1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: stable/10/sys/netinet/tcp_subr.c 314667 2017-03-04 13:03:31Z avg $");
34
35#include "opt_compat.h"
36#include "opt_inet.h"
37#include "opt_inet6.h"
38#include "opt_ipsec.h"
39#include "opt_kdtrace.h"
40#include "opt_tcpdebug.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/callout.h>
45#include <sys/hhook.h>
46#include <sys/kernel.h>
47#include <sys/khelp.h>
48#include <sys/sysctl.h>
49#include <sys/jail.h>
50#include <sys/malloc.h>
51#include <sys/mbuf.h>
52#ifdef INET6
53#include <sys/domain.h>
54#endif
55#include <sys/priv.h>
56#include <sys/proc.h>
57#include <sys/sdt.h>
58#include <sys/socket.h>
59#include <sys/socketvar.h>
60#include <sys/protosw.h>
61#include <sys/random.h>
62
63#include <vm/uma.h>
64
65#include <net/route.h>
66#include <net/if.h>
67#include <net/vnet.h>
68
69#include <netinet/cc.h>
70#include <netinet/in.h>
71#include <netinet/in_kdtrace.h>
72#include <netinet/in_pcb.h>
73#include <netinet/in_systm.h>
74#include <netinet/in_var.h>
75#include <netinet/ip.h>
76#include <netinet/ip_icmp.h>
77#include <netinet/ip_var.h>
78#ifdef INET6
79#include <netinet/ip6.h>
80#include <netinet6/in6_pcb.h>
81#include <netinet6/ip6_var.h>
82#include <netinet6/scope6_var.h>
83#include <netinet6/nd6.h>
84#endif
85
86#ifdef TCP_RFC7413
87#include <netinet/tcp_fastopen.h>
88#endif
89#include <netinet/tcp_fsm.h>
90#include <netinet/tcp_seq.h>
91#include <netinet/tcp_timer.h>
92#include <netinet/tcp_var.h>
93#include <netinet/tcp_syncache.h>
94#ifdef INET6
95#include <netinet6/tcp6_var.h>
96#endif
97#include <netinet/tcpip.h>
98#ifdef TCPDEBUG
99#include <netinet/tcp_debug.h>
100#endif
101#ifdef INET6
102#include <netinet6/ip6protosw.h>
103#endif
104#ifdef TCP_OFFLOAD
105#include <netinet/tcp_offload.h>
106#endif
107
108#ifdef IPSEC
109#include <netipsec/ipsec.h>
110#include <netipsec/xform.h>
111#ifdef INET6
112#include <netipsec/ipsec6.h>
113#endif
114#include <netipsec/key.h>
115#include <sys/syslog.h>
116#endif /*IPSEC*/
117
118#include <machine/in_cksum.h>
119#include <sys/md5.h>
120
121#include <security/mac/mac_framework.h>
122
123VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS;
124#ifdef INET6
125VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS;
126#endif
127
128static int
129sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)
130{
131	int error, new;
132
133	new = V_tcp_mssdflt;
134	error = sysctl_handle_int(oidp, &new, 0, req);
135	if (error == 0 && req->newptr) {
136		if (new < TCP_MINMSS)
137			error = EINVAL;
138		else
139			V_tcp_mssdflt = new;
140	}
141	return (error);
142}
143
144SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
145    CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0,
146    &sysctl_net_inet_tcp_mss_check, "I",
147    "Default TCP Maximum Segment Size");
148
149#ifdef INET6
150static int
151sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)
152{
153	int error, new;
154
155	new = V_tcp_v6mssdflt;
156	error = sysctl_handle_int(oidp, &new, 0, req);
157	if (error == 0 && req->newptr) {
158		if (new < TCP_MINMSS)
159			error = EINVAL;
160		else
161			V_tcp_v6mssdflt = new;
162	}
163	return (error);
164}
165
166SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
167    CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0,
168    &sysctl_net_inet_tcp_mss_v6_check, "I",
169   "Default TCP Maximum Segment Size for IPv6");
170#endif /* INET6 */
171
172/*
173 * Minimum MSS we accept and use. This prevents DoS attacks where
174 * we are forced to a ridiculous low MSS like 20 and send hundreds
175 * of packets instead of one. The effect scales with the available
176 * bandwidth and quickly saturates the CPU and network interface
177 * with packet generation and sending. Set to zero to disable MINMSS
178 * checking. This setting prevents us from sending too small packets.
179 */
180VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS;
181SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
182     &VNET_NAME(tcp_minmss), 0,
183    "Minimum TCP Maximum Segment Size");
184
185VNET_DEFINE(int, tcp_do_rfc1323) = 1;
186SYSCTL_VNET_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
187    &VNET_NAME(tcp_do_rfc1323), 0,
188    "Enable rfc1323 (high performance TCP) extensions");
189
190static int	tcp_log_debug = 0;
191SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
192    &tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
193
194static int	tcp_tcbhashsize = 0;
195SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
196    &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
197
198static int	do_tcpdrain = 1;
199SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
200    "Enable tcp_drain routine for extra help when low on mbufs");
201
202SYSCTL_VNET_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
203    &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs");
204
205static VNET_DEFINE(int, icmp_may_rst) = 1;
206#define	V_icmp_may_rst			VNET(icmp_may_rst)
207SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW,
208    &VNET_NAME(icmp_may_rst), 0,
209    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
210
211static VNET_DEFINE(int, tcp_isn_reseed_interval) = 0;
212#define	V_tcp_isn_reseed_interval	VNET(tcp_isn_reseed_interval)
213SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
214    &VNET_NAME(tcp_isn_reseed_interval), 0,
215    "Seconds between reseeding of ISN secret");
216
217static int	tcp_soreceive_stream = 0;
218SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN,
219    &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets");
220
221#ifdef TCP_SIGNATURE
222static int	tcp_sig_checksigs = 1;
223SYSCTL_INT(_net_inet_tcp, OID_AUTO, signature_verify_input, CTLFLAG_RW,
224    &tcp_sig_checksigs, 0, "Verify RFC2385 digests on inbound traffic");
225#endif
226
227VNET_DEFINE(uma_zone_t, sack_hole_zone);
228#define	V_sack_hole_zone		VNET(sack_hole_zone)
229
230VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]);
231
232static struct inpcb *tcp_notify(struct inpcb *, int);
233static struct inpcb *tcp_mtudisc_notify(struct inpcb *, int);
234static char *	tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th,
235		    void *ip4hdr, const void *ip6hdr);
236static void	tcp_timer_discard(struct tcpcb *, uint32_t);
237
238/*
239 * Target size of TCP PCB hash tables. Must be a power of two.
240 *
241 * Note that this can be overridden by the kernel environment
242 * variable net.inet.tcp.tcbhashsize
243 */
244#ifndef TCBHASHSIZE
245#define TCBHASHSIZE	0
246#endif
247
248/*
249 * XXX
250 * Callouts should be moved into struct tcp directly.  They are currently
251 * separate because the tcpcb structure is exported to userland for sysctl
252 * parsing purposes, which do not know about callouts.
253 */
254struct tcpcb_mem {
255	struct	tcpcb		tcb;
256	struct	tcp_timer	tt;
257	struct	cc_var		ccv;
258	struct	osd		osd;
259};
260
261static VNET_DEFINE(uma_zone_t, tcpcb_zone);
262#define	V_tcpcb_zone			VNET(tcpcb_zone)
263
264MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
265static struct mtx isn_mtx;
266
267#define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
268#define	ISN_LOCK()	mtx_lock(&isn_mtx)
269#define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
270
271/*
272 * TCP initialization.
273 */
274static void
275tcp_zone_change(void *tag)
276{
277
278	uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets);
279	uma_zone_set_max(V_tcpcb_zone, maxsockets);
280	tcp_tw_zone_change();
281}
282
283static int
284tcp_inpcb_init(void *mem, int size, int flags)
285{
286	struct inpcb *inp = mem;
287
288	INP_LOCK_INIT(inp, "inp", "tcpinp");
289	return (0);
290}
291
292/*
293 * Take a value and get the next power of 2 that doesn't overflow.
294 * Used to size the tcp_inpcb hash buckets.
295 */
296static int
297maketcp_hashsize(int size)
298{
299	int hashsize;
300
301	/*
302	 * auto tune.
303	 * get the next power of 2 higher than maxsockets.
304	 */
305	hashsize = 1 << fls(size);
306	/* catch overflow, and just go one power of 2 smaller */
307	if (hashsize < size) {
308		hashsize = 1 << (fls(size) - 1);
309	}
310	return (hashsize);
311}
312
313void
314tcp_init(void)
315{
316	const char *tcbhash_tuneable;
317	int hashsize;
318
319	tcbhash_tuneable = "net.inet.tcp.tcbhashsize";
320
321	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN,
322	    &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
323		printf("%s: WARNING: unable to register helper hook\n", __func__);
324	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT,
325	    &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
326		printf("%s: WARNING: unable to register helper hook\n", __func__);
327
328	hashsize = TCBHASHSIZE;
329	TUNABLE_INT_FETCH(tcbhash_tuneable, &hashsize);
330	if (hashsize == 0) {
331		/*
332		 * Auto tune the hash size based on maxsockets.
333		 * A perfect hash would have a 1:1 mapping
334		 * (hashsize = maxsockets) however it's been
335		 * suggested that O(2) average is better.
336		 */
337		hashsize = maketcp_hashsize(maxsockets / 4);
338		/*
339		 * Our historical default is 512,
340		 * do not autotune lower than this.
341		 */
342		if (hashsize < 512)
343			hashsize = 512;
344		if (bootverbose && IS_DEFAULT_VNET(curvnet))
345			printf("%s: %s auto tuned to %d\n", __func__,
346			    tcbhash_tuneable, hashsize);
347	}
348	/*
349	 * We require a hashsize to be a power of two.
350	 * Previously if it was not a power of two we would just reset it
351	 * back to 512, which could be a nasty surprise if you did not notice
352	 * the error message.
353	 * Instead what we do is clip it to the closest power of two lower
354	 * than the specified hash value.
355	 */
356	if (!powerof2(hashsize)) {
357		int oldhashsize = hashsize;
358
359		hashsize = maketcp_hashsize(hashsize);
360		/* prevent absurdly low value */
361		if (hashsize < 16)
362			hashsize = 16;
363		printf("%s: WARNING: TCB hash size not a power of 2, "
364		    "clipped from %d to %d.\n", __func__, oldhashsize,
365		    hashsize);
366	}
367	in_pcbinfo_init(&V_tcbinfo, "tcp", &V_tcb, hashsize, hashsize,
368	    "tcp_inpcb", tcp_inpcb_init, NULL, UMA_ZONE_NOFREE,
369	    IPI_HASHFIELDS_4TUPLE);
370
371	/*
372	 * These have to be type stable for the benefit of the timers.
373	 */
374	V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
375	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
376	uma_zone_set_max(V_tcpcb_zone, maxsockets);
377	uma_zone_set_warning(V_tcpcb_zone, "kern.ipc.maxsockets limit reached");
378
379	tcp_tw_init();
380	syncache_init();
381	tcp_hc_init();
382
383	TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack);
384	V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
385	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
386
387	/* Skip initialization of globals for non-default instances. */
388	if (!IS_DEFAULT_VNET(curvnet))
389		return;
390
391	tcp_reass_global_init();
392
393	/* XXX virtualize those bellow? */
394	tcp_delacktime = TCPTV_DELACK;
395	tcp_keepinit = TCPTV_KEEP_INIT;
396	tcp_keepidle = TCPTV_KEEP_IDLE;
397	tcp_keepintvl = TCPTV_KEEPINTVL;
398	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
399	tcp_msl = TCPTV_MSL;
400	tcp_rexmit_min = TCPTV_MIN;
401	if (tcp_rexmit_min < 1)
402		tcp_rexmit_min = 1;
403	tcp_persmin = TCPTV_PERSMIN;
404	tcp_persmax = TCPTV_PERSMAX;
405	tcp_rexmit_slop = TCPTV_CPU_VAR;
406	tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
407	tcp_tcbhashsize = hashsize;
408
409	TUNABLE_INT_FETCH("net.inet.tcp.soreceive_stream", &tcp_soreceive_stream);
410	if (tcp_soreceive_stream) {
411#ifdef INET
412		tcp_usrreqs.pru_soreceive = soreceive_stream;
413#endif
414#ifdef INET6
415		tcp6_usrreqs.pru_soreceive = soreceive_stream;
416#endif /* INET6 */
417	}
418
419#ifdef INET6
420#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
421#else /* INET6 */
422#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
423#endif /* INET6 */
424	if (max_protohdr < TCP_MINPROTOHDR)
425		max_protohdr = TCP_MINPROTOHDR;
426	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
427		panic("tcp_init");
428#undef TCP_MINPROTOHDR
429
430	ISN_LOCK_INIT();
431	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
432		SHUTDOWN_PRI_DEFAULT);
433	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
434		EVENTHANDLER_PRI_ANY);
435
436#ifdef TCP_RFC7413
437	tcp_fastopen_init();
438#endif
439}
440
441#ifdef VIMAGE
442void
443tcp_destroy(void)
444{
445
446#ifdef TCP_RFC7413
447	tcp_fastopen_destroy();
448#endif
449	tcp_hc_destroy();
450	syncache_destroy();
451	tcp_tw_destroy();
452	in_pcbinfo_destroy(&V_tcbinfo);
453	uma_zdestroy(V_sack_hole_zone);
454	uma_zdestroy(V_tcpcb_zone);
455}
456#endif
457
458void
459tcp_fini(void *xtp)
460{
461
462}
463
464/*
465 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
466 * tcp_template used to store this data in mbufs, but we now recopy it out
467 * of the tcpcb each time to conserve mbufs.
468 */
469void
470tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
471{
472	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
473
474	INP_WLOCK_ASSERT(inp);
475
476#ifdef INET6
477	if ((inp->inp_vflag & INP_IPV6) != 0) {
478		struct ip6_hdr *ip6;
479
480		ip6 = (struct ip6_hdr *)ip_ptr;
481		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
482			(inp->inp_flow & IPV6_FLOWINFO_MASK);
483		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
484			(IPV6_VERSION & IPV6_VERSION_MASK);
485		ip6->ip6_nxt = IPPROTO_TCP;
486		ip6->ip6_plen = htons(sizeof(struct tcphdr));
487		ip6->ip6_src = inp->in6p_laddr;
488		ip6->ip6_dst = inp->in6p_faddr;
489	}
490#endif /* INET6 */
491#if defined(INET6) && defined(INET)
492	else
493#endif
494#ifdef INET
495	{
496		struct ip *ip;
497
498		ip = (struct ip *)ip_ptr;
499		ip->ip_v = IPVERSION;
500		ip->ip_hl = 5;
501		ip->ip_tos = inp->inp_ip_tos;
502		ip->ip_len = 0;
503		ip->ip_id = 0;
504		ip->ip_off = 0;
505		ip->ip_ttl = inp->inp_ip_ttl;
506		ip->ip_sum = 0;
507		ip->ip_p = IPPROTO_TCP;
508		ip->ip_src = inp->inp_laddr;
509		ip->ip_dst = inp->inp_faddr;
510	}
511#endif /* INET */
512	th->th_sport = inp->inp_lport;
513	th->th_dport = inp->inp_fport;
514	th->th_seq = 0;
515	th->th_ack = 0;
516	th->th_x2 = 0;
517	th->th_off = 5;
518	th->th_flags = 0;
519	th->th_win = 0;
520	th->th_urp = 0;
521	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
522}
523
524/*
525 * Create template to be used to send tcp packets on a connection.
526 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
527 * use for this function is in keepalives, which use tcp_respond.
528 */
529struct tcptemp *
530tcpip_maketemplate(struct inpcb *inp)
531{
532	struct tcptemp *t;
533
534	t = malloc(sizeof(*t), M_TEMP, M_NOWAIT);
535	if (t == NULL)
536		return (NULL);
537	tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t);
538	return (t);
539}
540
541/*
542 * Send a single message to the TCP at address specified by
543 * the given TCP/IP header.  If m == NULL, then we make a copy
544 * of the tcpiphdr at ti and send directly to the addressed host.
545 * This is used to force keep alive messages out using the TCP
546 * template for a connection.  If flags are given then we send
547 * a message back to the TCP which originated the * segment ti,
548 * and discard the mbuf containing it and any other attached mbufs.
549 *
550 * In any case the ack and sequence number of the transmitted
551 * segment are as specified by the parameters.
552 *
553 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
554 */
555void
556tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
557    tcp_seq ack, tcp_seq seq, int flags)
558{
559	struct tcpopt to;
560	struct inpcb *inp;
561	struct ip *ip;
562	struct mbuf *optm;
563	struct tcphdr *nth;
564	u_char *optp;
565#ifdef INET6
566	struct ip6_hdr *ip6;
567	int isipv6;
568#endif /* INET6 */
569	int optlen, tlen, win;
570	bool incl_opts;
571
572	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
573
574#ifdef INET6
575	isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4);
576	ip6 = ipgen;
577#endif /* INET6 */
578	ip = ipgen;
579
580	if (tp != NULL) {
581		inp = tp->t_inpcb;
582		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
583		INP_WLOCK_ASSERT(inp);
584	} else
585		inp = NULL;
586
587	incl_opts = false;
588	win = 0;
589	if (tp != NULL) {
590		if (!(flags & TH_RST)) {
591			win = sbspace(&inp->inp_socket->so_rcv);
592			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
593				win = (long)TCP_MAXWIN << tp->rcv_scale;
594		}
595		if ((tp->t_flags & TF_NOOPT) == 0)
596			incl_opts = true;
597	}
598	if (m == NULL) {
599		m = m_gethdr(M_NOWAIT, MT_DATA);
600		if (m == NULL)
601			return;
602		m->m_data += max_linkhdr;
603#ifdef INET6
604		if (isipv6) {
605			bcopy((caddr_t)ip6, mtod(m, caddr_t),
606			      sizeof(struct ip6_hdr));
607			ip6 = mtod(m, struct ip6_hdr *);
608			nth = (struct tcphdr *)(ip6 + 1);
609		} else
610#endif /* INET6 */
611		{
612			bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
613			ip = mtod(m, struct ip *);
614			nth = (struct tcphdr *)(ip + 1);
615		}
616		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
617		flags = TH_ACK;
618	} else if (!M_WRITABLE(m)) {
619		struct mbuf *n;
620
621		/* Can't reuse 'm', allocate a new mbuf. */
622		n = m_gethdr(M_NOWAIT, MT_DATA);
623		if (n == NULL) {
624			m_freem(m);
625			return;
626		}
627
628		if (!m_dup_pkthdr(n, m, M_NOWAIT)) {
629			m_freem(m);
630			m_freem(n);
631			return;
632		}
633
634		n->m_data += max_linkhdr;
635		/* m_len is set later */
636#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
637#ifdef INET6
638		if (isipv6) {
639			bcopy((caddr_t)ip6, mtod(n, caddr_t),
640			      sizeof(struct ip6_hdr));
641			ip6 = mtod(n, struct ip6_hdr *);
642			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
643			nth = (struct tcphdr *)(ip6 + 1);
644		} else
645#endif /* INET6 */
646		{
647			bcopy((caddr_t)ip, mtod(n, caddr_t), sizeof(struct ip));
648			ip = mtod(n, struct ip *);
649			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
650			nth = (struct tcphdr *)(ip + 1);
651		}
652		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
653		xchg(nth->th_dport, nth->th_sport, uint16_t);
654		th = nth;
655		m_freem(m);
656		m = n;
657	} else {
658		/*
659		 *  reuse the mbuf.
660		 * XXX MRT We inherit the FIB, which is lucky.
661		 */
662		m_freem(m->m_next);
663		m->m_next = NULL;
664		m->m_data = (caddr_t)ipgen;
665		/* m_len is set later */
666#ifdef INET6
667		if (isipv6) {
668			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
669			nth = (struct tcphdr *)(ip6 + 1);
670		} else
671#endif /* INET6 */
672		{
673			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
674			nth = (struct tcphdr *)(ip + 1);
675		}
676		if (th != nth) {
677			/*
678			 * this is usually a case when an extension header
679			 * exists between the IPv6 header and the
680			 * TCP header.
681			 */
682			nth->th_sport = th->th_sport;
683			nth->th_dport = th->th_dport;
684		}
685		xchg(nth->th_dport, nth->th_sport, uint16_t);
686#undef xchg
687	}
688	tlen = 0;
689#ifdef INET6
690	if (isipv6)
691		tlen = sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
692#endif
693#if defined(INET) && defined(INET6)
694	else
695#endif
696#ifdef INET
697		tlen = sizeof (struct tcpiphdr);
698#endif
699#ifdef INVARIANTS
700	m->m_len = 0;
701	KASSERT(M_TRAILINGSPACE(m) >= tlen,
702	    ("Not enough trailing space for message (m=%p, need=%d, have=%ld)",
703	    m, tlen, (long)M_TRAILINGSPACE(m)));
704#endif
705	m->m_len = tlen;
706	to.to_flags = 0;
707	if (incl_opts) {
708		/* Make sure we have room. */
709		if (M_TRAILINGSPACE(m) < TCP_MAXOLEN) {
710			m->m_next = m_get(M_NOWAIT, MT_DATA);
711			if (m->m_next) {
712				optp = mtod(m->m_next, u_char *);
713				optm = m->m_next;
714			} else
715				incl_opts = false;
716		} else {
717			optp = (u_char *) (nth + 1);
718			optm = m;
719		}
720	}
721	if (incl_opts) {
722		/* Timestamps. */
723		if (tp->t_flags & TF_RCVD_TSTMP) {
724			to.to_tsval = tcp_ts_getticks() + tp->ts_offset;
725			to.to_tsecr = tp->ts_recent;
726			to.to_flags |= TOF_TS;
727		}
728#ifdef TCP_SIGNATURE
729		/* TCP-MD5 (RFC2385). */
730		if (tp->t_flags & TF_SIGNATURE)
731			to.to_flags |= TOF_SIGNATURE;
732#endif
733
734		/* Add the options. */
735		tlen += optlen = tcp_addoptions(&to, optp);
736
737		/* Update m_len in the correct mbuf. */
738		optm->m_len += optlen;
739	} else
740		optlen = 0;
741#ifdef INET6
742	if (isipv6) {
743		ip6->ip6_flow = 0;
744		ip6->ip6_vfc = IPV6_VERSION;
745		ip6->ip6_nxt = IPPROTO_TCP;
746		ip6->ip6_plen = htons(tlen - sizeof(*ip6));
747	}
748#endif
749#if defined(INET) && defined(INET6)
750	else
751#endif
752#ifdef INET
753	{
754		ip->ip_len = htons(tlen);
755		ip->ip_ttl = V_ip_defttl;
756		if (V_path_mtu_discovery)
757			ip->ip_off |= htons(IP_DF);
758	}
759#endif
760	m->m_pkthdr.len = tlen;
761	m->m_pkthdr.rcvif = NULL;
762#ifdef MAC
763	if (inp != NULL) {
764		/*
765		 * Packet is associated with a socket, so allow the
766		 * label of the response to reflect the socket label.
767		 */
768		INP_WLOCK_ASSERT(inp);
769		mac_inpcb_create_mbuf(inp, m);
770	} else {
771		/*
772		 * Packet is not associated with a socket, so possibly
773		 * update the label in place.
774		 */
775		mac_netinet_tcp_reply(m);
776	}
777#endif
778	nth->th_seq = htonl(seq);
779	nth->th_ack = htonl(ack);
780	nth->th_x2 = 0;
781	nth->th_off = (sizeof (struct tcphdr) + optlen) >> 2;
782	nth->th_flags = flags;
783	if (tp != NULL)
784		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
785	else
786		nth->th_win = htons((u_short)win);
787	nth->th_urp = 0;
788
789#ifdef TCP_SIGNATURE
790	if (to.to_flags & TOF_SIGNATURE) {
791		tcp_signature_compute(m, 0, 0, optlen, to.to_signature,
792		    IPSEC_DIR_OUTBOUND);
793	}
794#endif
795
796	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
797#ifdef INET6
798	if (isipv6) {
799		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
800		nth->th_sum = in6_cksum_pseudo(ip6,
801		    tlen - sizeof(struct ip6_hdr), IPPROTO_TCP, 0);
802		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
803		    NULL, NULL);
804	}
805#endif /* INET6 */
806#if defined(INET6) && defined(INET)
807	else
808#endif
809#ifdef INET
810	{
811		m->m_pkthdr.csum_flags = CSUM_TCP;
812		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
813		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
814	}
815#endif /* INET */
816#ifdef TCPDEBUG
817	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
818		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
819#endif
820	if (flags & TH_RST)
821		TCP_PROBE5(accept__refused, NULL, NULL, mtod(m, const char *),
822		    tp, nth);
823
824	TCP_PROBE5(send, NULL, tp, mtod(m, const char *), tp, nth);
825#ifdef INET6
826	if (isipv6)
827		(void) ip6_output(m, NULL, NULL, 0, NULL, NULL, inp);
828#endif /* INET6 */
829#if defined(INET) && defined(INET6)
830	else
831#endif
832#ifdef INET
833		(void) ip_output(m, NULL, NULL, 0, NULL, inp);
834#endif
835}
836
837/*
838 * Create a new TCP control block, making an
839 * empty reassembly queue and hooking it to the argument
840 * protocol control block.  The `inp' parameter must have
841 * come from the zone allocator set up in tcp_init().
842 */
843struct tcpcb *
844tcp_newtcpcb(struct inpcb *inp)
845{
846	struct tcpcb_mem *tm;
847	struct tcpcb *tp;
848#ifdef INET6
849	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
850#endif /* INET6 */
851
852	tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO);
853	if (tm == NULL)
854		return (NULL);
855	tp = &tm->tcb;
856
857	/* Initialise cc_var struct for this tcpcb. */
858	tp->ccv = &tm->ccv;
859	tp->ccv->type = IPPROTO_TCP;
860	tp->ccv->ccvc.tcp = tp;
861
862	/*
863	 * Use the current system default CC algorithm.
864	 */
865	CC_LIST_RLOCK();
866	KASSERT(!STAILQ_EMPTY(&cc_list), ("cc_list is empty!"));
867	CC_ALGO(tp) = CC_DEFAULT();
868	CC_LIST_RUNLOCK();
869
870	if (CC_ALGO(tp)->cb_init != NULL)
871		if (CC_ALGO(tp)->cb_init(tp->ccv) > 0) {
872			uma_zfree(V_tcpcb_zone, tm);
873			return (NULL);
874		}
875
876	tp->osd = &tm->osd;
877	if (khelp_init_osd(HELPER_CLASS_TCP, tp->osd)) {
878		uma_zfree(V_tcpcb_zone, tm);
879		return (NULL);
880	}
881
882#ifdef VIMAGE
883	tp->t_vnet = inp->inp_vnet;
884#endif
885	tp->t_timers = &tm->tt;
886	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
887	tp->t_maxseg = tp->t_maxopd =
888#ifdef INET6
889		isipv6 ? V_tcp_v6mssdflt :
890#endif /* INET6 */
891		V_tcp_mssdflt;
892
893	/* Set up our timeouts. */
894	callout_init(&tp->t_timers->tt_rexmt, 1);
895	callout_init(&tp->t_timers->tt_persist, 1);
896	callout_init(&tp->t_timers->tt_keep, 1);
897	callout_init(&tp->t_timers->tt_2msl, 1);
898	callout_init(&tp->t_timers->tt_delack, 1);
899
900	if (V_tcp_do_rfc1323)
901		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
902	if (V_tcp_do_sack)
903		tp->t_flags |= TF_SACK_PERMIT;
904	TAILQ_INIT(&tp->snd_holes);
905	/*
906	 * The tcpcb will hold a reference on its inpcb until tcp_discardcb()
907	 * is called.
908	 */
909	in_pcbref(inp);	/* Reference for tcpcb */
910	tp->t_inpcb = inp;
911
912	/*
913	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
914	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
915	 * reasonable initial retransmit time.
916	 */
917	tp->t_srtt = TCPTV_SRTTBASE;
918	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
919	tp->t_rttmin = tcp_rexmit_min;
920	tp->t_rxtcur = TCPTV_RTOBASE;
921	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
922	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
923	tp->t_rcvtime = ticks;
924	/*
925	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
926	 * because the socket may be bound to an IPv6 wildcard address,
927	 * which may match an IPv4-mapped IPv6 address.
928	 */
929	inp->inp_ip_ttl = V_ip_defttl;
930	inp->inp_ppcb = tp;
931	return (tp);		/* XXX */
932}
933
934/*
935 * Switch the congestion control algorithm back to NewReno for any active
936 * control blocks using an algorithm which is about to go away.
937 * This ensures the CC framework can allow the unload to proceed without leaving
938 * any dangling pointers which would trigger a panic.
939 * Returning non-zero would inform the CC framework that something went wrong
940 * and it would be unsafe to allow the unload to proceed. However, there is no
941 * way for this to occur with this implementation so we always return zero.
942 */
943int
944tcp_ccalgounload(struct cc_algo *unload_algo)
945{
946	struct cc_algo *tmpalgo;
947	struct inpcb *inp;
948	struct tcpcb *tp;
949	VNET_ITERATOR_DECL(vnet_iter);
950
951	/*
952	 * Check all active control blocks across all network stacks and change
953	 * any that are using "unload_algo" back to NewReno. If "unload_algo"
954	 * requires cleanup code to be run, call it.
955	 */
956	VNET_LIST_RLOCK();
957	VNET_FOREACH(vnet_iter) {
958		CURVNET_SET(vnet_iter);
959		INP_INFO_WLOCK(&V_tcbinfo);
960		/*
961		 * New connections already part way through being initialised
962		 * with the CC algo we're removing will not race with this code
963		 * because the INP_INFO_WLOCK is held during initialisation. We
964		 * therefore don't enter the loop below until the connection
965		 * list has stabilised.
966		 */
967		LIST_FOREACH(inp, &V_tcb, inp_list) {
968			INP_WLOCK(inp);
969			/* Important to skip tcptw structs. */
970			if (!(inp->inp_flags & INP_TIMEWAIT) &&
971			    (tp = intotcpcb(inp)) != NULL) {
972				/*
973				 * By holding INP_WLOCK here, we are assured
974				 * that the connection is not currently
975				 * executing inside the CC module's functions
976				 * i.e. it is safe to make the switch back to
977				 * NewReno.
978				 */
979				if (CC_ALGO(tp) == unload_algo) {
980					tmpalgo = CC_ALGO(tp);
981					/* NewReno does not require any init. */
982					CC_ALGO(tp) = &newreno_cc_algo;
983					if (tmpalgo->cb_destroy != NULL)
984						tmpalgo->cb_destroy(tp->ccv);
985				}
986			}
987			INP_WUNLOCK(inp);
988		}
989		INP_INFO_WUNLOCK(&V_tcbinfo);
990		CURVNET_RESTORE();
991	}
992	VNET_LIST_RUNLOCK();
993
994	return (0);
995}
996
997/*
998 * Drop a TCP connection, reporting
999 * the specified error.  If connection is synchronized,
1000 * then send a RST to peer.
1001 */
1002struct tcpcb *
1003tcp_drop(struct tcpcb *tp, int errno)
1004{
1005	struct socket *so = tp->t_inpcb->inp_socket;
1006
1007	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
1008	INP_WLOCK_ASSERT(tp->t_inpcb);
1009
1010	if (TCPS_HAVERCVDSYN(tp->t_state)) {
1011		tcp_state_change(tp, TCPS_CLOSED);
1012		(void) tcp_output(tp);
1013		TCPSTAT_INC(tcps_drops);
1014	} else
1015		TCPSTAT_INC(tcps_conndrops);
1016	if (errno == ETIMEDOUT && tp->t_softerror)
1017		errno = tp->t_softerror;
1018	so->so_error = errno;
1019	return (tcp_close(tp));
1020}
1021
1022void
1023tcp_discardcb(struct tcpcb *tp)
1024{
1025	struct inpcb *inp = tp->t_inpcb;
1026	struct socket *so = inp->inp_socket;
1027#ifdef INET6
1028	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
1029#endif /* INET6 */
1030	int released;
1031
1032	INP_WLOCK_ASSERT(inp);
1033
1034	/*
1035	 * Make sure that all of our timers are stopped before we delete the
1036	 * PCB.
1037	 *
1038	 * If stopping a timer fails, we schedule a discard function in same
1039	 * callout, and the last discard function called will take care of
1040	 * deleting the tcpcb.
1041	 */
1042	tcp_timer_stop(tp, TT_REXMT);
1043	tcp_timer_stop(tp, TT_PERSIST);
1044	tcp_timer_stop(tp, TT_KEEP);
1045	tcp_timer_stop(tp, TT_2MSL);
1046	tcp_timer_stop(tp, TT_DELACK);
1047
1048	/*
1049	 * If we got enough samples through the srtt filter,
1050	 * save the rtt and rttvar in the routing entry.
1051	 * 'Enough' is arbitrarily defined as 4 rtt samples.
1052	 * 4 samples is enough for the srtt filter to converge
1053	 * to within enough % of the correct value; fewer samples
1054	 * and we could save a bogus rtt. The danger is not high
1055	 * as tcp quickly recovers from everything.
1056	 * XXX: Works very well but needs some more statistics!
1057	 */
1058	if (tp->t_rttupdated >= 4) {
1059		struct hc_metrics_lite metrics;
1060		u_long ssthresh;
1061
1062		bzero(&metrics, sizeof(metrics));
1063		/*
1064		 * Update the ssthresh always when the conditions below
1065		 * are satisfied. This gives us better new start value
1066		 * for the congestion avoidance for new connections.
1067		 * ssthresh is only set if packet loss occured on a session.
1068		 *
1069		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
1070		 * being torn down.  Ideally this code would not use 'so'.
1071		 */
1072		ssthresh = tp->snd_ssthresh;
1073		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
1074			/*
1075			 * convert the limit from user data bytes to
1076			 * packets then to packet data bytes.
1077			 */
1078			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
1079			if (ssthresh < 2)
1080				ssthresh = 2;
1081			ssthresh *= (u_long)(tp->t_maxseg +
1082#ifdef INET6
1083			    (isipv6 ? sizeof (struct ip6_hdr) +
1084				sizeof (struct tcphdr) :
1085#endif
1086				sizeof (struct tcpiphdr)
1087#ifdef INET6
1088			    )
1089#endif
1090			    );
1091		} else
1092			ssthresh = 0;
1093		metrics.rmx_ssthresh = ssthresh;
1094
1095		metrics.rmx_rtt = tp->t_srtt;
1096		metrics.rmx_rttvar = tp->t_rttvar;
1097		metrics.rmx_cwnd = tp->snd_cwnd;
1098		metrics.rmx_sendpipe = 0;
1099		metrics.rmx_recvpipe = 0;
1100
1101		tcp_hc_update(&inp->inp_inc, &metrics);
1102	}
1103
1104	/* free the reassembly queue, if any */
1105	tcp_reass_flush(tp);
1106
1107#ifdef TCP_OFFLOAD
1108	/* Disconnect offload device, if any. */
1109	if (tp->t_flags & TF_TOE)
1110		tcp_offload_detach(tp);
1111#endif
1112
1113	tcp_free_sackholes(tp);
1114
1115	/* Allow the CC algorithm to clean up after itself. */
1116	if (CC_ALGO(tp)->cb_destroy != NULL)
1117		CC_ALGO(tp)->cb_destroy(tp->ccv);
1118
1119	khelp_destroy_osd(tp->osd);
1120
1121	CC_ALGO(tp) = NULL;
1122	inp->inp_ppcb = NULL;
1123	if ((tp->t_timers->tt_flags & TT_MASK) == 0) {
1124		/* We own the last reference on tcpcb, let's free it. */
1125		tp->t_inpcb = NULL;
1126		uma_zfree(V_tcpcb_zone, tp);
1127		released = in_pcbrele_wlocked(inp);
1128		KASSERT(!released, ("%s: inp %p should not have been released "
1129			"here", __func__, inp));
1130	}
1131}
1132
1133void
1134tcp_timer_2msl_discard(void *xtp)
1135{
1136
1137	tcp_timer_discard((struct tcpcb *)xtp, TT_2MSL);
1138}
1139
1140void
1141tcp_timer_keep_discard(void *xtp)
1142{
1143
1144	tcp_timer_discard((struct tcpcb *)xtp, TT_KEEP);
1145}
1146
1147void
1148tcp_timer_persist_discard(void *xtp)
1149{
1150
1151	tcp_timer_discard((struct tcpcb *)xtp, TT_PERSIST);
1152}
1153
1154void
1155tcp_timer_rexmt_discard(void *xtp)
1156{
1157
1158	tcp_timer_discard((struct tcpcb *)xtp, TT_REXMT);
1159}
1160
1161void
1162tcp_timer_delack_discard(void *xtp)
1163{
1164
1165	tcp_timer_discard((struct tcpcb *)xtp, TT_DELACK);
1166}
1167
1168void
1169tcp_timer_discard(struct tcpcb *tp, uint32_t timer_type)
1170{
1171	struct inpcb *inp;
1172
1173	CURVNET_SET(tp->t_vnet);
1174	INP_INFO_RLOCK(&V_tcbinfo);
1175	inp = tp->t_inpcb;
1176	KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL",
1177		__func__, tp));
1178	INP_WLOCK(inp);
1179	KASSERT((tp->t_timers->tt_flags & TT_STOPPED) != 0,
1180		("%s: tcpcb has to be stopped here", __func__));
1181	KASSERT((tp->t_timers->tt_flags & timer_type) != 0,
1182		("%s: discard callout should be running", __func__));
1183	tp->t_timers->tt_flags &= ~timer_type;
1184	if ((tp->t_timers->tt_flags & TT_MASK) == 0) {
1185		/* We own the last reference on this tcpcb, let's free it. */
1186		tp->t_inpcb = NULL;
1187		uma_zfree(V_tcpcb_zone, tp);
1188		if (in_pcbrele_wlocked(inp)) {
1189			INP_INFO_RUNLOCK(&V_tcbinfo);
1190			CURVNET_RESTORE();
1191			return;
1192		}
1193	}
1194	INP_WUNLOCK(inp);
1195	INP_INFO_RUNLOCK(&V_tcbinfo);
1196	CURVNET_RESTORE();
1197}
1198
1199/*
1200 * Attempt to close a TCP control block, marking it as dropped, and freeing
1201 * the socket if we hold the only reference.
1202 */
1203struct tcpcb *
1204tcp_close(struct tcpcb *tp)
1205{
1206	struct inpcb *inp = tp->t_inpcb;
1207	struct socket *so;
1208
1209	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
1210	INP_WLOCK_ASSERT(inp);
1211
1212#ifdef TCP_OFFLOAD
1213	if (tp->t_state == TCPS_LISTEN)
1214		tcp_offload_listen_stop(tp);
1215#endif
1216#ifdef TCP_RFC7413
1217	/*
1218	 * This releases the TFO pending counter resource for TFO listen
1219	 * sockets as well as passively-created TFO sockets that transition
1220	 * from SYN_RECEIVED to CLOSED.
1221	 */
1222	if (tp->t_tfo_pending) {
1223		tcp_fastopen_decrement_counter(tp->t_tfo_pending);
1224		tp->t_tfo_pending = NULL;
1225	}
1226#endif
1227	in_pcbdrop(inp);
1228	TCPSTAT_INC(tcps_closed);
1229	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
1230	so = inp->inp_socket;
1231	soisdisconnected(so);
1232	if (inp->inp_flags & INP_SOCKREF) {
1233		KASSERT(so->so_state & SS_PROTOREF,
1234		    ("tcp_close: !SS_PROTOREF"));
1235		inp->inp_flags &= ~INP_SOCKREF;
1236		INP_WUNLOCK(inp);
1237		ACCEPT_LOCK();
1238		SOCK_LOCK(so);
1239		so->so_state &= ~SS_PROTOREF;
1240		sofree(so);
1241		return (NULL);
1242	}
1243	return (tp);
1244}
1245
1246void
1247tcp_drain(void)
1248{
1249	VNET_ITERATOR_DECL(vnet_iter);
1250
1251	if (!do_tcpdrain)
1252		return;
1253
1254	VNET_LIST_RLOCK_NOSLEEP();
1255	VNET_FOREACH(vnet_iter) {
1256		CURVNET_SET(vnet_iter);
1257		struct inpcb *inpb;
1258		struct tcpcb *tcpb;
1259
1260	/*
1261	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1262	 * if there is one...
1263	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1264	 *      reassembly queue should be flushed, but in a situation
1265	 *	where we're really low on mbufs, this is potentially
1266	 *	useful.
1267	 */
1268		INP_INFO_WLOCK(&V_tcbinfo);
1269		LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) {
1270			if (inpb->inp_flags & INP_TIMEWAIT)
1271				continue;
1272			INP_WLOCK(inpb);
1273			if ((tcpb = intotcpcb(inpb)) != NULL) {
1274				tcp_reass_flush(tcpb);
1275				tcp_clean_sackreport(tcpb);
1276			}
1277			INP_WUNLOCK(inpb);
1278		}
1279		INP_INFO_WUNLOCK(&V_tcbinfo);
1280		CURVNET_RESTORE();
1281	}
1282	VNET_LIST_RUNLOCK_NOSLEEP();
1283}
1284
1285/*
1286 * Notify a tcp user of an asynchronous error;
1287 * store error as soft error, but wake up user
1288 * (for now, won't do anything until can select for soft error).
1289 *
1290 * Do not wake up user since there currently is no mechanism for
1291 * reporting soft errors (yet - a kqueue filter may be added).
1292 */
1293static struct inpcb *
1294tcp_notify(struct inpcb *inp, int error)
1295{
1296	struct tcpcb *tp;
1297
1298	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
1299	INP_WLOCK_ASSERT(inp);
1300
1301	if ((inp->inp_flags & INP_TIMEWAIT) ||
1302	    (inp->inp_flags & INP_DROPPED))
1303		return (inp);
1304
1305	tp = intotcpcb(inp);
1306	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
1307
1308	/*
1309	 * Ignore some errors if we are hooked up.
1310	 * If connection hasn't completed, has retransmitted several times,
1311	 * and receives a second error, give up now.  This is better
1312	 * than waiting a long time to establish a connection that
1313	 * can never complete.
1314	 */
1315	if (tp->t_state == TCPS_ESTABLISHED &&
1316	    (error == EHOSTUNREACH || error == ENETUNREACH ||
1317	     error == EHOSTDOWN)) {
1318		return (inp);
1319	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1320	    tp->t_softerror) {
1321		tp = tcp_drop(tp, error);
1322		if (tp != NULL)
1323			return (inp);
1324		else
1325			return (NULL);
1326	} else {
1327		tp->t_softerror = error;
1328		return (inp);
1329	}
1330#if 0
1331	wakeup( &so->so_timeo);
1332	sorwakeup(so);
1333	sowwakeup(so);
1334#endif
1335}
1336
1337static int
1338tcp_pcblist(SYSCTL_HANDLER_ARGS)
1339{
1340	int error, i, m, n, pcb_count;
1341	struct inpcb *inp, **inp_list;
1342	inp_gen_t gencnt;
1343	struct xinpgen xig;
1344
1345	/*
1346	 * The process of preparing the TCB list is too time-consuming and
1347	 * resource-intensive to repeat twice on every request.
1348	 */
1349	if (req->oldptr == NULL) {
1350		n = V_tcbinfo.ipi_count + syncache_pcbcount();
1351		n += imax(n / 8, 10);
1352		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb);
1353		return (0);
1354	}
1355
1356	if (req->newptr != NULL)
1357		return (EPERM);
1358
1359	/*
1360	 * OK, now we're committed to doing something.
1361	 */
1362	INP_LIST_RLOCK(&V_tcbinfo);
1363	gencnt = V_tcbinfo.ipi_gencnt;
1364	n = V_tcbinfo.ipi_count;
1365	INP_LIST_RUNLOCK(&V_tcbinfo);
1366
1367	m = syncache_pcbcount();
1368
1369	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
1370		+ (n + m) * sizeof(struct xtcpcb));
1371	if (error != 0)
1372		return (error);
1373
1374	xig.xig_len = sizeof xig;
1375	xig.xig_count = n + m;
1376	xig.xig_gen = gencnt;
1377	xig.xig_sogen = so_gencnt;
1378	error = SYSCTL_OUT(req, &xig, sizeof xig);
1379	if (error)
1380		return (error);
1381
1382	error = syncache_pcblist(req, m, &pcb_count);
1383	if (error)
1384		return (error);
1385
1386	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1387
1388	INP_INFO_WLOCK(&V_tcbinfo);
1389	for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0;
1390	    inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) {
1391		INP_WLOCK(inp);
1392		if (inp->inp_gencnt <= gencnt) {
1393			/*
1394			 * XXX: This use of cr_cansee(), introduced with
1395			 * TCP state changes, is not quite right, but for
1396			 * now, better than nothing.
1397			 */
1398			if (inp->inp_flags & INP_TIMEWAIT) {
1399				if (intotw(inp) != NULL)
1400					error = cr_cansee(req->td->td_ucred,
1401					    intotw(inp)->tw_cred);
1402				else
1403					error = EINVAL;	/* Skip this inp. */
1404			} else
1405				error = cr_canseeinpcb(req->td->td_ucred, inp);
1406			if (error == 0) {
1407				in_pcbref(inp);
1408				inp_list[i++] = inp;
1409			}
1410		}
1411		INP_WUNLOCK(inp);
1412	}
1413	INP_INFO_WUNLOCK(&V_tcbinfo);
1414	n = i;
1415
1416	error = 0;
1417	for (i = 0; i < n; i++) {
1418		inp = inp_list[i];
1419		INP_RLOCK(inp);
1420		if (inp->inp_gencnt <= gencnt) {
1421			struct xtcpcb xt;
1422			void *inp_ppcb;
1423
1424			bzero(&xt, sizeof(xt));
1425			xt.xt_len = sizeof xt;
1426			/* XXX should avoid extra copy */
1427			bcopy(inp, &xt.xt_inp, sizeof *inp);
1428			inp_ppcb = inp->inp_ppcb;
1429			if (inp_ppcb == NULL)
1430				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1431			else if (inp->inp_flags & INP_TIMEWAIT) {
1432				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1433				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1434			} else {
1435				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1436				if (xt.xt_tp.t_timers)
1437					tcp_timer_to_xtimer(&xt.xt_tp, xt.xt_tp.t_timers, &xt.xt_timer);
1438			}
1439			if (inp->inp_socket != NULL)
1440				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1441			else {
1442				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1443				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1444			}
1445			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1446			INP_RUNLOCK(inp);
1447			error = SYSCTL_OUT(req, &xt, sizeof xt);
1448		} else
1449			INP_RUNLOCK(inp);
1450	}
1451	INP_INFO_RLOCK(&V_tcbinfo);
1452	for (i = 0; i < n; i++) {
1453		inp = inp_list[i];
1454		INP_RLOCK(inp);
1455		if (!in_pcbrele_rlocked(inp))
1456			INP_RUNLOCK(inp);
1457	}
1458	INP_INFO_RUNLOCK(&V_tcbinfo);
1459
1460	if (!error) {
1461		/*
1462		 * Give the user an updated idea of our state.
1463		 * If the generation differs from what we told
1464		 * her before, she knows that something happened
1465		 * while we were processing this request, and it
1466		 * might be necessary to retry.
1467		 */
1468		INP_LIST_RLOCK(&V_tcbinfo);
1469		xig.xig_gen = V_tcbinfo.ipi_gencnt;
1470		xig.xig_sogen = so_gencnt;
1471		xig.xig_count = V_tcbinfo.ipi_count + pcb_count;
1472		INP_LIST_RUNLOCK(&V_tcbinfo);
1473		error = SYSCTL_OUT(req, &xig, sizeof xig);
1474	}
1475	free(inp_list, M_TEMP);
1476	return (error);
1477}
1478
1479SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist,
1480    CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
1481    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1482
1483#ifdef INET
1484static int
1485tcp_getcred(SYSCTL_HANDLER_ARGS)
1486{
1487	struct xucred xuc;
1488	struct sockaddr_in addrs[2];
1489	struct inpcb *inp;
1490	int error;
1491
1492	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1493	if (error)
1494		return (error);
1495	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1496	if (error)
1497		return (error);
1498	inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1499	    addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL);
1500	if (inp != NULL) {
1501		if (inp->inp_socket == NULL)
1502			error = ENOENT;
1503		if (error == 0)
1504			error = cr_canseeinpcb(req->td->td_ucred, inp);
1505		if (error == 0)
1506			cru2x(inp->inp_cred, &xuc);
1507		INP_RUNLOCK(inp);
1508	} else
1509		error = ENOENT;
1510	if (error == 0)
1511		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1512	return (error);
1513}
1514
1515SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1516    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1517    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1518#endif /* INET */
1519
1520#ifdef INET6
1521static int
1522tcp6_getcred(SYSCTL_HANDLER_ARGS)
1523{
1524	struct xucred xuc;
1525	struct sockaddr_in6 addrs[2];
1526	struct inpcb *inp;
1527	int error;
1528#ifdef INET
1529	int mapped = 0;
1530#endif
1531
1532	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1533	if (error)
1534		return (error);
1535	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1536	if (error)
1537		return (error);
1538	if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 ||
1539	    (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) {
1540		return (error);
1541	}
1542	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1543#ifdef INET
1544		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1545			mapped = 1;
1546		else
1547#endif
1548			return (EINVAL);
1549	}
1550
1551#ifdef INET
1552	if (mapped == 1)
1553		inp = in_pcblookup(&V_tcbinfo,
1554			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1555			addrs[1].sin6_port,
1556			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1557			addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL);
1558	else
1559#endif
1560		inp = in6_pcblookup(&V_tcbinfo,
1561			&addrs[1].sin6_addr, addrs[1].sin6_port,
1562			&addrs[0].sin6_addr, addrs[0].sin6_port,
1563			INPLOOKUP_RLOCKPCB, NULL);
1564	if (inp != NULL) {
1565		if (inp->inp_socket == NULL)
1566			error = ENOENT;
1567		if (error == 0)
1568			error = cr_canseeinpcb(req->td->td_ucred, inp);
1569		if (error == 0)
1570			cru2x(inp->inp_cred, &xuc);
1571		INP_RUNLOCK(inp);
1572	} else
1573		error = ENOENT;
1574	if (error == 0)
1575		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1576	return (error);
1577}
1578
1579SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1580    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1581    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1582#endif /* INET6 */
1583
1584
1585#ifdef INET
1586void
1587tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1588{
1589	struct ip *ip = vip;
1590	struct tcphdr *th;
1591	struct in_addr faddr;
1592	struct inpcb *inp;
1593	struct tcpcb *tp;
1594	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1595	struct icmp *icp;
1596	struct in_conninfo inc;
1597	tcp_seq icmp_tcp_seq;
1598	int mtu;
1599
1600	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1601	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1602		return;
1603
1604	if (cmd == PRC_MSGSIZE)
1605		notify = tcp_mtudisc_notify;
1606	else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1607		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1608		notify = tcp_drop_syn_sent;
1609	/*
1610	 * Redirects don't need to be handled up here.
1611	 */
1612	else if (PRC_IS_REDIRECT(cmd))
1613		return;
1614	/*
1615	 * Source quench is depreciated.
1616	 */
1617	else if (cmd == PRC_QUENCH)
1618		return;
1619	/*
1620	 * Hostdead is ugly because it goes linearly through all PCBs.
1621	 * XXX: We never get this from ICMP, otherwise it makes an
1622	 * excellent DoS attack on machines with many connections.
1623	 */
1624	else if (cmd == PRC_HOSTDEAD)
1625		ip = NULL;
1626	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1627		return;
1628	if (ip != NULL) {
1629		icp = (struct icmp *)((caddr_t)ip
1630				      - offsetof(struct icmp, icmp_ip));
1631		th = (struct tcphdr *)((caddr_t)ip
1632				       + (ip->ip_hl << 2));
1633		INP_INFO_RLOCK(&V_tcbinfo);
1634		inp = in_pcblookup(&V_tcbinfo, faddr, th->th_dport,
1635		    ip->ip_src, th->th_sport, INPLOOKUP_WLOCKPCB, NULL);
1636		if (inp != NULL)  {
1637			if (!(inp->inp_flags & INP_TIMEWAIT) &&
1638			    !(inp->inp_flags & INP_DROPPED) &&
1639			    !(inp->inp_socket == NULL)) {
1640				icmp_tcp_seq = htonl(th->th_seq);
1641				tp = intotcpcb(inp);
1642				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1643				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1644					if (cmd == PRC_MSGSIZE) {
1645					    /*
1646					     * MTU discovery:
1647					     * If we got a needfrag set the MTU
1648					     * in the route to the suggested new
1649					     * value (if given) and then notify.
1650					     */
1651					    bzero(&inc, sizeof(inc));
1652					    inc.inc_faddr = faddr;
1653					    inc.inc_fibnum =
1654						inp->inp_inc.inc_fibnum;
1655
1656					    mtu = ntohs(icp->icmp_nextmtu);
1657					    /*
1658					     * If no alternative MTU was
1659					     * proposed, try the next smaller
1660					     * one.
1661					     */
1662					    if (!mtu)
1663						mtu = ip_next_mtu(
1664						 ntohs(ip->ip_len), 1);
1665					    if (mtu < V_tcp_minmss
1666						 + sizeof(struct tcpiphdr))
1667						mtu = V_tcp_minmss
1668						 + sizeof(struct tcpiphdr);
1669					    /*
1670					     * Only cache the MTU if it
1671					     * is smaller than the interface
1672					     * or route MTU.  tcp_mtudisc()
1673					     * will do right thing by itself.
1674					     */
1675					    if (mtu <= tcp_maxmtu(&inc, NULL))
1676						tcp_hc_updatemtu(&inc, mtu);
1677					    tcp_mtudisc(inp, mtu);
1678					} else
1679						inp = (*notify)(inp,
1680						    inetctlerrmap[cmd]);
1681				}
1682			}
1683			if (inp != NULL)
1684				INP_WUNLOCK(inp);
1685		} else {
1686			bzero(&inc, sizeof(inc));
1687			inc.inc_fport = th->th_dport;
1688			inc.inc_lport = th->th_sport;
1689			inc.inc_faddr = faddr;
1690			inc.inc_laddr = ip->ip_src;
1691			syncache_unreach(&inc, th);
1692		}
1693		INP_INFO_RUNLOCK(&V_tcbinfo);
1694	} else
1695		in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify);
1696}
1697#endif /* INET */
1698
1699#ifdef INET6
1700void
1701tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1702{
1703	struct tcphdr th;
1704	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1705	struct ip6_hdr *ip6;
1706	struct mbuf *m;
1707	struct ip6ctlparam *ip6cp = NULL;
1708	const struct sockaddr_in6 *sa6_src = NULL;
1709	int off;
1710	struct tcp_portonly {
1711		u_int16_t th_sport;
1712		u_int16_t th_dport;
1713	} *thp;
1714
1715	if (sa->sa_family != AF_INET6 ||
1716	    sa->sa_len != sizeof(struct sockaddr_in6))
1717		return;
1718
1719	if (cmd == PRC_MSGSIZE)
1720		notify = tcp_mtudisc_notify;
1721	else if (!PRC_IS_REDIRECT(cmd) &&
1722		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1723		return;
1724	/* Source quench is depreciated. */
1725	else if (cmd == PRC_QUENCH)
1726		return;
1727
1728	/* if the parameter is from icmp6, decode it. */
1729	if (d != NULL) {
1730		ip6cp = (struct ip6ctlparam *)d;
1731		m = ip6cp->ip6c_m;
1732		ip6 = ip6cp->ip6c_ip6;
1733		off = ip6cp->ip6c_off;
1734		sa6_src = ip6cp->ip6c_src;
1735	} else {
1736		m = NULL;
1737		ip6 = NULL;
1738		off = 0;	/* fool gcc */
1739		sa6_src = &sa6_any;
1740	}
1741
1742	if (ip6 != NULL) {
1743		struct in_conninfo inc;
1744		/*
1745		 * XXX: We assume that when IPV6 is non NULL,
1746		 * M and OFF are valid.
1747		 */
1748
1749		/* check if we can safely examine src and dst ports */
1750		if (m->m_pkthdr.len < off + sizeof(*thp))
1751			return;
1752
1753		bzero(&th, sizeof(th));
1754		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1755
1756		in6_pcbnotify(&V_tcbinfo, sa, th.th_dport,
1757		    (struct sockaddr *)ip6cp->ip6c_src,
1758		    th.th_sport, cmd, NULL, notify);
1759
1760		bzero(&inc, sizeof(inc));
1761		inc.inc_fport = th.th_dport;
1762		inc.inc_lport = th.th_sport;
1763		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1764		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1765		inc.inc_flags |= INC_ISIPV6;
1766		INP_INFO_RLOCK(&V_tcbinfo);
1767		syncache_unreach(&inc, &th);
1768		INP_INFO_RUNLOCK(&V_tcbinfo);
1769	} else
1770		in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1771			      0, cmd, NULL, notify);
1772}
1773#endif /* INET6 */
1774
1775
1776/*
1777 * Following is where TCP initial sequence number generation occurs.
1778 *
1779 * There are two places where we must use initial sequence numbers:
1780 * 1.  In SYN-ACK packets.
1781 * 2.  In SYN packets.
1782 *
1783 * All ISNs for SYN-ACK packets are generated by the syncache.  See
1784 * tcp_syncache.c for details.
1785 *
1786 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1787 * depends on this property.  In addition, these ISNs should be
1788 * unguessable so as to prevent connection hijacking.  To satisfy
1789 * the requirements of this situation, the algorithm outlined in
1790 * RFC 1948 is used, with only small modifications.
1791 *
1792 * Implementation details:
1793 *
1794 * Time is based off the system timer, and is corrected so that it
1795 * increases by one megabyte per second.  This allows for proper
1796 * recycling on high speed LANs while still leaving over an hour
1797 * before rollover.
1798 *
1799 * As reading the *exact* system time is too expensive to be done
1800 * whenever setting up a TCP connection, we increment the time
1801 * offset in two ways.  First, a small random positive increment
1802 * is added to isn_offset for each connection that is set up.
1803 * Second, the function tcp_isn_tick fires once per clock tick
1804 * and increments isn_offset as necessary so that sequence numbers
1805 * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1806 * random positive increments serve only to ensure that the same
1807 * exact sequence number is never sent out twice (as could otherwise
1808 * happen when a port is recycled in less than the system tick
1809 * interval.)
1810 *
1811 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1812 * between seeding of isn_secret.  This is normally set to zero,
1813 * as reseeding should not be necessary.
1814 *
1815 * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1816 * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1817 * general, this means holding an exclusive (write) lock.
1818 */
1819
1820#define ISN_BYTES_PER_SECOND 1048576
1821#define ISN_STATIC_INCREMENT 4096
1822#define ISN_RANDOM_INCREMENT (4096 - 1)
1823
1824static VNET_DEFINE(u_char, isn_secret[32]);
1825static VNET_DEFINE(int, isn_last);
1826static VNET_DEFINE(int, isn_last_reseed);
1827static VNET_DEFINE(u_int32_t, isn_offset);
1828static VNET_DEFINE(u_int32_t, isn_offset_old);
1829
1830#define	V_isn_secret			VNET(isn_secret)
1831#define	V_isn_last			VNET(isn_last)
1832#define	V_isn_last_reseed		VNET(isn_last_reseed)
1833#define	V_isn_offset			VNET(isn_offset)
1834#define	V_isn_offset_old		VNET(isn_offset_old)
1835
1836tcp_seq
1837tcp_new_isn(struct tcpcb *tp)
1838{
1839	MD5_CTX isn_ctx;
1840	u_int32_t md5_buffer[4];
1841	tcp_seq new_isn;
1842	u_int32_t projected_offset;
1843
1844	INP_WLOCK_ASSERT(tp->t_inpcb);
1845
1846	ISN_LOCK();
1847	/* Seed if this is the first use, reseed if requested. */
1848	if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) &&
1849	     (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz)
1850		< (u_int)ticks))) {
1851		read_random(&V_isn_secret, sizeof(V_isn_secret));
1852		V_isn_last_reseed = ticks;
1853	}
1854
1855	/* Compute the md5 hash and return the ISN. */
1856	MD5Init(&isn_ctx);
1857	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1858	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1859#ifdef INET6
1860	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1861		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1862			  sizeof(struct in6_addr));
1863		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1864			  sizeof(struct in6_addr));
1865	} else
1866#endif
1867	{
1868		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1869			  sizeof(struct in_addr));
1870		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1871			  sizeof(struct in_addr));
1872	}
1873	MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret));
1874	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1875	new_isn = (tcp_seq) md5_buffer[0];
1876	V_isn_offset += ISN_STATIC_INCREMENT +
1877		(arc4random() & ISN_RANDOM_INCREMENT);
1878	if (ticks != V_isn_last) {
1879		projected_offset = V_isn_offset_old +
1880		    ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last);
1881		if (SEQ_GT(projected_offset, V_isn_offset))
1882			V_isn_offset = projected_offset;
1883		V_isn_offset_old = V_isn_offset;
1884		V_isn_last = ticks;
1885	}
1886	new_isn += V_isn_offset;
1887	ISN_UNLOCK();
1888	return (new_isn);
1889}
1890
1891/*
1892 * When a specific ICMP unreachable message is received and the
1893 * connection state is SYN-SENT, drop the connection.  This behavior
1894 * is controlled by the icmp_may_rst sysctl.
1895 */
1896struct inpcb *
1897tcp_drop_syn_sent(struct inpcb *inp, int errno)
1898{
1899	struct tcpcb *tp;
1900
1901	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1902	INP_WLOCK_ASSERT(inp);
1903
1904	if ((inp->inp_flags & INP_TIMEWAIT) ||
1905	    (inp->inp_flags & INP_DROPPED))
1906		return (inp);
1907
1908	tp = intotcpcb(inp);
1909	if (tp->t_state != TCPS_SYN_SENT)
1910		return (inp);
1911
1912	tp = tcp_drop(tp, errno);
1913	if (tp != NULL)
1914		return (inp);
1915	else
1916		return (NULL);
1917}
1918
1919/*
1920 * When `need fragmentation' ICMP is received, update our idea of the MSS
1921 * based on the new value. Also nudge TCP to send something, since we
1922 * know the packet we just sent was dropped.
1923 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1924 */
1925static struct inpcb *
1926tcp_mtudisc_notify(struct inpcb *inp, int error)
1927{
1928
1929	return (tcp_mtudisc(inp, -1));
1930}
1931
1932struct inpcb *
1933tcp_mtudisc(struct inpcb *inp, int mtuoffer)
1934{
1935	struct tcpcb *tp;
1936	struct socket *so;
1937
1938	INP_WLOCK_ASSERT(inp);
1939	if ((inp->inp_flags & INP_TIMEWAIT) ||
1940	    (inp->inp_flags & INP_DROPPED))
1941		return (inp);
1942
1943	tp = intotcpcb(inp);
1944	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
1945
1946	tcp_mss_update(tp, -1, mtuoffer, NULL, NULL);
1947
1948	so = inp->inp_socket;
1949	SOCKBUF_LOCK(&so->so_snd);
1950	/* If the mss is larger than the socket buffer, decrease the mss. */
1951	if (so->so_snd.sb_hiwat < tp->t_maxseg)
1952		tp->t_maxseg = so->so_snd.sb_hiwat;
1953	SOCKBUF_UNLOCK(&so->so_snd);
1954
1955	TCPSTAT_INC(tcps_mturesent);
1956	tp->t_rtttime = 0;
1957	tp->snd_nxt = tp->snd_una;
1958	tcp_free_sackholes(tp);
1959	tp->snd_recover = tp->snd_max;
1960	if (tp->t_flags & TF_SACK_PERMIT)
1961		EXIT_FASTRECOVERY(tp->t_flags);
1962	tcp_output(tp);
1963	return (inp);
1964}
1965
1966#ifdef INET
1967/*
1968 * Look-up the routing entry to the peer of this inpcb.  If no route
1969 * is found and it cannot be allocated, then return 0.  This routine
1970 * is called by TCP routines that access the rmx structure and by
1971 * tcp_mss_update to get the peer/interface MTU.
1972 */
1973u_long
1974tcp_maxmtu(struct in_conninfo *inc, struct tcp_ifcap *cap)
1975{
1976	struct route sro;
1977	struct sockaddr_in *dst;
1978	struct ifnet *ifp;
1979	u_long maxmtu = 0;
1980
1981	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1982
1983	bzero(&sro, sizeof(sro));
1984	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1985	        dst = (struct sockaddr_in *)&sro.ro_dst;
1986		dst->sin_family = AF_INET;
1987		dst->sin_len = sizeof(*dst);
1988		dst->sin_addr = inc->inc_faddr;
1989		in_rtalloc_ign(&sro, 0, inc->inc_fibnum);
1990	}
1991	if (sro.ro_rt != NULL) {
1992		ifp = sro.ro_rt->rt_ifp;
1993		if (sro.ro_rt->rt_mtu == 0)
1994			maxmtu = ifp->if_mtu;
1995		else
1996			maxmtu = min(sro.ro_rt->rt_mtu, ifp->if_mtu);
1997
1998		/* Report additional interface capabilities. */
1999		if (cap != NULL) {
2000			if (ifp->if_capenable & IFCAP_TSO4 &&
2001			    ifp->if_hwassist & CSUM_TSO) {
2002				cap->ifcap |= CSUM_TSO;
2003				cap->tsomax = ifp->if_hw_tsomax;
2004				cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
2005				cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
2006			}
2007		}
2008		RTFREE(sro.ro_rt);
2009	}
2010	return (maxmtu);
2011}
2012#endif /* INET */
2013
2014#ifdef INET6
2015u_long
2016tcp_maxmtu6(struct in_conninfo *inc, struct tcp_ifcap *cap)
2017{
2018	struct route_in6 sro6;
2019	struct ifnet *ifp;
2020	u_long maxmtu = 0;
2021
2022	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
2023
2024	bzero(&sro6, sizeof(sro6));
2025	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
2026		sro6.ro_dst.sin6_family = AF_INET6;
2027		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
2028		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
2029		in6_rtalloc_ign(&sro6, 0, inc->inc_fibnum);
2030	}
2031	if (sro6.ro_rt != NULL) {
2032		ifp = sro6.ro_rt->rt_ifp;
2033		if (sro6.ro_rt->rt_mtu == 0)
2034			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
2035		else
2036			maxmtu = min(sro6.ro_rt->rt_mtu,
2037				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
2038
2039		/* Report additional interface capabilities. */
2040		if (cap != NULL) {
2041			if (ifp->if_capenable & IFCAP_TSO6 &&
2042			    ifp->if_hwassist & CSUM_TSO) {
2043				cap->ifcap |= CSUM_TSO;
2044				cap->tsomax = ifp->if_hw_tsomax;
2045				cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
2046				cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
2047			}
2048		}
2049		RTFREE(sro6.ro_rt);
2050	}
2051
2052	return (maxmtu);
2053}
2054#endif /* INET6 */
2055
2056#ifdef IPSEC
2057/* compute ESP/AH header size for TCP, including outer IP header. */
2058size_t
2059ipsec_hdrsiz_tcp(struct tcpcb *tp)
2060{
2061	struct inpcb *inp;
2062	struct mbuf *m;
2063	size_t hdrsiz;
2064	struct ip *ip;
2065#ifdef INET6
2066	struct ip6_hdr *ip6;
2067#endif
2068	struct tcphdr *th;
2069
2070	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL) ||
2071		(!key_havesp(IPSEC_DIR_OUTBOUND)))
2072		return (0);
2073	m = m_gethdr(M_NOWAIT, MT_DATA);
2074	if (!m)
2075		return (0);
2076
2077#ifdef INET6
2078	if ((inp->inp_vflag & INP_IPV6) != 0) {
2079		ip6 = mtod(m, struct ip6_hdr *);
2080		th = (struct tcphdr *)(ip6 + 1);
2081		m->m_pkthdr.len = m->m_len =
2082			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
2083		tcpip_fillheaders(inp, ip6, th);
2084		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
2085	} else
2086#endif /* INET6 */
2087	{
2088		ip = mtod(m, struct ip *);
2089		th = (struct tcphdr *)(ip + 1);
2090		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
2091		tcpip_fillheaders(inp, ip, th);
2092		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
2093	}
2094
2095	m_free(m);
2096	return (hdrsiz);
2097}
2098#endif /* IPSEC */
2099
2100#ifdef TCP_SIGNATURE
2101/*
2102 * Callback function invoked by m_apply() to digest TCP segment data
2103 * contained within an mbuf chain.
2104 */
2105static int
2106tcp_signature_apply(void *fstate, void *data, u_int len)
2107{
2108
2109	MD5Update(fstate, (u_char *)data, len);
2110	return (0);
2111}
2112
2113/*
2114 * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2115 *
2116 * Parameters:
2117 * m		pointer to head of mbuf chain
2118 * _unused
2119 * len		length of TCP segment data, excluding options
2120 * optlen	length of TCP segment options
2121 * buf		pointer to storage for computed MD5 digest
2122 * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2123 *
2124 * We do this over ip, tcphdr, segment data, and the key in the SADB.
2125 * When called from tcp_input(), we can be sure that th_sum has been
2126 * zeroed out and verified already.
2127 *
2128 * Return 0 if successful, otherwise return -1.
2129 *
2130 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2131 * search with the destination IP address, and a 'magic SPI' to be
2132 * determined by the application. This is hardcoded elsewhere to 1179
2133 * right now. Another branch of this code exists which uses the SPD to
2134 * specify per-application flows but it is unstable.
2135 */
2136int
2137tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen,
2138    u_char *buf, u_int direction)
2139{
2140	union sockaddr_union dst;
2141#ifdef INET
2142	struct ippseudo ippseudo;
2143#endif
2144	MD5_CTX ctx;
2145	int doff;
2146	struct ip *ip;
2147#ifdef INET
2148	struct ipovly *ipovly;
2149#endif
2150	struct secasvar *sav;
2151	struct tcphdr *th;
2152#ifdef INET6
2153	struct ip6_hdr *ip6;
2154	struct in6_addr in6;
2155	char ip6buf[INET6_ADDRSTRLEN];
2156	uint32_t plen;
2157	uint16_t nhdr;
2158#endif
2159	u_short savecsum;
2160
2161	KASSERT(m != NULL, ("NULL mbuf chain"));
2162	KASSERT(buf != NULL, ("NULL signature pointer"));
2163
2164	/* Extract the destination from the IP header in the mbuf. */
2165	bzero(&dst, sizeof(union sockaddr_union));
2166	ip = mtod(m, struct ip *);
2167#ifdef INET6
2168	ip6 = NULL;	/* Make the compiler happy. */
2169#endif
2170	switch (ip->ip_v) {
2171#ifdef INET
2172	case IPVERSION:
2173		dst.sa.sa_len = sizeof(struct sockaddr_in);
2174		dst.sa.sa_family = AF_INET;
2175		dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2176		    ip->ip_src : ip->ip_dst;
2177		break;
2178#endif
2179#ifdef INET6
2180	case (IPV6_VERSION >> 4):
2181		ip6 = mtod(m, struct ip6_hdr *);
2182		dst.sa.sa_len = sizeof(struct sockaddr_in6);
2183		dst.sa.sa_family = AF_INET6;
2184		dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ?
2185		    ip6->ip6_src : ip6->ip6_dst;
2186		break;
2187#endif
2188	default:
2189		return (EINVAL);
2190		/* NOTREACHED */
2191		break;
2192	}
2193
2194	/* Look up an SADB entry which matches the address of the peer. */
2195	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2196	if (sav == NULL) {
2197		ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__,
2198		    (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) :
2199#ifdef INET6
2200			(ip->ip_v == (IPV6_VERSION >> 4)) ?
2201			    ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) :
2202#endif
2203			"(unsupported)"));
2204		return (EINVAL);
2205	}
2206
2207	MD5Init(&ctx);
2208	/*
2209	 * Step 1: Update MD5 hash with IP(v6) pseudo-header.
2210	 *
2211	 * XXX The ippseudo header MUST be digested in network byte order,
2212	 * or else we'll fail the regression test. Assume all fields we've
2213	 * been doing arithmetic on have been in host byte order.
2214	 * XXX One cannot depend on ipovly->ih_len here. When called from
2215	 * tcp_output(), the underlying ip_len member has not yet been set.
2216	 */
2217	switch (ip->ip_v) {
2218#ifdef INET
2219	case IPVERSION:
2220		ipovly = (struct ipovly *)ip;
2221		ippseudo.ippseudo_src = ipovly->ih_src;
2222		ippseudo.ippseudo_dst = ipovly->ih_dst;
2223		ippseudo.ippseudo_pad = 0;
2224		ippseudo.ippseudo_p = IPPROTO_TCP;
2225		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) +
2226		    optlen);
2227		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2228
2229		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2230		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2231		break;
2232#endif
2233#ifdef INET6
2234	/*
2235	 * RFC 2385, 2.0  Proposal
2236	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2237	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2238	 * extended next header value (to form 32 bits), and 32-bit segment
2239	 * length.
2240	 * Note: Upper-Layer Packet Length comes before Next Header.
2241	 */
2242	case (IPV6_VERSION >> 4):
2243		in6 = ip6->ip6_src;
2244		in6_clearscope(&in6);
2245		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2246		in6 = ip6->ip6_dst;
2247		in6_clearscope(&in6);
2248		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2249		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2250		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2251		nhdr = 0;
2252		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2253		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2254		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2255		nhdr = IPPROTO_TCP;
2256		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2257
2258		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2259		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2260		break;
2261#endif
2262	default:
2263		return (EINVAL);
2264		/* NOTREACHED */
2265		break;
2266	}
2267
2268
2269	/*
2270	 * Step 2: Update MD5 hash with TCP header, excluding options.
2271	 * The TCP checksum must be set to zero.
2272	 */
2273	savecsum = th->th_sum;
2274	th->th_sum = 0;
2275	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2276	th->th_sum = savecsum;
2277
2278	/*
2279	 * Step 3: Update MD5 hash with TCP segment data.
2280	 *         Use m_apply() to avoid an early m_pullup().
2281	 */
2282	if (len > 0)
2283		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2284
2285	/*
2286	 * Step 4: Update MD5 hash with shared secret.
2287	 */
2288	MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2289	MD5Final(buf, &ctx);
2290
2291	key_sa_recordxfer(sav, m);
2292	KEY_FREESAV(&sav);
2293	return (0);
2294}
2295
2296/*
2297 * Verify the TCP-MD5 hash of a TCP segment. (RFC2385)
2298 *
2299 * Parameters:
2300 * m		pointer to head of mbuf chain
2301 * len		length of TCP segment data, excluding options
2302 * optlen	length of TCP segment options
2303 * buf		pointer to storage for computed MD5 digest
2304 * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2305 *
2306 * Return 1 if successful, otherwise return 0.
2307 */
2308int
2309tcp_signature_verify(struct mbuf *m, int off0, int tlen, int optlen,
2310    struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
2311{
2312	char tmpdigest[TCP_SIGLEN];
2313
2314	if (tcp_sig_checksigs == 0)
2315		return (1);
2316	if ((tcpbflag & TF_SIGNATURE) == 0) {
2317		if ((to->to_flags & TOF_SIGNATURE) != 0) {
2318
2319			/*
2320			 * If this socket is not expecting signature but
2321			 * the segment contains signature just fail.
2322			 */
2323			TCPSTAT_INC(tcps_sig_err_sigopt);
2324			TCPSTAT_INC(tcps_sig_rcvbadsig);
2325			return (0);
2326		}
2327
2328		/* Signature is not expected, and not present in segment. */
2329		return (1);
2330	}
2331
2332	/*
2333	 * If this socket is expecting signature but the segment does not
2334	 * contain any just fail.
2335	 */
2336	if ((to->to_flags & TOF_SIGNATURE) == 0) {
2337		TCPSTAT_INC(tcps_sig_err_nosigopt);
2338		TCPSTAT_INC(tcps_sig_rcvbadsig);
2339		return (0);
2340	}
2341	if (tcp_signature_compute(m, off0, tlen, optlen, &tmpdigest[0],
2342	    IPSEC_DIR_INBOUND) == -1) {
2343		TCPSTAT_INC(tcps_sig_err_buildsig);
2344		TCPSTAT_INC(tcps_sig_rcvbadsig);
2345		return (0);
2346	}
2347
2348	if (bcmp(to->to_signature, &tmpdigest[0], TCP_SIGLEN) != 0) {
2349		TCPSTAT_INC(tcps_sig_rcvbadsig);
2350		return (0);
2351	}
2352	TCPSTAT_INC(tcps_sig_rcvgoodsig);
2353	return (1);
2354}
2355#endif /* TCP_SIGNATURE */
2356
2357static int
2358sysctl_drop(SYSCTL_HANDLER_ARGS)
2359{
2360	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2361	struct sockaddr_storage addrs[2];
2362	struct inpcb *inp;
2363	struct tcpcb *tp;
2364	struct tcptw *tw;
2365	struct sockaddr_in *fin, *lin;
2366#ifdef INET6
2367	struct sockaddr_in6 *fin6, *lin6;
2368#endif
2369	int error;
2370
2371	inp = NULL;
2372	fin = lin = NULL;
2373#ifdef INET6
2374	fin6 = lin6 = NULL;
2375#endif
2376	error = 0;
2377
2378	if (req->oldptr != NULL || req->oldlen != 0)
2379		return (EINVAL);
2380	if (req->newptr == NULL)
2381		return (EPERM);
2382	if (req->newlen < sizeof(addrs))
2383		return (ENOMEM);
2384	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2385	if (error)
2386		return (error);
2387
2388	switch (addrs[0].ss_family) {
2389#ifdef INET6
2390	case AF_INET6:
2391		fin6 = (struct sockaddr_in6 *)&addrs[0];
2392		lin6 = (struct sockaddr_in6 *)&addrs[1];
2393		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2394		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2395			return (EINVAL);
2396		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2397			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2398				return (EINVAL);
2399			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2400			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2401			fin = (struct sockaddr_in *)&addrs[0];
2402			lin = (struct sockaddr_in *)&addrs[1];
2403			break;
2404		}
2405		error = sa6_embedscope(fin6, V_ip6_use_defzone);
2406		if (error)
2407			return (error);
2408		error = sa6_embedscope(lin6, V_ip6_use_defzone);
2409		if (error)
2410			return (error);
2411		break;
2412#endif
2413#ifdef INET
2414	case AF_INET:
2415		fin = (struct sockaddr_in *)&addrs[0];
2416		lin = (struct sockaddr_in *)&addrs[1];
2417		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2418		    lin->sin_len != sizeof(struct sockaddr_in))
2419			return (EINVAL);
2420		break;
2421#endif
2422	default:
2423		return (EINVAL);
2424	}
2425	INP_INFO_RLOCK(&V_tcbinfo);
2426	switch (addrs[0].ss_family) {
2427#ifdef INET6
2428	case AF_INET6:
2429		inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr,
2430		    fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port,
2431		    INPLOOKUP_WLOCKPCB, NULL);
2432		break;
2433#endif
2434#ifdef INET
2435	case AF_INET:
2436		inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port,
2437		    lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL);
2438		break;
2439#endif
2440	}
2441	if (inp != NULL) {
2442		if (inp->inp_flags & INP_TIMEWAIT) {
2443			/*
2444			 * XXXRW: There currently exists a state where an
2445			 * inpcb is present, but its timewait state has been
2446			 * discarded.  For now, don't allow dropping of this
2447			 * type of inpcb.
2448			 */
2449			tw = intotw(inp);
2450			if (tw != NULL)
2451				tcp_twclose(tw, 0);
2452			else
2453				INP_WUNLOCK(inp);
2454		} else if (!(inp->inp_flags & INP_DROPPED) &&
2455			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2456			tp = intotcpcb(inp);
2457			tp = tcp_drop(tp, ECONNABORTED);
2458			if (tp != NULL)
2459				INP_WUNLOCK(inp);
2460		} else
2461			INP_WUNLOCK(inp);
2462	} else
2463		error = ESRCH;
2464	INP_INFO_RUNLOCK(&V_tcbinfo);
2465	return (error);
2466}
2467
2468SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2469    CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2470    0, sysctl_drop, "", "Drop TCP connection");
2471
2472/*
2473 * Generate a standardized TCP log line for use throughout the
2474 * tcp subsystem.  Memory allocation is done with M_NOWAIT to
2475 * allow use in the interrupt context.
2476 *
2477 * NB: The caller MUST free(s, M_TCPLOG) the returned string.
2478 * NB: The function may return NULL if memory allocation failed.
2479 *
2480 * Due to header inclusion and ordering limitations the struct ip
2481 * and ip6_hdr pointers have to be passed as void pointers.
2482 */
2483char *
2484tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2485    const void *ip6hdr)
2486{
2487
2488	/* Is logging enabled? */
2489	if (tcp_log_in_vain == 0)
2490		return (NULL);
2491
2492	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2493}
2494
2495char *
2496tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2497    const void *ip6hdr)
2498{
2499
2500	/* Is logging enabled? */
2501	if (tcp_log_debug == 0)
2502		return (NULL);
2503
2504	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2505}
2506
2507static char *
2508tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2509    const void *ip6hdr)
2510{
2511	char *s, *sp;
2512	size_t size;
2513	struct ip *ip;
2514#ifdef INET6
2515	const struct ip6_hdr *ip6;
2516
2517	ip6 = (const struct ip6_hdr *)ip6hdr;
2518#endif /* INET6 */
2519	ip = (struct ip *)ip4hdr;
2520
2521	/*
2522	 * The log line looks like this:
2523	 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
2524	 */
2525	size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
2526	    sizeof(PRINT_TH_FLAGS) + 1 +
2527#ifdef INET6
2528	    2 * INET6_ADDRSTRLEN;
2529#else
2530	    2 * INET_ADDRSTRLEN;
2531#endif /* INET6 */
2532
2533	s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
2534	if (s == NULL)
2535		return (NULL);
2536
2537	strcat(s, "TCP: [");
2538	sp = s + strlen(s);
2539
2540	if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) {
2541		inet_ntoa_r(inc->inc_faddr, sp);
2542		sp = s + strlen(s);
2543		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2544		sp = s + strlen(s);
2545		inet_ntoa_r(inc->inc_laddr, sp);
2546		sp = s + strlen(s);
2547		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2548#ifdef INET6
2549	} else if (inc) {
2550		ip6_sprintf(sp, &inc->inc6_faddr);
2551		sp = s + strlen(s);
2552		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2553		sp = s + strlen(s);
2554		ip6_sprintf(sp, &inc->inc6_laddr);
2555		sp = s + strlen(s);
2556		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2557	} else if (ip6 && th) {
2558		ip6_sprintf(sp, &ip6->ip6_src);
2559		sp = s + strlen(s);
2560		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2561		sp = s + strlen(s);
2562		ip6_sprintf(sp, &ip6->ip6_dst);
2563		sp = s + strlen(s);
2564		sprintf(sp, "]:%i", ntohs(th->th_dport));
2565#endif /* INET6 */
2566#ifdef INET
2567	} else if (ip && th) {
2568		inet_ntoa_r(ip->ip_src, sp);
2569		sp = s + strlen(s);
2570		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2571		sp = s + strlen(s);
2572		inet_ntoa_r(ip->ip_dst, sp);
2573		sp = s + strlen(s);
2574		sprintf(sp, "]:%i", ntohs(th->th_dport));
2575#endif /* INET */
2576	} else {
2577		free(s, M_TCPLOG);
2578		return (NULL);
2579	}
2580	sp = s + strlen(s);
2581	if (th)
2582		sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS);
2583	if (*(s + size - 1) != '\0')
2584		panic("%s: string too long", __func__);
2585	return (s);
2586}
2587
2588/*
2589 * A subroutine which makes it easy to track TCP state changes with DTrace.
2590 * This function shouldn't be called for t_state initializations that don't
2591 * correspond to actual TCP state transitions.
2592 */
2593void
2594tcp_state_change(struct tcpcb *tp, int newstate)
2595{
2596#if defined(KDTRACE_HOOKS)
2597	int pstate = tp->t_state;
2598#endif
2599
2600	tp->t_state = newstate;
2601	TCP_PROBE6(state__change, NULL, tp, NULL, tp, NULL, pstate);
2602}
2603