148		 * swap reservation during enabling of the write
2149		 * access, so reserve swap now. Failed reservation
2150		 * cause allocation of the separate object for the map
2151		 * entry, and swap reservation for this entry is
2152		 * managed in appropriate time.
2153		 */
2154		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2155		    prev_object->cred)) {
2156			return (FALSE);
2157		}
2158		prev_object->charge += ptoa(next_size);
2159	}
2160
2161	/*
2162	 * Remove any pages that may still be in the object from a previous
2163	 * deallocation.
2164	 */
2165	if (next_pindex < prev_object->size) {
2166		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2167		    next_size, 0);
2168		if (prev_object->type == OBJT_SWAP)
2169			swap_pager_freespace(prev_object,
2170					     next_pindex, next_size);
2171#if 0
2172		if (prev_object->cred != NULL) {
2173			KASSERT(prev_object->charge >=
2174			    ptoa(prev_object->size - next_pindex),
2175			    ("object %p overcharged 1 %jx %jx", prev_object,
2176				(uintmax_t)next_pindex, (uintmax_t)next_size));
2177			prev_object->charge -= ptoa(prev_object->size -
2178			    next_pindex);
2179		}
2180#endif
2181	}
2182
2183	/*
2184	 * Extend the object if necessary.
2185	 */
2186	if (next_pindex + next_size > prev_object->size)
2187		prev_object->size = next_pindex + next_size;
2188
2189	VM_OBJECT_WUNLOCK(prev_object);
2190	return (TRUE);
2191}
2192
2193void
2194vm_object_set_writeable_dirty(vm_object_t object)
2195{
2196
2197	VM_OBJECT_ASSERT_WLOCKED(object);
2198	if (object->type != OBJT_VNODE)
2199		return;
2200	object->generation++;
2201	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2202		return;
2203	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2204}
2205
2206/*
2207 *	vm_object_unwire:
2208 *
2209 *	For each page offset within the specified range of the given object,
2210 *	find the highest-level page in the shadow chain and unwire it.  A page
2211 *	must exist at every page offset, and the highest-level page must be
2212 *	wired.
2213 */
2214void
2215vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2216    uint8_t queue)
2217{
2218	vm_object_t tobject;
2219	vm_page_t m, tm;
2220	vm_pindex_t end_pindex, pindex, tpindex;
2221	int depth, locked_depth;
2222
2223	KASSERT((offset & PAGE_MASK) == 0,
2224	    ("vm_object_unwire: offset is not page aligned"));
2225	KASSERT((length & PAGE_MASK) == 0,
2226	    ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2227	/* The wired count of a fictitious page never changes. */
2228	if ((object->flags & OBJ_FICTITIOUS) != 0)
2229		return;
2230	pindex = OFF_TO_IDX(offset);
2231	end_pindex = pindex + atop(length);
2232	locked_depth = 1;
2233	VM_OBJECT_RLOCK(object);
2234	m = vm_page_find_least(object, pindex);
2235	while (pindex < end_pindex) {
2236		if (m == NULL || pindex < m->pindex) {
2237			/*
2238			 * The first object in the shadow chain doesn't
2239			 * contain a page at the current index.  Therefore,
2240			 * the page must exist in a backing object.
2241			 */
2242			tobject = object;
2243			tpindex = pindex;
2244			depth = 0;
2245			do {
2246				tpindex +=
2247				    OFF_TO_IDX(tobject->backing_object_offset);
2248				tobject = tobject->backing_object;
2249				KASSERT(tobject != NULL,
2250				    ("vm_object_unwire: missing page"));
2251				if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2252					goto next_page;
2253				depth++;
2254				if (depth == locked_depth) {
2255					locked_depth++;
2256					VM_OBJECT_RLOCK(tobject);
2257				}
2258			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
2259			    NULL);
2260		} else {
2261			tm = m;
2262			m = TAILQ_NEXT(m, listq);
2263		}
2264		vm_page_lock(tm);
2265		vm_page_unwire(tm, queue);
2266		vm_page_unlock(tm);
2267next_page:
2268		pindex++;
2269	}
2270	/* Release the accumulated object locks. */
2271	for (depth = 0; depth < locked_depth; depth++) {
2272		tobject = object->backing_object;
2273		VM_OBJECT_RUNLOCK(object);
2274		object = tobject;
2275	}
2276}
2277
2278#include "opt_ddb.h"
2279#ifdef DDB
2280#include <sys/kernel.h>
2281
2282#include <sys/cons.h>
2283
2284#include <ddb/ddb.h>
2285
2286static int
2287_vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2288{
2289	vm_map_t tmpm;
2290	vm_map_entry_t tmpe;
2291	vm_object_t obj;
2292	int entcount;
2293
2294	if (map == 0)
2295		return 0;
2296
2297	if (entry == 0) {
2298		tmpe = map->header.next;
2299		entcount = map->nentries;
2300		while (entcount-- && (tmpe != &map->header)) {
2301			if (_vm_object_in_map(map, object, tmpe)) {
2302				return 1;
2303			}
2304			tmpe = tmpe->next;
2305		}
2306	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2307		tmpm = entry->object.sub_map;
2308		tmpe = tmpm->header.next;
2309		entcount = tmpm->nentries;
2310		while (entcount-- && tmpe != &tmpm->header) {
2311			if (_vm_object_in_map(tmpm, object, tmpe)) {
2312				return 1;
2313			}
2314			tmpe = tmpe->next;
2315		}
2316	} else if ((obj = entry->object.vm_object) != NULL) {
2317		for (; obj; obj = obj->backing_object)
2318			if (obj == object) {
2319				return 1;
2320			}
2321	}
2322	return 0;
2323}
2324
2325static int
2326vm_object_in_map(vm_object_t object)
2327{
2328	struct proc *p;
2329
2330	/* sx_slock(&allproc_lock); */
2331	FOREACH_PROC_IN_SYSTEM(p) {
2332		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2333			continue;
2334		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2335			/* sx_sunlock(&allproc_lock); */
2336			return 1;
2337		}
2338	}
2339	/* sx_sunlock(&allproc_lock); */
2340	if (_vm_object_in_map(kernel_map, object, 0))
2341		return 1;
2342	return 0;
2343}
2344
2345DB_SHOW_COMMAND(vmochk, vm_object_check)
2346{
2347	vm_object_t object;
2348
2349	/*
2350	 * make sure that internal objs are in a map somewhere
2351	 * and none have zero ref counts.
2352	 */
2353	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2354		if (object->handle == NULL &&
2355		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2356			if (object->ref_count == 0) {
2357				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2358					(long)object->size);
2359			}
2360			if (!vm_object_in_map(object)) {
2361				db_printf(
2362			"vmochk: internal obj is not in a map: "
2363			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2364				    object->ref_count, (u_long)object->size,
2365				    (u_long)object->size,
2366				    (void *)object->backing_object);
2367			}
2368		}
2369	}
2370}
2371
2372/*
2373 *	vm_object_print:	[ debug ]
2374 */
2375DB_SHOW_COMMAND(object, vm_object_print_static)
2376{
2377	/* XXX convert args. */
2378	vm_object_t object = (vm_object_t)addr;
2379	boolean_t full = have_addr;
2380
2381	vm_page_t p;
2382
2383	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2384#define	count	was_count
2385
2386	int count;
2387
2388	if (object == NULL)
2389		return;
2390
2391	db_iprintf(
2392	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2393	    object, (int)object->type, (uintmax_t)object->size,
2394	    object->resident_page_count, object->ref_count, object->flags,
2395	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2396	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2397	    object->shadow_count,
2398	    object->backing_object ? object->backing_object->ref_count : 0,
2399	    object->backing_object, (uintmax_t)object->backing_object_offset);
2400
2401	if (!full)
2402		return;
2403
2404	db_indent += 2;
2405	count = 0;
2406	TAILQ_FOREACH(p, &object->memq, listq) {
2407		if (count == 0)
2408			db_iprintf("memory:=");
2409		else if (count == 6) {
2410			db_printf("\n");
2411			db_iprintf(" ...");
2412			count = 0;
2413		} else
2414			db_printf(",");
2415		count++;
2416
2417		db_printf("(off=0x%jx,page=0x%jx)",
2418		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2419	}
2420	if (count != 0)
2421		db_printf("\n");
2422	db_indent -= 2;
2423}
2424
2425/* XXX. */
2426#undef count
2427
2428/* XXX need this non-static entry for calling from vm_map_print. */
2429void
2430vm_object_print(
2431        /* db_expr_t */ long addr,
2432	boolean_t have_addr,
2433	/* db_expr_t */ long count,
2434	char *modif)
2435{
2436	vm_object_print_static(addr, have_addr, count, modif);
2437}
2438
2439DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2440{
2441	vm_object_t object;
2442	vm_pindex_t fidx;
2443	vm_paddr_t pa;
2444	vm_page_t m, prev_m;
2445	int rcount, nl, c;
2446
2447	nl = 0;
2448	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2449		db_printf("new object: %p\n", (void *)object);
2450		if (nl > 18) {
2451			c = cngetc();
2452			if (c != ' ')
2453				return;
2454			nl = 0;
2455		}
2456		nl++;
2457		rcount = 0;
2458		fidx = 0;
2459		pa = -1;
2460		TAILQ_FOREACH(m, &object->memq, listq) {
2461			if (m->pindex > 128)
2462				break;
2463			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2464			    prev_m->pindex + 1 != m->pindex) {
2465				if (rcount) {
2466					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2467						(long)fidx, rcount, (long)pa);
2468					if (nl > 18) {
2469						c = cngetc();
2470						if (c != ' ')
2471							return;
2472						nl = 0;
2473					}
2474					nl++;
2475					rcount = 0;
2476				}
2477			}
2478			if (rcount &&
2479				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2480				++rcount;
2481				continue;
2482			}
2483			if (rcount) {
2484				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2485					(long)fidx, rcount, (long)pa);
2486				if (nl > 18) {
2487					c = cngetc();
2488					if (c != ' ')
2489						return;
2490					nl = 0;
2491				}
2492				nl++;
2493			}
2494			fidx = m->pindex;
2495			pa = VM_PAGE_TO_PHYS(m);
2496			rcount = 1;
2497		}
2498		if (rcount) {
2499			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2500				(long)fidx, rcount, (long)pa);
2501			if (nl > 18) {
2502				c = cngetc();
2503				if (c != ' ')
2504					return;
2505				nl = 0;
2506			}
2507			nl++;
2508		}
2509	}
2510}
2511#endif /* DDB */
2512