1/*-
2 * Copyright (c) 2001 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 * POSSIBILITY OF SUCH DAMAGE.
28 */
29/*-
30 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
31 * Copyright (C) 1995, 1996 TooLs GmbH.
32 * All rights reserved.
33 *
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
36 * are met:
37 * 1. Redistributions of source code must retain the above copyright
38 *    notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce the above copyright
40 *    notice, this list of conditions and the following disclaimer in the
41 *    documentation and/or other materials provided with the distribution.
42 * 3. All advertising materials mentioning features or use of this software
43 *    must display the following acknowledgement:
44 *	This product includes software developed by TooLs GmbH.
45 * 4. The name of TooLs GmbH may not be used to endorse or promote products
46 *    derived from this software without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
49 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
50 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
51 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
53 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
54 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
55 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
56 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
57 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
58 *
59 * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
60 */
61/*-
62 * Copyright (C) 2001 Benno Rice.
63 * All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 *    notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 *    notice, this list of conditions and the following disclaimer in the
72 *    documentation and/or other materials provided with the distribution.
73 *
74 * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
75 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
76 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
77 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
78 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
79 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
80 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
81 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
82 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
83 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
84 */
85
86#include <sys/cdefs.h>
87__FBSDID("$FreeBSD$");
88
89/*
90 * Manages physical address maps.
91 *
92 * Since the information managed by this module is also stored by the
93 * logical address mapping module, this module may throw away valid virtual
94 * to physical mappings at almost any time.  However, invalidations of
95 * mappings must be done as requested.
96 *
97 * In order to cope with hardware architectures which make virtual to
98 * physical map invalidates expensive, this module may delay invalidate
99 * reduced protection operations until such time as they are actually
100 * necessary.  This module is given full information as to which processors
101 * are currently using which maps, and to when physical maps must be made
102 * correct.
103 */
104
105#include "opt_kstack_pages.h"
106
107#include <sys/param.h>
108#include <sys/kernel.h>
109#include <sys/queue.h>
110#include <sys/cpuset.h>
111#include <sys/ktr.h>
112#include <sys/lock.h>
113#include <sys/msgbuf.h>
114#include <sys/mutex.h>
115#include <sys/proc.h>
116#include <sys/rwlock.h>
117#include <sys/sched.h>
118#include <sys/sysctl.h>
119#include <sys/systm.h>
120#include <sys/vmmeter.h>
121
122#include <dev/ofw/openfirm.h>
123
124#include <vm/vm.h>
125#include <vm/vm_param.h>
126#include <vm/vm_kern.h>
127#include <vm/vm_page.h>
128#include <vm/vm_map.h>
129#include <vm/vm_object.h>
130#include <vm/vm_extern.h>
131#include <vm/vm_pageout.h>
132#include <vm/uma.h>
133
134#include <machine/cpu.h>
135#include <machine/platform.h>
136#include <machine/bat.h>
137#include <machine/frame.h>
138#include <machine/md_var.h>
139#include <machine/psl.h>
140#include <machine/pte.h>
141#include <machine/smp.h>
142#include <machine/sr.h>
143#include <machine/mmuvar.h>
144#include <machine/trap.h>
145
146#include "mmu_if.h"
147
148#define	MOEA_DEBUG
149
150#define TODO	panic("%s: not implemented", __func__);
151
152#define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
153#define	VSID_TO_SR(vsid)	((vsid) & 0xf)
154#define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
155
156struct ofw_map {
157	vm_offset_t	om_va;
158	vm_size_t	om_len;
159	vm_offset_t	om_pa;
160	u_int		om_mode;
161};
162
163extern unsigned char _etext[];
164extern unsigned char _end[];
165
166extern int dumpsys_minidump;
167
168/*
169 * Map of physical memory regions.
170 */
171static struct	mem_region *regions;
172static struct	mem_region *pregions;
173static u_int    phys_avail_count;
174static int	regions_sz, pregions_sz;
175static struct	ofw_map *translations;
176
177/*
178 * Lock for the pteg and pvo tables.
179 */
180struct mtx	moea_table_mutex;
181struct mtx	moea_vsid_mutex;
182
183/* tlbie instruction synchronization */
184static struct mtx tlbie_mtx;
185
186/*
187 * PTEG data.
188 */
189static struct	pteg *moea_pteg_table;
190u_int		moea_pteg_count;
191u_int		moea_pteg_mask;
192
193/*
194 * PVO data.
195 */
196struct	pvo_head *moea_pvo_table;		/* pvo entries by pteg index */
197struct	pvo_head moea_pvo_kunmanaged =
198    LIST_HEAD_INITIALIZER(moea_pvo_kunmanaged);	/* list of unmanaged pages */
199
200static struct rwlock_padalign pvh_global_lock;
201
202uma_zone_t	moea_upvo_zone;	/* zone for pvo entries for unmanaged pages */
203uma_zone_t	moea_mpvo_zone;	/* zone for pvo entries for managed pages */
204
205#define	BPVO_POOL_SIZE	32768
206static struct	pvo_entry *moea_bpvo_pool;
207static int	moea_bpvo_pool_index = 0;
208
209#define	VSID_NBPW	(sizeof(u_int32_t) * 8)
210static u_int	moea_vsid_bitmap[NPMAPS / VSID_NBPW];
211
212static boolean_t moea_initialized = FALSE;
213
214/*
215 * Statistics.
216 */
217u_int	moea_pte_valid = 0;
218u_int	moea_pte_overflow = 0;
219u_int	moea_pte_replacements = 0;
220u_int	moea_pvo_entries = 0;
221u_int	moea_pvo_enter_calls = 0;
222u_int	moea_pvo_remove_calls = 0;
223u_int	moea_pte_spills = 0;
224SYSCTL_INT(_machdep, OID_AUTO, moea_pte_valid, CTLFLAG_RD, &moea_pte_valid,
225    0, "");
226SYSCTL_INT(_machdep, OID_AUTO, moea_pte_overflow, CTLFLAG_RD,
227    &moea_pte_overflow, 0, "");
228SYSCTL_INT(_machdep, OID_AUTO, moea_pte_replacements, CTLFLAG_RD,
229    &moea_pte_replacements, 0, "");
230SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_entries, CTLFLAG_RD, &moea_pvo_entries,
231    0, "");
232SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_enter_calls, CTLFLAG_RD,
233    &moea_pvo_enter_calls, 0, "");
234SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_remove_calls, CTLFLAG_RD,
235    &moea_pvo_remove_calls, 0, "");
236SYSCTL_INT(_machdep, OID_AUTO, moea_pte_spills, CTLFLAG_RD,
237    &moea_pte_spills, 0, "");
238
239/*
240 * Allocate physical memory for use in moea_bootstrap.
241 */
242static vm_offset_t	moea_bootstrap_alloc(vm_size_t, u_int);
243
244/*
245 * PTE calls.
246 */
247static int		moea_pte_insert(u_int, struct pte *);
248
249/*
250 * PVO calls.
251 */
252static int	moea_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
253		    vm_offset_t, vm_offset_t, u_int, int);
254static void	moea_pvo_remove(struct pvo_entry *, int);
255static struct	pvo_entry *moea_pvo_find_va(pmap_t, vm_offset_t, int *);
256static struct	pte *moea_pvo_to_pte(const struct pvo_entry *, int);
257
258/*
259 * Utility routines.
260 */
261static int		moea_enter_locked(pmap_t, vm_offset_t, vm_page_t,
262			    vm_prot_t, u_int, int8_t);
263static void		moea_syncicache(vm_offset_t, vm_size_t);
264static boolean_t	moea_query_bit(vm_page_t, int);
265static u_int		moea_clear_bit(vm_page_t, int);
266static void		moea_kremove(mmu_t, vm_offset_t);
267int		moea_pte_spill(vm_offset_t);
268
269/*
270 * Kernel MMU interface
271 */
272void moea_clear_modify(mmu_t, vm_page_t);
273void moea_copy_page(mmu_t, vm_page_t, vm_page_t);
274void moea_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
275    vm_page_t *mb, vm_offset_t b_offset, int xfersize);
276int moea_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, u_int,
277    int8_t);
278void moea_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
279    vm_prot_t);
280void moea_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
281vm_paddr_t moea_extract(mmu_t, pmap_t, vm_offset_t);
282vm_page_t moea_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
283void moea_init(mmu_t);
284boolean_t moea_is_modified(mmu_t, vm_page_t);
285boolean_t moea_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
286boolean_t moea_is_referenced(mmu_t, vm_page_t);
287int moea_ts_referenced(mmu_t, vm_page_t);
288vm_offset_t moea_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
289boolean_t moea_page_exists_quick(mmu_t, pmap_t, vm_page_t);
290int moea_page_wired_mappings(mmu_t, vm_page_t);
291void moea_pinit(mmu_t, pmap_t);
292void moea_pinit0(mmu_t, pmap_t);
293void moea_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
294void moea_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
295void moea_qremove(mmu_t, vm_offset_t, int);
296void moea_release(mmu_t, pmap_t);
297void moea_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
298void moea_remove_all(mmu_t, vm_page_t);
299void moea_remove_write(mmu_t, vm_page_t);
300void moea_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
301void moea_zero_page(mmu_t, vm_page_t);
302void moea_zero_page_area(mmu_t, vm_page_t, int, int);
303void moea_zero_page_idle(mmu_t, vm_page_t);
304void moea_activate(mmu_t, struct thread *);
305void moea_deactivate(mmu_t, struct thread *);
306void moea_cpu_bootstrap(mmu_t, int);
307void moea_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
308void *moea_mapdev(mmu_t, vm_paddr_t, vm_size_t);
309void *moea_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
310void moea_unmapdev(mmu_t, vm_offset_t, vm_size_t);
311vm_paddr_t moea_kextract(mmu_t, vm_offset_t);
312void moea_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t);
313void moea_kenter(mmu_t, vm_offset_t, vm_paddr_t);
314void moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma);
315boolean_t moea_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
316static void moea_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
317vm_offset_t moea_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
318    vm_size_t *sz);
319struct pmap_md * moea_scan_md(mmu_t mmu, struct pmap_md *prev);
320
321static mmu_method_t moea_methods[] = {
322	MMUMETHOD(mmu_clear_modify,	moea_clear_modify),
323	MMUMETHOD(mmu_copy_page,	moea_copy_page),
324	MMUMETHOD(mmu_copy_pages,	moea_copy_pages),
325	MMUMETHOD(mmu_enter,		moea_enter),
326	MMUMETHOD(mmu_enter_object,	moea_enter_object),
327	MMUMETHOD(mmu_enter_quick,	moea_enter_quick),
328	MMUMETHOD(mmu_extract,		moea_extract),
329	MMUMETHOD(mmu_extract_and_hold,	moea_extract_and_hold),
330	MMUMETHOD(mmu_init,		moea_init),
331	MMUMETHOD(mmu_is_modified,	moea_is_modified),
332	MMUMETHOD(mmu_is_prefaultable,	moea_is_prefaultable),
333	MMUMETHOD(mmu_is_referenced,	moea_is_referenced),
334	MMUMETHOD(mmu_ts_referenced,	moea_ts_referenced),
335	MMUMETHOD(mmu_map,     		moea_map),
336	MMUMETHOD(mmu_page_exists_quick,moea_page_exists_quick),
337	MMUMETHOD(mmu_page_wired_mappings,moea_page_wired_mappings),
338	MMUMETHOD(mmu_pinit,		moea_pinit),
339	MMUMETHOD(mmu_pinit0,		moea_pinit0),
340	MMUMETHOD(mmu_protect,		moea_protect),
341	MMUMETHOD(mmu_qenter,		moea_qenter),
342	MMUMETHOD(mmu_qremove,		moea_qremove),
343	MMUMETHOD(mmu_release,		moea_release),
344	MMUMETHOD(mmu_remove,		moea_remove),
345	MMUMETHOD(mmu_remove_all,      	moea_remove_all),
346	MMUMETHOD(mmu_remove_write,	moea_remove_write),
347	MMUMETHOD(mmu_sync_icache,	moea_sync_icache),
348	MMUMETHOD(mmu_unwire,		moea_unwire),
349	MMUMETHOD(mmu_zero_page,       	moea_zero_page),
350	MMUMETHOD(mmu_zero_page_area,	moea_zero_page_area),
351	MMUMETHOD(mmu_zero_page_idle,	moea_zero_page_idle),
352	MMUMETHOD(mmu_activate,		moea_activate),
353	MMUMETHOD(mmu_deactivate,      	moea_deactivate),
354	MMUMETHOD(mmu_page_set_memattr,	moea_page_set_memattr),
355
356	/* Internal interfaces */
357	MMUMETHOD(mmu_bootstrap,       	moea_bootstrap),
358	MMUMETHOD(mmu_cpu_bootstrap,   	moea_cpu_bootstrap),
359	MMUMETHOD(mmu_mapdev_attr,	moea_mapdev_attr),
360	MMUMETHOD(mmu_mapdev,		moea_mapdev),
361	MMUMETHOD(mmu_unmapdev,		moea_unmapdev),
362	MMUMETHOD(mmu_kextract,		moea_kextract),
363	MMUMETHOD(mmu_kenter,		moea_kenter),
364	MMUMETHOD(mmu_kenter_attr,	moea_kenter_attr),
365	MMUMETHOD(mmu_dev_direct_mapped,moea_dev_direct_mapped),
366	MMUMETHOD(mmu_scan_md,		moea_scan_md),
367	MMUMETHOD(mmu_dumpsys_map,	moea_dumpsys_map),
368
369	{ 0, 0 }
370};
371
372MMU_DEF(oea_mmu, MMU_TYPE_OEA, moea_methods, 0);
373
374static __inline uint32_t
375moea_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
376{
377	uint32_t pte_lo;
378	int i;
379
380	if (ma != VM_MEMATTR_DEFAULT) {
381		switch (ma) {
382		case VM_MEMATTR_UNCACHEABLE:
383			return (PTE_I | PTE_G);
384		case VM_MEMATTR_WRITE_COMBINING:
385		case VM_MEMATTR_WRITE_BACK:
386		case VM_MEMATTR_PREFETCHABLE:
387			return (PTE_I);
388		case VM_MEMATTR_WRITE_THROUGH:
389			return (PTE_W | PTE_M);
390		}
391	}
392
393	/*
394	 * Assume the page is cache inhibited and access is guarded unless
395	 * it's in our available memory array.
396	 */
397	pte_lo = PTE_I | PTE_G;
398	for (i = 0; i < pregions_sz; i++) {
399		if ((pa >= pregions[i].mr_start) &&
400		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
401			pte_lo = PTE_M;
402			break;
403		}
404	}
405
406	return pte_lo;
407}
408
409static void
410tlbie(vm_offset_t va)
411{
412
413	mtx_lock_spin(&tlbie_mtx);
414	__asm __volatile("ptesync");
415	__asm __volatile("tlbie %0" :: "r"(va));
416	__asm __volatile("eieio; tlbsync; ptesync");
417	mtx_unlock_spin(&tlbie_mtx);
418}
419
420static void
421tlbia(void)
422{
423	vm_offset_t va;
424
425	for (va = 0; va < 0x00040000; va += 0x00001000) {
426		__asm __volatile("tlbie %0" :: "r"(va));
427		powerpc_sync();
428	}
429	__asm __volatile("tlbsync");
430	powerpc_sync();
431}
432
433static __inline int
434va_to_sr(u_int *sr, vm_offset_t va)
435{
436	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
437}
438
439static __inline u_int
440va_to_pteg(u_int sr, vm_offset_t addr)
441{
442	u_int hash;
443
444	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
445	    ADDR_PIDX_SHFT);
446	return (hash & moea_pteg_mask);
447}
448
449static __inline struct pvo_head *
450vm_page_to_pvoh(vm_page_t m)
451{
452
453	return (&m->md.mdpg_pvoh);
454}
455
456static __inline void
457moea_attr_clear(vm_page_t m, int ptebit)
458{
459
460	rw_assert(&pvh_global_lock, RA_WLOCKED);
461	m->md.mdpg_attrs &= ~ptebit;
462}
463
464static __inline int
465moea_attr_fetch(vm_page_t m)
466{
467
468	return (m->md.mdpg_attrs);
469}
470
471static __inline void
472moea_attr_save(vm_page_t m, int ptebit)
473{
474
475	rw_assert(&pvh_global_lock, RA_WLOCKED);
476	m->md.mdpg_attrs |= ptebit;
477}
478
479static __inline int
480moea_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
481{
482	if (pt->pte_hi == pvo_pt->pte_hi)
483		return (1);
484
485	return (0);
486}
487
488static __inline int
489moea_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
490{
491	return (pt->pte_hi & ~PTE_VALID) ==
492	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
493	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
494}
495
496static __inline void
497moea_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
498{
499
500	mtx_assert(&moea_table_mutex, MA_OWNED);
501
502	/*
503	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
504	 * set when the real pte is set in memory.
505	 *
506	 * Note: Don't set the valid bit for correct operation of tlb update.
507	 */
508	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
509	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
510	pt->pte_lo = pte_lo;
511}
512
513static __inline void
514moea_pte_synch(struct pte *pt, struct pte *pvo_pt)
515{
516
517	mtx_assert(&moea_table_mutex, MA_OWNED);
518	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
519}
520
521static __inline void
522moea_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
523{
524
525	mtx_assert(&moea_table_mutex, MA_OWNED);
526
527	/*
528	 * As shown in Section 7.6.3.2.3
529	 */
530	pt->pte_lo &= ~ptebit;
531	tlbie(va);
532}
533
534static __inline void
535moea_pte_set(struct pte *pt, struct pte *pvo_pt)
536{
537
538	mtx_assert(&moea_table_mutex, MA_OWNED);
539	pvo_pt->pte_hi |= PTE_VALID;
540
541	/*
542	 * Update the PTE as defined in section 7.6.3.1.
543	 * Note that the REF/CHG bits are from pvo_pt and thus should have
544	 * been saved so this routine can restore them (if desired).
545	 */
546	pt->pte_lo = pvo_pt->pte_lo;
547	powerpc_sync();
548	pt->pte_hi = pvo_pt->pte_hi;
549	powerpc_sync();
550	moea_pte_valid++;
551}
552
553static __inline void
554moea_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
555{
556
557	mtx_assert(&moea_table_mutex, MA_OWNED);
558	pvo_pt->pte_hi &= ~PTE_VALID;
559
560	/*
561	 * Force the reg & chg bits back into the PTEs.
562	 */
563	powerpc_sync();
564
565	/*
566	 * Invalidate the pte.
567	 */
568	pt->pte_hi &= ~PTE_VALID;
569
570	tlbie(va);
571
572	/*
573	 * Save the reg & chg bits.
574	 */
575	moea_pte_synch(pt, pvo_pt);
576	moea_pte_valid--;
577}
578
579static __inline void
580moea_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
581{
582
583	/*
584	 * Invalidate the PTE
585	 */
586	moea_pte_unset(pt, pvo_pt, va);
587	moea_pte_set(pt, pvo_pt);
588}
589
590/*
591 * Quick sort callout for comparing memory regions.
592 */
593static int	om_cmp(const void *a, const void *b);
594
595static int
596om_cmp(const void *a, const void *b)
597{
598	const struct	ofw_map *mapa;
599	const struct	ofw_map *mapb;
600
601	mapa = a;
602	mapb = b;
603	if (mapa->om_pa < mapb->om_pa)
604		return (-1);
605	else if (mapa->om_pa > mapb->om_pa)
606		return (1);
607	else
608		return (0);
609}
610
611void
612moea_cpu_bootstrap(mmu_t mmup, int ap)
613{
614	u_int sdr;
615	int i;
616
617	if (ap) {
618		powerpc_sync();
619		__asm __volatile("mtdbatu 0,%0" :: "r"(battable[0].batu));
620		__asm __volatile("mtdbatl 0,%0" :: "r"(battable[0].batl));
621		isync();
622		__asm __volatile("mtibatu 0,%0" :: "r"(battable[0].batu));
623		__asm __volatile("mtibatl 0,%0" :: "r"(battable[0].batl));
624		isync();
625	}
626
627#ifdef WII
628	/*
629	 * Special case for the Wii: don't install the PCI BAT.
630	 */
631	if (strcmp(installed_platform(), "wii") != 0) {
632#endif
633		__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
634		__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
635#ifdef WII
636	}
637#endif
638	isync();
639
640	__asm __volatile("mtibatu 1,%0" :: "r"(0));
641	__asm __volatile("mtdbatu 2,%0" :: "r"(0));
642	__asm __volatile("mtibatu 2,%0" :: "r"(0));
643	__asm __volatile("mtdbatu 3,%0" :: "r"(0));
644	__asm __volatile("mtibatu 3,%0" :: "r"(0));
645	isync();
646
647	for (i = 0; i < 16; i++)
648		mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]);
649	powerpc_sync();
650
651	sdr = (u_int)moea_pteg_table | (moea_pteg_mask >> 10);
652	__asm __volatile("mtsdr1 %0" :: "r"(sdr));
653	isync();
654
655	tlbia();
656}
657
658void
659moea_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
660{
661	ihandle_t	mmui;
662	phandle_t	chosen, mmu;
663	int		sz;
664	int		i, j;
665	vm_size_t	size, physsz, hwphyssz;
666	vm_offset_t	pa, va, off;
667	void		*dpcpu;
668	register_t	msr;
669
670        /*
671         * Set up BAT0 to map the lowest 256 MB area
672         */
673        battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
674        battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
675
676	/*
677	 * Map PCI memory space.
678	 */
679	battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
680	battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
681
682	battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
683	battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
684
685	battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
686	battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
687
688	battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
689	battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
690
691	/*
692	 * Map obio devices.
693	 */
694	battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
695	battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
696
697	/*
698	 * Use an IBAT and a DBAT to map the bottom segment of memory
699	 * where we are. Turn off instruction relocation temporarily
700	 * to prevent faults while reprogramming the IBAT.
701	 */
702	msr = mfmsr();
703	mtmsr(msr & ~PSL_IR);
704	__asm (".balign 32; \n"
705	       "mtibatu 0,%0; mtibatl 0,%1; isync; \n"
706	       "mtdbatu 0,%0; mtdbatl 0,%1; isync"
707	    :: "r"(battable[0].batu), "r"(battable[0].batl));
708	mtmsr(msr);
709
710#ifdef WII
711        if (strcmp(installed_platform(), "wii") != 0) {
712#endif
713		/* map pci space */
714		__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
715		__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
716#ifdef WII
717	}
718#endif
719	isync();
720
721	/* set global direct map flag */
722	hw_direct_map = 1;
723
724	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
725	CTR0(KTR_PMAP, "moea_bootstrap: physical memory");
726
727	for (i = 0; i < pregions_sz; i++) {
728		vm_offset_t pa;
729		vm_offset_t end;
730
731		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
732			pregions[i].mr_start,
733			pregions[i].mr_start + pregions[i].mr_size,
734			pregions[i].mr_size);
735		/*
736		 * Install entries into the BAT table to allow all
737		 * of physmem to be convered by on-demand BAT entries.
738		 * The loop will sometimes set the same battable element
739		 * twice, but that's fine since they won't be used for
740		 * a while yet.
741		 */
742		pa = pregions[i].mr_start & 0xf0000000;
743		end = pregions[i].mr_start + pregions[i].mr_size;
744		do {
745                        u_int n = pa >> ADDR_SR_SHFT;
746
747			battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
748			battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
749			pa += SEGMENT_LENGTH;
750		} while (pa < end);
751	}
752
753	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
754		panic("moea_bootstrap: phys_avail too small");
755
756	phys_avail_count = 0;
757	physsz = 0;
758	hwphyssz = 0;
759	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
760	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
761		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
762		    regions[i].mr_start + regions[i].mr_size,
763		    regions[i].mr_size);
764		if (hwphyssz != 0 &&
765		    (physsz + regions[i].mr_size) >= hwphyssz) {
766			if (physsz < hwphyssz) {
767				phys_avail[j] = regions[i].mr_start;
768				phys_avail[j + 1] = regions[i].mr_start +
769				    hwphyssz - physsz;
770				physsz = hwphyssz;
771				phys_avail_count++;
772			}
773			break;
774		}
775		phys_avail[j] = regions[i].mr_start;
776		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
777		phys_avail_count++;
778		physsz += regions[i].mr_size;
779	}
780
781	/* Check for overlap with the kernel and exception vectors */
782	for (j = 0; j < 2*phys_avail_count; j+=2) {
783		if (phys_avail[j] < EXC_LAST)
784			phys_avail[j] += EXC_LAST;
785
786		if (kernelstart >= phys_avail[j] &&
787		    kernelstart < phys_avail[j+1]) {
788			if (kernelend < phys_avail[j+1]) {
789				phys_avail[2*phys_avail_count] =
790				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
791				phys_avail[2*phys_avail_count + 1] =
792				    phys_avail[j+1];
793				phys_avail_count++;
794			}
795
796			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
797		}
798
799		if (kernelend >= phys_avail[j] &&
800		    kernelend < phys_avail[j+1]) {
801			if (kernelstart > phys_avail[j]) {
802				phys_avail[2*phys_avail_count] = phys_avail[j];
803				phys_avail[2*phys_avail_count + 1] =
804				    kernelstart & ~PAGE_MASK;
805				phys_avail_count++;
806			}
807
808			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
809		}
810	}
811
812	physmem = btoc(physsz);
813
814	/*
815	 * Allocate PTEG table.
816	 */
817#ifdef PTEGCOUNT
818	moea_pteg_count = PTEGCOUNT;
819#else
820	moea_pteg_count = 0x1000;
821
822	while (moea_pteg_count < physmem)
823		moea_pteg_count <<= 1;
824
825	moea_pteg_count >>= 1;
826#endif /* PTEGCOUNT */
827
828	size = moea_pteg_count * sizeof(struct pteg);
829	CTR2(KTR_PMAP, "moea_bootstrap: %d PTEGs, %d bytes", moea_pteg_count,
830	    size);
831	moea_pteg_table = (struct pteg *)moea_bootstrap_alloc(size, size);
832	CTR1(KTR_PMAP, "moea_bootstrap: PTEG table at %p", moea_pteg_table);
833	bzero((void *)moea_pteg_table, moea_pteg_count * sizeof(struct pteg));
834	moea_pteg_mask = moea_pteg_count - 1;
835
836	/*
837	 * Allocate pv/overflow lists.
838	 */
839	size = sizeof(struct pvo_head) * moea_pteg_count;
840	moea_pvo_table = (struct pvo_head *)moea_bootstrap_alloc(size,
841	    PAGE_SIZE);
842	CTR1(KTR_PMAP, "moea_bootstrap: PVO table at %p", moea_pvo_table);
843	for (i = 0; i < moea_pteg_count; i++)
844		LIST_INIT(&moea_pvo_table[i]);
845
846	/*
847	 * Initialize the lock that synchronizes access to the pteg and pvo
848	 * tables.
849	 */
850	mtx_init(&moea_table_mutex, "pmap table", NULL, MTX_DEF |
851	    MTX_RECURSE);
852	mtx_init(&moea_vsid_mutex, "VSID table", NULL, MTX_DEF);
853
854	mtx_init(&tlbie_mtx, "tlbie", NULL, MTX_SPIN);
855
856	/*
857	 * Initialise the unmanaged pvo pool.
858	 */
859	moea_bpvo_pool = (struct pvo_entry *)moea_bootstrap_alloc(
860		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
861	moea_bpvo_pool_index = 0;
862
863	/*
864	 * Make sure kernel vsid is allocated as well as VSID 0.
865	 */
866	moea_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
867		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
868	moea_vsid_bitmap[0] |= 1;
869
870	/*
871	 * Initialize the kernel pmap (which is statically allocated).
872	 */
873	PMAP_LOCK_INIT(kernel_pmap);
874	for (i = 0; i < 16; i++)
875		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
876	CPU_FILL(&kernel_pmap->pm_active);
877	RB_INIT(&kernel_pmap->pmap_pvo);
878
879 	/*
880	 * Initialize the global pv list lock.
881	 */
882	rw_init(&pvh_global_lock, "pmap pv global");
883
884	/*
885	 * Set up the Open Firmware mappings
886	 */
887	chosen = OF_finddevice("/chosen");
888	if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1 &&
889	    (mmu = OF_instance_to_package(mmui)) != -1 &&
890	    (sz = OF_getproplen(mmu, "translations")) != -1) {
891		translations = NULL;
892		for (i = 0; phys_avail[i] != 0; i += 2) {
893			if (phys_avail[i + 1] >= sz) {
894				translations = (struct ofw_map *)phys_avail[i];
895				break;
896			}
897		}
898		if (translations == NULL)
899			panic("moea_bootstrap: no space to copy translations");
900		bzero(translations, sz);
901		if (OF_getprop(mmu, "translations", translations, sz) == -1)
902			panic("moea_bootstrap: can't get ofw translations");
903		CTR0(KTR_PMAP, "moea_bootstrap: translations");
904		sz /= sizeof(*translations);
905		qsort(translations, sz, sizeof (*translations), om_cmp);
906		for (i = 0; i < sz; i++) {
907			CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
908			    translations[i].om_pa, translations[i].om_va,
909			    translations[i].om_len);
910
911			/*
912			 * If the mapping is 1:1, let the RAM and device
913			 * on-demand BAT tables take care of the translation.
914			 */
915			if (translations[i].om_va == translations[i].om_pa)
916				continue;
917
918			/* Enter the pages */
919			for (off = 0; off < translations[i].om_len;
920			    off += PAGE_SIZE)
921				moea_kenter(mmup, translations[i].om_va + off,
922					    translations[i].om_pa + off);
923		}
924	}
925
926	/*
927	 * Calculate the last available physical address.
928	 */
929	for (i = 0; phys_avail[i + 2] != 0; i += 2)
930		;
931	Maxmem = powerpc_btop(phys_avail[i + 1]);
932
933	moea_cpu_bootstrap(mmup,0);
934
935	pmap_bootstrapped++;
936
937	/*
938	 * Set the start and end of kva.
939	 */
940	virtual_avail = VM_MIN_KERNEL_ADDRESS;
941	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
942
943	/*
944	 * Allocate a kernel stack with a guard page for thread0 and map it
945	 * into the kernel page map.
946	 */
947	pa = moea_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
948	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
949	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
950	CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va);
951	thread0.td_kstack = va;
952	thread0.td_kstack_pages = KSTACK_PAGES;
953	for (i = 0; i < KSTACK_PAGES; i++) {
954		moea_kenter(mmup, va, pa);
955		pa += PAGE_SIZE;
956		va += PAGE_SIZE;
957	}
958
959	/*
960	 * Allocate virtual address space for the message buffer.
961	 */
962	pa = msgbuf_phys = moea_bootstrap_alloc(msgbufsize, PAGE_SIZE);
963	msgbufp = (struct msgbuf *)virtual_avail;
964	va = virtual_avail;
965	virtual_avail += round_page(msgbufsize);
966	while (va < virtual_avail) {
967		moea_kenter(mmup, va, pa);
968		pa += PAGE_SIZE;
969		va += PAGE_SIZE;
970	}
971
972	/*
973	 * Allocate virtual address space for the dynamic percpu area.
974	 */
975	pa = moea_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
976	dpcpu = (void *)virtual_avail;
977	va = virtual_avail;
978	virtual_avail += DPCPU_SIZE;
979	while (va < virtual_avail) {
980		moea_kenter(mmup, va, pa);
981		pa += PAGE_SIZE;
982		va += PAGE_SIZE;
983	}
984	dpcpu_init(dpcpu, 0);
985}
986
987/*
988 * Activate a user pmap.  The pmap must be activated before it's address
989 * space can be accessed in any way.
990 */
991void
992moea_activate(mmu_t mmu, struct thread *td)
993{
994	pmap_t	pm, pmr;
995
996	/*
997	 * Load all the data we need up front to encourage the compiler to
998	 * not issue any loads while we have interrupts disabled below.
999	 */
1000	pm = &td->td_proc->p_vmspace->vm_pmap;
1001	pmr = pm->pmap_phys;
1002
1003	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
1004	PCPU_SET(curpmap, pmr);
1005}
1006
1007void
1008moea_deactivate(mmu_t mmu, struct thread *td)
1009{
1010	pmap_t	pm;
1011
1012	pm = &td->td_proc->p_vmspace->vm_pmap;
1013	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1014	PCPU_SET(curpmap, NULL);
1015}
1016
1017void
1018moea_unwire(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1019{
1020	struct	pvo_entry key, *pvo;
1021
1022	PMAP_LOCK(pm);
1023	key.pvo_vaddr = sva;
1024	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1025	    pvo != NULL && PVO_VADDR(pvo) < eva;
1026	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
1027		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1028			panic("moea_unwire: pvo %p is missing PVO_WIRED", pvo);
1029		pvo->pvo_vaddr &= ~PVO_WIRED;
1030		pm->pm_stats.wired_count--;
1031	}
1032	PMAP_UNLOCK(pm);
1033}
1034
1035void
1036moea_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1037{
1038	vm_offset_t	dst;
1039	vm_offset_t	src;
1040
1041	dst = VM_PAGE_TO_PHYS(mdst);
1042	src = VM_PAGE_TO_PHYS(msrc);
1043
1044	bcopy((void *)src, (void *)dst, PAGE_SIZE);
1045}
1046
1047void
1048moea_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1049    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1050{
1051	void *a_cp, *b_cp;
1052	vm_offset_t a_pg_offset, b_pg_offset;
1053	int cnt;
1054
1055	while (xfersize > 0) {
1056		a_pg_offset = a_offset & PAGE_MASK;
1057		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1058		a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) +
1059		    a_pg_offset;
1060		b_pg_offset = b_offset & PAGE_MASK;
1061		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1062		b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) +
1063		    b_pg_offset;
1064		bcopy(a_cp, b_cp, cnt);
1065		a_offset += cnt;
1066		b_offset += cnt;
1067		xfersize -= cnt;
1068	}
1069}
1070
1071/*
1072 * Zero a page of physical memory by temporarily mapping it into the tlb.
1073 */
1074void
1075moea_zero_page(mmu_t mmu, vm_page_t m)
1076{
1077	vm_offset_t off, pa = VM_PAGE_TO_PHYS(m);
1078
1079	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1080		__asm __volatile("dcbz 0,%0" :: "r"(pa + off));
1081}
1082
1083void
1084moea_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1085{
1086	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1087	void *va = (void *)(pa + off);
1088
1089	bzero(va, size);
1090}
1091
1092void
1093moea_zero_page_idle(mmu_t mmu, vm_page_t m)
1094{
1095
1096	moea_zero_page(mmu, m);
1097}
1098
1099/*
1100 * Map the given physical page at the specified virtual address in the
1101 * target pmap with the protection requested.  If specified the page
1102 * will be wired down.
1103 */
1104int
1105moea_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1106    u_int flags, int8_t psind)
1107{
1108	int error;
1109
1110	for (;;) {
1111		rw_wlock(&pvh_global_lock);
1112		PMAP_LOCK(pmap);
1113		error = moea_enter_locked(pmap, va, m, prot, flags, psind);
1114		rw_wunlock(&pvh_global_lock);
1115		PMAP_UNLOCK(pmap);
1116		if (error != ENOMEM)
1117			return (KERN_SUCCESS);
1118		if ((flags & PMAP_ENTER_NOSLEEP) != 0)
1119			return (KERN_RESOURCE_SHORTAGE);
1120		VM_OBJECT_ASSERT_UNLOCKED(m->object);
1121		VM_WAIT;
1122	}
1123}
1124
1125/*
1126 * Map the given physical page at the specified virtual address in the
1127 * target pmap with the protection requested.  If specified the page
1128 * will be wired down.
1129 *
1130 * The page queues and pmap must be locked.
1131 */
1132static int
1133moea_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1134    u_int flags, int8_t psind __unused)
1135{
1136	struct		pvo_head *pvo_head;
1137	uma_zone_t	zone;
1138	vm_page_t	pg;
1139	u_int		pte_lo, pvo_flags;
1140	int		error;
1141
1142	if (!moea_initialized) {
1143		pvo_head = &moea_pvo_kunmanaged;
1144		zone = moea_upvo_zone;
1145		pvo_flags = 0;
1146		pg = NULL;
1147	} else {
1148		pvo_head = vm_page_to_pvoh(m);
1149		pg = m;
1150		zone = moea_mpvo_zone;
1151		pvo_flags = PVO_MANAGED;
1152	}
1153	if (pmap_bootstrapped)
1154		rw_assert(&pvh_global_lock, RA_WLOCKED);
1155	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1156	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1157		VM_OBJECT_ASSERT_LOCKED(m->object);
1158
1159	/* XXX change the pvo head for fake pages */
1160	if ((m->oflags & VPO_UNMANAGED) != 0) {
1161		pvo_flags &= ~PVO_MANAGED;
1162		pvo_head = &moea_pvo_kunmanaged;
1163		zone = moea_upvo_zone;
1164	}
1165
1166	pte_lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1167
1168	if (prot & VM_PROT_WRITE) {
1169		pte_lo |= PTE_BW;
1170		if (pmap_bootstrapped &&
1171		    (m->oflags & VPO_UNMANAGED) == 0)
1172			vm_page_aflag_set(m, PGA_WRITEABLE);
1173	} else
1174		pte_lo |= PTE_BR;
1175
1176	if ((flags & PMAP_ENTER_WIRED) != 0)
1177		pvo_flags |= PVO_WIRED;
1178
1179	error = moea_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1180	    pte_lo, pvo_flags);
1181
1182	/*
1183	 * Flush the real page from the instruction cache. This has be done
1184	 * for all user mappings to prevent information leakage via the
1185	 * instruction cache. moea_pvo_enter() returns ENOENT for the first
1186	 * mapping for a page.
1187	 */
1188	if (pmap != kernel_pmap && error == ENOENT &&
1189	    (pte_lo & (PTE_I | PTE_G)) == 0)
1190		moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1191
1192	return (error);
1193}
1194
1195/*
1196 * Maps a sequence of resident pages belonging to the same object.
1197 * The sequence begins with the given page m_start.  This page is
1198 * mapped at the given virtual address start.  Each subsequent page is
1199 * mapped at a virtual address that is offset from start by the same
1200 * amount as the page is offset from m_start within the object.  The
1201 * last page in the sequence is the page with the largest offset from
1202 * m_start that can be mapped at a virtual address less than the given
1203 * virtual address end.  Not every virtual page between start and end
1204 * is mapped; only those for which a resident page exists with the
1205 * corresponding offset from m_start are mapped.
1206 */
1207void
1208moea_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1209    vm_page_t m_start, vm_prot_t prot)
1210{
1211	vm_page_t m;
1212	vm_pindex_t diff, psize;
1213
1214	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1215
1216	psize = atop(end - start);
1217	m = m_start;
1218	rw_wlock(&pvh_global_lock);
1219	PMAP_LOCK(pm);
1220	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1221		moea_enter_locked(pm, start + ptoa(diff), m, prot &
1222		    (VM_PROT_READ | VM_PROT_EXECUTE), 0, 0);
1223		m = TAILQ_NEXT(m, listq);
1224	}
1225	rw_wunlock(&pvh_global_lock);
1226	PMAP_UNLOCK(pm);
1227}
1228
1229void
1230moea_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1231    vm_prot_t prot)
1232{
1233
1234	rw_wlock(&pvh_global_lock);
1235	PMAP_LOCK(pm);
1236	moea_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1237	    0, 0);
1238	rw_wunlock(&pvh_global_lock);
1239	PMAP_UNLOCK(pm);
1240}
1241
1242vm_paddr_t
1243moea_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1244{
1245	struct	pvo_entry *pvo;
1246	vm_paddr_t pa;
1247
1248	PMAP_LOCK(pm);
1249	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1250	if (pvo == NULL)
1251		pa = 0;
1252	else
1253		pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1254	PMAP_UNLOCK(pm);
1255	return (pa);
1256}
1257
1258/*
1259 * Atomically extract and hold the physical page with the given
1260 * pmap and virtual address pair if that mapping permits the given
1261 * protection.
1262 */
1263vm_page_t
1264moea_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1265{
1266	struct	pvo_entry *pvo;
1267	vm_page_t m;
1268        vm_paddr_t pa;
1269
1270	m = NULL;
1271	pa = 0;
1272	PMAP_LOCK(pmap);
1273retry:
1274	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1275	if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID) &&
1276	    ((pvo->pvo_pte.pte.pte_lo & PTE_PP) == PTE_RW ||
1277	     (prot & VM_PROT_WRITE) == 0)) {
1278		if (vm_page_pa_tryrelock(pmap, pvo->pvo_pte.pte.pte_lo & PTE_RPGN, &pa))
1279			goto retry;
1280		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
1281		vm_page_hold(m);
1282	}
1283	PA_UNLOCK_COND(pa);
1284	PMAP_UNLOCK(pmap);
1285	return (m);
1286}
1287
1288void
1289moea_init(mmu_t mmu)
1290{
1291
1292	moea_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1293	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1294	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1295	moea_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1296	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1297	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1298	moea_initialized = TRUE;
1299}
1300
1301boolean_t
1302moea_is_referenced(mmu_t mmu, vm_page_t m)
1303{
1304	boolean_t rv;
1305
1306	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1307	    ("moea_is_referenced: page %p is not managed", m));
1308	rw_wlock(&pvh_global_lock);
1309	rv = moea_query_bit(m, PTE_REF);
1310	rw_wunlock(&pvh_global_lock);
1311	return (rv);
1312}
1313
1314boolean_t
1315moea_is_modified(mmu_t mmu, vm_page_t m)
1316{
1317	boolean_t rv;
1318
1319	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1320	    ("moea_is_modified: page %p is not managed", m));
1321
1322	/*
1323	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1324	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
1325	 * is clear, no PTEs can have PTE_CHG set.
1326	 */
1327	VM_OBJECT_ASSERT_WLOCKED(m->object);
1328	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1329		return (FALSE);
1330	rw_wlock(&pvh_global_lock);
1331	rv = moea_query_bit(m, PTE_CHG);
1332	rw_wunlock(&pvh_global_lock);
1333	return (rv);
1334}
1335
1336boolean_t
1337moea_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1338{
1339	struct pvo_entry *pvo;
1340	boolean_t rv;
1341
1342	PMAP_LOCK(pmap);
1343	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1344	rv = pvo == NULL || (pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0;
1345	PMAP_UNLOCK(pmap);
1346	return (rv);
1347}
1348
1349void
1350moea_clear_modify(mmu_t mmu, vm_page_t m)
1351{
1352
1353	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1354	    ("moea_clear_modify: page %p is not managed", m));
1355	VM_OBJECT_ASSERT_WLOCKED(m->object);
1356	KASSERT(!vm_page_xbusied(m),
1357	    ("moea_clear_modify: page %p is exclusive busy", m));
1358
1359	/*
1360	 * If the page is not PGA_WRITEABLE, then no PTEs can have PTE_CHG
1361	 * set.  If the object containing the page is locked and the page is
1362	 * not exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
1363	 */
1364	if ((m->aflags & PGA_WRITEABLE) == 0)
1365		return;
1366	rw_wlock(&pvh_global_lock);
1367	moea_clear_bit(m, PTE_CHG);
1368	rw_wunlock(&pvh_global_lock);
1369}
1370
1371/*
1372 * Clear the write and modified bits in each of the given page's mappings.
1373 */
1374void
1375moea_remove_write(mmu_t mmu, vm_page_t m)
1376{
1377	struct	pvo_entry *pvo;
1378	struct	pte *pt;
1379	pmap_t	pmap;
1380	u_int	lo;
1381
1382	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1383	    ("moea_remove_write: page %p is not managed", m));
1384
1385	/*
1386	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1387	 * set by another thread while the object is locked.  Thus,
1388	 * if PGA_WRITEABLE is clear, no page table entries need updating.
1389	 */
1390	VM_OBJECT_ASSERT_WLOCKED(m->object);
1391	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1392		return;
1393	rw_wlock(&pvh_global_lock);
1394	lo = moea_attr_fetch(m);
1395	powerpc_sync();
1396	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1397		pmap = pvo->pvo_pmap;
1398		PMAP_LOCK(pmap);
1399		if ((pvo->pvo_pte.pte.pte_lo & PTE_PP) != PTE_BR) {
1400			pt = moea_pvo_to_pte(pvo, -1);
1401			pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1402			pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1403			if (pt != NULL) {
1404				moea_pte_synch(pt, &pvo->pvo_pte.pte);
1405				lo |= pvo->pvo_pte.pte.pte_lo;
1406				pvo->pvo_pte.pte.pte_lo &= ~PTE_CHG;
1407				moea_pte_change(pt, &pvo->pvo_pte.pte,
1408				    pvo->pvo_vaddr);
1409				mtx_unlock(&moea_table_mutex);
1410			}
1411		}
1412		PMAP_UNLOCK(pmap);
1413	}
1414	if ((lo & PTE_CHG) != 0) {
1415		moea_attr_clear(m, PTE_CHG);
1416		vm_page_dirty(m);
1417	}
1418	vm_page_aflag_clear(m, PGA_WRITEABLE);
1419	rw_wunlock(&pvh_global_lock);
1420}
1421
1422/*
1423 *	moea_ts_referenced:
1424 *
1425 *	Return a count of reference bits for a page, clearing those bits.
1426 *	It is not necessary for every reference bit to be cleared, but it
1427 *	is necessary that 0 only be returned when there are truly no
1428 *	reference bits set.
1429 *
1430 *	XXX: The exact number of bits to check and clear is a matter that
1431 *	should be tested and standardized at some point in the future for
1432 *	optimal aging of shared pages.
1433 */
1434int
1435moea_ts_referenced(mmu_t mmu, vm_page_t m)
1436{
1437	int count;
1438
1439	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1440	    ("moea_ts_referenced: page %p is not managed", m));
1441	rw_wlock(&pvh_global_lock);
1442	count = moea_clear_bit(m, PTE_REF);
1443	rw_wunlock(&pvh_global_lock);
1444	return (count);
1445}
1446
1447/*
1448 * Modify the WIMG settings of all mappings for a page.
1449 */
1450void
1451moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1452{
1453	struct	pvo_entry *pvo;
1454	struct	pvo_head *pvo_head;
1455	struct	pte *pt;
1456	pmap_t	pmap;
1457	u_int	lo;
1458
1459	if ((m->oflags & VPO_UNMANAGED) != 0) {
1460		m->md.mdpg_cache_attrs = ma;
1461		return;
1462	}
1463
1464	rw_wlock(&pvh_global_lock);
1465	pvo_head = vm_page_to_pvoh(m);
1466	lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1467
1468	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1469		pmap = pvo->pvo_pmap;
1470		PMAP_LOCK(pmap);
1471		pt = moea_pvo_to_pte(pvo, -1);
1472		pvo->pvo_pte.pte.pte_lo &= ~PTE_WIMG;
1473		pvo->pvo_pte.pte.pte_lo |= lo;
1474		if (pt != NULL) {
1475			moea_pte_change(pt, &pvo->pvo_pte.pte,
1476			    pvo->pvo_vaddr);
1477			if (pvo->pvo_pmap == kernel_pmap)
1478				isync();
1479		}
1480		mtx_unlock(&moea_table_mutex);
1481		PMAP_UNLOCK(pmap);
1482	}
1483	m->md.mdpg_cache_attrs = ma;
1484	rw_wunlock(&pvh_global_lock);
1485}
1486
1487/*
1488 * Map a wired page into kernel virtual address space.
1489 */
1490void
1491moea_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1492{
1493
1494	moea_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1495}
1496
1497void
1498moea_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
1499{
1500	u_int		pte_lo;
1501	int		error;
1502
1503#if 0
1504	if (va < VM_MIN_KERNEL_ADDRESS)
1505		panic("moea_kenter: attempt to enter non-kernel address %#x",
1506		    va);
1507#endif
1508
1509	pte_lo = moea_calc_wimg(pa, ma);
1510
1511	PMAP_LOCK(kernel_pmap);
1512	error = moea_pvo_enter(kernel_pmap, moea_upvo_zone,
1513	    &moea_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1514
1515	if (error != 0 && error != ENOENT)
1516		panic("moea_kenter: failed to enter va %#x pa %#x: %d", va,
1517		    pa, error);
1518
1519	PMAP_UNLOCK(kernel_pmap);
1520}
1521
1522/*
1523 * Extract the physical page address associated with the given kernel virtual
1524 * address.
1525 */
1526vm_paddr_t
1527moea_kextract(mmu_t mmu, vm_offset_t va)
1528{
1529	struct		pvo_entry *pvo;
1530	vm_paddr_t pa;
1531
1532	/*
1533	 * Allow direct mappings on 32-bit OEA
1534	 */
1535	if (va < VM_MIN_KERNEL_ADDRESS) {
1536		return (va);
1537	}
1538
1539	PMAP_LOCK(kernel_pmap);
1540	pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1541	KASSERT(pvo != NULL, ("moea_kextract: no addr found"));
1542	pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1543	PMAP_UNLOCK(kernel_pmap);
1544	return (pa);
1545}
1546
1547/*
1548 * Remove a wired page from kernel virtual address space.
1549 */
1550void
1551moea_kremove(mmu_t mmu, vm_offset_t va)
1552{
1553
1554	moea_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1555}
1556
1557/*
1558 * Map a range of physical addresses into kernel virtual address space.
1559 *
1560 * The value passed in *virt is a suggested virtual address for the mapping.
1561 * Architectures which can support a direct-mapped physical to virtual region
1562 * can return the appropriate address within that region, leaving '*virt'
1563 * unchanged.  We cannot and therefore do not; *virt is updated with the
1564 * first usable address after the mapped region.
1565 */
1566vm_offset_t
1567moea_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1568    vm_paddr_t pa_end, int prot)
1569{
1570	vm_offset_t	sva, va;
1571
1572	sva = *virt;
1573	va = sva;
1574	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1575		moea_kenter(mmu, va, pa_start);
1576	*virt = va;
1577	return (sva);
1578}
1579
1580/*
1581 * Returns true if the pmap's pv is one of the first
1582 * 16 pvs linked to from this page.  This count may
1583 * be changed upwards or downwards in the future; it
1584 * is only necessary that true be returned for a small
1585 * subset of pmaps for proper page aging.
1586 */
1587boolean_t
1588moea_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1589{
1590        int loops;
1591	struct pvo_entry *pvo;
1592	boolean_t rv;
1593
1594	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1595	    ("moea_page_exists_quick: page %p is not managed", m));
1596	loops = 0;
1597	rv = FALSE;
1598	rw_wlock(&pvh_global_lock);
1599	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1600		if (pvo->pvo_pmap == pmap) {
1601			rv = TRUE;
1602			break;
1603		}
1604		if (++loops >= 16)
1605			break;
1606	}
1607	rw_wunlock(&pvh_global_lock);
1608	return (rv);
1609}
1610
1611/*
1612 * Return the number of managed mappings to the given physical page
1613 * that are wired.
1614 */
1615int
1616moea_page_wired_mappings(mmu_t mmu, vm_page_t m)
1617{
1618	struct pvo_entry *pvo;
1619	int count;
1620
1621	count = 0;
1622	if ((m->oflags & VPO_UNMANAGED) != 0)
1623		return (count);
1624	rw_wlock(&pvh_global_lock);
1625	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1626		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1627			count++;
1628	rw_wunlock(&pvh_global_lock);
1629	return (count);
1630}
1631
1632static u_int	moea_vsidcontext;
1633
1634void
1635moea_pinit(mmu_t mmu, pmap_t pmap)
1636{
1637	int	i, mask;
1638	u_int	entropy;
1639
1640	KASSERT((int)pmap < VM_MIN_KERNEL_ADDRESS, ("moea_pinit: virt pmap"));
1641	RB_INIT(&pmap->pmap_pvo);
1642
1643	entropy = 0;
1644	__asm __volatile("mftb %0" : "=r"(entropy));
1645
1646	if ((pmap->pmap_phys = (pmap_t)moea_kextract(mmu, (vm_offset_t)pmap))
1647	    == NULL) {
1648		pmap->pmap_phys = pmap;
1649	}
1650
1651
1652	mtx_lock(&moea_vsid_mutex);
1653	/*
1654	 * Allocate some segment registers for this pmap.
1655	 */
1656	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1657		u_int	hash, n;
1658
1659		/*
1660		 * Create a new value by mutiplying by a prime and adding in
1661		 * entropy from the timebase register.  This is to make the
1662		 * VSID more random so that the PT hash function collides
1663		 * less often.  (Note that the prime casues gcc to do shifts
1664		 * instead of a multiply.)
1665		 */
1666		moea_vsidcontext = (moea_vsidcontext * 0x1105) + entropy;
1667		hash = moea_vsidcontext & (NPMAPS - 1);
1668		if (hash == 0)		/* 0 is special, avoid it */
1669			continue;
1670		n = hash >> 5;
1671		mask = 1 << (hash & (VSID_NBPW - 1));
1672		hash = (moea_vsidcontext & 0xfffff);
1673		if (moea_vsid_bitmap[n] & mask) {	/* collision? */
1674			/* anything free in this bucket? */
1675			if (moea_vsid_bitmap[n] == 0xffffffff) {
1676				entropy = (moea_vsidcontext >> 20);
1677				continue;
1678			}
1679			i = ffs(~moea_vsid_bitmap[n]) - 1;
1680			mask = 1 << i;
1681			hash &= 0xfffff & ~(VSID_NBPW - 1);
1682			hash |= i;
1683		}
1684		KASSERT(!(moea_vsid_bitmap[n] & mask),
1685		    ("Allocating in-use VSID group %#x\n", hash));
1686		moea_vsid_bitmap[n] |= mask;
1687		for (i = 0; i < 16; i++)
1688			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1689		mtx_unlock(&moea_vsid_mutex);
1690		return;
1691	}
1692
1693	mtx_unlock(&moea_vsid_mutex);
1694	panic("moea_pinit: out of segments");
1695}
1696
1697/*
1698 * Initialize the pmap associated with process 0.
1699 */
1700void
1701moea_pinit0(mmu_t mmu, pmap_t pm)
1702{
1703
1704	PMAP_LOCK_INIT(pm);
1705	moea_pinit(mmu, pm);
1706	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1707}
1708
1709/*
1710 * Set the physical protection on the specified range of this map as requested.
1711 */
1712void
1713moea_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1714    vm_prot_t prot)
1715{
1716	struct	pvo_entry *pvo, *tpvo, key;
1717	struct	pte *pt;
1718
1719	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1720	    ("moea_protect: non current pmap"));
1721
1722	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1723		moea_remove(mmu, pm, sva, eva);
1724		return;
1725	}
1726
1727	rw_wlock(&pvh_global_lock);
1728	PMAP_LOCK(pm);
1729	key.pvo_vaddr = sva;
1730	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1731	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1732		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1733
1734		/*
1735		 * Grab the PTE pointer before we diddle with the cached PTE
1736		 * copy.
1737		 */
1738		pt = moea_pvo_to_pte(pvo, -1);
1739		/*
1740		 * Change the protection of the page.
1741		 */
1742		pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1743		pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1744
1745		/*
1746		 * If the PVO is in the page table, update that pte as well.
1747		 */
1748		if (pt != NULL) {
1749			moea_pte_change(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
1750			mtx_unlock(&moea_table_mutex);
1751		}
1752	}
1753	rw_wunlock(&pvh_global_lock);
1754	PMAP_UNLOCK(pm);
1755}
1756
1757/*
1758 * Map a list of wired pages into kernel virtual address space.  This is
1759 * intended for temporary mappings which do not need page modification or
1760 * references recorded.  Existing mappings in the region are overwritten.
1761 */
1762void
1763moea_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1764{
1765	vm_offset_t va;
1766
1767	va = sva;
1768	while (count-- > 0) {
1769		moea_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1770		va += PAGE_SIZE;
1771		m++;
1772	}
1773}
1774
1775/*
1776 * Remove page mappings from kernel virtual address space.  Intended for
1777 * temporary mappings entered by moea_qenter.
1778 */
1779void
1780moea_qremove(mmu_t mmu, vm_offset_t sva, int count)
1781{
1782	vm_offset_t va;
1783
1784	va = sva;
1785	while (count-- > 0) {
1786		moea_kremove(mmu, va);
1787		va += PAGE_SIZE;
1788	}
1789}
1790
1791void
1792moea_release(mmu_t mmu, pmap_t pmap)
1793{
1794        int idx, mask;
1795
1796	/*
1797	 * Free segment register's VSID
1798	 */
1799        if (pmap->pm_sr[0] == 0)
1800                panic("moea_release");
1801
1802	mtx_lock(&moea_vsid_mutex);
1803        idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
1804        mask = 1 << (idx % VSID_NBPW);
1805        idx /= VSID_NBPW;
1806        moea_vsid_bitmap[idx] &= ~mask;
1807	mtx_unlock(&moea_vsid_mutex);
1808}
1809
1810/*
1811 * Remove the given range of addresses from the specified map.
1812 */
1813void
1814moea_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1815{
1816	struct	pvo_entry *pvo, *tpvo, key;
1817
1818	rw_wlock(&pvh_global_lock);
1819	PMAP_LOCK(pm);
1820	key.pvo_vaddr = sva;
1821	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1822	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1823		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1824		moea_pvo_remove(pvo, -1);
1825	}
1826	PMAP_UNLOCK(pm);
1827	rw_wunlock(&pvh_global_lock);
1828}
1829
1830/*
1831 * Remove physical page from all pmaps in which it resides. moea_pvo_remove()
1832 * will reflect changes in pte's back to the vm_page.
1833 */
1834void
1835moea_remove_all(mmu_t mmu, vm_page_t m)
1836{
1837	struct  pvo_head *pvo_head;
1838	struct	pvo_entry *pvo, *next_pvo;
1839	pmap_t	pmap;
1840
1841	rw_wlock(&pvh_global_lock);
1842	pvo_head = vm_page_to_pvoh(m);
1843	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1844		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1845
1846		pmap = pvo->pvo_pmap;
1847		PMAP_LOCK(pmap);
1848		moea_pvo_remove(pvo, -1);
1849		PMAP_UNLOCK(pmap);
1850	}
1851	if ((m->aflags & PGA_WRITEABLE) && moea_query_bit(m, PTE_CHG)) {
1852		moea_attr_clear(m, PTE_CHG);
1853		vm_page_dirty(m);
1854	}
1855	vm_page_aflag_clear(m, PGA_WRITEABLE);
1856	rw_wunlock(&pvh_global_lock);
1857}
1858
1859/*
1860 * Allocate a physical page of memory directly from the phys_avail map.
1861 * Can only be called from moea_bootstrap before avail start and end are
1862 * calculated.
1863 */
1864static vm_offset_t
1865moea_bootstrap_alloc(vm_size_t size, u_int align)
1866{
1867	vm_offset_t	s, e;
1868	int		i, j;
1869
1870	size = round_page(size);
1871	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1872		if (align != 0)
1873			s = (phys_avail[i] + align - 1) & ~(align - 1);
1874		else
1875			s = phys_avail[i];
1876		e = s + size;
1877
1878		if (s < phys_avail[i] || e > phys_avail[i + 1])
1879			continue;
1880
1881		if (s == phys_avail[i]) {
1882			phys_avail[i] += size;
1883		} else if (e == phys_avail[i + 1]) {
1884			phys_avail[i + 1] -= size;
1885		} else {
1886			for (j = phys_avail_count * 2; j > i; j -= 2) {
1887				phys_avail[j] = phys_avail[j - 2];
1888				phys_avail[j + 1] = phys_avail[j - 1];
1889			}
1890
1891			phys_avail[i + 3] = phys_avail[i + 1];
1892			phys_avail[i + 1] = s;
1893			phys_avail[i + 2] = e;
1894			phys_avail_count++;
1895		}
1896
1897		return (s);
1898	}
1899	panic("moea_bootstrap_alloc: could not allocate memory");
1900}
1901
1902static void
1903moea_syncicache(vm_offset_t pa, vm_size_t len)
1904{
1905	__syncicache((void *)pa, len);
1906}
1907
1908static int
1909moea_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
1910    vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
1911{
1912	struct	pvo_entry *pvo;
1913	u_int	sr;
1914	int	first;
1915	u_int	ptegidx;
1916	int	i;
1917	int     bootstrap;
1918
1919	moea_pvo_enter_calls++;
1920	first = 0;
1921	bootstrap = 0;
1922
1923	/*
1924	 * Compute the PTE Group index.
1925	 */
1926	va &= ~ADDR_POFF;
1927	sr = va_to_sr(pm->pm_sr, va);
1928	ptegidx = va_to_pteg(sr, va);
1929
1930	/*
1931	 * Remove any existing mapping for this page.  Reuse the pvo entry if
1932	 * there is a mapping.
1933	 */
1934	mtx_lock(&moea_table_mutex);
1935	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
1936		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1937			if ((pvo->pvo_pte.pte.pte_lo & PTE_RPGN) == pa &&
1938			    (pvo->pvo_pte.pte.pte_lo & PTE_PP) ==
1939			    (pte_lo & PTE_PP)) {
1940				/*
1941				 * The PTE is not changing.  Instead, this may
1942				 * be a request to change the mapping's wired
1943				 * attribute.
1944				 */
1945				mtx_unlock(&moea_table_mutex);
1946				if ((flags & PVO_WIRED) != 0 &&
1947				    (pvo->pvo_vaddr & PVO_WIRED) == 0) {
1948					pvo->pvo_vaddr |= PVO_WIRED;
1949					pm->pm_stats.wired_count++;
1950				} else if ((flags & PVO_WIRED) == 0 &&
1951				    (pvo->pvo_vaddr & PVO_WIRED) != 0) {
1952					pvo->pvo_vaddr &= ~PVO_WIRED;
1953					pm->pm_stats.wired_count--;
1954				}
1955				return (0);
1956			}
1957			moea_pvo_remove(pvo, -1);
1958			break;
1959		}
1960	}
1961
1962	/*
1963	 * If we aren't overwriting a mapping, try to allocate.
1964	 */
1965	if (moea_initialized) {
1966		pvo = uma_zalloc(zone, M_NOWAIT);
1967	} else {
1968		if (moea_bpvo_pool_index >= BPVO_POOL_SIZE) {
1969			panic("moea_enter: bpvo pool exhausted, %d, %d, %d",
1970			      moea_bpvo_pool_index, BPVO_POOL_SIZE,
1971			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
1972		}
1973		pvo = &moea_bpvo_pool[moea_bpvo_pool_index];
1974		moea_bpvo_pool_index++;
1975		bootstrap = 1;
1976	}
1977
1978	if (pvo == NULL) {
1979		mtx_unlock(&moea_table_mutex);
1980		return (ENOMEM);
1981	}
1982
1983	moea_pvo_entries++;
1984	pvo->pvo_vaddr = va;
1985	pvo->pvo_pmap = pm;
1986	LIST_INSERT_HEAD(&moea_pvo_table[ptegidx], pvo, pvo_olink);
1987	pvo->pvo_vaddr &= ~ADDR_POFF;
1988	if (flags & PVO_WIRED)
1989		pvo->pvo_vaddr |= PVO_WIRED;
1990	if (pvo_head != &moea_pvo_kunmanaged)
1991		pvo->pvo_vaddr |= PVO_MANAGED;
1992	if (bootstrap)
1993		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
1994
1995	moea_pte_create(&pvo->pvo_pte.pte, sr, va, pa | pte_lo);
1996
1997	/*
1998	 * Add to pmap list
1999	 */
2000	RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo);
2001
2002	/*
2003	 * Remember if the list was empty and therefore will be the first
2004	 * item.
2005	 */
2006	if (LIST_FIRST(pvo_head) == NULL)
2007		first = 1;
2008	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2009
2010	if (pvo->pvo_pte.pte.pte_lo & PVO_WIRED)
2011		pm->pm_stats.wired_count++;
2012	pm->pm_stats.resident_count++;
2013
2014	i = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2015	KASSERT(i < 8, ("Invalid PTE index"));
2016	if (i >= 0) {
2017		PVO_PTEGIDX_SET(pvo, i);
2018	} else {
2019		panic("moea_pvo_enter: overflow");
2020		moea_pte_overflow++;
2021	}
2022	mtx_unlock(&moea_table_mutex);
2023
2024	return (first ? ENOENT : 0);
2025}
2026
2027static void
2028moea_pvo_remove(struct pvo_entry *pvo, int pteidx)
2029{
2030	struct	pte *pt;
2031
2032	/*
2033	 * If there is an active pte entry, we need to deactivate it (and
2034	 * save the ref & cfg bits).
2035	 */
2036	pt = moea_pvo_to_pte(pvo, pteidx);
2037	if (pt != NULL) {
2038		moea_pte_unset(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
2039		mtx_unlock(&moea_table_mutex);
2040		PVO_PTEGIDX_CLR(pvo);
2041	} else {
2042		moea_pte_overflow--;
2043	}
2044
2045	/*
2046	 * Update our statistics.
2047	 */
2048	pvo->pvo_pmap->pm_stats.resident_count--;
2049	if (pvo->pvo_pte.pte.pte_lo & PVO_WIRED)
2050		pvo->pvo_pmap->pm_stats.wired_count--;
2051
2052	/*
2053	 * Save the REF/CHG bits into their cache if the page is managed.
2054	 */
2055	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED) {
2056		struct	vm_page *pg;
2057
2058		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
2059		if (pg != NULL) {
2060			moea_attr_save(pg, pvo->pvo_pte.pte.pte_lo &
2061			    (PTE_REF | PTE_CHG));
2062		}
2063	}
2064
2065	/*
2066	 * Remove this PVO from the PV and pmap lists.
2067	 */
2068	LIST_REMOVE(pvo, pvo_vlink);
2069	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2070
2071	/*
2072	 * Remove this from the overflow list and return it to the pool
2073	 * if we aren't going to reuse it.
2074	 */
2075	LIST_REMOVE(pvo, pvo_olink);
2076	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2077		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? moea_mpvo_zone :
2078		    moea_upvo_zone, pvo);
2079	moea_pvo_entries--;
2080	moea_pvo_remove_calls++;
2081}
2082
2083static __inline int
2084moea_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
2085{
2086	int	pteidx;
2087
2088	/*
2089	 * We can find the actual pte entry without searching by grabbing
2090	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
2091	 * noticing the HID bit.
2092	 */
2093	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
2094	if (pvo->pvo_pte.pte.pte_hi & PTE_HID)
2095		pteidx ^= moea_pteg_mask * 8;
2096
2097	return (pteidx);
2098}
2099
2100static struct pvo_entry *
2101moea_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
2102{
2103	struct	pvo_entry *pvo;
2104	int	ptegidx;
2105	u_int	sr;
2106
2107	va &= ~ADDR_POFF;
2108	sr = va_to_sr(pm->pm_sr, va);
2109	ptegidx = va_to_pteg(sr, va);
2110
2111	mtx_lock(&moea_table_mutex);
2112	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2113		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2114			if (pteidx_p)
2115				*pteidx_p = moea_pvo_pte_index(pvo, ptegidx);
2116			break;
2117		}
2118	}
2119	mtx_unlock(&moea_table_mutex);
2120
2121	return (pvo);
2122}
2123
2124static struct pte *
2125moea_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
2126{
2127	struct	pte *pt;
2128
2129	/*
2130	 * If we haven't been supplied the ptegidx, calculate it.
2131	 */
2132	if (pteidx == -1) {
2133		int	ptegidx;
2134		u_int	sr;
2135
2136		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
2137		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
2138		pteidx = moea_pvo_pte_index(pvo, ptegidx);
2139	}
2140
2141	pt = &moea_pteg_table[pteidx >> 3].pt[pteidx & 7];
2142	mtx_lock(&moea_table_mutex);
2143
2144	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
2145		panic("moea_pvo_to_pte: pvo %p has valid pte in pvo but no "
2146		    "valid pte index", pvo);
2147	}
2148
2149	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
2150		panic("moea_pvo_to_pte: pvo %p has valid pte index in pvo "
2151		    "pvo but no valid pte", pvo);
2152	}
2153
2154	if ((pt->pte_hi ^ (pvo->pvo_pte.pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
2155		if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0) {
2156			panic("moea_pvo_to_pte: pvo %p has valid pte in "
2157			    "moea_pteg_table %p but invalid in pvo", pvo, pt);
2158		}
2159
2160		if (((pt->pte_lo ^ pvo->pvo_pte.pte.pte_lo) & ~(PTE_CHG|PTE_REF))
2161		    != 0) {
2162			panic("moea_pvo_to_pte: pvo %p pte does not match "
2163			    "pte %p in moea_pteg_table", pvo, pt);
2164		}
2165
2166		mtx_assert(&moea_table_mutex, MA_OWNED);
2167		return (pt);
2168	}
2169
2170	if (pvo->pvo_pte.pte.pte_hi & PTE_VALID) {
2171		panic("moea_pvo_to_pte: pvo %p has invalid pte %p in "
2172		    "moea_pteg_table but valid in pvo: %8x, %8x", pvo, pt, pvo->pvo_pte.pte.pte_hi, pt->pte_hi);
2173	}
2174
2175	mtx_unlock(&moea_table_mutex);
2176	return (NULL);
2177}
2178
2179/*
2180 * XXX: THIS STUFF SHOULD BE IN pte.c?
2181 */
2182int
2183moea_pte_spill(vm_offset_t addr)
2184{
2185	struct	pvo_entry *source_pvo, *victim_pvo;
2186	struct	pvo_entry *pvo;
2187	int	ptegidx, i, j;
2188	u_int	sr;
2189	struct	pteg *pteg;
2190	struct	pte *pt;
2191
2192	moea_pte_spills++;
2193
2194	sr = mfsrin(addr);
2195	ptegidx = va_to_pteg(sr, addr);
2196
2197	/*
2198	 * Have to substitute some entry.  Use the primary hash for this.
2199	 * Use low bits of timebase as random generator.
2200	 */
2201	pteg = &moea_pteg_table[ptegidx];
2202	mtx_lock(&moea_table_mutex);
2203	__asm __volatile("mftb %0" : "=r"(i));
2204	i &= 7;
2205	pt = &pteg->pt[i];
2206
2207	source_pvo = NULL;
2208	victim_pvo = NULL;
2209	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2210		/*
2211		 * We need to find a pvo entry for this address.
2212		 */
2213		if (source_pvo == NULL &&
2214		    moea_pte_match(&pvo->pvo_pte.pte, sr, addr,
2215		    pvo->pvo_pte.pte.pte_hi & PTE_HID)) {
2216			/*
2217			 * Now found an entry to be spilled into the pteg.
2218			 * The PTE is now valid, so we know it's active.
2219			 */
2220			j = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2221
2222			if (j >= 0) {
2223				PVO_PTEGIDX_SET(pvo, j);
2224				moea_pte_overflow--;
2225				mtx_unlock(&moea_table_mutex);
2226				return (1);
2227			}
2228
2229			source_pvo = pvo;
2230
2231			if (victim_pvo != NULL)
2232				break;
2233		}
2234
2235		/*
2236		 * We also need the pvo entry of the victim we are replacing
2237		 * so save the R & C bits of the PTE.
2238		 */
2239		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2240		    moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2241			victim_pvo = pvo;
2242			if (source_pvo != NULL)
2243				break;
2244		}
2245	}
2246
2247	if (source_pvo == NULL) {
2248		mtx_unlock(&moea_table_mutex);
2249		return (0);
2250	}
2251
2252	if (victim_pvo == NULL) {
2253		if ((pt->pte_hi & PTE_HID) == 0)
2254			panic("moea_pte_spill: victim p-pte (%p) has no pvo"
2255			    "entry", pt);
2256
2257		/*
2258		 * If this is a secondary PTE, we need to search it's primary
2259		 * pvo bucket for the matching PVO.
2260		 */
2261		LIST_FOREACH(pvo, &moea_pvo_table[ptegidx ^ moea_pteg_mask],
2262		    pvo_olink) {
2263			/*
2264			 * We also need the pvo entry of the victim we are
2265			 * replacing so save the R & C bits of the PTE.
2266			 */
2267			if (moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2268				victim_pvo = pvo;
2269				break;
2270			}
2271		}
2272
2273		if (victim_pvo == NULL)
2274			panic("moea_pte_spill: victim s-pte (%p) has no pvo"
2275			    "entry", pt);
2276	}
2277
2278	/*
2279	 * We are invalidating the TLB entry for the EA we are replacing even
2280	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2281	 * contained in the TLB entry.
2282	 */
2283	source_pvo->pvo_pte.pte.pte_hi &= ~PTE_HID;
2284
2285	moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
2286	moea_pte_set(pt, &source_pvo->pvo_pte.pte);
2287
2288	PVO_PTEGIDX_CLR(victim_pvo);
2289	PVO_PTEGIDX_SET(source_pvo, i);
2290	moea_pte_replacements++;
2291
2292	mtx_unlock(&moea_table_mutex);
2293	return (1);
2294}
2295
2296static __inline struct pvo_entry *
2297moea_pte_spillable_ident(u_int ptegidx)
2298{
2299	struct	pte *pt;
2300	struct	pvo_entry *pvo_walk, *pvo = NULL;
2301
2302	LIST_FOREACH(pvo_walk, &moea_pvo_table[ptegidx], pvo_olink) {
2303		if (pvo_walk->pvo_vaddr & PVO_WIRED)
2304			continue;
2305
2306		if (!(pvo_walk->pvo_pte.pte.pte_hi & PTE_VALID))
2307			continue;
2308
2309		pt = moea_pvo_to_pte(pvo_walk, -1);
2310
2311		if (pt == NULL)
2312			continue;
2313
2314		pvo = pvo_walk;
2315
2316		mtx_unlock(&moea_table_mutex);
2317		if (!(pt->pte_lo & PTE_REF))
2318			return (pvo_walk);
2319	}
2320
2321	return (pvo);
2322}
2323
2324static int
2325moea_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2326{
2327	struct	pte *pt;
2328	struct	pvo_entry *victim_pvo;
2329	int	i;
2330	int	victim_idx;
2331	u_int	pteg_bkpidx = ptegidx;
2332
2333	mtx_assert(&moea_table_mutex, MA_OWNED);
2334
2335	/*
2336	 * First try primary hash.
2337	 */
2338	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2339		if ((pt->pte_hi & PTE_VALID) == 0) {
2340			pvo_pt->pte_hi &= ~PTE_HID;
2341			moea_pte_set(pt, pvo_pt);
2342			return (i);
2343		}
2344	}
2345
2346	/*
2347	 * Now try secondary hash.
2348	 */
2349	ptegidx ^= moea_pteg_mask;
2350
2351	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2352		if ((pt->pte_hi & PTE_VALID) == 0) {
2353			pvo_pt->pte_hi |= PTE_HID;
2354			moea_pte_set(pt, pvo_pt);
2355			return (i);
2356		}
2357	}
2358
2359	/* Try again, but this time try to force a PTE out. */
2360	ptegidx = pteg_bkpidx;
2361
2362	victim_pvo = moea_pte_spillable_ident(ptegidx);
2363	if (victim_pvo == NULL) {
2364		ptegidx ^= moea_pteg_mask;
2365		victim_pvo = moea_pte_spillable_ident(ptegidx);
2366	}
2367
2368	if (victim_pvo == NULL) {
2369		panic("moea_pte_insert: overflow");
2370		return (-1);
2371	}
2372
2373	victim_idx = moea_pvo_pte_index(victim_pvo, ptegidx);
2374
2375	if (pteg_bkpidx == ptegidx)
2376		pvo_pt->pte_hi &= ~PTE_HID;
2377	else
2378		pvo_pt->pte_hi |= PTE_HID;
2379
2380	/*
2381	 * Synchronize the sacrifice PTE with its PVO, then mark both
2382	 * invalid. The PVO will be reused when/if the VM system comes
2383	 * here after a fault.
2384	 */
2385	pt = &moea_pteg_table[victim_idx >> 3].pt[victim_idx & 7];
2386
2387	if (pt->pte_hi != victim_pvo->pvo_pte.pte.pte_hi)
2388	    panic("Victim PVO doesn't match PTE! PVO: %8x, PTE: %8x", victim_pvo->pvo_pte.pte.pte_hi, pt->pte_hi);
2389
2390	/*
2391	 * Set the new PTE.
2392	 */
2393	moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
2394	PVO_PTEGIDX_CLR(victim_pvo);
2395	moea_pte_overflow++;
2396	moea_pte_set(pt, pvo_pt);
2397
2398	return (victim_idx & 7);
2399}
2400
2401static boolean_t
2402moea_query_bit(vm_page_t m, int ptebit)
2403{
2404	struct	pvo_entry *pvo;
2405	struct	pte *pt;
2406
2407	rw_assert(&pvh_global_lock, RA_WLOCKED);
2408	if (moea_attr_fetch(m) & ptebit)
2409		return (TRUE);
2410
2411	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2412
2413		/*
2414		 * See if we saved the bit off.  If so, cache it and return
2415		 * success.
2416		 */
2417		if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2418			moea_attr_save(m, ptebit);
2419			return (TRUE);
2420		}
2421	}
2422
2423	/*
2424	 * No luck, now go through the hard part of looking at the PTEs
2425	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2426	 * the PTEs.
2427	 */
2428	powerpc_sync();
2429	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2430
2431		/*
2432		 * See if this pvo has a valid PTE.  if so, fetch the
2433		 * REF/CHG bits from the valid PTE.  If the appropriate
2434		 * ptebit is set, cache it and return success.
2435		 */
2436		pt = moea_pvo_to_pte(pvo, -1);
2437		if (pt != NULL) {
2438			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2439			mtx_unlock(&moea_table_mutex);
2440			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2441				moea_attr_save(m, ptebit);
2442				return (TRUE);
2443			}
2444		}
2445	}
2446
2447	return (FALSE);
2448}
2449
2450static u_int
2451moea_clear_bit(vm_page_t m, int ptebit)
2452{
2453	u_int	count;
2454	struct	pvo_entry *pvo;
2455	struct	pte *pt;
2456
2457	rw_assert(&pvh_global_lock, RA_WLOCKED);
2458
2459	/*
2460	 * Clear the cached value.
2461	 */
2462	moea_attr_clear(m, ptebit);
2463
2464	/*
2465	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2466	 * we can reset the right ones).  note that since the pvo entries and
2467	 * list heads are accessed via BAT0 and are never placed in the page
2468	 * table, we don't have to worry about further accesses setting the
2469	 * REF/CHG bits.
2470	 */
2471	powerpc_sync();
2472
2473	/*
2474	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2475	 * valid pte clear the ptebit from the valid pte.
2476	 */
2477	count = 0;
2478	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2479		pt = moea_pvo_to_pte(pvo, -1);
2480		if (pt != NULL) {
2481			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2482			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2483				count++;
2484				moea_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2485			}
2486			mtx_unlock(&moea_table_mutex);
2487		}
2488		pvo->pvo_pte.pte.pte_lo &= ~ptebit;
2489	}
2490
2491	return (count);
2492}
2493
2494/*
2495 * Return true if the physical range is encompassed by the battable[idx]
2496 */
2497static int
2498moea_bat_mapped(int idx, vm_offset_t pa, vm_size_t size)
2499{
2500	u_int prot;
2501	u_int32_t start;
2502	u_int32_t end;
2503	u_int32_t bat_ble;
2504
2505	/*
2506	 * Return immediately if not a valid mapping
2507	 */
2508	if (!(battable[idx].batu & BAT_Vs))
2509		return (EINVAL);
2510
2511	/*
2512	 * The BAT entry must be cache-inhibited, guarded, and r/w
2513	 * so it can function as an i/o page
2514	 */
2515	prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
2516	if (prot != (BAT_I|BAT_G|BAT_PP_RW))
2517		return (EPERM);
2518
2519	/*
2520	 * The address should be within the BAT range. Assume that the
2521	 * start address in the BAT has the correct alignment (thus
2522	 * not requiring masking)
2523	 */
2524	start = battable[idx].batl & BAT_PBS;
2525	bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
2526	end = start | (bat_ble << 15) | 0x7fff;
2527
2528	if ((pa < start) || ((pa + size) > end))
2529		return (ERANGE);
2530
2531	return (0);
2532}
2533
2534boolean_t
2535moea_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2536{
2537	int i;
2538
2539	/*
2540	 * This currently does not work for entries that
2541	 * overlap 256M BAT segments.
2542	 */
2543
2544	for(i = 0; i < 16; i++)
2545		if (moea_bat_mapped(i, pa, size) == 0)
2546			return (0);
2547
2548	return (EFAULT);
2549}
2550
2551/*
2552 * Map a set of physical memory pages into the kernel virtual
2553 * address space. Return a pointer to where it is mapped. This
2554 * routine is intended to be used for mapping device memory,
2555 * NOT real memory.
2556 */
2557void *
2558moea_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2559{
2560
2561	return (moea_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT));
2562}
2563
2564void *
2565moea_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
2566{
2567	vm_offset_t va, tmpva, ppa, offset;
2568	int i;
2569
2570	ppa = trunc_page(pa);
2571	offset = pa & PAGE_MASK;
2572	size = roundup(offset + size, PAGE_SIZE);
2573
2574	/*
2575	 * If the physical address lies within a valid BAT table entry,
2576	 * return the 1:1 mapping. This currently doesn't work
2577	 * for regions that overlap 256M BAT segments.
2578	 */
2579	for (i = 0; i < 16; i++) {
2580		if (moea_bat_mapped(i, pa, size) == 0)
2581			return ((void *) pa);
2582	}
2583
2584	va = kva_alloc(size);
2585	if (!va)
2586		panic("moea_mapdev: Couldn't alloc kernel virtual memory");
2587
2588	for (tmpva = va; size > 0;) {
2589		moea_kenter_attr(mmu, tmpva, ppa, ma);
2590		tlbie(tmpva);
2591		size -= PAGE_SIZE;
2592		tmpva += PAGE_SIZE;
2593		ppa += PAGE_SIZE;
2594	}
2595
2596	return ((void *)(va + offset));
2597}
2598
2599void
2600moea_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2601{
2602	vm_offset_t base, offset;
2603
2604	/*
2605	 * If this is outside kernel virtual space, then it's a
2606	 * battable entry and doesn't require unmapping
2607	 */
2608	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= virtual_end)) {
2609		base = trunc_page(va);
2610		offset = va & PAGE_MASK;
2611		size = roundup(offset + size, PAGE_SIZE);
2612		kva_free(base, size);
2613	}
2614}
2615
2616static void
2617moea_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2618{
2619	struct pvo_entry *pvo;
2620	vm_offset_t lim;
2621	vm_paddr_t pa;
2622	vm_size_t len;
2623
2624	PMAP_LOCK(pm);
2625	while (sz > 0) {
2626		lim = round_page(va);
2627		len = MIN(lim - va, sz);
2628		pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2629		if (pvo != NULL) {
2630			pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) |
2631			    (va & ADDR_POFF);
2632			moea_syncicache(pa, len);
2633		}
2634		va += len;
2635		sz -= len;
2636	}
2637	PMAP_UNLOCK(pm);
2638}
2639
2640vm_offset_t
2641moea_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2642    vm_size_t *sz)
2643{
2644	if (md->md_vaddr == ~0UL)
2645	    return (md->md_paddr + ofs);
2646	else
2647	    return (md->md_vaddr + ofs);
2648}
2649
2650struct pmap_md *
2651moea_scan_md(mmu_t mmu, struct pmap_md *prev)
2652{
2653	static struct pmap_md md;
2654	struct pvo_entry *pvo;
2655	vm_offset_t va;
2656
2657	if (dumpsys_minidump) {
2658		md.md_paddr = ~0UL;	/* Minidumps use virtual addresses. */
2659		if (prev == NULL) {
2660			/* 1st: kernel .data and .bss. */
2661			md.md_index = 1;
2662			md.md_vaddr = trunc_page((uintptr_t)_etext);
2663			md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2664			return (&md);
2665		}
2666		switch (prev->md_index) {
2667		case 1:
2668			/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2669			md.md_index = 2;
2670			md.md_vaddr = (vm_offset_t)msgbufp->msg_ptr;
2671			md.md_size = round_page(msgbufp->msg_size);
2672			break;
2673		case 2:
2674			/* 3rd: kernel VM. */
2675			va = prev->md_vaddr + prev->md_size;
2676			/* Find start of next chunk (from va). */
2677			while (va < virtual_end) {
2678				/* Don't dump the buffer cache. */
2679				if (va >= kmi.buffer_sva &&
2680				    va < kmi.buffer_eva) {
2681					va = kmi.buffer_eva;
2682					continue;
2683				}
2684				pvo = moea_pvo_find_va(kernel_pmap,
2685				    va & ~ADDR_POFF, NULL);
2686				if (pvo != NULL &&
2687				    (pvo->pvo_pte.pte.pte_hi & PTE_VALID))
2688					break;
2689				va += PAGE_SIZE;
2690			}
2691			if (va < virtual_end) {
2692				md.md_vaddr = va;
2693				va += PAGE_SIZE;
2694				/* Find last page in chunk. */
2695				while (va < virtual_end) {
2696					/* Don't run into the buffer cache. */
2697					if (va == kmi.buffer_sva)
2698						break;
2699					pvo = moea_pvo_find_va(kernel_pmap,
2700					    va & ~ADDR_POFF, NULL);
2701					if (pvo == NULL ||
2702					    !(pvo->pvo_pte.pte.pte_hi & PTE_VALID))
2703						break;
2704					va += PAGE_SIZE;
2705				}
2706				md.md_size = va - md.md_vaddr;
2707				break;
2708			}
2709			md.md_index = 3;
2710			/* FALLTHROUGH */
2711		default:
2712			return (NULL);
2713		}
2714	} else { /* minidumps */
2715		mem_regions(&pregions, &pregions_sz,
2716		    &regions, &regions_sz);
2717
2718		if (prev == NULL) {
2719			/* first physical chunk. */
2720			md.md_paddr = pregions[0].mr_start;
2721			md.md_size = pregions[0].mr_size;
2722			md.md_vaddr = ~0UL;
2723			md.md_index = 1;
2724		} else if (md.md_index < pregions_sz) {
2725			md.md_paddr = pregions[md.md_index].mr_start;
2726			md.md_size = pregions[md.md_index].mr_size;
2727			md.md_vaddr = ~0UL;
2728			md.md_index++;
2729		} else {
2730			/* There's no next physical chunk. */
2731			return (NULL);
2732		}
2733	}
2734
2735	return (&md);
2736}
2737