1/*-
2 * Copyright (c) 2002-2009 Luigi Rizzo, Universita` di Pisa
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 */
25
26#include <sys/cdefs.h>
27__FBSDID("$FreeBSD: stable/10/sys/netpfil/ipfw/ip_fw2.c 331202 2018-03-19 09:54:16Z ae $");
28
29/*
30 * The FreeBSD IP packet firewall, main file
31 */
32
33#include "opt_ipfw.h"
34#include "opt_ipdivert.h"
35#include "opt_inet.h"
36#ifndef INET
37#error "IPFIREWALL requires INET"
38#endif /* INET */
39#include "opt_inet6.h"
40#include "opt_ipsec.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/condvar.h>
45#include <sys/eventhandler.h>
46#include <sys/malloc.h>
47#include <sys/mbuf.h>
48#include <sys/kernel.h>
49#include <sys/lock.h>
50#include <sys/jail.h>
51#include <sys/module.h>
52#include <sys/priv.h>
53#include <sys/proc.h>
54#include <sys/rwlock.h>
55#include <sys/socket.h>
56#include <sys/socketvar.h>
57#include <sys/sysctl.h>
58#include <sys/syslog.h>
59#include <sys/ucred.h>
60#include <net/ethernet.h> /* for ETHERTYPE_IP */
61#include <net/if.h>
62#include <net/route.h>
63#include <net/pfil.h>
64#include <net/vnet.h>
65
66#include <netpfil/pf/pf_mtag.h>
67
68#include <netinet/in.h>
69#include <netinet/in_var.h>
70#include <netinet/in_pcb.h>
71#include <netinet/ip.h>
72#include <netinet/ip_var.h>
73#include <netinet/ip_icmp.h>
74#include <netinet/ip_fw.h>
75#include <netinet/ip_carp.h>
76#include <netinet/pim.h>
77#include <netinet/tcp_var.h>
78#include <netinet/udp.h>
79#include <netinet/udp_var.h>
80#include <netinet/sctp.h>
81
82#include <netinet/ip6.h>
83#include <netinet/icmp6.h>
84#ifdef INET6
85#include <netinet6/in6_pcb.h>
86#include <netinet6/scope6_var.h>
87#include <netinet6/ip6_var.h>
88#endif
89
90#include <net/if_gre.h> /* for struct grehdr */
91
92#include <netpfil/ipfw/ip_fw_private.h>
93
94#include <machine/in_cksum.h>	/* XXX for in_cksum */
95
96#ifdef MAC
97#include <security/mac/mac_framework.h>
98#endif
99
100/*
101 * static variables followed by global ones.
102 * All ipfw global variables are here.
103 */
104
105/* ipfw_vnet_ready controls when we are open for business */
106static VNET_DEFINE(int, ipfw_vnet_ready) = 0;
107#define	V_ipfw_vnet_ready	VNET(ipfw_vnet_ready)
108
109static VNET_DEFINE(int, fw_deny_unknown_exthdrs);
110#define	V_fw_deny_unknown_exthdrs	VNET(fw_deny_unknown_exthdrs)
111
112static VNET_DEFINE(int, fw_permit_single_frag6) = 1;
113#define	V_fw_permit_single_frag6	VNET(fw_permit_single_frag6)
114
115#ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
116static int default_to_accept = 1;
117#else
118static int default_to_accept;
119#endif
120
121VNET_DEFINE(int, autoinc_step);
122VNET_DEFINE(int, fw_one_pass) = 1;
123
124VNET_DEFINE(unsigned int, fw_tables_max);
125/* Use 128 tables by default */
126static unsigned int default_fw_tables = IPFW_TABLES_DEFAULT;
127
128/*
129 * Each rule belongs to one of 32 different sets (0..31).
130 * The variable set_disable contains one bit per set.
131 * If the bit is set, all rules in the corresponding set
132 * are disabled. Set RESVD_SET(31) is reserved for the default rule
133 * and rules that are not deleted by the flush command,
134 * and CANNOT be disabled.
135 * Rules in set RESVD_SET can only be deleted individually.
136 */
137VNET_DEFINE(u_int32_t, set_disable);
138#define	V_set_disable			VNET(set_disable)
139
140VNET_DEFINE(int, fw_verbose);
141/* counter for ipfw_log(NULL...) */
142VNET_DEFINE(u_int64_t, norule_counter);
143VNET_DEFINE(int, verbose_limit);
144
145/* layer3_chain contains the list of rules for layer 3 */
146VNET_DEFINE(struct ip_fw_chain, layer3_chain);
147
148VNET_DEFINE(int, ipfw_nat_ready) = 0;
149
150ipfw_nat_t *ipfw_nat_ptr = NULL;
151struct cfg_nat *(*lookup_nat_ptr)(struct nat_list *, int);
152ipfw_nat_cfg_t *ipfw_nat_cfg_ptr;
153ipfw_nat_cfg_t *ipfw_nat_del_ptr;
154ipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr;
155ipfw_nat_cfg_t *ipfw_nat_get_log_ptr;
156
157#ifdef SYSCTL_NODE
158uint32_t dummy_def = IPFW_DEFAULT_RULE;
159static int sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS);
160
161SYSBEGIN(f3)
162
163SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
164SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
165    CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_one_pass), 0,
166    "Only do a single pass through ipfw when using dummynet(4)");
167SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step,
168    CTLFLAG_RW, &VNET_NAME(autoinc_step), 0,
169    "Rule number auto-increment step");
170SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, verbose,
171    CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_verbose), 0,
172    "Log matches to ipfw rules");
173SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit,
174    CTLFLAG_RW, &VNET_NAME(verbose_limit), 0,
175    "Set upper limit of matches of ipfw rules logged");
176SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, default_rule, CTLFLAG_RD,
177    &dummy_def, 0,
178    "The default/max possible rule number.");
179SYSCTL_VNET_PROC(_net_inet_ip_fw, OID_AUTO, tables_max,
180    CTLTYPE_UINT|CTLFLAG_RW, 0, 0, sysctl_ipfw_table_num, "IU",
181    "Maximum number of tables");
182SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, default_to_accept, CTLFLAG_RDTUN,
183    &default_to_accept, 0,
184    "Make the default rule accept all packets.");
185TUNABLE_INT("net.inet.ip.fw.default_to_accept", &default_to_accept);
186TUNABLE_INT("net.inet.ip.fw.tables_max", (int *)&default_fw_tables);
187SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, static_count,
188    CTLFLAG_RD, &VNET_NAME(layer3_chain.n_rules), 0,
189    "Number of static rules");
190
191#ifdef INET6
192SYSCTL_DECL(_net_inet6_ip6);
193SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
194SYSCTL_VNET_INT(_net_inet6_ip6_fw, OID_AUTO, deny_unknown_exthdrs,
195    CTLFLAG_RW | CTLFLAG_SECURE, &VNET_NAME(fw_deny_unknown_exthdrs), 0,
196    "Deny packets with unknown IPv6 Extension Headers");
197SYSCTL_VNET_INT(_net_inet6_ip6_fw, OID_AUTO, permit_single_frag6,
198    CTLFLAG_RW | CTLFLAG_SECURE, &VNET_NAME(fw_permit_single_frag6), 0,
199    "Permit single packet IPv6 fragments");
200#endif /* INET6 */
201
202SYSEND
203
204#endif /* SYSCTL_NODE */
205
206
207/*
208 * Some macros used in the various matching options.
209 * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
210 * Other macros just cast void * into the appropriate type
211 */
212#define	L3HDR(T, ip)	((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
213#define	TCP(p)		((struct tcphdr *)(p))
214#define	SCTP(p)		((struct sctphdr *)(p))
215#define	UDP(p)		((struct udphdr *)(p))
216#define	ICMP(p)		((struct icmphdr *)(p))
217#define	ICMP6(p)	((struct icmp6_hdr *)(p))
218
219static __inline int
220icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
221{
222	int type = icmp->icmp_type;
223
224	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
225}
226
227#define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
228    (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
229
230static int
231is_icmp_query(struct icmphdr *icmp)
232{
233	int type = icmp->icmp_type;
234
235	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
236}
237#undef TT
238
239/*
240 * The following checks use two arrays of 8 or 16 bits to store the
241 * bits that we want set or clear, respectively. They are in the
242 * low and high half of cmd->arg1 or cmd->d[0].
243 *
244 * We scan options and store the bits we find set. We succeed if
245 *
246 *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
247 *
248 * The code is sometimes optimized not to store additional variables.
249 */
250
251static int
252flags_match(ipfw_insn *cmd, u_int8_t bits)
253{
254	u_char want_clear;
255	bits = ~bits;
256
257	if ( ((cmd->arg1 & 0xff) & bits) != 0)
258		return 0; /* some bits we want set were clear */
259	want_clear = (cmd->arg1 >> 8) & 0xff;
260	if ( (want_clear & bits) != want_clear)
261		return 0; /* some bits we want clear were set */
262	return 1;
263}
264
265static int
266ipopts_match(struct ip *ip, ipfw_insn *cmd)
267{
268	int optlen, bits = 0;
269	u_char *cp = (u_char *)(ip + 1);
270	int x = (ip->ip_hl << 2) - sizeof (struct ip);
271
272	for (; x > 0; x -= optlen, cp += optlen) {
273		int opt = cp[IPOPT_OPTVAL];
274
275		if (opt == IPOPT_EOL)
276			break;
277		if (opt == IPOPT_NOP)
278			optlen = 1;
279		else {
280			optlen = cp[IPOPT_OLEN];
281			if (optlen <= 0 || optlen > x)
282				return 0; /* invalid or truncated */
283		}
284		switch (opt) {
285
286		default:
287			break;
288
289		case IPOPT_LSRR:
290			bits |= IP_FW_IPOPT_LSRR;
291			break;
292
293		case IPOPT_SSRR:
294			bits |= IP_FW_IPOPT_SSRR;
295			break;
296
297		case IPOPT_RR:
298			bits |= IP_FW_IPOPT_RR;
299			break;
300
301		case IPOPT_TS:
302			bits |= IP_FW_IPOPT_TS;
303			break;
304		}
305	}
306	return (flags_match(cmd, bits));
307}
308
309static int
310tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
311{
312	int optlen, bits = 0;
313	u_char *cp = (u_char *)(tcp + 1);
314	int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
315
316	for (; x > 0; x -= optlen, cp += optlen) {
317		int opt = cp[0];
318		if (opt == TCPOPT_EOL)
319			break;
320		if (opt == TCPOPT_NOP)
321			optlen = 1;
322		else {
323			optlen = cp[1];
324			if (optlen <= 0)
325				break;
326		}
327
328		switch (opt) {
329
330		default:
331			break;
332
333		case TCPOPT_MAXSEG:
334			bits |= IP_FW_TCPOPT_MSS;
335			break;
336
337		case TCPOPT_WINDOW:
338			bits |= IP_FW_TCPOPT_WINDOW;
339			break;
340
341		case TCPOPT_SACK_PERMITTED:
342		case TCPOPT_SACK:
343			bits |= IP_FW_TCPOPT_SACK;
344			break;
345
346		case TCPOPT_TIMESTAMP:
347			bits |= IP_FW_TCPOPT_TS;
348			break;
349
350		}
351	}
352	return (flags_match(cmd, bits));
353}
354
355static int
356iface_match(struct ifnet *ifp, ipfw_insn_if *cmd, struct ip_fw_chain *chain, uint32_t *tablearg)
357{
358	if (ifp == NULL)	/* no iface with this packet, match fails */
359		return 0;
360	/* Check by name or by IP address */
361	if (cmd->name[0] != '\0') { /* match by name */
362		if (cmd->name[0] == '\1') /* use tablearg to match */
363			return ipfw_lookup_table_extended(chain, cmd->p.glob,
364				ifp->if_xname, tablearg, IPFW_TABLE_INTERFACE);
365		/* Check name */
366		if (cmd->p.glob) {
367			if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
368				return(1);
369		} else {
370			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
371				return(1);
372		}
373	} else {
374#ifdef __FreeBSD__	/* and OSX too ? */
375		struct ifaddr *ia;
376
377		if_addr_rlock(ifp);
378		TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
379			if (ia->ifa_addr->sa_family != AF_INET)
380				continue;
381			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
382			    (ia->ifa_addr))->sin_addr.s_addr) {
383				if_addr_runlock(ifp);
384				return(1);	/* match */
385			}
386		}
387		if_addr_runlock(ifp);
388#endif /* __FreeBSD__ */
389	}
390	return(0);	/* no match, fail ... */
391}
392
393/*
394 * The verify_path function checks if a route to the src exists and
395 * if it is reachable via ifp (when provided).
396 *
397 * The 'verrevpath' option checks that the interface that an IP packet
398 * arrives on is the same interface that traffic destined for the
399 * packet's source address would be routed out of.
400 * The 'versrcreach' option just checks that the source address is
401 * reachable via any route (except default) in the routing table.
402 * These two are a measure to block forged packets. This is also
403 * commonly known as "anti-spoofing" or Unicast Reverse Path
404 * Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
405 * is purposely reminiscent of the Cisco IOS command,
406 *
407 *   ip verify unicast reverse-path
408 *   ip verify unicast source reachable-via any
409 *
410 * which implements the same functionality. But note that the syntax
411 * is misleading, and the check may be performed on all IP packets
412 * whether unicast, multicast, or broadcast.
413 */
414static int
415verify_path(struct in_addr src, struct ifnet *ifp, u_int fib)
416{
417#ifndef __FreeBSD__
418	return 0;
419#else
420	struct route ro;
421	struct sockaddr_in *dst;
422
423	bzero(&ro, sizeof(ro));
424
425	dst = (struct sockaddr_in *)&(ro.ro_dst);
426	dst->sin_family = AF_INET;
427	dst->sin_len = sizeof(*dst);
428	dst->sin_addr = src;
429	in_rtalloc_ign(&ro, 0, fib);
430
431	if (ro.ro_rt == NULL)
432		return 0;
433
434	/*
435	 * If ifp is provided, check for equality with rtentry.
436	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
437	 * in order to pass packets injected back by if_simloop():
438	 * if useloopback == 1 routing entry (via lo0) for our own address
439	 * may exist, so we need to handle routing assymetry.
440	 */
441	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
442		RTFREE(ro.ro_rt);
443		return 0;
444	}
445
446	/* if no ifp provided, check if rtentry is not default route */
447	if (ifp == NULL &&
448	     satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) {
449		RTFREE(ro.ro_rt);
450		return 0;
451	}
452
453	/* or if this is a blackhole/reject route */
454	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
455		RTFREE(ro.ro_rt);
456		return 0;
457	}
458
459	/* found valid route */
460	RTFREE(ro.ro_rt);
461	return 1;
462#endif /* __FreeBSD__ */
463}
464
465#ifdef INET6
466/*
467 * ipv6 specific rules here...
468 */
469static __inline int
470icmp6type_match (int type, ipfw_insn_u32 *cmd)
471{
472	return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
473}
474
475static int
476flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
477{
478	int i;
479	for (i=0; i <= cmd->o.arg1; ++i )
480		if (curr_flow == cmd->d[i] )
481			return 1;
482	return 0;
483}
484
485/* support for IP6_*_ME opcodes */
486static int
487search_ip6_addr_net (struct in6_addr * ip6_addr)
488{
489	struct ifnet *mdc;
490	struct ifaddr *mdc2;
491	struct in6_ifaddr *fdm;
492	struct in6_addr copia;
493
494	TAILQ_FOREACH(mdc, &V_ifnet, if_link) {
495		if_addr_rlock(mdc);
496		TAILQ_FOREACH(mdc2, &mdc->if_addrhead, ifa_link) {
497			if (mdc2->ifa_addr->sa_family == AF_INET6) {
498				fdm = (struct in6_ifaddr *)mdc2;
499				copia = fdm->ia_addr.sin6_addr;
500				/* need for leaving scope_id in the sock_addr */
501				in6_clearscope(&copia);
502				if (IN6_ARE_ADDR_EQUAL(ip6_addr, &copia)) {
503					if_addr_runlock(mdc);
504					return 1;
505				}
506			}
507		}
508		if_addr_runlock(mdc);
509	}
510	return 0;
511}
512
513static int
514verify_path6(struct in6_addr *src, struct ifnet *ifp, u_int fib)
515{
516	struct route_in6 ro;
517	struct sockaddr_in6 *dst;
518
519	bzero(&ro, sizeof(ro));
520
521	dst = (struct sockaddr_in6 * )&(ro.ro_dst);
522	dst->sin6_family = AF_INET6;
523	dst->sin6_len = sizeof(*dst);
524	dst->sin6_addr = *src;
525
526	in6_rtalloc_ign(&ro, 0, fib);
527	if (ro.ro_rt == NULL)
528		return 0;
529
530	/*
531	 * if ifp is provided, check for equality with rtentry
532	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
533	 * to support the case of sending packets to an address of our own.
534	 * (where the former interface is the first argument of if_simloop()
535	 *  (=ifp), the latter is lo0)
536	 */
537	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
538		RTFREE(ro.ro_rt);
539		return 0;
540	}
541
542	/* if no ifp provided, check if rtentry is not default route */
543	if (ifp == NULL &&
544	    IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(ro.ro_rt))->sin6_addr)) {
545		RTFREE(ro.ro_rt);
546		return 0;
547	}
548
549	/* or if this is a blackhole/reject route */
550	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
551		RTFREE(ro.ro_rt);
552		return 0;
553	}
554
555	/* found valid route */
556	RTFREE(ro.ro_rt);
557	return 1;
558
559}
560
561static int
562is_icmp6_query(int icmp6_type)
563{
564	if ((icmp6_type <= ICMP6_MAXTYPE) &&
565	    (icmp6_type == ICMP6_ECHO_REQUEST ||
566	    icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
567	    icmp6_type == ICMP6_WRUREQUEST ||
568	    icmp6_type == ICMP6_FQDN_QUERY ||
569	    icmp6_type == ICMP6_NI_QUERY))
570		return (1);
571
572	return (0);
573}
574
575static void
576send_reject6(struct ip_fw_args *args, int code, u_int hlen, struct ip6_hdr *ip6)
577{
578	struct mbuf *m;
579
580	m = args->m;
581	if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
582		struct tcphdr *tcp;
583		tcp = (struct tcphdr *)((char *)ip6 + hlen);
584
585		if ((tcp->th_flags & TH_RST) == 0) {
586			struct mbuf *m0;
587			m0 = ipfw_send_pkt(args->m, &(args->f_id),
588			    ntohl(tcp->th_seq), ntohl(tcp->th_ack),
589			    tcp->th_flags | TH_RST);
590			if (m0 != NULL)
591				ip6_output(m0, NULL, NULL, 0, NULL, NULL,
592				    NULL);
593		}
594		FREE_PKT(m);
595	} else if (code != ICMP6_UNREACH_RST) { /* Send an ICMPv6 unreach. */
596#if 0
597		/*
598		 * Unlike above, the mbufs need to line up with the ip6 hdr,
599		 * as the contents are read. We need to m_adj() the
600		 * needed amount.
601		 * The mbuf will however be thrown away so we can adjust it.
602		 * Remember we did an m_pullup on it already so we
603		 * can make some assumptions about contiguousness.
604		 */
605		if (args->L3offset)
606			m_adj(m, args->L3offset);
607#endif
608		icmp6_error(m, ICMP6_DST_UNREACH, code, 0);
609	} else
610		FREE_PKT(m);
611
612	args->m = NULL;
613}
614
615#endif /* INET6 */
616
617
618/*
619 * sends a reject message, consuming the mbuf passed as an argument.
620 */
621static void
622send_reject(struct ip_fw_args *args, int code, int iplen, struct ip *ip)
623{
624
625#if 0
626	/* XXX When ip is not guaranteed to be at mtod() we will
627	 * need to account for this */
628	 * The mbuf will however be thrown away so we can adjust it.
629	 * Remember we did an m_pullup on it already so we
630	 * can make some assumptions about contiguousness.
631	 */
632	if (args->L3offset)
633		m_adj(m, args->L3offset);
634#endif
635	if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
636		icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
637	} else if (args->f_id.proto == IPPROTO_TCP) {
638		struct tcphdr *const tcp =
639		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
640		if ( (tcp->th_flags & TH_RST) == 0) {
641			struct mbuf *m;
642			m = ipfw_send_pkt(args->m, &(args->f_id),
643				ntohl(tcp->th_seq), ntohl(tcp->th_ack),
644				tcp->th_flags | TH_RST);
645			if (m != NULL)
646				ip_output(m, NULL, NULL, 0, NULL, NULL);
647		}
648		FREE_PKT(args->m);
649	} else
650		FREE_PKT(args->m);
651	args->m = NULL;
652}
653
654/*
655 * Support for uid/gid/jail lookup. These tests are expensive
656 * (because we may need to look into the list of active sockets)
657 * so we cache the results. ugid_lookupp is 0 if we have not
658 * yet done a lookup, 1 if we succeeded, and -1 if we tried
659 * and failed. The function always returns the match value.
660 * We could actually spare the variable and use *uc, setting
661 * it to '(void *)check_uidgid if we have no info, NULL if
662 * we tried and failed, or any other value if successful.
663 */
664static int
665check_uidgid(ipfw_insn_u32 *insn, struct ip_fw_args *args, int *ugid_lookupp,
666    struct ucred **uc)
667{
668#ifndef __FreeBSD__
669	/* XXX */
670	return cred_check(insn, proto, oif,
671	    dst_ip, dst_port, src_ip, src_port,
672	    (struct bsd_ucred *)uc, ugid_lookupp, ((struct mbuf *)inp)->m_skb);
673#else  /* FreeBSD */
674	struct in_addr src_ip, dst_ip;
675	struct inpcbinfo *pi;
676	struct ipfw_flow_id *id;
677	struct inpcb *pcb, *inp;
678	struct ifnet *oif;
679	int lookupflags;
680	int match;
681
682	id = &args->f_id;
683	inp = args->inp;
684	oif = args->oif;
685
686	/*
687	 * Check to see if the UDP or TCP stack supplied us with
688	 * the PCB. If so, rather then holding a lock and looking
689	 * up the PCB, we can use the one that was supplied.
690	 */
691	if (inp && *ugid_lookupp == 0) {
692		INP_LOCK_ASSERT(inp);
693		if (inp->inp_socket != NULL) {
694			*uc = crhold(inp->inp_cred);
695			*ugid_lookupp = 1;
696		} else
697			*ugid_lookupp = -1;
698	}
699	/*
700	 * If we have already been here and the packet has no
701	 * PCB entry associated with it, then we can safely
702	 * assume that this is a no match.
703	 */
704	if (*ugid_lookupp == -1)
705		return (0);
706	if (id->proto == IPPROTO_TCP) {
707		lookupflags = 0;
708		pi = &V_tcbinfo;
709	} else if (id->proto == IPPROTO_UDP) {
710		lookupflags = INPLOOKUP_WILDCARD;
711		pi = &V_udbinfo;
712	} else
713		return 0;
714	lookupflags |= INPLOOKUP_RLOCKPCB;
715	match = 0;
716	if (*ugid_lookupp == 0) {
717		if (id->addr_type == 6) {
718#ifdef INET6
719			if (oif == NULL)
720				pcb = in6_pcblookup_mbuf(pi,
721				    &id->src_ip6, htons(id->src_port),
722				    &id->dst_ip6, htons(id->dst_port),
723				    lookupflags, oif, args->m);
724			else
725				pcb = in6_pcblookup_mbuf(pi,
726				    &id->dst_ip6, htons(id->dst_port),
727				    &id->src_ip6, htons(id->src_port),
728				    lookupflags, oif, args->m);
729#else
730			*ugid_lookupp = -1;
731			return (0);
732#endif
733		} else {
734			src_ip.s_addr = htonl(id->src_ip);
735			dst_ip.s_addr = htonl(id->dst_ip);
736			if (oif == NULL)
737				pcb = in_pcblookup_mbuf(pi,
738				    src_ip, htons(id->src_port),
739				    dst_ip, htons(id->dst_port),
740				    lookupflags, oif, args->m);
741			else
742				pcb = in_pcblookup_mbuf(pi,
743				    dst_ip, htons(id->dst_port),
744				    src_ip, htons(id->src_port),
745				    lookupflags, oif, args->m);
746		}
747		if (pcb != NULL) {
748			INP_RLOCK_ASSERT(pcb);
749			*uc = crhold(pcb->inp_cred);
750			*ugid_lookupp = 1;
751			INP_RUNLOCK(pcb);
752		}
753		if (*ugid_lookupp == 0) {
754			/*
755			 * We tried and failed, set the variable to -1
756			 * so we will not try again on this packet.
757			 */
758			*ugid_lookupp = -1;
759			return (0);
760		}
761	}
762	if (insn->o.opcode == O_UID)
763		match = ((*uc)->cr_uid == (uid_t)insn->d[0]);
764	else if (insn->o.opcode == O_GID)
765		match = groupmember((gid_t)insn->d[0], *uc);
766	else if (insn->o.opcode == O_JAIL)
767		match = ((*uc)->cr_prison->pr_id == (int)insn->d[0]);
768	return (match);
769#endif /* __FreeBSD__ */
770}
771
772/*
773 * Helper function to set args with info on the rule after the matching
774 * one. slot is precise, whereas we guess rule_id as they are
775 * assigned sequentially.
776 */
777static inline void
778set_match(struct ip_fw_args *args, int slot,
779	struct ip_fw_chain *chain)
780{
781	args->rule.chain_id = chain->id;
782	args->rule.slot = slot + 1; /* we use 0 as a marker */
783	args->rule.rule_id = 1 + chain->map[slot]->id;
784	args->rule.rulenum = chain->map[slot]->rulenum;
785}
786
787/*
788 * Helper function to enable cached rule lookups using
789 * x_next and next_rule fields in ipfw rule.
790 */
791static int
792jump_fast(struct ip_fw_chain *chain, struct ip_fw *f, int num,
793    int tablearg, int jump_backwards)
794{
795	int f_pos;
796
797	/* If possible use cached f_pos (in f->next_rule),
798	 * whose version is written in f->next_rule
799	 * (horrible hacks to avoid changing the ABI).
800	 */
801	if (num != IP_FW_TABLEARG && (uintptr_t)f->x_next == chain->id)
802		f_pos = (uintptr_t)f->next_rule;
803	else {
804		int i = IP_FW_ARG_TABLEARG(num);
805		/* make sure we do not jump backward */
806		if (jump_backwards == 0 && i <= f->rulenum)
807			i = f->rulenum + 1;
808		f_pos = ipfw_find_rule(chain, i, 0);
809		/* update the cache */
810		if (num != IP_FW_TABLEARG) {
811			f->next_rule = (void *)(uintptr_t)f_pos;
812			f->x_next = (void *)(uintptr_t)chain->id;
813		}
814	}
815
816	return (f_pos);
817}
818
819/*
820 * The main check routine for the firewall.
821 *
822 * All arguments are in args so we can modify them and return them
823 * back to the caller.
824 *
825 * Parameters:
826 *
827 *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
828 *		Starts with the IP header.
829 *	args->eh (in)	Mac header if present, NULL for layer3 packet.
830 *	args->L3offset	Number of bytes bypassed if we came from L2.
831 *			e.g. often sizeof(eh)  ** NOTYET **
832 *	args->oif	Outgoing interface, NULL if packet is incoming.
833 *		The incoming interface is in the mbuf. (in)
834 *	args->divert_rule (in/out)
835 *		Skip up to the first rule past this rule number;
836 *		upon return, non-zero port number for divert or tee.
837 *
838 *	args->rule	Pointer to the last matching rule (in/out)
839 *	args->next_hop	Socket we are forwarding to (out).
840 *	args->next_hop6	IPv6 next hop we are forwarding to (out).
841 *	args->f_id	Addresses grabbed from the packet (out)
842 * 	args->rule.info	a cookie depending on rule action
843 *
844 * Return value:
845 *
846 *	IP_FW_PASS	the packet must be accepted
847 *	IP_FW_DENY	the packet must be dropped
848 *	IP_FW_DIVERT	divert packet, port in m_tag
849 *	IP_FW_TEE	tee packet, port in m_tag
850 *	IP_FW_DUMMYNET	to dummynet, pipe in args->cookie
851 *	IP_FW_NETGRAPH	into netgraph, cookie args->cookie
852 *		args->rule contains the matching rule,
853 *		args->rule.info has additional information.
854 *
855 */
856int
857ipfw_chk(struct ip_fw_args *args)
858{
859
860	/*
861	 * Local variables holding state while processing a packet:
862	 *
863	 * IMPORTANT NOTE: to speed up the processing of rules, there
864	 * are some assumption on the values of the variables, which
865	 * are documented here. Should you change them, please check
866	 * the implementation of the various instructions to make sure
867	 * that they still work.
868	 *
869	 * args->eh	The MAC header. It is non-null for a layer2
870	 *	packet, it is NULL for a layer-3 packet.
871	 * **notyet**
872	 * args->L3offset Offset in the packet to the L3 (IP or equiv.) header.
873	 *
874	 * m | args->m	Pointer to the mbuf, as received from the caller.
875	 *	It may change if ipfw_chk() does an m_pullup, or if it
876	 *	consumes the packet because it calls send_reject().
877	 *	XXX This has to change, so that ipfw_chk() never modifies
878	 *	or consumes the buffer.
879	 * ip	is the beginning of the ip(4 or 6) header.
880	 *	Calculated by adding the L3offset to the start of data.
881	 *	(Until we start using L3offset, the packet is
882	 *	supposed to start with the ip header).
883	 */
884	struct mbuf *m = args->m;
885	struct ip *ip = mtod(m, struct ip *);
886
887	/*
888	 * For rules which contain uid/gid or jail constraints, cache
889	 * a copy of the users credentials after the pcb lookup has been
890	 * executed. This will speed up the processing of rules with
891	 * these types of constraints, as well as decrease contention
892	 * on pcb related locks.
893	 */
894#ifndef __FreeBSD__
895	struct bsd_ucred ucred_cache;
896#else
897	struct ucred *ucred_cache = NULL;
898#endif
899	int ucred_lookup = 0;
900
901	/*
902	 * oif | args->oif	If NULL, ipfw_chk has been called on the
903	 *	inbound path (ether_input, ip_input).
904	 *	If non-NULL, ipfw_chk has been called on the outbound path
905	 *	(ether_output, ip_output).
906	 */
907	struct ifnet *oif = args->oif;
908
909	int f_pos = 0;		/* index of current rule in the array */
910	int retval = 0;
911
912	/*
913	 * hlen	The length of the IP header.
914	 */
915	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
916
917	/*
918	 * offset	The offset of a fragment. offset != 0 means that
919	 *	we have a fragment at this offset of an IPv4 packet.
920	 *	offset == 0 means that (if this is an IPv4 packet)
921	 *	this is the first or only fragment.
922	 *	For IPv6 offset|ip6f_mf == 0 means there is no Fragment Header
923	 *	or there is a single packet fragement (fragement header added
924	 *	without needed).  We will treat a single packet fragment as if
925	 *	there was no fragment header (or log/block depending on the
926	 *	V_fw_permit_single_frag6 sysctl setting).
927	 */
928	u_short offset = 0;
929	u_short ip6f_mf = 0;
930
931	/*
932	 * Local copies of addresses. They are only valid if we have
933	 * an IP packet.
934	 *
935	 * proto	The protocol. Set to 0 for non-ip packets,
936	 *	or to the protocol read from the packet otherwise.
937	 *	proto != 0 means that we have an IPv4 packet.
938	 *
939	 * src_port, dst_port	port numbers, in HOST format. Only
940	 *	valid for TCP and UDP packets.
941	 *
942	 * src_ip, dst_ip	ip addresses, in NETWORK format.
943	 *	Only valid for IPv4 packets.
944	 */
945	uint8_t proto;
946	uint16_t src_port = 0, dst_port = 0;	/* NOTE: host format	*/
947	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
948	int iplen = 0;
949	int pktlen;
950	uint16_t	etype = 0;	/* Host order stored ether type */
951
952	/*
953	 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
954	 * 	MATCH_NONE when checked and not matched (q = NULL),
955	 *	MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
956	 */
957	int dyn_dir = MATCH_UNKNOWN;
958	ipfw_dyn_rule *q = NULL;
959	struct ip_fw_chain *chain = &V_layer3_chain;
960
961	/*
962	 * We store in ulp a pointer to the upper layer protocol header.
963	 * In the ipv4 case this is easy to determine from the header,
964	 * but for ipv6 we might have some additional headers in the middle.
965	 * ulp is NULL if not found.
966	 */
967	void *ulp = NULL;		/* upper layer protocol pointer. */
968
969	/* XXX ipv6 variables */
970	int is_ipv6 = 0;
971	uint8_t	icmp6_type = 0;
972	uint16_t ext_hd = 0;	/* bits vector for extension header filtering */
973	/* end of ipv6 variables */
974
975	int is_ipv4 = 0;
976
977	int done = 0;		/* flag to exit the outer loop */
978
979	if (m->m_flags & M_SKIP_FIREWALL || (! V_ipfw_vnet_ready))
980		return (IP_FW_PASS);	/* accept */
981
982	dst_ip.s_addr = 0;		/* make sure it is initialized */
983	src_ip.s_addr = 0;		/* make sure it is initialized */
984	pktlen = m->m_pkthdr.len;
985	args->f_id.fib = M_GETFIB(m); /* note mbuf not altered) */
986	proto = args->f_id.proto = 0;	/* mark f_id invalid */
987		/* XXX 0 is a valid proto: IP/IPv6 Hop-by-Hop Option */
988
989/*
990 * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
991 * then it sets p to point at the offset "len" in the mbuf. WARNING: the
992 * pointer might become stale after other pullups (but we never use it
993 * this way).
994 */
995#define PULLUP_TO(_len, p, T)	PULLUP_LEN(_len, p, sizeof(T))
996#define PULLUP_LEN(_len, p, T)					\
997do {								\
998	int x = (_len) + T;					\
999	if ((m)->m_len < x) {					\
1000		args->m = m = m_pullup(m, x);			\
1001		if (m == NULL)					\
1002			goto pullup_failed;			\
1003	}							\
1004	p = (mtod(m, char *) + (_len));				\
1005} while (0)
1006
1007	/*
1008	 * if we have an ether header,
1009	 */
1010	if (args->eh)
1011		etype = ntohs(args->eh->ether_type);
1012
1013	/* Identify IP packets and fill up variables. */
1014	if (pktlen >= sizeof(struct ip6_hdr) &&
1015	    (args->eh == NULL || etype == ETHERTYPE_IPV6) && ip->ip_v == 6) {
1016		struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
1017		is_ipv6 = 1;
1018		args->f_id.addr_type = 6;
1019		hlen = sizeof(struct ip6_hdr);
1020		proto = ip6->ip6_nxt;
1021
1022		/* Search extension headers to find upper layer protocols */
1023		while (ulp == NULL && offset == 0) {
1024			switch (proto) {
1025			case IPPROTO_ICMPV6:
1026				PULLUP_TO(hlen, ulp, struct icmp6_hdr);
1027				icmp6_type = ICMP6(ulp)->icmp6_type;
1028				break;
1029
1030			case IPPROTO_TCP:
1031				PULLUP_TO(hlen, ulp, struct tcphdr);
1032				dst_port = TCP(ulp)->th_dport;
1033				src_port = TCP(ulp)->th_sport;
1034				/* save flags for dynamic rules */
1035				args->f_id._flags = TCP(ulp)->th_flags;
1036				break;
1037
1038			case IPPROTO_SCTP:
1039				PULLUP_TO(hlen, ulp, struct sctphdr);
1040				src_port = SCTP(ulp)->src_port;
1041				dst_port = SCTP(ulp)->dest_port;
1042				break;
1043
1044			case IPPROTO_UDP:
1045				PULLUP_TO(hlen, ulp, struct udphdr);
1046				dst_port = UDP(ulp)->uh_dport;
1047				src_port = UDP(ulp)->uh_sport;
1048				break;
1049
1050			case IPPROTO_HOPOPTS:	/* RFC 2460 */
1051				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1052				ext_hd |= EXT_HOPOPTS;
1053				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1054				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1055				ulp = NULL;
1056				break;
1057
1058			case IPPROTO_ROUTING:	/* RFC 2460 */
1059				PULLUP_TO(hlen, ulp, struct ip6_rthdr);
1060				switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
1061				case 0:
1062					ext_hd |= EXT_RTHDR0;
1063					break;
1064				case 2:
1065					ext_hd |= EXT_RTHDR2;
1066					break;
1067				default:
1068					if (V_fw_verbose)
1069						printf("IPFW2: IPV6 - Unknown "
1070						    "Routing Header type(%d)\n",
1071						    ((struct ip6_rthdr *)
1072						    ulp)->ip6r_type);
1073					if (V_fw_deny_unknown_exthdrs)
1074					    return (IP_FW_DENY);
1075					break;
1076				}
1077				ext_hd |= EXT_ROUTING;
1078				hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
1079				proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
1080				ulp = NULL;
1081				break;
1082
1083			case IPPROTO_FRAGMENT:	/* RFC 2460 */
1084				PULLUP_TO(hlen, ulp, struct ip6_frag);
1085				ext_hd |= EXT_FRAGMENT;
1086				hlen += sizeof (struct ip6_frag);
1087				proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
1088				offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
1089					IP6F_OFF_MASK;
1090				ip6f_mf = ((struct ip6_frag *)ulp)->ip6f_offlg &
1091					IP6F_MORE_FRAG;
1092				if (V_fw_permit_single_frag6 == 0 &&
1093				    offset == 0 && ip6f_mf == 0) {
1094					if (V_fw_verbose)
1095						printf("IPFW2: IPV6 - Invalid "
1096						    "Fragment Header\n");
1097					if (V_fw_deny_unknown_exthdrs)
1098					    return (IP_FW_DENY);
1099					break;
1100				}
1101				args->f_id.extra =
1102				    ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
1103				ulp = NULL;
1104				break;
1105
1106			case IPPROTO_DSTOPTS:	/* RFC 2460 */
1107				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1108				ext_hd |= EXT_DSTOPTS;
1109				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1110				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1111				ulp = NULL;
1112				break;
1113
1114			case IPPROTO_AH:	/* RFC 2402 */
1115				PULLUP_TO(hlen, ulp, struct ip6_ext);
1116				ext_hd |= EXT_AH;
1117				hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
1118				proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
1119				ulp = NULL;
1120				break;
1121
1122			case IPPROTO_ESP:	/* RFC 2406 */
1123				PULLUP_TO(hlen, ulp, uint32_t);	/* SPI, Seq# */
1124				/* Anything past Seq# is variable length and
1125				 * data past this ext. header is encrypted. */
1126				ext_hd |= EXT_ESP;
1127				break;
1128
1129			case IPPROTO_NONE:	/* RFC 2460 */
1130				/*
1131				 * Packet ends here, and IPv6 header has
1132				 * already been pulled up. If ip6e_len!=0
1133				 * then octets must be ignored.
1134				 */
1135				ulp = ip; /* non-NULL to get out of loop. */
1136				break;
1137
1138			case IPPROTO_OSPFIGP:
1139				/* XXX OSPF header check? */
1140				PULLUP_TO(hlen, ulp, struct ip6_ext);
1141				break;
1142
1143			case IPPROTO_PIM:
1144				/* XXX PIM header check? */
1145				PULLUP_TO(hlen, ulp, struct pim);
1146				break;
1147
1148			case IPPROTO_GRE:	/* RFC 1701 */
1149				/* XXX GRE header check? */
1150				PULLUP_TO(hlen, ulp, struct grehdr);
1151				break;
1152
1153			case IPPROTO_CARP:
1154				PULLUP_TO(hlen, ulp, struct carp_header);
1155				if (((struct carp_header *)ulp)->carp_version !=
1156				    CARP_VERSION)
1157					return (IP_FW_DENY);
1158				if (((struct carp_header *)ulp)->carp_type !=
1159				    CARP_ADVERTISEMENT)
1160					return (IP_FW_DENY);
1161				break;
1162
1163			case IPPROTO_IPV6:	/* RFC 2893 */
1164				PULLUP_TO(hlen, ulp, struct ip6_hdr);
1165				break;
1166
1167			case IPPROTO_IPV4:	/* RFC 2893 */
1168				PULLUP_TO(hlen, ulp, struct ip);
1169				break;
1170
1171			default:
1172				if (V_fw_verbose)
1173					printf("IPFW2: IPV6 - Unknown "
1174					    "Extension Header(%d), ext_hd=%x\n",
1175					     proto, ext_hd);
1176				if (V_fw_deny_unknown_exthdrs)
1177				    return (IP_FW_DENY);
1178				PULLUP_TO(hlen, ulp, struct ip6_ext);
1179				break;
1180			} /*switch */
1181		}
1182		ip = mtod(m, struct ip *);
1183		ip6 = (struct ip6_hdr *)ip;
1184		args->f_id.src_ip6 = ip6->ip6_src;
1185		args->f_id.dst_ip6 = ip6->ip6_dst;
1186		args->f_id.src_ip = 0;
1187		args->f_id.dst_ip = 0;
1188		args->f_id.flow_id6 = ntohl(ip6->ip6_flow);
1189		iplen = ntohs(ip6->ip6_plen) + sizeof(*ip6);
1190	} else if (pktlen >= sizeof(struct ip) &&
1191	    (args->eh == NULL || etype == ETHERTYPE_IP) && ip->ip_v == 4) {
1192	    	is_ipv4 = 1;
1193		hlen = ip->ip_hl << 2;
1194		args->f_id.addr_type = 4;
1195
1196		/*
1197		 * Collect parameters into local variables for faster matching.
1198		 */
1199		proto = ip->ip_p;
1200		src_ip = ip->ip_src;
1201		dst_ip = ip->ip_dst;
1202		offset = ntohs(ip->ip_off) & IP_OFFMASK;
1203		iplen = ntohs(ip->ip_len);
1204
1205		if (offset == 0) {
1206			switch (proto) {
1207			case IPPROTO_TCP:
1208				PULLUP_TO(hlen, ulp, struct tcphdr);
1209				dst_port = TCP(ulp)->th_dport;
1210				src_port = TCP(ulp)->th_sport;
1211				/* save flags for dynamic rules */
1212				args->f_id._flags = TCP(ulp)->th_flags;
1213				break;
1214
1215			case IPPROTO_SCTP:
1216				PULLUP_TO(hlen, ulp, struct sctphdr);
1217				src_port = SCTP(ulp)->src_port;
1218				dst_port = SCTP(ulp)->dest_port;
1219				break;
1220
1221			case IPPROTO_UDP:
1222				PULLUP_TO(hlen, ulp, struct udphdr);
1223				dst_port = UDP(ulp)->uh_dport;
1224				src_port = UDP(ulp)->uh_sport;
1225				break;
1226
1227			case IPPROTO_ICMP:
1228				PULLUP_TO(hlen, ulp, struct icmphdr);
1229				//args->f_id.flags = ICMP(ulp)->icmp_type;
1230				break;
1231
1232			default:
1233				break;
1234			}
1235		}
1236
1237		ip = mtod(m, struct ip *);
1238		args->f_id.src_ip = ntohl(src_ip.s_addr);
1239		args->f_id.dst_ip = ntohl(dst_ip.s_addr);
1240	}
1241#undef PULLUP_TO
1242	pktlen = iplen < pktlen ? iplen: pktlen;
1243	if (proto) { /* we may have port numbers, store them */
1244		args->f_id.proto = proto;
1245		args->f_id.src_port = src_port = ntohs(src_port);
1246		args->f_id.dst_port = dst_port = ntohs(dst_port);
1247	}
1248
1249	IPFW_PF_RLOCK(chain);
1250	if (! V_ipfw_vnet_ready) { /* shutting down, leave NOW. */
1251		IPFW_PF_RUNLOCK(chain);
1252		return (IP_FW_PASS);	/* accept */
1253	}
1254	if (args->rule.slot) {
1255		/*
1256		 * Packet has already been tagged as a result of a previous
1257		 * match on rule args->rule aka args->rule_id (PIPE, QUEUE,
1258		 * REASS, NETGRAPH, DIVERT/TEE...)
1259		 * Validate the slot and continue from the next one
1260		 * if still present, otherwise do a lookup.
1261		 */
1262		f_pos = (args->rule.chain_id == chain->id) ?
1263		    args->rule.slot :
1264		    ipfw_find_rule(chain, args->rule.rulenum,
1265			args->rule.rule_id);
1266	} else {
1267		f_pos = 0;
1268	}
1269
1270	/*
1271	 * Now scan the rules, and parse microinstructions for each rule.
1272	 * We have two nested loops and an inner switch. Sometimes we
1273	 * need to break out of one or both loops, or re-enter one of
1274	 * the loops with updated variables. Loop variables are:
1275	 *
1276	 *	f_pos (outer loop) points to the current rule.
1277	 *		On output it points to the matching rule.
1278	 *	done (outer loop) is used as a flag to break the loop.
1279	 *	l (inner loop)	residual length of current rule.
1280	 *		cmd points to the current microinstruction.
1281	 *
1282	 * We break the inner loop by setting l=0 and possibly
1283	 * cmdlen=0 if we don't want to advance cmd.
1284	 * We break the outer loop by setting done=1
1285	 * We can restart the inner loop by setting l>0 and f_pos, f, cmd
1286	 * as needed.
1287	 */
1288	for (; f_pos < chain->n_rules; f_pos++) {
1289		ipfw_insn *cmd;
1290		uint32_t tablearg = 0;
1291		int l, cmdlen, skip_or; /* skip rest of OR block */
1292		struct ip_fw *f;
1293
1294		f = chain->map[f_pos];
1295		if (V_set_disable & (1 << f->set) )
1296			continue;
1297
1298		skip_or = 0;
1299		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
1300		    l -= cmdlen, cmd += cmdlen) {
1301			int match;
1302
1303			/*
1304			 * check_body is a jump target used when we find a
1305			 * CHECK_STATE, and need to jump to the body of
1306			 * the target rule.
1307			 */
1308
1309/* check_body: */
1310			cmdlen = F_LEN(cmd);
1311			/*
1312			 * An OR block (insn_1 || .. || insn_n) has the
1313			 * F_OR bit set in all but the last instruction.
1314			 * The first match will set "skip_or", and cause
1315			 * the following instructions to be skipped until
1316			 * past the one with the F_OR bit clear.
1317			 */
1318			if (skip_or) {		/* skip this instruction */
1319				if ((cmd->len & F_OR) == 0)
1320					skip_or = 0;	/* next one is good */
1321				continue;
1322			}
1323			match = 0; /* set to 1 if we succeed */
1324
1325			switch (cmd->opcode) {
1326			/*
1327			 * The first set of opcodes compares the packet's
1328			 * fields with some pattern, setting 'match' if a
1329			 * match is found. At the end of the loop there is
1330			 * logic to deal with F_NOT and F_OR flags associated
1331			 * with the opcode.
1332			 */
1333			case O_NOP:
1334				match = 1;
1335				break;
1336
1337			case O_FORWARD_MAC:
1338				printf("ipfw: opcode %d unimplemented\n",
1339				    cmd->opcode);
1340				break;
1341
1342			case O_GID:
1343			case O_UID:
1344			case O_JAIL:
1345				/*
1346				 * We only check offset == 0 && proto != 0,
1347				 * as this ensures that we have a
1348				 * packet with the ports info.
1349				 */
1350				if (offset != 0)
1351					break;
1352				if (proto == IPPROTO_TCP ||
1353				    proto == IPPROTO_UDP)
1354					match = check_uidgid(
1355						    (ipfw_insn_u32 *)cmd,
1356						    args, &ucred_lookup,
1357#ifdef __FreeBSD__
1358						    &ucred_cache);
1359#else
1360						    (void *)&ucred_cache);
1361#endif
1362				break;
1363
1364			case O_RECV:
1365				match = iface_match(m->m_pkthdr.rcvif,
1366				    (ipfw_insn_if *)cmd, chain, &tablearg);
1367				break;
1368
1369			case O_XMIT:
1370				match = iface_match(oif, (ipfw_insn_if *)cmd,
1371				    chain, &tablearg);
1372				break;
1373
1374			case O_VIA:
1375				match = iface_match(oif ? oif :
1376				    m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd,
1377				    chain, &tablearg);
1378				break;
1379
1380			case O_MACADDR2:
1381				if (args->eh != NULL) {	/* have MAC header */
1382					u_int32_t *want = (u_int32_t *)
1383						((ipfw_insn_mac *)cmd)->addr;
1384					u_int32_t *mask = (u_int32_t *)
1385						((ipfw_insn_mac *)cmd)->mask;
1386					u_int32_t *hdr = (u_int32_t *)args->eh;
1387
1388					match =
1389					    ( want[0] == (hdr[0] & mask[0]) &&
1390					      want[1] == (hdr[1] & mask[1]) &&
1391					      want[2] == (hdr[2] & mask[2]) );
1392				}
1393				break;
1394
1395			case O_MAC_TYPE:
1396				if (args->eh != NULL) {
1397					u_int16_t *p =
1398					    ((ipfw_insn_u16 *)cmd)->ports;
1399					int i;
1400
1401					for (i = cmdlen - 1; !match && i>0;
1402					    i--, p += 2)
1403						match = (etype >= p[0] &&
1404						    etype <= p[1]);
1405				}
1406				break;
1407
1408			case O_FRAG:
1409				match = (offset != 0);
1410				break;
1411
1412			case O_IN:	/* "out" is "not in" */
1413				match = (oif == NULL);
1414				break;
1415
1416			case O_LAYER2:
1417				match = (args->eh != NULL);
1418				break;
1419
1420			case O_DIVERTED:
1421			    {
1422				/* For diverted packets, args->rule.info
1423				 * contains the divert port (in host format)
1424				 * reason and direction.
1425				 */
1426				uint32_t i = args->rule.info;
1427				match = (i&IPFW_IS_MASK) == IPFW_IS_DIVERT &&
1428				    cmd->arg1 & ((i & IPFW_INFO_IN) ? 1 : 2);
1429			    }
1430				break;
1431
1432			case O_PROTO:
1433				/*
1434				 * We do not allow an arg of 0 so the
1435				 * check of "proto" only suffices.
1436				 */
1437				match = (proto == cmd->arg1);
1438				break;
1439
1440			case O_IP_SRC:
1441				match = is_ipv4 &&
1442				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
1443				    src_ip.s_addr);
1444				break;
1445
1446			case O_IP_SRC_LOOKUP:
1447			case O_IP_DST_LOOKUP:
1448				if (is_ipv4) {
1449				    uint32_t key =
1450					(cmd->opcode == O_IP_DST_LOOKUP) ?
1451					    dst_ip.s_addr : src_ip.s_addr;
1452				    uint32_t v = 0;
1453
1454				    if (cmdlen > F_INSN_SIZE(ipfw_insn_u32)) {
1455					/* generic lookup. The key must be
1456					 * in 32bit big-endian format.
1457					 */
1458					v = ((ipfw_insn_u32 *)cmd)->d[1];
1459					if (v == 0)
1460					    key = dst_ip.s_addr;
1461					else if (v == 1)
1462					    key = src_ip.s_addr;
1463					else if (v == 6) /* dscp */
1464					    key = (ip->ip_tos >> 2) & 0x3f;
1465					else if (offset != 0)
1466					    break;
1467					else if (proto != IPPROTO_TCP &&
1468						proto != IPPROTO_UDP)
1469					    break;
1470					else if (v == 2)
1471					    key = htonl(dst_port);
1472					else if (v == 3)
1473					    key = htonl(src_port);
1474					else if (v == 4 || v == 5) {
1475					    check_uidgid(
1476						(ipfw_insn_u32 *)cmd,
1477						args, &ucred_lookup,
1478#ifdef __FreeBSD__
1479						&ucred_cache);
1480					    if (v == 4 /* O_UID */)
1481						key = ucred_cache->cr_uid;
1482					    else if (v == 5 /* O_JAIL */)
1483						key = ucred_cache->cr_prison->pr_id;
1484#else /* !__FreeBSD__ */
1485						(void *)&ucred_cache);
1486					    if (v ==4 /* O_UID */)
1487						key = ucred_cache.uid;
1488					    else if (v == 5 /* O_JAIL */)
1489						key = ucred_cache.xid;
1490#endif /* !__FreeBSD__ */
1491					    key = htonl(key);
1492					} else
1493					    break;
1494				    }
1495				    match = ipfw_lookup_table(chain,
1496					cmd->arg1, key, &v);
1497				    if (!match)
1498					break;
1499				    if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
1500					match =
1501					    ((ipfw_insn_u32 *)cmd)->d[0] == v;
1502				    else
1503					tablearg = v;
1504				} else if (is_ipv6) {
1505					uint32_t v = 0;
1506					void *pkey = (cmd->opcode == O_IP_DST_LOOKUP) ?
1507						&args->f_id.dst_ip6: &args->f_id.src_ip6;
1508					match = ipfw_lookup_table_extended(chain,
1509							cmd->arg1, pkey, &v,
1510							IPFW_TABLE_CIDR);
1511					if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
1512						match = ((ipfw_insn_u32 *)cmd)->d[0] == v;
1513					if (match)
1514						tablearg = v;
1515				}
1516				break;
1517
1518			case O_IP_SRC_MASK:
1519			case O_IP_DST_MASK:
1520				if (is_ipv4) {
1521				    uint32_t a =
1522					(cmd->opcode == O_IP_DST_MASK) ?
1523					    dst_ip.s_addr : src_ip.s_addr;
1524				    uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
1525				    int i = cmdlen-1;
1526
1527				    for (; !match && i>0; i-= 2, p+= 2)
1528					match = (p[0] == (a & p[1]));
1529				}
1530				break;
1531
1532			case O_IP_SRC_ME:
1533				if (is_ipv4) {
1534					struct ifnet *tif;
1535
1536					INADDR_TO_IFP(src_ip, tif);
1537					match = (tif != NULL);
1538					break;
1539				}
1540#ifdef INET6
1541				/* FALLTHROUGH */
1542			case O_IP6_SRC_ME:
1543				match= is_ipv6 && search_ip6_addr_net(&args->f_id.src_ip6);
1544#endif
1545				break;
1546
1547			case O_IP_DST_SET:
1548			case O_IP_SRC_SET:
1549				if (is_ipv4) {
1550					u_int32_t *d = (u_int32_t *)(cmd+1);
1551					u_int32_t addr =
1552					    cmd->opcode == O_IP_DST_SET ?
1553						args->f_id.dst_ip :
1554						args->f_id.src_ip;
1555
1556					    if (addr < d[0])
1557						    break;
1558					    addr -= d[0]; /* subtract base */
1559					    match = (addr < cmd->arg1) &&
1560						( d[ 1 + (addr>>5)] &
1561						  (1<<(addr & 0x1f)) );
1562				}
1563				break;
1564
1565			case O_IP_DST:
1566				match = is_ipv4 &&
1567				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
1568				    dst_ip.s_addr);
1569				break;
1570
1571			case O_IP_DST_ME:
1572				if (is_ipv4) {
1573					struct ifnet *tif;
1574
1575					INADDR_TO_IFP(dst_ip, tif);
1576					match = (tif != NULL);
1577					break;
1578				}
1579#ifdef INET6
1580				/* FALLTHROUGH */
1581			case O_IP6_DST_ME:
1582				match= is_ipv6 && search_ip6_addr_net(&args->f_id.dst_ip6);
1583#endif
1584				break;
1585
1586
1587			case O_IP_SRCPORT:
1588			case O_IP_DSTPORT:
1589				/*
1590				 * offset == 0 && proto != 0 is enough
1591				 * to guarantee that we have a
1592				 * packet with port info.
1593				 */
1594				if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
1595				    && offset == 0) {
1596					u_int16_t x =
1597					    (cmd->opcode == O_IP_SRCPORT) ?
1598						src_port : dst_port ;
1599					u_int16_t *p =
1600					    ((ipfw_insn_u16 *)cmd)->ports;
1601					int i;
1602
1603					for (i = cmdlen - 1; !match && i>0;
1604					    i--, p += 2)
1605						match = (x>=p[0] && x<=p[1]);
1606				}
1607				break;
1608
1609			case O_ICMPTYPE:
1610				match = (offset == 0 && proto==IPPROTO_ICMP &&
1611				    icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
1612				break;
1613
1614#ifdef INET6
1615			case O_ICMP6TYPE:
1616				match = is_ipv6 && offset == 0 &&
1617				    proto==IPPROTO_ICMPV6 &&
1618				    icmp6type_match(
1619					ICMP6(ulp)->icmp6_type,
1620					(ipfw_insn_u32 *)cmd);
1621				break;
1622#endif /* INET6 */
1623
1624			case O_IPOPT:
1625				match = (is_ipv4 &&
1626				    ipopts_match(ip, cmd) );
1627				break;
1628
1629			case O_IPVER:
1630				match = (is_ipv4 &&
1631				    cmd->arg1 == ip->ip_v);
1632				break;
1633
1634			case O_IPID:
1635			case O_IPLEN:
1636			case O_IPTTL:
1637				if (is_ipv4) {	/* only for IP packets */
1638				    uint16_t x;
1639				    uint16_t *p;
1640				    int i;
1641
1642				    if (cmd->opcode == O_IPLEN)
1643					x = iplen;
1644				    else if (cmd->opcode == O_IPTTL)
1645					x = ip->ip_ttl;
1646				    else /* must be IPID */
1647					x = ntohs(ip->ip_id);
1648				    if (cmdlen == 1) {
1649					match = (cmd->arg1 == x);
1650					break;
1651				    }
1652				    /* otherwise we have ranges */
1653				    p = ((ipfw_insn_u16 *)cmd)->ports;
1654				    i = cmdlen - 1;
1655				    for (; !match && i>0; i--, p += 2)
1656					match = (x >= p[0] && x <= p[1]);
1657				}
1658				break;
1659
1660			case O_IPPRECEDENCE:
1661				match = (is_ipv4 &&
1662				    (cmd->arg1 == (ip->ip_tos & 0xe0)) );
1663				break;
1664
1665			case O_IPTOS:
1666				match = (is_ipv4 &&
1667				    flags_match(cmd, ip->ip_tos));
1668				break;
1669
1670			case O_DSCP:
1671			    {
1672				uint32_t *p;
1673				uint16_t x;
1674
1675				p = ((ipfw_insn_u32 *)cmd)->d;
1676
1677				if (is_ipv4)
1678					x = ip->ip_tos >> 2;
1679				else if (is_ipv6) {
1680					uint8_t *v;
1681					v = &((struct ip6_hdr *)ip)->ip6_vfc;
1682					x = (*v & 0x0F) << 2;
1683					v++;
1684					x |= *v >> 6;
1685				} else
1686					break;
1687
1688				/* DSCP bitmask is stored as low_u32 high_u32 */
1689				if (x >= 32)
1690					match = *(p + 1) & (1 << (x - 32));
1691				else
1692					match = *p & (1 << x);
1693			    }
1694				break;
1695
1696			case O_TCPDATALEN:
1697				if (proto == IPPROTO_TCP && offset == 0) {
1698				    struct tcphdr *tcp;
1699				    uint16_t x;
1700				    uint16_t *p;
1701				    int i;
1702#ifdef INET6
1703				    if (is_ipv6) {
1704					    struct ip6_hdr *ip6;
1705
1706					    ip6 = (struct ip6_hdr *)ip;
1707					    if (ip6->ip6_plen == 0) {
1708						    /*
1709						     * Jumbo payload is not
1710						     * supported by this
1711						     * opcode.
1712						     */
1713						    break;
1714					    }
1715					    x = iplen - hlen;
1716				    } else
1717#endif /* INET6 */
1718					    x = iplen - (ip->ip_hl << 2);
1719				    tcp = TCP(ulp);
1720				    x -= tcp->th_off << 2;
1721				    if (cmdlen == 1) {
1722					match = (cmd->arg1 == x);
1723					break;
1724				    }
1725				    /* otherwise we have ranges */
1726				    p = ((ipfw_insn_u16 *)cmd)->ports;
1727				    i = cmdlen - 1;
1728				    for (; !match && i>0; i--, p += 2)
1729					match = (x >= p[0] && x <= p[1]);
1730				}
1731				break;
1732
1733			case O_TCPFLAGS:
1734				match = (proto == IPPROTO_TCP && offset == 0 &&
1735				    flags_match(cmd, TCP(ulp)->th_flags));
1736				break;
1737
1738			case O_TCPOPTS:
1739				PULLUP_LEN(hlen, ulp, (TCP(ulp)->th_off << 2));
1740				match = (proto == IPPROTO_TCP && offset == 0 &&
1741				    tcpopts_match(TCP(ulp), cmd));
1742				break;
1743
1744			case O_TCPSEQ:
1745				match = (proto == IPPROTO_TCP && offset == 0 &&
1746				    ((ipfw_insn_u32 *)cmd)->d[0] ==
1747					TCP(ulp)->th_seq);
1748				break;
1749
1750			case O_TCPACK:
1751				match = (proto == IPPROTO_TCP && offset == 0 &&
1752				    ((ipfw_insn_u32 *)cmd)->d[0] ==
1753					TCP(ulp)->th_ack);
1754				break;
1755
1756			case O_TCPWIN:
1757				if (proto == IPPROTO_TCP && offset == 0) {
1758				    uint16_t x;
1759				    uint16_t *p;
1760				    int i;
1761
1762				    x = ntohs(TCP(ulp)->th_win);
1763				    if (cmdlen == 1) {
1764					match = (cmd->arg1 == x);
1765					break;
1766				    }
1767				    /* Otherwise we have ranges. */
1768				    p = ((ipfw_insn_u16 *)cmd)->ports;
1769				    i = cmdlen - 1;
1770				    for (; !match && i > 0; i--, p += 2)
1771					match = (x >= p[0] && x <= p[1]);
1772				}
1773				break;
1774
1775			case O_ESTAB:
1776				/* reject packets which have SYN only */
1777				/* XXX should i also check for TH_ACK ? */
1778				match = (proto == IPPROTO_TCP && offset == 0 &&
1779				    (TCP(ulp)->th_flags &
1780				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
1781				break;
1782
1783			case O_ALTQ: {
1784				struct pf_mtag *at;
1785				struct m_tag *mtag;
1786				ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
1787
1788				/*
1789				 * ALTQ uses mbuf tags from another
1790				 * packet filtering system - pf(4).
1791				 * We allocate a tag in its format
1792				 * and fill it in, pretending to be pf(4).
1793				 */
1794				match = 1;
1795				at = pf_find_mtag(m);
1796				if (at != NULL && at->qid != 0)
1797					break;
1798				mtag = m_tag_get(PACKET_TAG_PF,
1799				    sizeof(struct pf_mtag), M_NOWAIT | M_ZERO);
1800				if (mtag == NULL) {
1801					/*
1802					 * Let the packet fall back to the
1803					 * default ALTQ.
1804					 */
1805					break;
1806				}
1807				m_tag_prepend(m, mtag);
1808				at = (struct pf_mtag *)(mtag + 1);
1809				at->qid = altq->qid;
1810				at->hdr = ip;
1811				break;
1812			}
1813
1814			case O_LOG:
1815				ipfw_log(f, hlen, args, m,
1816				    oif, offset | ip6f_mf, tablearg, ip);
1817				match = 1;
1818				break;
1819
1820			case O_PROB:
1821				match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
1822				break;
1823
1824			case O_VERREVPATH:
1825				/* Outgoing packets automatically pass/match */
1826				match = ((oif != NULL) ||
1827				    (m->m_pkthdr.rcvif == NULL) ||
1828				    (
1829#ifdef INET6
1830				    is_ipv6 ?
1831					verify_path6(&(args->f_id.src_ip6),
1832					    m->m_pkthdr.rcvif, args->f_id.fib) :
1833#endif
1834				    verify_path(src_ip, m->m_pkthdr.rcvif,
1835				        args->f_id.fib)));
1836				break;
1837
1838			case O_VERSRCREACH:
1839				/* Outgoing packets automatically pass/match */
1840				match = (hlen > 0 && ((oif != NULL) ||
1841#ifdef INET6
1842				    is_ipv6 ?
1843				        verify_path6(&(args->f_id.src_ip6),
1844				            NULL, args->f_id.fib) :
1845#endif
1846				    verify_path(src_ip, NULL, args->f_id.fib)));
1847				break;
1848
1849			case O_ANTISPOOF:
1850				/* Outgoing packets automatically pass/match */
1851				if (oif == NULL && hlen > 0 &&
1852				    (  (is_ipv4 && in_localaddr(src_ip))
1853#ifdef INET6
1854				    || (is_ipv6 &&
1855				        in6_localaddr(&(args->f_id.src_ip6)))
1856#endif
1857				    ))
1858					match =
1859#ifdef INET6
1860					    is_ipv6 ? verify_path6(
1861					        &(args->f_id.src_ip6),
1862					        m->m_pkthdr.rcvif,
1863						args->f_id.fib) :
1864#endif
1865					    verify_path(src_ip,
1866					    	m->m_pkthdr.rcvif,
1867					        args->f_id.fib);
1868				else
1869					match = 1;
1870				break;
1871
1872			case O_IPSEC:
1873#ifdef IPSEC
1874				match = (m_tag_find(m,
1875				    PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
1876#endif
1877				/* otherwise no match */
1878				break;
1879
1880#ifdef INET6
1881			case O_IP6_SRC:
1882				match = is_ipv6 &&
1883				    IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
1884				    &((ipfw_insn_ip6 *)cmd)->addr6);
1885				break;
1886
1887			case O_IP6_DST:
1888				match = is_ipv6 &&
1889				IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
1890				    &((ipfw_insn_ip6 *)cmd)->addr6);
1891				break;
1892			case O_IP6_SRC_MASK:
1893			case O_IP6_DST_MASK:
1894				if (is_ipv6) {
1895					int i = cmdlen - 1;
1896					struct in6_addr p;
1897					struct in6_addr *d =
1898					    &((ipfw_insn_ip6 *)cmd)->addr6;
1899
1900					for (; !match && i > 0; d += 2,
1901					    i -= F_INSN_SIZE(struct in6_addr)
1902					    * 2) {
1903						p = (cmd->opcode ==
1904						    O_IP6_SRC_MASK) ?
1905						    args->f_id.src_ip6:
1906						    args->f_id.dst_ip6;
1907						APPLY_MASK(&p, &d[1]);
1908						match =
1909						    IN6_ARE_ADDR_EQUAL(&d[0],
1910						    &p);
1911					}
1912				}
1913				break;
1914
1915			case O_FLOW6ID:
1916				match = is_ipv6 &&
1917				    flow6id_match(args->f_id.flow_id6,
1918				    (ipfw_insn_u32 *) cmd);
1919				break;
1920
1921			case O_EXT_HDR:
1922				match = is_ipv6 &&
1923				    (ext_hd & ((ipfw_insn *) cmd)->arg1);
1924				break;
1925
1926			case O_IP6:
1927				match = is_ipv6;
1928				break;
1929#endif
1930
1931			case O_IP4:
1932				match = is_ipv4;
1933				break;
1934
1935			case O_TAG: {
1936				struct m_tag *mtag;
1937				uint32_t tag = IP_FW_ARG_TABLEARG(cmd->arg1);
1938
1939				/* Packet is already tagged with this tag? */
1940				mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
1941
1942				/* We have `untag' action when F_NOT flag is
1943				 * present. And we must remove this mtag from
1944				 * mbuf and reset `match' to zero (`match' will
1945				 * be inversed later).
1946				 * Otherwise we should allocate new mtag and
1947				 * push it into mbuf.
1948				 */
1949				if (cmd->len & F_NOT) { /* `untag' action */
1950					if (mtag != NULL)
1951						m_tag_delete(m, mtag);
1952					match = 0;
1953				} else {
1954					if (mtag == NULL) {
1955						mtag = m_tag_alloc( MTAG_IPFW,
1956						    tag, 0, M_NOWAIT);
1957						if (mtag != NULL)
1958							m_tag_prepend(m, mtag);
1959					}
1960					match = 1;
1961				}
1962				break;
1963			}
1964
1965			case O_FIB: /* try match the specified fib */
1966				if (args->f_id.fib == cmd->arg1)
1967					match = 1;
1968				break;
1969
1970			case O_SOCKARG:	{
1971				struct inpcb *inp = args->inp;
1972				struct inpcbinfo *pi;
1973
1974				if (is_ipv6) /* XXX can we remove this ? */
1975					break;
1976
1977				if (proto == IPPROTO_TCP)
1978					pi = &V_tcbinfo;
1979				else if (proto == IPPROTO_UDP)
1980					pi = &V_udbinfo;
1981				else
1982					break;
1983
1984				/*
1985				 * XXXRW: so_user_cookie should almost
1986				 * certainly be inp_user_cookie?
1987				 */
1988
1989				/* For incomming packet, lookup up the
1990				inpcb using the src/dest ip/port tuple */
1991				if (inp == NULL) {
1992					inp = in_pcblookup(pi,
1993						src_ip, htons(src_port),
1994						dst_ip, htons(dst_port),
1995						INPLOOKUP_RLOCKPCB, NULL);
1996					if (inp != NULL) {
1997						tablearg =
1998						    inp->inp_socket->so_user_cookie;
1999						if (tablearg)
2000							match = 1;
2001						INP_RUNLOCK(inp);
2002					}
2003				} else {
2004					if (inp->inp_socket) {
2005						tablearg =
2006						    inp->inp_socket->so_user_cookie;
2007						if (tablearg)
2008							match = 1;
2009					}
2010				}
2011				break;
2012			}
2013
2014			case O_TAGGED: {
2015				struct m_tag *mtag;
2016				uint32_t tag = IP_FW_ARG_TABLEARG(cmd->arg1);
2017
2018				if (cmdlen == 1) {
2019					match = m_tag_locate(m, MTAG_IPFW,
2020					    tag, NULL) != NULL;
2021					break;
2022				}
2023
2024				/* we have ranges */
2025				for (mtag = m_tag_first(m);
2026				    mtag != NULL && !match;
2027				    mtag = m_tag_next(m, mtag)) {
2028					uint16_t *p;
2029					int i;
2030
2031					if (mtag->m_tag_cookie != MTAG_IPFW)
2032						continue;
2033
2034					p = ((ipfw_insn_u16 *)cmd)->ports;
2035					i = cmdlen - 1;
2036					for(; !match && i > 0; i--, p += 2)
2037						match =
2038						    mtag->m_tag_id >= p[0] &&
2039						    mtag->m_tag_id <= p[1];
2040				}
2041				break;
2042			}
2043
2044			/*
2045			 * The second set of opcodes represents 'actions',
2046			 * i.e. the terminal part of a rule once the packet
2047			 * matches all previous patterns.
2048			 * Typically there is only one action for each rule,
2049			 * and the opcode is stored at the end of the rule
2050			 * (but there are exceptions -- see below).
2051			 *
2052			 * In general, here we set retval and terminate the
2053			 * outer loop (would be a 'break 3' in some language,
2054			 * but we need to set l=0, done=1)
2055			 *
2056			 * Exceptions:
2057			 * O_COUNT and O_SKIPTO actions:
2058			 *   instead of terminating, we jump to the next rule
2059			 *   (setting l=0), or to the SKIPTO target (setting
2060			 *   f/f_len, cmd and l as needed), respectively.
2061			 *
2062			 * O_TAG, O_LOG and O_ALTQ action parameters:
2063			 *   perform some action and set match = 1;
2064			 *
2065			 * O_LIMIT and O_KEEP_STATE: these opcodes are
2066			 *   not real 'actions', and are stored right
2067			 *   before the 'action' part of the rule.
2068			 *   These opcodes try to install an entry in the
2069			 *   state tables; if successful, we continue with
2070			 *   the next opcode (match=1; break;), otherwise
2071			 *   the packet must be dropped (set retval,
2072			 *   break loops with l=0, done=1)
2073			 *
2074			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
2075			 *   cause a lookup of the state table, and a jump
2076			 *   to the 'action' part of the parent rule
2077			 *   if an entry is found, or
2078			 *   (CHECK_STATE only) a jump to the next rule if
2079			 *   the entry is not found.
2080			 *   The result of the lookup is cached so that
2081			 *   further instances of these opcodes become NOPs.
2082			 *   The jump to the next rule is done by setting
2083			 *   l=0, cmdlen=0.
2084			 */
2085			case O_LIMIT:
2086			case O_KEEP_STATE:
2087				if (ipfw_install_state(f,
2088				    (ipfw_insn_limit *)cmd, args, tablearg)) {
2089					/* error or limit violation */
2090					retval = IP_FW_DENY;
2091					l = 0;	/* exit inner loop */
2092					done = 1; /* exit outer loop */
2093				}
2094				match = 1;
2095				break;
2096
2097			case O_PROBE_STATE:
2098			case O_CHECK_STATE:
2099				/*
2100				 * dynamic rules are checked at the first
2101				 * keep-state or check-state occurrence,
2102				 * with the result being stored in dyn_dir.
2103				 * The compiler introduces a PROBE_STATE
2104				 * instruction for us when we have a
2105				 * KEEP_STATE (because PROBE_STATE needs
2106				 * to be run first).
2107				 */
2108				if (dyn_dir == MATCH_UNKNOWN &&
2109				    (q = ipfw_lookup_dyn_rule(&args->f_id,
2110				     &dyn_dir, proto == IPPROTO_TCP ?
2111					TCP(ulp) : NULL))
2112					!= NULL) {
2113					/*
2114					 * Found dynamic entry, update stats
2115					 * and jump to the 'action' part of
2116					 * the parent rule by setting
2117					 * f, cmd, l and clearing cmdlen.
2118					 */
2119					IPFW_INC_DYN_COUNTER(q, pktlen);
2120					/* XXX we would like to have f_pos
2121					 * readily accessible in the dynamic
2122				         * rule, instead of having to
2123					 * lookup q->rule.
2124					 */
2125					f = q->rule;
2126					f_pos = ipfw_find_rule(chain,
2127						f->rulenum, f->id);
2128					cmd = ACTION_PTR(f);
2129					l = f->cmd_len - f->act_ofs;
2130					ipfw_dyn_unlock(q);
2131					cmdlen = 0;
2132					match = 1;
2133					break;
2134				}
2135				/*
2136				 * Dynamic entry not found. If CHECK_STATE,
2137				 * skip to next rule, if PROBE_STATE just
2138				 * ignore and continue with next opcode.
2139				 */
2140				if (cmd->opcode == O_CHECK_STATE)
2141					l = 0;	/* exit inner loop */
2142				match = 1;
2143				break;
2144
2145			case O_ACCEPT:
2146				retval = 0;	/* accept */
2147				l = 0;		/* exit inner loop */
2148				done = 1;	/* exit outer loop */
2149				break;
2150
2151			case O_PIPE:
2152			case O_QUEUE:
2153				set_match(args, f_pos, chain);
2154				args->rule.info = IP_FW_ARG_TABLEARG(cmd->arg1);
2155				if (cmd->opcode == O_PIPE)
2156					args->rule.info |= IPFW_IS_PIPE;
2157				if (V_fw_one_pass)
2158					args->rule.info |= IPFW_ONEPASS;
2159				retval = IP_FW_DUMMYNET;
2160				l = 0;          /* exit inner loop */
2161				done = 1;       /* exit outer loop */
2162				break;
2163
2164			case O_DIVERT:
2165			case O_TEE:
2166				if (args->eh) /* not on layer 2 */
2167				    break;
2168				/* otherwise this is terminal */
2169				l = 0;		/* exit inner loop */
2170				done = 1;	/* exit outer loop */
2171				retval = (cmd->opcode == O_DIVERT) ?
2172					IP_FW_DIVERT : IP_FW_TEE;
2173				set_match(args, f_pos, chain);
2174				args->rule.info = IP_FW_ARG_TABLEARG(cmd->arg1);
2175				break;
2176
2177			case O_COUNT:
2178				IPFW_INC_RULE_COUNTER(f, pktlen);
2179				l = 0;		/* exit inner loop */
2180				break;
2181
2182			case O_SKIPTO:
2183			    IPFW_INC_RULE_COUNTER(f, pktlen);
2184			    f_pos = jump_fast(chain, f, cmd->arg1, tablearg, 0);
2185			    /*
2186			     * Skip disabled rules, and re-enter
2187			     * the inner loop with the correct
2188			     * f_pos, f, l and cmd.
2189			     * Also clear cmdlen and skip_or
2190			     */
2191			    for (; f_pos < chain->n_rules - 1 &&
2192				    (V_set_disable &
2193				     (1 << chain->map[f_pos]->set));
2194				    f_pos++)
2195				;
2196			    /* Re-enter the inner loop at the skipto rule. */
2197			    f = chain->map[f_pos];
2198			    l = f->cmd_len;
2199			    cmd = f->cmd;
2200			    match = 1;
2201			    cmdlen = 0;
2202			    skip_or = 0;
2203			    continue;
2204			    break;	/* not reached */
2205
2206			case O_CALLRETURN: {
2207				/*
2208				 * Implementation of `subroutine' call/return,
2209				 * in the stack carried in an mbuf tag. This
2210				 * is different from `skipto' in that any call
2211				 * address is possible (`skipto' must prevent
2212				 * backward jumps to avoid endless loops).
2213				 * We have `return' action when F_NOT flag is
2214				 * present. The `m_tag_id' field is used as
2215				 * stack pointer.
2216				 */
2217				struct m_tag *mtag;
2218				uint16_t jmpto, *stack;
2219
2220#define	IS_CALL		((cmd->len & F_NOT) == 0)
2221#define	IS_RETURN	((cmd->len & F_NOT) != 0)
2222				/*
2223				 * Hand-rolled version of m_tag_locate() with
2224				 * wildcard `type'.
2225				 * If not already tagged, allocate new tag.
2226				 */
2227				mtag = m_tag_first(m);
2228				while (mtag != NULL) {
2229					if (mtag->m_tag_cookie ==
2230					    MTAG_IPFW_CALL)
2231						break;
2232					mtag = m_tag_next(m, mtag);
2233				}
2234				if (mtag == NULL && IS_CALL) {
2235					mtag = m_tag_alloc(MTAG_IPFW_CALL, 0,
2236					    IPFW_CALLSTACK_SIZE *
2237					    sizeof(uint16_t), M_NOWAIT);
2238					if (mtag != NULL)
2239						m_tag_prepend(m, mtag);
2240				}
2241
2242				/*
2243				 * On error both `call' and `return' just
2244				 * continue with next rule.
2245				 */
2246				if (IS_RETURN && (mtag == NULL ||
2247				    mtag->m_tag_id == 0)) {
2248					l = 0;		/* exit inner loop */
2249					break;
2250				}
2251				if (IS_CALL && (mtag == NULL ||
2252				    mtag->m_tag_id >= IPFW_CALLSTACK_SIZE)) {
2253					printf("ipfw: call stack error, "
2254					    "go to next rule\n");
2255					l = 0;		/* exit inner loop */
2256					break;
2257				}
2258
2259				IPFW_INC_RULE_COUNTER(f, pktlen);
2260				stack = (uint16_t *)(mtag + 1);
2261
2262				/*
2263				 * The `call' action may use cached f_pos
2264				 * (in f->next_rule), whose version is written
2265				 * in f->next_rule.
2266				 * The `return' action, however, doesn't have
2267				 * fixed jump address in cmd->arg1 and can't use
2268				 * cache.
2269				 */
2270				if (IS_CALL) {
2271					stack[mtag->m_tag_id] = f->rulenum;
2272					mtag->m_tag_id++;
2273			    		f_pos = jump_fast(chain, f, cmd->arg1,
2274					    tablearg, 1);
2275				} else {	/* `return' action */
2276					mtag->m_tag_id--;
2277					jmpto = stack[mtag->m_tag_id] + 1;
2278					f_pos = ipfw_find_rule(chain, jmpto, 0);
2279				}
2280
2281				/*
2282				 * Skip disabled rules, and re-enter
2283				 * the inner loop with the correct
2284				 * f_pos, f, l and cmd.
2285				 * Also clear cmdlen and skip_or
2286				 */
2287				for (; f_pos < chain->n_rules - 1 &&
2288				    (V_set_disable &
2289				    (1 << chain->map[f_pos]->set)); f_pos++)
2290					;
2291				/* Re-enter the inner loop at the dest rule. */
2292				f = chain->map[f_pos];
2293				l = f->cmd_len;
2294				cmd = f->cmd;
2295				cmdlen = 0;
2296				skip_or = 0;
2297				continue;
2298				break;	/* NOTREACHED */
2299			}
2300#undef IS_CALL
2301#undef IS_RETURN
2302
2303			case O_REJECT:
2304				/*
2305				 * Drop the packet and send a reject notice
2306				 * if the packet is not ICMP (or is an ICMP
2307				 * query), and it is not multicast/broadcast.
2308				 */
2309				if (hlen > 0 && is_ipv4 && offset == 0 &&
2310				    (proto != IPPROTO_ICMP ||
2311				     is_icmp_query(ICMP(ulp))) &&
2312				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2313				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
2314					send_reject(args, cmd->arg1, iplen, ip);
2315					m = args->m;
2316				}
2317				/* FALLTHROUGH */
2318#ifdef INET6
2319			case O_UNREACH6:
2320				if (hlen > 0 && is_ipv6 &&
2321				    ((offset & IP6F_OFF_MASK) == 0) &&
2322				    (proto != IPPROTO_ICMPV6 ||
2323				     (is_icmp6_query(icmp6_type) == 1)) &&
2324				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2325				    !IN6_IS_ADDR_MULTICAST(&args->f_id.dst_ip6)) {
2326					send_reject6(
2327					    args, cmd->arg1, hlen,
2328					    (struct ip6_hdr *)ip);
2329					m = args->m;
2330				}
2331				/* FALLTHROUGH */
2332#endif
2333			case O_DENY:
2334				retval = IP_FW_DENY;
2335				l = 0;		/* exit inner loop */
2336				done = 1;	/* exit outer loop */
2337				break;
2338
2339			case O_FORWARD_IP:
2340				if (args->eh)	/* not valid on layer2 pkts */
2341					break;
2342				if (q == NULL || q->rule != f ||
2343				    dyn_dir == MATCH_FORWARD) {
2344				    struct sockaddr_in *sa;
2345				    sa = &(((ipfw_insn_sa *)cmd)->sa);
2346				    if (sa->sin_addr.s_addr == INADDR_ANY) {
2347					bcopy(sa, &args->hopstore,
2348							sizeof(*sa));
2349					args->hopstore.sin_addr.s_addr =
2350						    htonl(tablearg);
2351					args->next_hop = &args->hopstore;
2352				    } else {
2353					args->next_hop = sa;
2354				    }
2355				}
2356				retval = IP_FW_PASS;
2357				l = 0;          /* exit inner loop */
2358				done = 1;       /* exit outer loop */
2359				break;
2360
2361#ifdef INET6
2362			case O_FORWARD_IP6:
2363				if (args->eh)	/* not valid on layer2 pkts */
2364					break;
2365				if (q == NULL || q->rule != f ||
2366				    dyn_dir == MATCH_FORWARD) {
2367					struct sockaddr_in6 *sin6;
2368
2369					sin6 = &(((ipfw_insn_sa6 *)cmd)->sa);
2370					args->next_hop6 = sin6;
2371				}
2372				retval = IP_FW_PASS;
2373				l = 0;		/* exit inner loop */
2374				done = 1;	/* exit outer loop */
2375				break;
2376#endif
2377
2378			case O_NETGRAPH:
2379			case O_NGTEE:
2380				set_match(args, f_pos, chain);
2381				args->rule.info = IP_FW_ARG_TABLEARG(cmd->arg1);
2382				if (V_fw_one_pass)
2383					args->rule.info |= IPFW_ONEPASS;
2384				retval = (cmd->opcode == O_NETGRAPH) ?
2385				    IP_FW_NETGRAPH : IP_FW_NGTEE;
2386				l = 0;          /* exit inner loop */
2387				done = 1;       /* exit outer loop */
2388				break;
2389
2390			case O_SETFIB: {
2391				uint32_t fib;
2392
2393				IPFW_INC_RULE_COUNTER(f, pktlen);
2394				fib = IP_FW_ARG_TABLEARG(cmd->arg1);
2395				if (fib >= rt_numfibs)
2396					fib = 0;
2397				M_SETFIB(m, fib);
2398				args->f_id.fib = fib;
2399				l = 0;		/* exit inner loop */
2400				break;
2401		        }
2402
2403			case O_SETDSCP: {
2404				uint16_t code;
2405
2406				code = IP_FW_ARG_TABLEARG(cmd->arg1) & 0x3F;
2407				l = 0;		/* exit inner loop */
2408				if (is_ipv4) {
2409					uint16_t a;
2410
2411					a = ip->ip_tos;
2412					ip->ip_tos = (code << 2) | (ip->ip_tos & 0x03);
2413					a += ntohs(ip->ip_sum) - ip->ip_tos;
2414					ip->ip_sum = htons(a);
2415				} else if (is_ipv6) {
2416					uint8_t *v;
2417
2418					v = &((struct ip6_hdr *)ip)->ip6_vfc;
2419					*v = (*v & 0xF0) | (code >> 2);
2420					v++;
2421					*v = (*v & 0x3F) | ((code & 0x03) << 6);
2422				} else
2423					break;
2424
2425				IPFW_INC_RULE_COUNTER(f, pktlen);
2426				break;
2427			}
2428
2429			case O_NAT:
2430				l = 0;          /* exit inner loop */
2431				done = 1;       /* exit outer loop */
2432 				if (!IPFW_NAT_LOADED) {
2433				    retval = IP_FW_DENY;
2434				    break;
2435				}
2436
2437				struct cfg_nat *t;
2438				int nat_id;
2439
2440				set_match(args, f_pos, chain);
2441				/* Check if this is 'global' nat rule */
2442				if (cmd->arg1 == 0) {
2443					retval = ipfw_nat_ptr(args, NULL, m);
2444					break;
2445				}
2446				t = ((ipfw_insn_nat *)cmd)->nat;
2447				if (t == NULL) {
2448					nat_id = IP_FW_ARG_TABLEARG(cmd->arg1);
2449					t = (*lookup_nat_ptr)(&chain->nat, nat_id);
2450
2451					if (t == NULL) {
2452					    retval = IP_FW_DENY;
2453					    break;
2454					}
2455					if (cmd->arg1 != IP_FW_TABLEARG)
2456					    ((ipfw_insn_nat *)cmd)->nat = t;
2457				}
2458				retval = ipfw_nat_ptr(args, t, m);
2459				break;
2460
2461			case O_REASS: {
2462				int ip_off;
2463
2464				l = 0;	/* in any case exit inner loop */
2465				if (is_ipv6) /* IPv6 is not supported yet */
2466					break;
2467				IPFW_INC_RULE_COUNTER(f, pktlen);
2468				ip_off = ntohs(ip->ip_off);
2469
2470				/* if not fragmented, go to next rule */
2471				if ((ip_off & (IP_MF | IP_OFFMASK)) == 0)
2472				    break;
2473
2474				args->m = m = ip_reass(m);
2475
2476				/*
2477				 * do IP header checksum fixup.
2478				 */
2479				if (m == NULL) { /* fragment got swallowed */
2480				    retval = IP_FW_DENY;
2481				} else { /* good, packet complete */
2482				    int hlen;
2483
2484				    ip = mtod(m, struct ip *);
2485				    hlen = ip->ip_hl << 2;
2486				    ip->ip_sum = 0;
2487				    if (hlen == sizeof(struct ip))
2488					ip->ip_sum = in_cksum_hdr(ip);
2489				    else
2490					ip->ip_sum = in_cksum(m, hlen);
2491				    retval = IP_FW_REASS;
2492				    set_match(args, f_pos, chain);
2493				}
2494				done = 1;	/* exit outer loop */
2495				break;
2496			}
2497
2498			default:
2499				panic("-- unknown opcode %d\n", cmd->opcode);
2500			} /* end of switch() on opcodes */
2501			/*
2502			 * if we get here with l=0, then match is irrelevant.
2503			 */
2504
2505			if (cmd->len & F_NOT)
2506				match = !match;
2507
2508			if (match) {
2509				if (cmd->len & F_OR)
2510					skip_or = 1;
2511			} else {
2512				if (!(cmd->len & F_OR)) /* not an OR block, */
2513					break;		/* try next rule    */
2514			}
2515
2516		}	/* end of inner loop, scan opcodes */
2517#undef PULLUP_LEN
2518
2519		if (done)
2520			break;
2521
2522/* next_rule:; */	/* try next rule		*/
2523
2524	}		/* end of outer for, scan rules */
2525
2526	if (done) {
2527		struct ip_fw *rule = chain->map[f_pos];
2528		/* Update statistics */
2529		IPFW_INC_RULE_COUNTER(rule, pktlen);
2530	} else {
2531		retval = IP_FW_DENY;
2532		printf("ipfw: ouch!, skip past end of rules, denying packet\n");
2533	}
2534	IPFW_PF_RUNLOCK(chain);
2535#ifdef __FreeBSD__
2536	if (ucred_cache != NULL)
2537		crfree(ucred_cache);
2538#endif
2539	return (retval);
2540
2541pullup_failed:
2542	if (V_fw_verbose)
2543		printf("ipfw: pullup failed\n");
2544	return (IP_FW_DENY);
2545}
2546
2547/*
2548 * Set maximum number of tables that can be used in given VNET ipfw instance.
2549 */
2550#ifdef SYSCTL_NODE
2551static int
2552sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS)
2553{
2554	int error;
2555	unsigned int ntables;
2556
2557	ntables = V_fw_tables_max;
2558
2559	error = sysctl_handle_int(oidp, &ntables, 0, req);
2560	/* Read operation or some error */
2561	if ((error != 0) || (req->newptr == NULL))
2562		return (error);
2563
2564	return (ipfw_resize_tables(&V_layer3_chain, ntables));
2565}
2566#endif
2567/*
2568 * Module and VNET glue
2569 */
2570
2571/*
2572 * Stuff that must be initialised only on boot or module load
2573 */
2574static int
2575ipfw_init(void)
2576{
2577	int error = 0;
2578
2579	/*
2580 	 * Only print out this stuff the first time around,
2581	 * when called from the sysinit code.
2582	 */
2583	printf("ipfw2 "
2584#ifdef INET6
2585		"(+ipv6) "
2586#endif
2587		"initialized, divert %s, nat %s, "
2588		"default to %s, logging ",
2589#ifdef IPDIVERT
2590		"enabled",
2591#else
2592		"loadable",
2593#endif
2594#ifdef IPFIREWALL_NAT
2595		"enabled",
2596#else
2597		"loadable",
2598#endif
2599		default_to_accept ? "accept" : "deny");
2600
2601	/*
2602	 * Note: V_xxx variables can be accessed here but the vnet specific
2603	 * initializer may not have been called yet for the VIMAGE case.
2604	 * Tuneables will have been processed. We will print out values for
2605	 * the default vnet.
2606	 * XXX This should all be rationalized AFTER 8.0
2607	 */
2608	if (V_fw_verbose == 0)
2609		printf("disabled\n");
2610	else if (V_verbose_limit == 0)
2611		printf("unlimited\n");
2612	else
2613		printf("limited to %d packets/entry by default\n",
2614		    V_verbose_limit);
2615
2616	/* Check user-supplied table count for validness */
2617	if (default_fw_tables > IPFW_TABLES_MAX)
2618	  default_fw_tables = IPFW_TABLES_MAX;
2619
2620	ipfw_log_bpf(1); /* init */
2621	return (error);
2622}
2623
2624/*
2625 * Called for the removal of the last instance only on module unload.
2626 */
2627static void
2628ipfw_destroy(void)
2629{
2630
2631	ipfw_log_bpf(0); /* uninit */
2632	printf("IP firewall unloaded\n");
2633}
2634
2635/*
2636 * Stuff that must be initialized for every instance
2637 * (including the first of course).
2638 */
2639static int
2640vnet_ipfw_init(const void *unused)
2641{
2642	int error;
2643	struct ip_fw *rule = NULL;
2644	struct ip_fw_chain *chain;
2645
2646	chain = &V_layer3_chain;
2647
2648	/* First set up some values that are compile time options */
2649	V_autoinc_step = 100;	/* bounded to 1..1000 in add_rule() */
2650	V_fw_deny_unknown_exthdrs = 1;
2651#ifdef IPFIREWALL_VERBOSE
2652	V_fw_verbose = 1;
2653#endif
2654#ifdef IPFIREWALL_VERBOSE_LIMIT
2655	V_verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
2656#endif
2657#ifdef IPFIREWALL_NAT
2658	LIST_INIT(&chain->nat);
2659#endif
2660
2661	/* insert the default rule and create the initial map */
2662	chain->n_rules = 1;
2663	chain->static_len = sizeof(struct ip_fw);
2664	chain->map = malloc(sizeof(struct ip_fw *), M_IPFW, M_WAITOK | M_ZERO);
2665	if (chain->map)
2666		rule = malloc(chain->static_len, M_IPFW, M_WAITOK | M_ZERO);
2667
2668	/* Set initial number of tables */
2669	V_fw_tables_max = default_fw_tables;
2670	error = ipfw_init_tables(chain);
2671	if (error) {
2672		printf("ipfw2: setting up tables failed\n");
2673		free(chain->map, M_IPFW);
2674		free(rule, M_IPFW);
2675		return (ENOSPC);
2676	}
2677
2678	/* fill and insert the default rule */
2679	rule->act_ofs = 0;
2680	rule->rulenum = IPFW_DEFAULT_RULE;
2681	rule->cmd_len = 1;
2682	rule->set = RESVD_SET;
2683	rule->cmd[0].len = 1;
2684	rule->cmd[0].opcode = default_to_accept ? O_ACCEPT : O_DENY;
2685	chain->default_rule = chain->map[0] = rule;
2686	chain->id = rule->id = 1;
2687
2688	IPFW_LOCK_INIT(chain);
2689	ipfw_dyn_init(chain);
2690
2691	/* First set up some values that are compile time options */
2692	V_ipfw_vnet_ready = 1;		/* Open for business */
2693
2694	/*
2695	 * Hook the sockopt handler and pfil hooks for ipv4 and ipv6.
2696	 * Even if the latter two fail we still keep the module alive
2697	 * because the sockopt and layer2 paths are still useful.
2698	 * ipfw[6]_hook return 0 on success, ENOENT on failure,
2699	 * so we can ignore the exact return value and just set a flag.
2700	 *
2701	 * Note that V_fw[6]_enable are manipulated by a SYSCTL_PROC so
2702	 * changes in the underlying (per-vnet) variables trigger
2703	 * immediate hook()/unhook() calls.
2704	 * In layer2 we have the same behaviour, except that V_ether_ipfw
2705	 * is checked on each packet because there are no pfil hooks.
2706	 */
2707	V_ip_fw_ctl_ptr = ipfw_ctl;
2708	error = ipfw_attach_hooks(1);
2709	return (error);
2710}
2711
2712/*
2713 * Called for the removal of each instance.
2714 */
2715static int
2716vnet_ipfw_uninit(const void *unused)
2717{
2718	struct ip_fw *reap, *rule;
2719	struct ip_fw_chain *chain = &V_layer3_chain;
2720	int i;
2721
2722	V_ipfw_vnet_ready = 0; /* tell new callers to go away */
2723	/*
2724	 * disconnect from ipv4, ipv6, layer2 and sockopt.
2725	 * Then grab, release and grab again the WLOCK so we make
2726	 * sure the update is propagated and nobody will be in.
2727	 */
2728	(void)ipfw_attach_hooks(0 /* detach */);
2729	V_ip_fw_ctl_ptr = NULL;
2730	IPFW_UH_WLOCK(chain);
2731	IPFW_UH_WUNLOCK(chain);
2732
2733	ipfw_dyn_uninit(0);	/* run the callout_drain */
2734
2735	IPFW_UH_WLOCK(chain);
2736	ipfw_destroy_tables(chain);
2737	reap = NULL;
2738	IPFW_WLOCK(chain);
2739	for (i = 0; i < chain->n_rules; i++) {
2740		rule = chain->map[i];
2741		rule->x_next = reap;
2742		reap = rule;
2743	}
2744	if (chain->map)
2745		free(chain->map, M_IPFW);
2746	IPFW_WUNLOCK(chain);
2747	IPFW_UH_WUNLOCK(chain);
2748	if (reap != NULL)
2749		ipfw_reap_rules(reap);
2750	IPFW_LOCK_DESTROY(chain);
2751	ipfw_dyn_uninit(1);	/* free the remaining parts */
2752	return 0;
2753}
2754
2755/*
2756 * Module event handler.
2757 * In general we have the choice of handling most of these events by the
2758 * event handler or by the (VNET_)SYS(UN)INIT handlers. I have chosen to
2759 * use the SYSINIT handlers as they are more capable of expressing the
2760 * flow of control during module and vnet operations, so this is just
2761 * a skeleton. Note there is no SYSINIT equivalent of the module
2762 * SHUTDOWN handler, but we don't have anything to do in that case anyhow.
2763 */
2764static int
2765ipfw_modevent(module_t mod, int type, void *unused)
2766{
2767	int err = 0;
2768
2769	switch (type) {
2770	case MOD_LOAD:
2771		/* Called once at module load or
2772	 	 * system boot if compiled in. */
2773		break;
2774	case MOD_QUIESCE:
2775		/* Called before unload. May veto unloading. */
2776		break;
2777	case MOD_UNLOAD:
2778		/* Called during unload. */
2779		break;
2780	case MOD_SHUTDOWN:
2781		/* Called during system shutdown. */
2782		break;
2783	default:
2784		err = EOPNOTSUPP;
2785		break;
2786	}
2787	return err;
2788}
2789
2790static moduledata_t ipfwmod = {
2791	"ipfw",
2792	ipfw_modevent,
2793	0
2794};
2795
2796/* Define startup order. */
2797#define	IPFW_SI_SUB_FIREWALL	SI_SUB_PROTO_IFATTACHDOMAIN
2798#define	IPFW_MODEVENT_ORDER	(SI_ORDER_ANY - 255) /* On boot slot in here. */
2799#define	IPFW_MODULE_ORDER	(IPFW_MODEVENT_ORDER + 1) /* A little later. */
2800#define	IPFW_VNET_ORDER		(IPFW_MODEVENT_ORDER + 2) /* Later still. */
2801
2802DECLARE_MODULE(ipfw, ipfwmod, IPFW_SI_SUB_FIREWALL, IPFW_MODEVENT_ORDER);
2803MODULE_VERSION(ipfw, 2);
2804/* should declare some dependencies here */
2805
2806/*
2807 * Starting up. Done in order after ipfwmod() has been called.
2808 * VNET_SYSINIT is also called for each existing vnet and each new vnet.
2809 */
2810SYSINIT(ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
2811	    ipfw_init, NULL);
2812VNET_SYSINIT(vnet_ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
2813	    vnet_ipfw_init, NULL);
2814
2815/*
2816 * Closing up shop. These are done in REVERSE ORDER, but still
2817 * after ipfwmod() has been called. Not called on reboot.
2818 * VNET_SYSUNINIT is also called for each exiting vnet as it exits.
2819 * or when the module is unloaded.
2820 */
2821SYSUNINIT(ipfw_destroy, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
2822	    ipfw_destroy, NULL);
2823VNET_SYSUNINIT(vnet_ipfw_uninit, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
2824	    vnet_ipfw_uninit, NULL);
2825/* end of file */
2826