1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Virtual memory object module.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: stable/10/sys/vm/vm_object.c 321677 2017-07-29 08:24:51Z kib $");
67
68#include "opt_vm.h"
69
70#include <sys/param.h>
71#include <sys/systm.h>
72#include <sys/lock.h>
73#include <sys/mman.h>
74#include <sys/mount.h>
75#include <sys/kernel.h>
76#include <sys/sysctl.h>
77#include <sys/mutex.h>
78#include <sys/proc.h>		/* for curproc, pageproc */
79#include <sys/socket.h>
80#include <sys/resourcevar.h>
81#include <sys/rwlock.h>
82#include <sys/user.h>
83#include <sys/vnode.h>
84#include <sys/vmmeter.h>
85#include <sys/sx.h>
86
87#include <vm/vm.h>
88#include <vm/vm_param.h>
89#include <vm/pmap.h>
90#include <vm/vm_map.h>
91#include <vm/vm_object.h>
92#include <vm/vm_page.h>
93#include <vm/vm_pageout.h>
94#include <vm/vm_pager.h>
95#include <vm/swap_pager.h>
96#include <vm/vm_kern.h>
97#include <vm/vm_extern.h>
98#include <vm/vm_radix.h>
99#include <vm/vm_reserv.h>
100#include <vm/uma.h>
101
102static int old_msync;
103SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
104    "Use old (insecure) msync behavior");
105
106static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
107		    int pagerflags, int flags, boolean_t *clearobjflags,
108		    boolean_t *eio);
109static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
110		    boolean_t *clearobjflags);
111static void	vm_object_qcollapse(vm_object_t object);
112static void	vm_object_vndeallocate(vm_object_t object);
113
114/*
115 *	Virtual memory objects maintain the actual data
116 *	associated with allocated virtual memory.  A given
117 *	page of memory exists within exactly one object.
118 *
119 *	An object is only deallocated when all "references"
120 *	are given up.  Only one "reference" to a given
121 *	region of an object should be writeable.
122 *
123 *	Associated with each object is a list of all resident
124 *	memory pages belonging to that object; this list is
125 *	maintained by the "vm_page" module, and locked by the object's
126 *	lock.
127 *
128 *	Each object also records a "pager" routine which is
129 *	used to retrieve (and store) pages to the proper backing
130 *	storage.  In addition, objects may be backed by other
131 *	objects from which they were virtual-copied.
132 *
133 *	The only items within the object structure which are
134 *	modified after time of creation are:
135 *		reference count		locked by object's lock
136 *		pager routine		locked by object's lock
137 *
138 */
139
140struct object_q vm_object_list;
141struct mtx vm_object_list_mtx;	/* lock for object list and count */
142
143struct vm_object kernel_object_store;
144struct vm_object kmem_object_store;
145
146static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
147    "VM object stats");
148
149static long object_collapses;
150SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
151    &object_collapses, 0, "VM object collapses");
152
153static long object_bypasses;
154SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
155    &object_bypasses, 0, "VM object bypasses");
156
157static uma_zone_t obj_zone;
158
159static int vm_object_zinit(void *mem, int size, int flags);
160
161#ifdef INVARIANTS
162static void vm_object_zdtor(void *mem, int size, void *arg);
163
164static void
165vm_object_zdtor(void *mem, int size, void *arg)
166{
167	vm_object_t object;
168
169	object = (vm_object_t)mem;
170	KASSERT(object->ref_count == 0,
171	    ("object %p ref_count = %d", object, object->ref_count));
172	KASSERT(TAILQ_EMPTY(&object->memq),
173	    ("object %p has resident pages in its memq", object));
174	KASSERT(vm_radix_is_empty(&object->rtree),
175	    ("object %p has resident pages in its trie", object));
176#if VM_NRESERVLEVEL > 0
177	KASSERT(LIST_EMPTY(&object->rvq),
178	    ("object %p has reservations",
179	    object));
180#endif
181	KASSERT(vm_object_cache_is_empty(object),
182	    ("object %p has cached pages",
183	    object));
184	KASSERT(object->paging_in_progress == 0,
185	    ("object %p paging_in_progress = %d",
186	    object, object->paging_in_progress));
187	KASSERT(object->resident_page_count == 0,
188	    ("object %p resident_page_count = %d",
189	    object, object->resident_page_count));
190	KASSERT(object->shadow_count == 0,
191	    ("object %p shadow_count = %d",
192	    object, object->shadow_count));
193	KASSERT(object->type == OBJT_DEAD,
194	    ("object %p has non-dead type %d",
195	    object, object->type));
196}
197#endif
198
199static int
200vm_object_zinit(void *mem, int size, int flags)
201{
202	vm_object_t object;
203
204	object = (vm_object_t)mem;
205	bzero(&object->lock, sizeof(object->lock));
206	rw_init_flags(&object->lock, "vm object", RW_DUPOK);
207
208	/* These are true for any object that has been freed */
209	object->type = OBJT_DEAD;
210	object->ref_count = 0;
211	object->rtree.rt_root = 0;
212	object->rtree.rt_flags = 0;
213	object->paging_in_progress = 0;
214	object->resident_page_count = 0;
215	object->shadow_count = 0;
216	object->cache.rt_root = 0;
217	object->cache.rt_flags = 0;
218
219	mtx_lock(&vm_object_list_mtx);
220	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
221	mtx_unlock(&vm_object_list_mtx);
222	return (0);
223}
224
225static void
226_vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
227{
228
229	TAILQ_INIT(&object->memq);
230	LIST_INIT(&object->shadow_head);
231
232	object->type = type;
233	switch (type) {
234	case OBJT_DEAD:
235		panic("_vm_object_allocate: can't create OBJT_DEAD");
236	case OBJT_DEFAULT:
237	case OBJT_SWAP:
238		object->flags = OBJ_ONEMAPPING;
239		break;
240	case OBJT_DEVICE:
241	case OBJT_SG:
242		object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
243		break;
244	case OBJT_MGTDEVICE:
245		object->flags = OBJ_FICTITIOUS;
246		break;
247	case OBJT_PHYS:
248		object->flags = OBJ_UNMANAGED;
249		break;
250	case OBJT_VNODE:
251		object->flags = 0;
252		break;
253	default:
254		panic("_vm_object_allocate: type %d is undefined", type);
255	}
256	object->size = size;
257	object->generation = 1;
258	object->ref_count = 1;
259	object->memattr = VM_MEMATTR_DEFAULT;
260	object->cred = NULL;
261	object->charge = 0;
262	object->handle = NULL;
263	object->backing_object = NULL;
264	object->backing_object_offset = (vm_ooffset_t) 0;
265#if VM_NRESERVLEVEL > 0
266	LIST_INIT(&object->rvq);
267#endif
268}
269
270/*
271 *	vm_object_init:
272 *
273 *	Initialize the VM objects module.
274 */
275void
276vm_object_init(void)
277{
278	TAILQ_INIT(&vm_object_list);
279	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
280
281	rw_init(&kernel_object->lock, "kernel vm object");
282	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
283	    kernel_object);
284#if VM_NRESERVLEVEL > 0
285	kernel_object->flags |= OBJ_COLORED;
286	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
287#endif
288
289	rw_init(&kmem_object->lock, "kmem vm object");
290	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
291	    kmem_object);
292#if VM_NRESERVLEVEL > 0
293	kmem_object->flags |= OBJ_COLORED;
294	kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
295#endif
296
297	/*
298	 * The lock portion of struct vm_object must be type stable due
299	 * to vm_pageout_fallback_object_lock locking a vm object
300	 * without holding any references to it.
301	 */
302	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
303#ifdef INVARIANTS
304	    vm_object_zdtor,
305#else
306	    NULL,
307#endif
308	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
309
310	vm_radix_init();
311}
312
313void
314vm_object_clear_flag(vm_object_t object, u_short bits)
315{
316
317	VM_OBJECT_ASSERT_WLOCKED(object);
318	object->flags &= ~bits;
319}
320
321/*
322 *	Sets the default memory attribute for the specified object.  Pages
323 *	that are allocated to this object are by default assigned this memory
324 *	attribute.
325 *
326 *	Presently, this function must be called before any pages are allocated
327 *	to the object.  In the future, this requirement may be relaxed for
328 *	"default" and "swap" objects.
329 */
330int
331vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
332{
333
334	VM_OBJECT_ASSERT_WLOCKED(object);
335	switch (object->type) {
336	case OBJT_DEFAULT:
337	case OBJT_DEVICE:
338	case OBJT_MGTDEVICE:
339	case OBJT_PHYS:
340	case OBJT_SG:
341	case OBJT_SWAP:
342	case OBJT_VNODE:
343		if (!TAILQ_EMPTY(&object->memq))
344			return (KERN_FAILURE);
345		break;
346	case OBJT_DEAD:
347		return (KERN_INVALID_ARGUMENT);
348	default:
349		panic("vm_object_set_memattr: object %p is of undefined type",
350		    object);
351	}
352	object->memattr = memattr;
353	return (KERN_SUCCESS);
354}
355
356void
357vm_object_pip_add(vm_object_t object, short i)
358{
359
360	VM_OBJECT_ASSERT_WLOCKED(object);
361	object->paging_in_progress += i;
362}
363
364void
365vm_object_pip_subtract(vm_object_t object, short i)
366{
367
368	VM_OBJECT_ASSERT_WLOCKED(object);
369	object->paging_in_progress -= i;
370}
371
372void
373vm_object_pip_wakeup(vm_object_t object)
374{
375
376	VM_OBJECT_ASSERT_WLOCKED(object);
377	object->paging_in_progress--;
378	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
379		vm_object_clear_flag(object, OBJ_PIPWNT);
380		wakeup(object);
381	}
382}
383
384void
385vm_object_pip_wakeupn(vm_object_t object, short i)
386{
387
388	VM_OBJECT_ASSERT_WLOCKED(object);
389	if (i)
390		object->paging_in_progress -= i;
391	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
392		vm_object_clear_flag(object, OBJ_PIPWNT);
393		wakeup(object);
394	}
395}
396
397void
398vm_object_pip_wait(vm_object_t object, char *waitid)
399{
400
401	VM_OBJECT_ASSERT_WLOCKED(object);
402	while (object->paging_in_progress) {
403		object->flags |= OBJ_PIPWNT;
404		VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
405	}
406}
407
408/*
409 *	vm_object_allocate:
410 *
411 *	Returns a new object with the given size.
412 */
413vm_object_t
414vm_object_allocate(objtype_t type, vm_pindex_t size)
415{
416	vm_object_t object;
417
418	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
419	_vm_object_allocate(type, size, object);
420	return (object);
421}
422
423
424/*
425 *	vm_object_reference:
426 *
427 *	Gets another reference to the given object.  Note: OBJ_DEAD
428 *	objects can be referenced during final cleaning.
429 */
430void
431vm_object_reference(vm_object_t object)
432{
433	if (object == NULL)
434		return;
435	VM_OBJECT_WLOCK(object);
436	vm_object_reference_locked(object);
437	VM_OBJECT_WUNLOCK(object);
438}
439
440/*
441 *	vm_object_reference_locked:
442 *
443 *	Gets another reference to the given object.
444 *
445 *	The object must be locked.
446 */
447void
448vm_object_reference_locked(vm_object_t object)
449{
450	struct vnode *vp;
451
452	VM_OBJECT_ASSERT_WLOCKED(object);
453	object->ref_count++;
454	if (object->type == OBJT_VNODE) {
455		vp = object->handle;
456		vref(vp);
457	}
458}
459
460/*
461 * Handle deallocating an object of type OBJT_VNODE.
462 */
463static void
464vm_object_vndeallocate(vm_object_t object)
465{
466	struct vnode *vp = (struct vnode *) object->handle;
467
468	VM_OBJECT_ASSERT_WLOCKED(object);
469	KASSERT(object->type == OBJT_VNODE,
470	    ("vm_object_vndeallocate: not a vnode object"));
471	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
472#ifdef INVARIANTS
473	if (object->ref_count == 0) {
474		vprint("vm_object_vndeallocate", vp);
475		panic("vm_object_vndeallocate: bad object reference count");
476	}
477#endif
478
479	/*
480	 * The test for text of vp vnode does not need a bypass to
481	 * reach right VV_TEXT there, since it is obtained from
482	 * object->handle.
483	 */
484	if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
485		object->ref_count--;
486		VM_OBJECT_WUNLOCK(object);
487		/* vrele may need the vnode lock. */
488		vrele(vp);
489	} else {
490		vhold(vp);
491		VM_OBJECT_WUNLOCK(object);
492		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
493		vdrop(vp);
494		VM_OBJECT_WLOCK(object);
495		object->ref_count--;
496		if (object->type == OBJT_DEAD) {
497			VM_OBJECT_WUNLOCK(object);
498			VOP_UNLOCK(vp, 0);
499		} else {
500			if (object->ref_count == 0)
501				VOP_UNSET_TEXT(vp);
502			VM_OBJECT_WUNLOCK(object);
503			vput(vp);
504		}
505	}
506}
507
508/*
509 *	vm_object_deallocate:
510 *
511 *	Release a reference to the specified object,
512 *	gained either through a vm_object_allocate
513 *	or a vm_object_reference call.  When all references
514 *	are gone, storage associated with this object
515 *	may be relinquished.
516 *
517 *	No object may be locked.
518 */
519void
520vm_object_deallocate(vm_object_t object)
521{
522	vm_object_t temp;
523	struct vnode *vp;
524
525	while (object != NULL) {
526		VM_OBJECT_WLOCK(object);
527		if (object->type == OBJT_VNODE) {
528			vm_object_vndeallocate(object);
529			return;
530		}
531
532		KASSERT(object->ref_count != 0,
533			("vm_object_deallocate: object deallocated too many times: %d", object->type));
534
535		/*
536		 * If the reference count goes to 0 we start calling
537		 * vm_object_terminate() on the object chain.
538		 * A ref count of 1 may be a special case depending on the
539		 * shadow count being 0 or 1.
540		 */
541		object->ref_count--;
542		if (object->ref_count > 1) {
543			VM_OBJECT_WUNLOCK(object);
544			return;
545		} else if (object->ref_count == 1) {
546			if (object->type == OBJT_SWAP &&
547			    (object->flags & OBJ_TMPFS) != 0) {
548				vp = object->un_pager.swp.swp_tmpfs;
549				vhold(vp);
550				VM_OBJECT_WUNLOCK(object);
551				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
552				VM_OBJECT_WLOCK(object);
553				if (object->type == OBJT_DEAD ||
554				    object->ref_count != 1) {
555					VM_OBJECT_WUNLOCK(object);
556					VOP_UNLOCK(vp, 0);
557					vdrop(vp);
558					return;
559				}
560				if ((object->flags & OBJ_TMPFS) != 0)
561					VOP_UNSET_TEXT(vp);
562				VOP_UNLOCK(vp, 0);
563				vdrop(vp);
564			}
565			if (object->shadow_count == 0 &&
566			    object->handle == NULL &&
567			    (object->type == OBJT_DEFAULT ||
568			    (object->type == OBJT_SWAP &&
569			    (object->flags & OBJ_TMPFS_NODE) == 0))) {
570				vm_object_set_flag(object, OBJ_ONEMAPPING);
571			} else if ((object->shadow_count == 1) &&
572			    (object->handle == NULL) &&
573			    (object->type == OBJT_DEFAULT ||
574			     object->type == OBJT_SWAP)) {
575				vm_object_t robject;
576
577				robject = LIST_FIRST(&object->shadow_head);
578				KASSERT(robject != NULL,
579				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
580					 object->ref_count,
581					 object->shadow_count));
582				KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
583				    ("shadowed tmpfs v_object %p", object));
584				if (!VM_OBJECT_TRYWLOCK(robject)) {
585					/*
586					 * Avoid a potential deadlock.
587					 */
588					object->ref_count++;
589					VM_OBJECT_WUNLOCK(object);
590					/*
591					 * More likely than not the thread
592					 * holding robject's lock has lower
593					 * priority than the current thread.
594					 * Let the lower priority thread run.
595					 */
596					pause("vmo_de", 1);
597					continue;
598				}
599				/*
600				 * Collapse object into its shadow unless its
601				 * shadow is dead.  In that case, object will
602				 * be deallocated by the thread that is
603				 * deallocating its shadow.
604				 */
605				if ((robject->flags & OBJ_DEAD) == 0 &&
606				    (robject->handle == NULL) &&
607				    (robject->type == OBJT_DEFAULT ||
608				     robject->type == OBJT_SWAP)) {
609
610					robject->ref_count++;
611retry:
612					if (robject->paging_in_progress) {
613						VM_OBJECT_WUNLOCK(object);
614						vm_object_pip_wait(robject,
615						    "objde1");
616						temp = robject->backing_object;
617						if (object == temp) {
618							VM_OBJECT_WLOCK(object);
619							goto retry;
620						}
621					} else if (object->paging_in_progress) {
622						VM_OBJECT_WUNLOCK(robject);
623						object->flags |= OBJ_PIPWNT;
624						VM_OBJECT_SLEEP(object, object,
625						    PDROP | PVM, "objde2", 0);
626						VM_OBJECT_WLOCK(robject);
627						temp = robject->backing_object;
628						if (object == temp) {
629							VM_OBJECT_WLOCK(object);
630							goto retry;
631						}
632					} else
633						VM_OBJECT_WUNLOCK(object);
634
635					if (robject->ref_count == 1) {
636						robject->ref_count--;
637						object = robject;
638						goto doterm;
639					}
640					object = robject;
641					vm_object_collapse(object);
642					VM_OBJECT_WUNLOCK(object);
643					continue;
644				}
645				VM_OBJECT_WUNLOCK(robject);
646			}
647			VM_OBJECT_WUNLOCK(object);
648			return;
649		}
650doterm:
651		temp = object->backing_object;
652		if (temp != NULL) {
653			KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
654			    ("shadowed tmpfs v_object 2 %p", object));
655			VM_OBJECT_WLOCK(temp);
656			LIST_REMOVE(object, shadow_list);
657			temp->shadow_count--;
658			VM_OBJECT_WUNLOCK(temp);
659			object->backing_object = NULL;
660		}
661		/*
662		 * Don't double-terminate, we could be in a termination
663		 * recursion due to the terminate having to sync data
664		 * to disk.
665		 */
666		if ((object->flags & OBJ_DEAD) == 0)
667			vm_object_terminate(object);
668		else
669			VM_OBJECT_WUNLOCK(object);
670		object = temp;
671	}
672}
673
674/*
675 *	vm_object_destroy removes the object from the global object list
676 *      and frees the space for the object.
677 */
678void
679vm_object_destroy(vm_object_t object)
680{
681
682	/*
683	 * Release the allocation charge.
684	 */
685	if (object->cred != NULL) {
686		swap_release_by_cred(object->charge, object->cred);
687		object->charge = 0;
688		crfree(object->cred);
689		object->cred = NULL;
690	}
691
692	/*
693	 * Free the space for the object.
694	 */
695	uma_zfree(obj_zone, object);
696}
697
698/*
699 *	vm_object_terminate actually destroys the specified object, freeing
700 *	up all previously used resources.
701 *
702 *	The object must be locked.
703 *	This routine may block.
704 */
705void
706vm_object_terminate(vm_object_t object)
707{
708	vm_page_t p, p_next;
709
710	VM_OBJECT_ASSERT_WLOCKED(object);
711
712	/*
713	 * Make sure no one uses us.
714	 */
715	vm_object_set_flag(object, OBJ_DEAD);
716
717	/*
718	 * wait for the pageout daemon to be done with the object
719	 */
720	vm_object_pip_wait(object, "objtrm");
721
722	KASSERT(!object->paging_in_progress,
723		("vm_object_terminate: pageout in progress"));
724
725	/*
726	 * Clean and free the pages, as appropriate. All references to the
727	 * object are gone, so we don't need to lock it.
728	 */
729	if (object->type == OBJT_VNODE) {
730		struct vnode *vp = (struct vnode *)object->handle;
731
732		/*
733		 * Clean pages and flush buffers.
734		 */
735		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
736		VM_OBJECT_WUNLOCK(object);
737
738		vinvalbuf(vp, V_SAVE, 0, 0);
739
740		BO_LOCK(&vp->v_bufobj);
741		vp->v_bufobj.bo_flag |= BO_DEAD;
742		BO_UNLOCK(&vp->v_bufobj);
743
744		VM_OBJECT_WLOCK(object);
745	}
746
747	KASSERT(object->ref_count == 0,
748		("vm_object_terminate: object with references, ref_count=%d",
749		object->ref_count));
750
751	/*
752	 * Free any remaining pageable pages.  This also removes them from the
753	 * paging queues.  However, don't free wired pages, just remove them
754	 * from the object.  Rather than incrementally removing each page from
755	 * the object, the page and object are reset to any empty state.
756	 */
757	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
758		vm_page_assert_unbusied(p);
759		vm_page_lock(p);
760		/*
761		 * Optimize the page's removal from the object by resetting
762		 * its "object" field.  Specifically, if the page is not
763		 * wired, then the effect of this assignment is that
764		 * vm_page_free()'s call to vm_page_remove() will return
765		 * immediately without modifying the page or the object.
766		 */
767		p->object = NULL;
768		if (p->wire_count == 0) {
769			vm_page_free(p);
770			PCPU_INC(cnt.v_pfree);
771		}
772		vm_page_unlock(p);
773	}
774	/*
775	 * If the object contained any pages, then reset it to an empty state.
776	 * None of the object's fields, including "resident_page_count", were
777	 * modified by the preceding loop.
778	 */
779	if (object->resident_page_count != 0) {
780		vm_radix_reclaim_allnodes(&object->rtree);
781		TAILQ_INIT(&object->memq);
782		object->resident_page_count = 0;
783		if (object->type == OBJT_VNODE)
784			vdrop(object->handle);
785	}
786
787#if VM_NRESERVLEVEL > 0
788	if (__predict_false(!LIST_EMPTY(&object->rvq)))
789		vm_reserv_break_all(object);
790#endif
791	if (__predict_false(!vm_object_cache_is_empty(object)))
792		vm_page_cache_free(object, 0, 0);
793
794	KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
795	    object->type == OBJT_SWAP,
796	    ("%s: non-swap obj %p has cred", __func__, object));
797
798	/*
799	 * Let the pager know object is dead.
800	 */
801	vm_pager_deallocate(object);
802	VM_OBJECT_WUNLOCK(object);
803
804	vm_object_destroy(object);
805}
806
807/*
808 * Make the page read-only so that we can clear the object flags.  However, if
809 * this is a nosync mmap then the object is likely to stay dirty so do not
810 * mess with the page and do not clear the object flags.  Returns TRUE if the
811 * page should be flushed, and FALSE otherwise.
812 */
813static boolean_t
814vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
815{
816
817	/*
818	 * If we have been asked to skip nosync pages and this is a
819	 * nosync page, skip it.  Note that the object flags were not
820	 * cleared in this case so we do not have to set them.
821	 */
822	if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
823		*clearobjflags = FALSE;
824		return (FALSE);
825	} else {
826		pmap_remove_write(p);
827		return (p->dirty != 0);
828	}
829}
830
831/*
832 *	vm_object_page_clean
833 *
834 *	Clean all dirty pages in the specified range of object.  Leaves page
835 * 	on whatever queue it is currently on.   If NOSYNC is set then do not
836 *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
837 *	leaving the object dirty.
838 *
839 *	When stuffing pages asynchronously, allow clustering.  XXX we need a
840 *	synchronous clustering mode implementation.
841 *
842 *	Odd semantics: if start == end, we clean everything.
843 *
844 *	The object must be locked.
845 *
846 *	Returns FALSE if some page from the range was not written, as
847 *	reported by the pager, and TRUE otherwise.
848 */
849boolean_t
850vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
851    int flags)
852{
853	vm_page_t np, p;
854	vm_pindex_t pi, tend, tstart;
855	int curgeneration, n, pagerflags;
856	boolean_t clearobjflags, eio, res;
857
858	VM_OBJECT_ASSERT_WLOCKED(object);
859
860	/*
861	 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
862	 * objects.  The check below prevents the function from
863	 * operating on non-vnode objects.
864	 */
865	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
866	    object->resident_page_count == 0)
867		return (TRUE);
868
869	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
870	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
871	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
872
873	tstart = OFF_TO_IDX(start);
874	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
875	clearobjflags = tstart == 0 && tend >= object->size;
876	res = TRUE;
877
878rescan:
879	curgeneration = object->generation;
880
881	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
882		pi = p->pindex;
883		if (pi >= tend)
884			break;
885		np = TAILQ_NEXT(p, listq);
886		if (p->valid == 0)
887			continue;
888		if (vm_page_sleep_if_busy(p, "vpcwai")) {
889			if (object->generation != curgeneration) {
890				if ((flags & OBJPC_SYNC) != 0)
891					goto rescan;
892				else
893					clearobjflags = FALSE;
894			}
895			np = vm_page_find_least(object, pi);
896			continue;
897		}
898		if (!vm_object_page_remove_write(p, flags, &clearobjflags))
899			continue;
900
901		n = vm_object_page_collect_flush(object, p, pagerflags,
902		    flags, &clearobjflags, &eio);
903		if (eio) {
904			res = FALSE;
905			clearobjflags = FALSE;
906		}
907		if (object->generation != curgeneration) {
908			if ((flags & OBJPC_SYNC) != 0)
909				goto rescan;
910			else
911				clearobjflags = FALSE;
912		}
913
914		/*
915		 * If the VOP_PUTPAGES() did a truncated write, so
916		 * that even the first page of the run is not fully
917		 * written, vm_pageout_flush() returns 0 as the run
918		 * length.  Since the condition that caused truncated
919		 * write may be permanent, e.g. exhausted free space,
920		 * accepting n == 0 would cause an infinite loop.
921		 *
922		 * Forwarding the iterator leaves the unwritten page
923		 * behind, but there is not much we can do there if
924		 * filesystem refuses to write it.
925		 */
926		if (n == 0) {
927			n = 1;
928			clearobjflags = FALSE;
929		}
930		np = vm_page_find_least(object, pi + n);
931	}
932#if 0
933	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
934#endif
935
936	if (clearobjflags)
937		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
938	return (res);
939}
940
941static int
942vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
943    int flags, boolean_t *clearobjflags, boolean_t *eio)
944{
945	vm_page_t ma[vm_pageout_page_count], p_first, tp;
946	int count, i, mreq, runlen;
947
948	vm_page_lock_assert(p, MA_NOTOWNED);
949	VM_OBJECT_ASSERT_WLOCKED(object);
950
951	count = 1;
952	mreq = 0;
953
954	for (tp = p; count < vm_pageout_page_count; count++) {
955		tp = vm_page_next(tp);
956		if (tp == NULL || vm_page_busied(tp))
957			break;
958		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
959			break;
960	}
961
962	for (p_first = p; count < vm_pageout_page_count; count++) {
963		tp = vm_page_prev(p_first);
964		if (tp == NULL || vm_page_busied(tp))
965			break;
966		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
967			break;
968		p_first = tp;
969		mreq++;
970	}
971
972	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
973		ma[i] = tp;
974
975	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
976	return (runlen);
977}
978
979/*
980 * Note that there is absolutely no sense in writing out
981 * anonymous objects, so we track down the vnode object
982 * to write out.
983 * We invalidate (remove) all pages from the address space
984 * for semantic correctness.
985 *
986 * If the backing object is a device object with unmanaged pages, then any
987 * mappings to the specified range of pages must be removed before this
988 * function is called.
989 *
990 * Note: certain anonymous maps, such as MAP_NOSYNC maps,
991 * may start out with a NULL object.
992 */
993boolean_t
994vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
995    boolean_t syncio, boolean_t invalidate)
996{
997	vm_object_t backing_object;
998	struct vnode *vp;
999	struct mount *mp;
1000	int error, flags, fsync_after;
1001	boolean_t res;
1002
1003	if (object == NULL)
1004		return (TRUE);
1005	res = TRUE;
1006	error = 0;
1007	VM_OBJECT_WLOCK(object);
1008	while ((backing_object = object->backing_object) != NULL) {
1009		VM_OBJECT_WLOCK(backing_object);
1010		offset += object->backing_object_offset;
1011		VM_OBJECT_WUNLOCK(object);
1012		object = backing_object;
1013		if (object->size < OFF_TO_IDX(offset + size))
1014			size = IDX_TO_OFF(object->size) - offset;
1015	}
1016	/*
1017	 * Flush pages if writing is allowed, invalidate them
1018	 * if invalidation requested.  Pages undergoing I/O
1019	 * will be ignored by vm_object_page_remove().
1020	 *
1021	 * We cannot lock the vnode and then wait for paging
1022	 * to complete without deadlocking against vm_fault.
1023	 * Instead we simply call vm_object_page_remove() and
1024	 * allow it to block internally on a page-by-page
1025	 * basis when it encounters pages undergoing async
1026	 * I/O.
1027	 */
1028	if (object->type == OBJT_VNODE &&
1029	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1030		vp = object->handle;
1031		VM_OBJECT_WUNLOCK(object);
1032		(void) vn_start_write(vp, &mp, V_WAIT);
1033		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1034		if (syncio && !invalidate && offset == 0 &&
1035		    OFF_TO_IDX(size) == object->size) {
1036			/*
1037			 * If syncing the whole mapping of the file,
1038			 * it is faster to schedule all the writes in
1039			 * async mode, also allowing the clustering,
1040			 * and then wait for i/o to complete.
1041			 */
1042			flags = 0;
1043			fsync_after = TRUE;
1044		} else {
1045			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1046			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1047			fsync_after = FALSE;
1048		}
1049		VM_OBJECT_WLOCK(object);
1050		res = vm_object_page_clean(object, offset, offset + size,
1051		    flags);
1052		VM_OBJECT_WUNLOCK(object);
1053		if (fsync_after)
1054			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1055		VOP_UNLOCK(vp, 0);
1056		vn_finished_write(mp);
1057		if (error != 0)
1058			res = FALSE;
1059		VM_OBJECT_WLOCK(object);
1060	}
1061	if ((object->type == OBJT_VNODE ||
1062	     object->type == OBJT_DEVICE) && invalidate) {
1063		if (object->type == OBJT_DEVICE)
1064			/*
1065			 * The option OBJPR_NOTMAPPED must be passed here
1066			 * because vm_object_page_remove() cannot remove
1067			 * unmanaged mappings.
1068			 */
1069			flags = OBJPR_NOTMAPPED;
1070		else if (old_msync)
1071			flags = 0;
1072		else
1073			flags = OBJPR_CLEANONLY;
1074		vm_object_page_remove(object, OFF_TO_IDX(offset),
1075		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1076	}
1077	VM_OBJECT_WUNLOCK(object);
1078	return (res);
1079}
1080
1081/*
1082 *	vm_object_madvise:
1083 *
1084 *	Implements the madvise function at the object/page level.
1085 *
1086 *	MADV_WILLNEED	(any object)
1087 *
1088 *	    Activate the specified pages if they are resident.
1089 *
1090 *	MADV_DONTNEED	(any object)
1091 *
1092 *	    Deactivate the specified pages if they are resident.
1093 *
1094 *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1095 *			 OBJ_ONEMAPPING only)
1096 *
1097 *	    Deactivate and clean the specified pages if they are
1098 *	    resident.  This permits the process to reuse the pages
1099 *	    without faulting or the kernel to reclaim the pages
1100 *	    without I/O.
1101 */
1102void
1103vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1104    int advise)
1105{
1106	vm_pindex_t tpindex;
1107	vm_object_t backing_object, tobject;
1108	vm_page_t m;
1109
1110	if (object == NULL)
1111		return;
1112	VM_OBJECT_WLOCK(object);
1113	/*
1114	 * Locate and adjust resident pages
1115	 */
1116	for (; pindex < end; pindex += 1) {
1117relookup:
1118		tobject = object;
1119		tpindex = pindex;
1120shadowlookup:
1121		/*
1122		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1123		 * and those pages must be OBJ_ONEMAPPING.
1124		 */
1125		if (advise == MADV_FREE) {
1126			if ((tobject->type != OBJT_DEFAULT &&
1127			     tobject->type != OBJT_SWAP) ||
1128			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1129				goto unlock_tobject;
1130			}
1131		} else if ((tobject->flags & OBJ_UNMANAGED) != 0)
1132			goto unlock_tobject;
1133		m = vm_page_lookup(tobject, tpindex);
1134		if (m == NULL && advise == MADV_WILLNEED) {
1135			/*
1136			 * If the page is cached, reactivate it.
1137			 */
1138			m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1139			    VM_ALLOC_NOBUSY);
1140		}
1141		if (m == NULL) {
1142			/*
1143			 * There may be swap even if there is no backing page
1144			 */
1145			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1146				swap_pager_freespace(tobject, tpindex, 1);
1147			/*
1148			 * next object
1149			 */
1150			backing_object = tobject->backing_object;
1151			if (backing_object == NULL)
1152				goto unlock_tobject;
1153			VM_OBJECT_WLOCK(backing_object);
1154			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1155			if (tobject != object)
1156				VM_OBJECT_WUNLOCK(tobject);
1157			tobject = backing_object;
1158			goto shadowlookup;
1159		} else if (m->valid != VM_PAGE_BITS_ALL)
1160			goto unlock_tobject;
1161		/*
1162		 * If the page is not in a normal state, skip it.
1163		 */
1164		vm_page_lock(m);
1165		if (m->hold_count != 0 || m->wire_count != 0) {
1166			vm_page_unlock(m);
1167			goto unlock_tobject;
1168		}
1169		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1170		    ("vm_object_madvise: page %p is fictitious", m));
1171		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1172		    ("vm_object_madvise: page %p is not managed", m));
1173		if (vm_page_busied(m)) {
1174			if (advise == MADV_WILLNEED) {
1175				/*
1176				 * Reference the page before unlocking and
1177				 * sleeping so that the page daemon is less
1178				 * likely to reclaim it.
1179				 */
1180				vm_page_aflag_set(m, PGA_REFERENCED);
1181			}
1182			if (object != tobject)
1183				VM_OBJECT_WUNLOCK(object);
1184			VM_OBJECT_WUNLOCK(tobject);
1185			vm_page_busy_sleep(m, "madvpo", false);
1186			VM_OBJECT_WLOCK(object);
1187  			goto relookup;
1188		}
1189		if (advise == MADV_WILLNEED) {
1190			vm_page_activate(m);
1191		} else {
1192			vm_page_advise(m, advise);
1193		}
1194		vm_page_unlock(m);
1195		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1196			swap_pager_freespace(tobject, tpindex, 1);
1197unlock_tobject:
1198		if (tobject != object)
1199			VM_OBJECT_WUNLOCK(tobject);
1200	}
1201	VM_OBJECT_WUNLOCK(object);
1202}
1203
1204/*
1205 *	vm_object_shadow:
1206 *
1207 *	Create a new object which is backed by the
1208 *	specified existing object range.  The source
1209 *	object reference is deallocated.
1210 *
1211 *	The new object and offset into that object
1212 *	are returned in the source parameters.
1213 */
1214void
1215vm_object_shadow(
1216	vm_object_t *object,	/* IN/OUT */
1217	vm_ooffset_t *offset,	/* IN/OUT */
1218	vm_size_t length)
1219{
1220	vm_object_t source;
1221	vm_object_t result;
1222
1223	source = *object;
1224
1225	/*
1226	 * Don't create the new object if the old object isn't shared.
1227	 */
1228	if (source != NULL) {
1229		VM_OBJECT_WLOCK(source);
1230		if (source->ref_count == 1 &&
1231		    source->handle == NULL &&
1232		    (source->type == OBJT_DEFAULT ||
1233		     source->type == OBJT_SWAP)) {
1234			VM_OBJECT_WUNLOCK(source);
1235			return;
1236		}
1237		VM_OBJECT_WUNLOCK(source);
1238	}
1239
1240	/*
1241	 * Allocate a new object with the given length.
1242	 */
1243	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1244
1245	/*
1246	 * The new object shadows the source object, adding a reference to it.
1247	 * Our caller changes his reference to point to the new object,
1248	 * removing a reference to the source object.  Net result: no change
1249	 * of reference count.
1250	 *
1251	 * Try to optimize the result object's page color when shadowing
1252	 * in order to maintain page coloring consistency in the combined
1253	 * shadowed object.
1254	 */
1255	result->backing_object = source;
1256	/*
1257	 * Store the offset into the source object, and fix up the offset into
1258	 * the new object.
1259	 */
1260	result->backing_object_offset = *offset;
1261	if (source != NULL) {
1262		VM_OBJECT_WLOCK(source);
1263		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1264		source->shadow_count++;
1265#if VM_NRESERVLEVEL > 0
1266		result->flags |= source->flags & OBJ_COLORED;
1267		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1268		    ((1 << (VM_NFREEORDER - 1)) - 1);
1269#endif
1270		VM_OBJECT_WUNLOCK(source);
1271	}
1272
1273
1274	/*
1275	 * Return the new things
1276	 */
1277	*offset = 0;
1278	*object = result;
1279}
1280
1281/*
1282 *	vm_object_split:
1283 *
1284 * Split the pages in a map entry into a new object.  This affords
1285 * easier removal of unused pages, and keeps object inheritance from
1286 * being a negative impact on memory usage.
1287 */
1288void
1289vm_object_split(vm_map_entry_t entry)
1290{
1291	vm_page_t m, m_next;
1292	vm_object_t orig_object, new_object, source;
1293	vm_pindex_t idx, offidxstart;
1294	vm_size_t size;
1295
1296	orig_object = entry->object.vm_object;
1297	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1298		return;
1299	if (orig_object->ref_count <= 1)
1300		return;
1301	VM_OBJECT_WUNLOCK(orig_object);
1302
1303	offidxstart = OFF_TO_IDX(entry->offset);
1304	size = atop(entry->end - entry->start);
1305
1306	/*
1307	 * If swap_pager_copy() is later called, it will convert new_object
1308	 * into a swap object.
1309	 */
1310	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1311
1312	/*
1313	 * At this point, the new object is still private, so the order in
1314	 * which the original and new objects are locked does not matter.
1315	 */
1316	VM_OBJECT_WLOCK(new_object);
1317	VM_OBJECT_WLOCK(orig_object);
1318	source = orig_object->backing_object;
1319	if (source != NULL) {
1320		VM_OBJECT_WLOCK(source);
1321		if ((source->flags & OBJ_DEAD) != 0) {
1322			VM_OBJECT_WUNLOCK(source);
1323			VM_OBJECT_WUNLOCK(orig_object);
1324			VM_OBJECT_WUNLOCK(new_object);
1325			vm_object_deallocate(new_object);
1326			VM_OBJECT_WLOCK(orig_object);
1327			return;
1328		}
1329		LIST_INSERT_HEAD(&source->shadow_head,
1330				  new_object, shadow_list);
1331		source->shadow_count++;
1332		vm_object_reference_locked(source);	/* for new_object */
1333		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1334		VM_OBJECT_WUNLOCK(source);
1335		new_object->backing_object_offset =
1336			orig_object->backing_object_offset + entry->offset;
1337		new_object->backing_object = source;
1338	}
1339	if (orig_object->cred != NULL) {
1340		new_object->cred = orig_object->cred;
1341		crhold(orig_object->cred);
1342		new_object->charge = ptoa(size);
1343		KASSERT(orig_object->charge >= ptoa(size),
1344		    ("orig_object->charge < 0"));
1345		orig_object->charge -= ptoa(size);
1346	}
1347retry:
1348	m = vm_page_find_least(orig_object, offidxstart);
1349	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1350	    m = m_next) {
1351		m_next = TAILQ_NEXT(m, listq);
1352
1353		/*
1354		 * We must wait for pending I/O to complete before we can
1355		 * rename the page.
1356		 *
1357		 * We do not have to VM_PROT_NONE the page as mappings should
1358		 * not be changed by this operation.
1359		 */
1360		if (vm_page_busied(m)) {
1361			VM_OBJECT_WUNLOCK(new_object);
1362			vm_page_lock(m);
1363			VM_OBJECT_WUNLOCK(orig_object);
1364			vm_page_busy_sleep(m, "spltwt", false);
1365			VM_OBJECT_WLOCK(orig_object);
1366			VM_OBJECT_WLOCK(new_object);
1367			goto retry;
1368		}
1369
1370		/* vm_page_rename() will handle dirty and cache. */
1371		if (vm_page_rename(m, new_object, idx)) {
1372			VM_OBJECT_WUNLOCK(new_object);
1373			VM_OBJECT_WUNLOCK(orig_object);
1374			VM_WAIT;
1375			VM_OBJECT_WLOCK(orig_object);
1376			VM_OBJECT_WLOCK(new_object);
1377			goto retry;
1378		}
1379#if VM_NRESERVLEVEL > 0
1380		/*
1381		 * If some of the reservation's allocated pages remain with
1382		 * the original object, then transferring the reservation to
1383		 * the new object is neither particularly beneficial nor
1384		 * particularly harmful as compared to leaving the reservation
1385		 * with the original object.  If, however, all of the
1386		 * reservation's allocated pages are transferred to the new
1387		 * object, then transferring the reservation is typically
1388		 * beneficial.  Determining which of these two cases applies
1389		 * would be more costly than unconditionally renaming the
1390		 * reservation.
1391		 */
1392		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1393#endif
1394		if (orig_object->type == OBJT_SWAP)
1395			vm_page_xbusy(m);
1396	}
1397	if (orig_object->type == OBJT_SWAP) {
1398		/*
1399		 * swap_pager_copy() can sleep, in which case the orig_object's
1400		 * and new_object's locks are released and reacquired.
1401		 */
1402		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1403		TAILQ_FOREACH(m, &new_object->memq, listq)
1404			vm_page_xunbusy(m);
1405
1406		/*
1407		 * Transfer any cached pages from orig_object to new_object.
1408		 * If swap_pager_copy() found swapped out pages within the
1409		 * specified range of orig_object, then it changed
1410		 * new_object's type to OBJT_SWAP when it transferred those
1411		 * pages to new_object.  Otherwise, new_object's type
1412		 * should still be OBJT_DEFAULT and orig_object should not
1413		 * contain any cached pages within the specified range.
1414		 */
1415		if (__predict_false(!vm_object_cache_is_empty(orig_object)))
1416			vm_page_cache_transfer(orig_object, offidxstart,
1417			    new_object);
1418	}
1419	VM_OBJECT_WUNLOCK(orig_object);
1420	VM_OBJECT_WUNLOCK(new_object);
1421	entry->object.vm_object = new_object;
1422	entry->offset = 0LL;
1423	vm_object_deallocate(orig_object);
1424	VM_OBJECT_WLOCK(new_object);
1425}
1426
1427#define	OBSC_TEST_ALL_SHADOWED	0x0001
1428#define	OBSC_COLLAPSE_NOWAIT	0x0002
1429#define	OBSC_COLLAPSE_WAIT	0x0004
1430
1431static vm_page_t
1432vm_object_backing_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1433    int op)
1434{
1435	vm_object_t backing_object;
1436
1437	VM_OBJECT_ASSERT_WLOCKED(object);
1438	backing_object = object->backing_object;
1439	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1440
1441	KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
1442	KASSERT(p == NULL || p->object == object || p->object == backing_object,
1443	    ("invalid ownership %p %p %p", p, object, backing_object));
1444	if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1445		return (next);
1446	if (p != NULL)
1447		vm_page_lock(p);
1448	VM_OBJECT_WUNLOCK(object);
1449	VM_OBJECT_WUNLOCK(backing_object);
1450	if (p == NULL)
1451		VM_WAIT;
1452	else
1453		vm_page_busy_sleep(p, "vmocol", false);
1454	VM_OBJECT_WLOCK(object);
1455	VM_OBJECT_WLOCK(backing_object);
1456	return (TAILQ_FIRST(&backing_object->memq));
1457}
1458
1459static bool
1460vm_object_backing_scan(vm_object_t object, int op)
1461{
1462	vm_object_t backing_object;
1463	vm_page_t next, p, pp;
1464	vm_pindex_t backing_offset_index, new_pindex;
1465
1466	VM_OBJECT_ASSERT_WLOCKED(object);
1467	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1468
1469	backing_object = object->backing_object;
1470	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1471
1472	/*
1473	 * Initial conditions
1474	 */
1475	if (op & OBSC_TEST_ALL_SHADOWED) {
1476		/*
1477		 * We do not want to have to test for the existence of cache
1478		 * or swap pages in the backing object.  XXX but with the
1479		 * new swapper this would be pretty easy to do.
1480		 *
1481		 * XXX what about anonymous MAP_SHARED memory that hasn't
1482		 * been ZFOD faulted yet?  If we do not test for this, the
1483		 * shadow test may succeed! XXX
1484		 */
1485		if (backing_object->type != OBJT_DEFAULT) {
1486			return (false);
1487		}
1488	}
1489	if (op & OBSC_COLLAPSE_WAIT) {
1490		vm_object_set_flag(backing_object, OBJ_DEAD);
1491	}
1492
1493	/*
1494	 * Our scan
1495	 */
1496	p = TAILQ_FIRST(&backing_object->memq);
1497	while (p) {
1498		next = TAILQ_NEXT(p, listq);
1499		new_pindex = p->pindex - backing_offset_index;
1500		if (op & OBSC_TEST_ALL_SHADOWED) {
1501			/*
1502			 * Ignore pages outside the parent object's range
1503			 * and outside the parent object's mapping of the
1504			 * backing object.
1505			 *
1506			 * Note that we do not busy the backing object's
1507			 * page.
1508			 */
1509			if (p->pindex < backing_offset_index ||
1510			    new_pindex >= object->size) {
1511				p = next;
1512				continue;
1513			}
1514
1515			/*
1516			 * See if the parent has the page or if the parent's
1517			 * object pager has the page.  If the parent has the
1518			 * page but the page is not valid, the parent's
1519			 * object pager must have the page.
1520			 *
1521			 * If this fails, the parent does not completely shadow
1522			 * the object and we might as well give up now.
1523			 */
1524
1525			pp = vm_page_lookup(object, new_pindex);
1526			if ((pp == NULL || pp->valid == 0) &&
1527			    !vm_pager_has_page(object, new_pindex, NULL, NULL))
1528				return (false);
1529		}
1530
1531		/*
1532		 * Check for busy page
1533		 */
1534		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1535			if (vm_page_busied(p)) {
1536				p = vm_object_backing_scan_wait(object, p,
1537				    next, op);
1538				continue;
1539			}
1540
1541			KASSERT(p->object == backing_object,
1542			    ("vm_object_backing_scan: object mismatch"));
1543
1544			if (p->pindex < backing_offset_index ||
1545			    new_pindex >= object->size) {
1546				if (backing_object->type == OBJT_SWAP)
1547					swap_pager_freespace(backing_object,
1548					    p->pindex, 1);
1549
1550				/*
1551				 * Page is out of the parent object's range, we
1552				 * can simply destroy it.
1553				 */
1554				vm_page_lock(p);
1555				KASSERT(!pmap_page_is_mapped(p),
1556				    ("freeing mapped page %p", p));
1557				if (p->wire_count == 0)
1558					vm_page_free(p);
1559				else
1560					vm_page_remove(p);
1561				vm_page_unlock(p);
1562				p = next;
1563				continue;
1564			}
1565
1566			pp = vm_page_lookup(object, new_pindex);
1567			if (pp != NULL && vm_page_busied(pp)) {
1568				/*
1569				 * The page in the parent is busy and
1570				 * possibly not (yet) valid.  Until
1571				 * its state is finalized by the busy
1572				 * bit owner, we can't tell whether it
1573				 * shadows the original page.
1574				 * Therefore, we must either skip it
1575				 * and the original (backing_object)
1576				 * page or wait for its state to be
1577				 * finalized.
1578				 *
1579				 * This is due to a race with vm_fault()
1580				 * where we must unbusy the original
1581				 * (backing_obj) page before we can
1582				 * (re)lock the parent.  Hence we can
1583				 * get here.
1584				 */
1585				p = vm_object_backing_scan_wait(object, pp,
1586				    next, op);
1587				continue;
1588			}
1589
1590			KASSERT(pp == NULL || pp->valid != 0,
1591			    ("unbusy invalid page %p", pp));
1592
1593			if (pp != NULL || vm_pager_has_page(object,
1594			    new_pindex, NULL, NULL)) {
1595				/*
1596				 * The page already exists in the
1597				 * parent OR swap exists for this
1598				 * location in the parent.  Leave the
1599				 * parent's page alone.  Destroy the
1600				 * original page from the backing
1601				 * object.
1602				 */
1603				if (backing_object->type == OBJT_SWAP)
1604					swap_pager_freespace(backing_object,
1605					    p->pindex, 1);
1606				vm_page_lock(p);
1607				KASSERT(!pmap_page_is_mapped(p),
1608				    ("freeing mapped page %p", p));
1609				if (p->wire_count == 0)
1610					vm_page_free(p);
1611				else
1612					vm_page_remove(p);
1613				vm_page_unlock(p);
1614				p = next;
1615				continue;
1616			}
1617
1618			/*
1619			 * Page does not exist in parent, rename the
1620			 * page from the backing object to the main object.
1621			 *
1622			 * If the page was mapped to a process, it can remain
1623			 * mapped through the rename.
1624			 * vm_page_rename() will handle dirty and cache.
1625			 */
1626			if (vm_page_rename(p, object, new_pindex)) {
1627				p = vm_object_backing_scan_wait(object, NULL,
1628				    next, op);
1629				continue;
1630			}
1631
1632			/* Use the old pindex to free the right page. */
1633			if (backing_object->type == OBJT_SWAP)
1634				swap_pager_freespace(backing_object,
1635				    new_pindex + backing_offset_index, 1);
1636
1637#if VM_NRESERVLEVEL > 0
1638			/*
1639			 * Rename the reservation.
1640			 */
1641			vm_reserv_rename(p, object, backing_object,
1642			    backing_offset_index);
1643#endif
1644		}
1645		p = next;
1646	}
1647	return (true);
1648}
1649
1650
1651/*
1652 * this version of collapse allows the operation to occur earlier and
1653 * when paging_in_progress is true for an object...  This is not a complete
1654 * operation, but should plug 99.9% of the rest of the leaks.
1655 */
1656static void
1657vm_object_qcollapse(vm_object_t object)
1658{
1659	vm_object_t backing_object = object->backing_object;
1660
1661	VM_OBJECT_ASSERT_WLOCKED(object);
1662	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1663
1664	if (backing_object->ref_count != 1)
1665		return;
1666
1667	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1668}
1669
1670/*
1671 *	vm_object_collapse:
1672 *
1673 *	Collapse an object with the object backing it.
1674 *	Pages in the backing object are moved into the
1675 *	parent, and the backing object is deallocated.
1676 */
1677void
1678vm_object_collapse(vm_object_t object)
1679{
1680	vm_object_t backing_object, new_backing_object;
1681
1682	VM_OBJECT_ASSERT_WLOCKED(object);
1683
1684	while (TRUE) {
1685		/*
1686		 * Verify that the conditions are right for collapse:
1687		 *
1688		 * The object exists and the backing object exists.
1689		 */
1690		if ((backing_object = object->backing_object) == NULL)
1691			break;
1692
1693		/*
1694		 * we check the backing object first, because it is most likely
1695		 * not collapsable.
1696		 */
1697		VM_OBJECT_WLOCK(backing_object);
1698		if (backing_object->handle != NULL ||
1699		    (backing_object->type != OBJT_DEFAULT &&
1700		     backing_object->type != OBJT_SWAP) ||
1701		    (backing_object->flags & OBJ_DEAD) ||
1702		    object->handle != NULL ||
1703		    (object->type != OBJT_DEFAULT &&
1704		     object->type != OBJT_SWAP) ||
1705		    (object->flags & OBJ_DEAD)) {
1706			VM_OBJECT_WUNLOCK(backing_object);
1707			break;
1708		}
1709
1710		if (object->paging_in_progress != 0 ||
1711		    backing_object->paging_in_progress != 0) {
1712			vm_object_qcollapse(object);
1713			VM_OBJECT_WUNLOCK(backing_object);
1714			break;
1715		}
1716
1717		/*
1718		 * We know that we can either collapse the backing object (if
1719		 * the parent is the only reference to it) or (perhaps) have
1720		 * the parent bypass the object if the parent happens to shadow
1721		 * all the resident pages in the entire backing object.
1722		 *
1723		 * This is ignoring pager-backed pages such as swap pages.
1724		 * vm_object_backing_scan fails the shadowing test in this
1725		 * case.
1726		 */
1727		if (backing_object->ref_count == 1) {
1728			vm_object_pip_add(object, 1);
1729			vm_object_pip_add(backing_object, 1);
1730
1731			/*
1732			 * If there is exactly one reference to the backing
1733			 * object, we can collapse it into the parent.
1734			 */
1735			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1736
1737#if VM_NRESERVLEVEL > 0
1738			/*
1739			 * Break any reservations from backing_object.
1740			 */
1741			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1742				vm_reserv_break_all(backing_object);
1743#endif
1744
1745			/*
1746			 * Move the pager from backing_object to object.
1747			 */
1748			if (backing_object->type == OBJT_SWAP) {
1749				/*
1750				 * swap_pager_copy() can sleep, in which case
1751				 * the backing_object's and object's locks are
1752				 * released and reacquired.
1753				 * Since swap_pager_copy() is being asked to
1754				 * destroy the source, it will change the
1755				 * backing_object's type to OBJT_DEFAULT.
1756				 */
1757				swap_pager_copy(
1758				    backing_object,
1759				    object,
1760				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1761
1762				/*
1763				 * Free any cached pages from backing_object.
1764				 */
1765				if (__predict_false(
1766				    !vm_object_cache_is_empty(backing_object)))
1767					vm_page_cache_free(backing_object, 0, 0);
1768			}
1769			/*
1770			 * Object now shadows whatever backing_object did.
1771			 * Note that the reference to
1772			 * backing_object->backing_object moves from within
1773			 * backing_object to within object.
1774			 */
1775			LIST_REMOVE(object, shadow_list);
1776			backing_object->shadow_count--;
1777			if (backing_object->backing_object) {
1778				VM_OBJECT_WLOCK(backing_object->backing_object);
1779				LIST_REMOVE(backing_object, shadow_list);
1780				LIST_INSERT_HEAD(
1781				    &backing_object->backing_object->shadow_head,
1782				    object, shadow_list);
1783				/*
1784				 * The shadow_count has not changed.
1785				 */
1786				VM_OBJECT_WUNLOCK(backing_object->backing_object);
1787			}
1788			object->backing_object = backing_object->backing_object;
1789			object->backing_object_offset +=
1790			    backing_object->backing_object_offset;
1791
1792			/*
1793			 * Discard backing_object.
1794			 *
1795			 * Since the backing object has no pages, no pager left,
1796			 * and no object references within it, all that is
1797			 * necessary is to dispose of it.
1798			 */
1799			KASSERT(backing_object->ref_count == 1, (
1800"backing_object %p was somehow re-referenced during collapse!",
1801			    backing_object));
1802			vm_object_pip_wakeup(backing_object);
1803			backing_object->type = OBJT_DEAD;
1804			backing_object->ref_count = 0;
1805			VM_OBJECT_WUNLOCK(backing_object);
1806			vm_object_destroy(backing_object);
1807
1808			vm_object_pip_wakeup(object);
1809			object_collapses++;
1810		} else {
1811			/*
1812			 * If we do not entirely shadow the backing object,
1813			 * there is nothing we can do so we give up.
1814			 */
1815			if (object->resident_page_count != object->size &&
1816			    !vm_object_backing_scan(object,
1817			    OBSC_TEST_ALL_SHADOWED)) {
1818				VM_OBJECT_WUNLOCK(backing_object);
1819				break;
1820			}
1821
1822			/*
1823			 * Make the parent shadow the next object in the
1824			 * chain.  Deallocating backing_object will not remove
1825			 * it, since its reference count is at least 2.
1826			 */
1827			LIST_REMOVE(object, shadow_list);
1828			backing_object->shadow_count--;
1829
1830			new_backing_object = backing_object->backing_object;
1831			if ((object->backing_object = new_backing_object) != NULL) {
1832				VM_OBJECT_WLOCK(new_backing_object);
1833				LIST_INSERT_HEAD(
1834				    &new_backing_object->shadow_head,
1835				    object,
1836				    shadow_list
1837				);
1838				new_backing_object->shadow_count++;
1839				vm_object_reference_locked(new_backing_object);
1840				VM_OBJECT_WUNLOCK(new_backing_object);
1841				object->backing_object_offset +=
1842					backing_object->backing_object_offset;
1843			}
1844
1845			/*
1846			 * Drop the reference count on backing_object. Since
1847			 * its ref_count was at least 2, it will not vanish.
1848			 */
1849			backing_object->ref_count--;
1850			VM_OBJECT_WUNLOCK(backing_object);
1851			object_bypasses++;
1852		}
1853
1854		/*
1855		 * Try again with this object's new backing object.
1856		 */
1857	}
1858}
1859
1860/*
1861 *	vm_object_page_remove:
1862 *
1863 *	For the given object, either frees or invalidates each of the
1864 *	specified pages.  In general, a page is freed.  However, if a page is
1865 *	wired for any reason other than the existence of a managed, wired
1866 *	mapping, then it may be invalidated but not removed from the object.
1867 *	Pages are specified by the given range ["start", "end") and the option
1868 *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1869 *	extends from "start" to the end of the object.  If the option
1870 *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1871 *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1872 *	specified, then the pages within the specified range must have no
1873 *	mappings.  Otherwise, if this option is not specified, any mappings to
1874 *	the specified pages are removed before the pages are freed or
1875 *	invalidated.
1876 *
1877 *	In general, this operation should only be performed on objects that
1878 *	contain managed pages.  There are, however, two exceptions.  First, it
1879 *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1880 *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1881 *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1882 *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1883 *
1884 *	The object must be locked.
1885 */
1886void
1887vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1888    int options)
1889{
1890	vm_page_t p, next;
1891
1892	VM_OBJECT_ASSERT_WLOCKED(object);
1893	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1894	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1895	    ("vm_object_page_remove: illegal options for object %p", object));
1896	if (object->resident_page_count == 0)
1897		goto skipmemq;
1898	vm_object_pip_add(object, 1);
1899again:
1900	p = vm_page_find_least(object, start);
1901
1902	/*
1903	 * Here, the variable "p" is either (1) the page with the least pindex
1904	 * greater than or equal to the parameter "start" or (2) NULL.
1905	 */
1906	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1907		next = TAILQ_NEXT(p, listq);
1908
1909		/*
1910		 * If the page is wired for any reason besides the existence
1911		 * of managed, wired mappings, then it cannot be freed.  For
1912		 * example, fictitious pages, which represent device memory,
1913		 * are inherently wired and cannot be freed.  They can,
1914		 * however, be invalidated if the option OBJPR_CLEANONLY is
1915		 * not specified.
1916		 */
1917		vm_page_lock(p);
1918		if (vm_page_xbusied(p)) {
1919			VM_OBJECT_WUNLOCK(object);
1920			vm_page_busy_sleep(p, "vmopax", true);
1921			VM_OBJECT_WLOCK(object);
1922			goto again;
1923		}
1924		if (p->wire_count != 0) {
1925			if ((options & OBJPR_NOTMAPPED) == 0)
1926				pmap_remove_all(p);
1927			if ((options & OBJPR_CLEANONLY) == 0) {
1928				p->valid = 0;
1929				vm_page_undirty(p);
1930			}
1931			goto next;
1932		}
1933		if (vm_page_busied(p)) {
1934			VM_OBJECT_WUNLOCK(object);
1935			vm_page_busy_sleep(p, "vmopar", false);
1936			VM_OBJECT_WLOCK(object);
1937			goto again;
1938		}
1939		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1940		    ("vm_object_page_remove: page %p is fictitious", p));
1941		if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1942			if ((options & OBJPR_NOTMAPPED) == 0)
1943				pmap_remove_write(p);
1944			if (p->dirty)
1945				goto next;
1946		}
1947		if ((options & OBJPR_NOTMAPPED) == 0)
1948			pmap_remove_all(p);
1949		vm_page_free(p);
1950next:
1951		vm_page_unlock(p);
1952	}
1953	vm_object_pip_wakeup(object);
1954skipmemq:
1955	if (__predict_false(!vm_object_cache_is_empty(object)))
1956		vm_page_cache_free(object, start, end);
1957}
1958
1959/*
1960 *	vm_object_page_cache:
1961 *
1962 *	For the given object, attempt to move the specified clean
1963 *	pages to the cache queue.  If a page is wired for any reason,
1964 *	then it will not be changed.  Pages are specified by the given
1965 *	range ["start", "end").  As a special case, if "end" is zero,
1966 *	then the range extends from "start" to the end of the object.
1967 *	Any mappings to the specified pages are removed before the
1968 *	pages are moved to the cache queue.
1969 *
1970 *	This operation should only be performed on objects that
1971 *	contain non-fictitious, managed pages.
1972 *
1973 *	The object must be locked.
1974 */
1975void
1976vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1977{
1978	struct mtx *mtx, *new_mtx;
1979	vm_page_t p, next;
1980
1981	VM_OBJECT_ASSERT_WLOCKED(object);
1982	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
1983	    ("vm_object_page_cache: illegal object %p", object));
1984	if (object->resident_page_count == 0)
1985		return;
1986	p = vm_page_find_least(object, start);
1987
1988	/*
1989	 * Here, the variable "p" is either (1) the page with the least pindex
1990	 * greater than or equal to the parameter "start" or (2) NULL.
1991	 */
1992	mtx = NULL;
1993	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1994		next = TAILQ_NEXT(p, listq);
1995
1996		/*
1997		 * Avoid releasing and reacquiring the same page lock.
1998		 */
1999		new_mtx = vm_page_lockptr(p);
2000		if (mtx != new_mtx) {
2001			if (mtx != NULL)
2002				mtx_unlock(mtx);
2003			mtx = new_mtx;
2004			mtx_lock(mtx);
2005		}
2006		vm_page_try_to_cache(p);
2007	}
2008	if (mtx != NULL)
2009		mtx_unlock(mtx);
2010}
2011
2012/*
2013 *	Populate the specified range of the object with valid pages.  Returns
2014 *	TRUE if the range is successfully populated and FALSE otherwise.
2015 *
2016 *	Note: This function should be optimized to pass a larger array of
2017 *	pages to vm_pager_get_pages() before it is applied to a non-
2018 *	OBJT_DEVICE object.
2019 *
2020 *	The object must be locked.
2021 */
2022boolean_t
2023vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2024{
2025	vm_page_t m, ma[1];
2026	vm_pindex_t pindex;
2027	int rv;
2028
2029	VM_OBJECT_ASSERT_WLOCKED(object);
2030	for (pindex = start; pindex < end; pindex++) {
2031		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2032		if (m->valid != VM_PAGE_BITS_ALL) {
2033			ma[0] = m;
2034			rv = vm_pager_get_pages(object, ma, 1, 0);
2035			m = vm_page_lookup(object, pindex);
2036			if (m == NULL)
2037				break;
2038			if (rv != VM_PAGER_OK) {
2039				vm_page_lock(m);
2040				vm_page_free(m);
2041				vm_page_unlock(m);
2042				break;
2043			}
2044		}
2045		/*
2046		 * Keep "m" busy because a subsequent iteration may unlock
2047		 * the object.
2048		 */
2049	}
2050	if (pindex > start) {
2051		m = vm_page_lookup(object, start);
2052		while (m != NULL && m->pindex < pindex) {
2053			vm_page_xunbusy(m);
2054			m = TAILQ_NEXT(m, listq);
2055		}
2056	}
2057	return (pindex == end);
2058}
2059
2060/*
2061 *	Routine:	vm_object_coalesce
2062 *	Function:	Coalesces two objects backing up adjoining
2063 *			regions of memory into a single object.
2064 *
2065 *	returns TRUE if objects were combined.
2066 *
2067 *	NOTE:	Only works at the moment if the second object is NULL -
2068 *		if it's not, which object do we lock first?
2069 *
2070 *	Parameters:
2071 *		prev_object	First object to coalesce
2072 *		prev_offset	Offset into prev_object
2073 *		prev_size	Size of reference to prev_object
2074 *		next_size	Size of reference to the second object
2075 *		reserved	Indicator that extension region has
2076 *				swap accounted for
2077 *
2078 *	Conditions:
2079 *	The object must *not* be locked.
2080 */
2081boolean_t
2082vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2083    vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2084{
2085	vm_pindex_t next_pindex;
2086
2087	if (prev_object == NULL)
2088		return (TRUE);
2089	VM_OBJECT_WLOCK(prev_object);
2090	if ((prev_object->type != OBJT_DEFAULT &&
2091	    prev_object->type != OBJT_SWAP) ||
2092	    (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2093		VM_OBJECT_WUNLOCK(prev_object);
2094		return (FALSE);
2095	}
2096
2097	/*
2098	 * Try to collapse the object first
2099	 */
2100	vm_object_collapse(prev_object);
2101
2102	/*
2103	 * Can't coalesce if: . more than one reference . paged out . shadows
2104	 * another object . has a copy elsewhere (any of which mean that the
2105	 * pages not mapped to prev_entry may be in use anyway)
2106	 */
2107	if (prev_object->backing_object != NULL) {
2108		VM_OBJECT_WUNLOCK(prev_object);
2109		return (FALSE);
2110	}
2111
2112	prev_size >>= PAGE_SHIFT;
2113	next_size >>= PAGE_SHIFT;
2114	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2115
2116	if ((prev_object->ref_count > 1) &&
2117	    (prev_object->size != next_pindex)) {
2118		VM_OBJECT_WUNLOCK(prev_object);
2119		return (FALSE);
2120	}
2121
2122	/*
2123	 * Account for the charge.
2124	 */
2125	if (prev_object->cred != NULL) {
2126
2127		/*
2128		 * If prev_object was charged, then this mapping,
2129		 * althought not charged now, may become writable
2130		 * later. Non-NULL cred in the object would prevent
2131		 * swap reservation during enabling of the write
2132		 * access, so reserve swap now. Failed reservation
2133		 * cause allocation of the separate object for the map
2134		 * entry, and swap reservation for this entry is
2135		 * managed in appropriate time.
2136		 */
2137		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2138		    prev_object->cred)) {
2139			VM_OBJECT_WUNLOCK(prev_object);
2140			return (FALSE);
2141		}
2142		prev_object->charge += ptoa(next_size);
2143	}
2144
2145	/*
2146	 * Remove any pages that may still be in the object from a previous
2147	 * deallocation.
2148	 */
2149	if (next_pindex < prev_object->size) {
2150		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2151		    next_size, 0);
2152		if (prev_object->type == OBJT_SWAP)
2153			swap_pager_freespace(prev_object,
2154					     next_pindex, next_size);
2155#if 0
2156		if (prev_object->cred != NULL) {
2157			KASSERT(prev_object->charge >=
2158			    ptoa(prev_object->size - next_pindex),
2159			    ("object %p overcharged 1 %jx %jx", prev_object,
2160				(uintmax_t)next_pindex, (uintmax_t)next_size));
2161			prev_object->charge -= ptoa(prev_object->size -
2162			    next_pindex);
2163		}
2164#endif
2165	}
2166
2167	/*
2168	 * Extend the object if necessary.
2169	 */
2170	if (next_pindex + next_size > prev_object->size)
2171		prev_object->size = next_pindex + next_size;
2172
2173	VM_OBJECT_WUNLOCK(prev_object);
2174	return (TRUE);
2175}
2176
2177void
2178vm_object_set_writeable_dirty(vm_object_t object)
2179{
2180
2181	VM_OBJECT_ASSERT_WLOCKED(object);
2182	if (object->type != OBJT_VNODE) {
2183		if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2184			KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2185			vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2186		}
2187		return;
2188	}
2189	object->generation++;
2190	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2191		return;
2192	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2193}
2194
2195/*
2196 *	vm_object_unwire:
2197 *
2198 *	For each page offset within the specified range of the given object,
2199 *	find the highest-level page in the shadow chain and unwire it.  A page
2200 *	must exist at every page offset, and the highest-level page must be
2201 *	wired.
2202 */
2203void
2204vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2205    uint8_t queue)
2206{
2207	vm_object_t tobject;
2208	vm_page_t m, tm;
2209	vm_pindex_t end_pindex, pindex, tpindex;
2210	int depth, locked_depth;
2211
2212	KASSERT((offset & PAGE_MASK) == 0,
2213	    ("vm_object_unwire: offset is not page aligned"));
2214	KASSERT((length & PAGE_MASK) == 0,
2215	    ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2216	/* The wired count of a fictitious page never changes. */
2217	if ((object->flags & OBJ_FICTITIOUS) != 0)
2218		return;
2219	pindex = OFF_TO_IDX(offset);
2220	end_pindex = pindex + atop(length);
2221	locked_depth = 1;
2222	VM_OBJECT_RLOCK(object);
2223	m = vm_page_find_least(object, pindex);
2224	while (pindex < end_pindex) {
2225		if (m == NULL || pindex < m->pindex) {
2226			/*
2227			 * The first object in the shadow chain doesn't
2228			 * contain a page at the current index.  Therefore,
2229			 * the page must exist in a backing object.
2230			 */
2231			tobject = object;
2232			tpindex = pindex;
2233			depth = 0;
2234			do {
2235				tpindex +=
2236				    OFF_TO_IDX(tobject->backing_object_offset);
2237				tobject = tobject->backing_object;
2238				KASSERT(tobject != NULL,
2239				    ("vm_object_unwire: missing page"));
2240				if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2241					goto next_page;
2242				depth++;
2243				if (depth == locked_depth) {
2244					locked_depth++;
2245					VM_OBJECT_RLOCK(tobject);
2246				}
2247			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
2248			    NULL);
2249		} else {
2250			tm = m;
2251			m = TAILQ_NEXT(m, listq);
2252		}
2253		vm_page_lock(tm);
2254		vm_page_unwire(tm, queue);
2255		vm_page_unlock(tm);
2256next_page:
2257		pindex++;
2258	}
2259	/* Release the accumulated object locks. */
2260	for (depth = 0; depth < locked_depth; depth++) {
2261		tobject = object->backing_object;
2262		VM_OBJECT_RUNLOCK(object);
2263		object = tobject;
2264	}
2265}
2266
2267struct vnode *
2268vm_object_vnode(vm_object_t object)
2269{
2270
2271	VM_OBJECT_ASSERT_LOCKED(object);
2272	if (object->type == OBJT_VNODE)
2273		return (object->handle);
2274	if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
2275		return (object->un_pager.swp.swp_tmpfs);
2276	return (NULL);
2277}
2278
2279static int
2280sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2281{
2282	struct kinfo_vmobject *kvo;
2283	char *fullpath, *freepath;
2284	struct vnode *vp;
2285	struct vattr va;
2286	vm_object_t obj;
2287	vm_page_t m;
2288	int count, error;
2289
2290	if (req->oldptr == NULL) {
2291		/*
2292		 * If an old buffer has not been provided, generate an
2293		 * estimate of the space needed for a subsequent call.
2294		 */
2295		mtx_lock(&vm_object_list_mtx);
2296		count = 0;
2297		TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2298			if (obj->type == OBJT_DEAD)
2299				continue;
2300			count++;
2301		}
2302		mtx_unlock(&vm_object_list_mtx);
2303		return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2304		    count * 11 / 10));
2305	}
2306
2307	kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2308	error = 0;
2309
2310	/*
2311	 * VM objects are type stable and are never removed from the
2312	 * list once added.  This allows us to safely read obj->object_list
2313	 * after reacquiring the VM object lock.
2314	 */
2315	mtx_lock(&vm_object_list_mtx);
2316	TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2317		if (obj->type == OBJT_DEAD)
2318			continue;
2319		VM_OBJECT_RLOCK(obj);
2320		if (obj->type == OBJT_DEAD) {
2321			VM_OBJECT_RUNLOCK(obj);
2322			continue;
2323		}
2324		mtx_unlock(&vm_object_list_mtx);
2325		kvo->kvo_size = ptoa(obj->size);
2326		kvo->kvo_resident = obj->resident_page_count;
2327		kvo->kvo_ref_count = obj->ref_count;
2328		kvo->kvo_shadow_count = obj->shadow_count;
2329		kvo->kvo_memattr = obj->memattr;
2330		kvo->kvo_active = 0;
2331		kvo->kvo_inactive = 0;
2332		TAILQ_FOREACH(m, &obj->memq, listq) {
2333			/*
2334			 * A page may belong to the object but be
2335			 * dequeued and set to PQ_NONE while the
2336			 * object lock is not held.  This makes the
2337			 * reads of m->queue below racy, and we do not
2338			 * count pages set to PQ_NONE.  However, this
2339			 * sysctl is only meant to give an
2340			 * approximation of the system anyway.
2341			 */
2342			if (m->queue == PQ_ACTIVE)
2343				kvo->kvo_active++;
2344			else if (m->queue == PQ_INACTIVE)
2345				kvo->kvo_inactive++;
2346		}
2347
2348		kvo->kvo_vn_fileid = 0;
2349		kvo->kvo_vn_fsid = 0;
2350		freepath = NULL;
2351		fullpath = "";
2352		vp = NULL;
2353		switch (obj->type) {
2354		case OBJT_DEFAULT:
2355			kvo->kvo_type = KVME_TYPE_DEFAULT;
2356			break;
2357		case OBJT_VNODE:
2358			kvo->kvo_type = KVME_TYPE_VNODE;
2359			vp = obj->handle;
2360			vref(vp);
2361			break;
2362		case OBJT_SWAP:
2363			kvo->kvo_type = KVME_TYPE_SWAP;
2364			break;
2365		case OBJT_DEVICE:
2366			kvo->kvo_type = KVME_TYPE_DEVICE;
2367			break;
2368		case OBJT_PHYS:
2369			kvo->kvo_type = KVME_TYPE_PHYS;
2370			break;
2371		case OBJT_DEAD:
2372			kvo->kvo_type = KVME_TYPE_DEAD;
2373			break;
2374		case OBJT_SG:
2375			kvo->kvo_type = KVME_TYPE_SG;
2376			break;
2377		case OBJT_MGTDEVICE:
2378			kvo->kvo_type = KVME_TYPE_MGTDEVICE;
2379			break;
2380		default:
2381			kvo->kvo_type = KVME_TYPE_UNKNOWN;
2382			break;
2383		}
2384		VM_OBJECT_RUNLOCK(obj);
2385		if (vp != NULL) {
2386			vn_fullpath(curthread, vp, &fullpath, &freepath);
2387			vn_lock(vp, LK_SHARED | LK_RETRY);
2388			if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2389				kvo->kvo_vn_fileid = va.va_fileid;
2390				kvo->kvo_vn_fsid = va.va_fsid;
2391			}
2392			vput(vp);
2393		}
2394
2395		strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2396		if (freepath != NULL)
2397			free(freepath, M_TEMP);
2398
2399		/* Pack record size down */
2400		kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2401		    + strlen(kvo->kvo_path) + 1;
2402		kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2403		    sizeof(uint64_t));
2404		error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2405		mtx_lock(&vm_object_list_mtx);
2406		if (error)
2407			break;
2408	}
2409	mtx_unlock(&vm_object_list_mtx);
2410	free(kvo, M_TEMP);
2411	return (error);
2412}
2413SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2414    CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2415    "List of VM objects");
2416
2417#include "opt_ddb.h"
2418#ifdef DDB
2419#include <sys/kernel.h>
2420
2421#include <sys/cons.h>
2422
2423#include <ddb/ddb.h>
2424
2425static int
2426_vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2427{
2428	vm_map_t tmpm;
2429	vm_map_entry_t tmpe;
2430	vm_object_t obj;
2431	int entcount;
2432
2433	if (map == 0)
2434		return 0;
2435
2436	if (entry == 0) {
2437		tmpe = map->header.next;
2438		entcount = map->nentries;
2439		while (entcount-- && (tmpe != &map->header)) {
2440			if (_vm_object_in_map(map, object, tmpe)) {
2441				return 1;
2442			}
2443			tmpe = tmpe->next;
2444		}
2445	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2446		tmpm = entry->object.sub_map;
2447		tmpe = tmpm->header.next;
2448		entcount = tmpm->nentries;
2449		while (entcount-- && tmpe != &tmpm->header) {
2450			if (_vm_object_in_map(tmpm, object, tmpe)) {
2451				return 1;
2452			}
2453			tmpe = tmpe->next;
2454		}
2455	} else if ((obj = entry->object.vm_object) != NULL) {
2456		for (; obj; obj = obj->backing_object)
2457			if (obj == object) {
2458				return 1;
2459			}
2460	}
2461	return 0;
2462}
2463
2464static int
2465vm_object_in_map(vm_object_t object)
2466{
2467	struct proc *p;
2468
2469	/* sx_slock(&allproc_lock); */
2470	FOREACH_PROC_IN_SYSTEM(p) {
2471		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2472			continue;
2473		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2474			/* sx_sunlock(&allproc_lock); */
2475			return 1;
2476		}
2477	}
2478	/* sx_sunlock(&allproc_lock); */
2479	if (_vm_object_in_map(kernel_map, object, 0))
2480		return 1;
2481	return 0;
2482}
2483
2484DB_SHOW_COMMAND(vmochk, vm_object_check)
2485{
2486	vm_object_t object;
2487
2488	/*
2489	 * make sure that internal objs are in a map somewhere
2490	 * and none have zero ref counts.
2491	 */
2492	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2493		if (object->handle == NULL &&
2494		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2495			if (object->ref_count == 0) {
2496				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2497					(long)object->size);
2498			}
2499			if (!vm_object_in_map(object)) {
2500				db_printf(
2501			"vmochk: internal obj is not in a map: "
2502			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2503				    object->ref_count, (u_long)object->size,
2504				    (u_long)object->size,
2505				    (void *)object->backing_object);
2506			}
2507		}
2508	}
2509}
2510
2511/*
2512 *	vm_object_print:	[ debug ]
2513 */
2514DB_SHOW_COMMAND(object, vm_object_print_static)
2515{
2516	/* XXX convert args. */
2517	vm_object_t object = (vm_object_t)addr;
2518	boolean_t full = have_addr;
2519
2520	vm_page_t p;
2521
2522	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2523#define	count	was_count
2524
2525	int count;
2526
2527	if (object == NULL)
2528		return;
2529
2530	db_iprintf(
2531	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2532	    object, (int)object->type, (uintmax_t)object->size,
2533	    object->resident_page_count, object->ref_count, object->flags,
2534	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2535	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2536	    object->shadow_count,
2537	    object->backing_object ? object->backing_object->ref_count : 0,
2538	    object->backing_object, (uintmax_t)object->backing_object_offset);
2539
2540	if (!full)
2541		return;
2542
2543	db_indent += 2;
2544	count = 0;
2545	TAILQ_FOREACH(p, &object->memq, listq) {
2546		if (count == 0)
2547			db_iprintf("memory:=");
2548		else if (count == 6) {
2549			db_printf("\n");
2550			db_iprintf(" ...");
2551			count = 0;
2552		} else
2553			db_printf(",");
2554		count++;
2555
2556		db_printf("(off=0x%jx,page=0x%jx)",
2557		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2558	}
2559	if (count != 0)
2560		db_printf("\n");
2561	db_indent -= 2;
2562}
2563
2564/* XXX. */
2565#undef count
2566
2567/* XXX need this non-static entry for calling from vm_map_print. */
2568void
2569vm_object_print(
2570        /* db_expr_t */ long addr,
2571	boolean_t have_addr,
2572	/* db_expr_t */ long count,
2573	char *modif)
2574{
2575	vm_object_print_static(addr, have_addr, count, modif);
2576}
2577
2578DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2579{
2580	vm_object_t object;
2581	vm_pindex_t fidx;
2582	vm_paddr_t pa;
2583	vm_page_t m, prev_m;
2584	int rcount, nl, c;
2585
2586	nl = 0;
2587	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2588		db_printf("new object: %p\n", (void *)object);
2589		if (nl > 18) {
2590			c = cngetc();
2591			if (c != ' ')
2592				return;
2593			nl = 0;
2594		}
2595		nl++;
2596		rcount = 0;
2597		fidx = 0;
2598		pa = -1;
2599		TAILQ_FOREACH(m, &object->memq, listq) {
2600			if (m->pindex > 128)
2601				break;
2602			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2603			    prev_m->pindex + 1 != m->pindex) {
2604				if (rcount) {
2605					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2606						(long)fidx, rcount, (long)pa);
2607					if (nl > 18) {
2608						c = cngetc();
2609						if (c != ' ')
2610							return;
2611						nl = 0;
2612					}
2613					nl++;
2614					rcount = 0;
2615				}
2616			}
2617			if (rcount &&
2618				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2619				++rcount;
2620				continue;
2621			}
2622			if (rcount) {
2623				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2624					(long)fidx, rcount, (long)pa);
2625				if (nl > 18) {
2626					c = cngetc();
2627					if (c != ' ')
2628						return;
2629					nl = 0;
2630				}
2631				nl++;
2632			}
2633			fidx = m->pindex;
2634			pa = VM_PAGE_TO_PHYS(m);
2635			rcount = 1;
2636		}
2637		if (rcount) {
2638			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2639				(long)fidx, rcount, (long)pa);
2640			if (nl > 18) {
2641				c = cngetc();
2642				if (c != ' ')
2643					return;
2644				nl = 0;
2645			}
2646			nl++;
2647		}
2648	}
2649}
2650#endif /* DDB */
2651