1/*-
2 * Copyright (c) 1982, 1986, 1988, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)uipc_mbuf.c	8.2 (Berkeley) 1/4/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: stable/10/sys/kern/uipc_mbuf.c 308376 2016-11-06 16:44:33Z avos $");
34
35#include "opt_param.h"
36#include "opt_mbuf_stress_test.h"
37#include "opt_mbuf_profiling.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/kernel.h>
42#include <sys/limits.h>
43#include <sys/lock.h>
44#include <sys/malloc.h>
45#include <sys/mbuf.h>
46#include <sys/sysctl.h>
47#include <sys/domain.h>
48#include <sys/protosw.h>
49#include <sys/uio.h>
50
51int	max_linkhdr;
52int	max_protohdr;
53int	max_hdr;
54int	max_datalen;
55#ifdef MBUF_STRESS_TEST
56int	m_defragpackets;
57int	m_defragbytes;
58int	m_defraguseless;
59int	m_defragfailure;
60int	m_defragrandomfailures;
61#endif
62
63/*
64 * sysctl(8) exported objects
65 */
66SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD,
67	   &max_linkhdr, 0, "Size of largest link layer header");
68SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD,
69	   &max_protohdr, 0, "Size of largest protocol layer header");
70SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD,
71	   &max_hdr, 0, "Size of largest link plus protocol header");
72SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD,
73	   &max_datalen, 0, "Minimum space left in mbuf after max_hdr");
74#ifdef MBUF_STRESS_TEST
75SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
76	   &m_defragpackets, 0, "");
77SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
78	   &m_defragbytes, 0, "");
79SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
80	   &m_defraguseless, 0, "");
81SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
82	   &m_defragfailure, 0, "");
83SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
84	   &m_defragrandomfailures, 0, "");
85#endif
86
87/*
88 * Ensure the correct size of various mbuf parameters.  It could be off due
89 * to compiler-induced padding and alignment artifacts.
90 */
91CTASSERT(sizeof(struct mbuf) == MSIZE);
92CTASSERT(MSIZE - offsetof(struct mbuf, m_dat) == MLEN);
93CTASSERT(MSIZE - offsetof(struct mbuf, m_pktdat) == MHLEN);
94
95/*
96 * m_get2() allocates minimum mbuf that would fit "size" argument.
97 */
98struct mbuf *
99m_get2(int size, int how, short type, int flags)
100{
101	struct mb_args args;
102	struct mbuf *m, *n;
103
104	args.flags = flags;
105	args.type = type;
106
107	if (size <= MHLEN || (size <= MLEN && (flags & M_PKTHDR) == 0))
108		return (uma_zalloc_arg(zone_mbuf, &args, how));
109	if (size <= MCLBYTES)
110		return (uma_zalloc_arg(zone_pack, &args, how));
111
112	if (size > MJUMPAGESIZE)
113		return (NULL);
114
115	m = uma_zalloc_arg(zone_mbuf, &args, how);
116	if (m == NULL)
117		return (NULL);
118
119	n = uma_zalloc_arg(zone_jumbop, m, how);
120	if (n == NULL) {
121		uma_zfree(zone_mbuf, m);
122		return (NULL);
123	}
124
125	return (m);
126}
127
128/*
129 * m_getjcl() returns an mbuf with a cluster of the specified size attached.
130 * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES.
131 */
132struct mbuf *
133m_getjcl(int how, short type, int flags, int size)
134{
135	struct mb_args args;
136	struct mbuf *m, *n;
137	uma_zone_t zone;
138
139	if (size == MCLBYTES)
140		return m_getcl(how, type, flags);
141
142	args.flags = flags;
143	args.type = type;
144
145	m = uma_zalloc_arg(zone_mbuf, &args, how);
146	if (m == NULL)
147		return (NULL);
148
149	zone = m_getzone(size);
150	n = uma_zalloc_arg(zone, m, how);
151	if (n == NULL) {
152		uma_zfree(zone_mbuf, m);
153		return (NULL);
154	}
155	return (m);
156}
157
158/*
159 * Allocate a given length worth of mbufs and/or clusters (whatever fits
160 * best) and return a pointer to the top of the allocated chain.  If an
161 * existing mbuf chain is provided, then we will append the new chain
162 * to the existing one but still return the top of the newly allocated
163 * chain.
164 */
165struct mbuf *
166m_getm2(struct mbuf *m, int len, int how, short type, int flags)
167{
168	struct mbuf *mb, *nm = NULL, *mtail = NULL;
169
170	KASSERT(len >= 0, ("%s: len is < 0", __func__));
171
172	/* Validate flags. */
173	flags &= (M_PKTHDR | M_EOR);
174
175	/* Packet header mbuf must be first in chain. */
176	if ((flags & M_PKTHDR) && m != NULL)
177		flags &= ~M_PKTHDR;
178
179	/* Loop and append maximum sized mbufs to the chain tail. */
180	while (len > 0) {
181		if (len > MCLBYTES)
182			mb = m_getjcl(how, type, (flags & M_PKTHDR),
183			    MJUMPAGESIZE);
184		else if (len >= MINCLSIZE)
185			mb = m_getcl(how, type, (flags & M_PKTHDR));
186		else if (flags & M_PKTHDR)
187			mb = m_gethdr(how, type);
188		else
189			mb = m_get(how, type);
190
191		/* Fail the whole operation if one mbuf can't be allocated. */
192		if (mb == NULL) {
193			if (nm != NULL)
194				m_freem(nm);
195			return (NULL);
196		}
197
198		/* Book keeping. */
199		len -= (mb->m_flags & M_EXT) ? mb->m_ext.ext_size :
200			((mb->m_flags & M_PKTHDR) ? MHLEN : MLEN);
201		if (mtail != NULL)
202			mtail->m_next = mb;
203		else
204			nm = mb;
205		mtail = mb;
206		flags &= ~M_PKTHDR;	/* Only valid on the first mbuf. */
207	}
208	if (flags & M_EOR)
209		mtail->m_flags |= M_EOR;  /* Only valid on the last mbuf. */
210
211	/* If mbuf was supplied, append new chain to the end of it. */
212	if (m != NULL) {
213		for (mtail = m; mtail->m_next != NULL; mtail = mtail->m_next)
214			;
215		mtail->m_next = nm;
216		mtail->m_flags &= ~M_EOR;
217	} else
218		m = nm;
219
220	return (m);
221}
222
223/*
224 * Free an entire chain of mbufs and associated external buffers, if
225 * applicable.
226 */
227void
228m_freem(struct mbuf *mb)
229{
230
231	while (mb != NULL)
232		mb = m_free(mb);
233}
234
235/*-
236 * Configure a provided mbuf to refer to the provided external storage
237 * buffer and setup a reference count for said buffer.  If the setting
238 * up of the reference count fails, the M_EXT bit will not be set.  If
239 * successfull, the M_EXT bit is set in the mbuf's flags.
240 *
241 * Arguments:
242 *    mb     The existing mbuf to which to attach the provided buffer.
243 *    buf    The address of the provided external storage buffer.
244 *    size   The size of the provided buffer.
245 *    freef  A pointer to a routine that is responsible for freeing the
246 *           provided external storage buffer.
247 *    args   A pointer to an argument structure (of any type) to be passed
248 *           to the provided freef routine (may be NULL).
249 *    flags  Any other flags to be passed to the provided mbuf.
250 *    type   The type that the external storage buffer should be
251 *           labeled with.
252 *
253 * Returns:
254 *    Nothing.
255 */
256int
257m_extadd(struct mbuf *mb, caddr_t buf, u_int size,
258    int (*freef)(struct mbuf *, void *, void *), void *arg1, void *arg2,
259    int flags, int type, int wait)
260{
261	KASSERT(type != EXT_CLUSTER, ("%s: EXT_CLUSTER not allowed", __func__));
262
263	if (type != EXT_EXTREF)
264		mb->m_ext.ref_cnt = uma_zalloc(zone_ext_refcnt, wait);
265
266	if (mb->m_ext.ref_cnt == NULL)
267		return (ENOMEM);
268
269	*(mb->m_ext.ref_cnt) = 1;
270	mb->m_flags |= (M_EXT | flags);
271	mb->m_ext.ext_buf = buf;
272	mb->m_data = mb->m_ext.ext_buf;
273	mb->m_ext.ext_size = size;
274	mb->m_ext.ext_free = freef;
275	mb->m_ext.ext_arg1 = arg1;
276	mb->m_ext.ext_arg2 = arg2;
277	mb->m_ext.ext_type = type;
278	mb->m_ext.ext_flags = 0;
279
280	return (0);
281}
282
283/*
284 * Non-directly-exported function to clean up after mbufs with M_EXT
285 * storage attached to them if the reference count hits 1.
286 */
287void
288mb_free_ext(struct mbuf *m)
289{
290	int skipmbuf;
291
292	KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__));
293	KASSERT(m->m_ext.ref_cnt != NULL, ("%s: ref_cnt not set", __func__));
294
295	/*
296	 * check if the header is embedded in the cluster
297	 */
298	skipmbuf = (m->m_flags & M_NOFREE);
299
300	/* Free attached storage if this mbuf is the only reference to it. */
301	if (*(m->m_ext.ref_cnt) == 1 ||
302	    atomic_fetchadd_int(m->m_ext.ref_cnt, -1) == 1) {
303		switch (m->m_ext.ext_type) {
304		case EXT_PACKET:	/* The packet zone is special. */
305			if (*(m->m_ext.ref_cnt) == 0)
306				*(m->m_ext.ref_cnt) = 1;
307			uma_zfree(zone_pack, m);
308			return;		/* Job done. */
309		case EXT_CLUSTER:
310			uma_zfree(zone_clust, m->m_ext.ext_buf);
311			break;
312		case EXT_JUMBOP:
313			uma_zfree(zone_jumbop, m->m_ext.ext_buf);
314			break;
315		case EXT_JUMBO9:
316			uma_zfree(zone_jumbo9, m->m_ext.ext_buf);
317			break;
318		case EXT_JUMBO16:
319			uma_zfree(zone_jumbo16, m->m_ext.ext_buf);
320			break;
321		case EXT_SFBUF:
322		case EXT_NET_DRV:
323		case EXT_MOD_TYPE:
324		case EXT_DISPOSABLE:
325			*(m->m_ext.ref_cnt) = 0;
326			uma_zfree(zone_ext_refcnt, __DEVOLATILE(u_int *,
327				m->m_ext.ref_cnt));
328			/* FALLTHROUGH */
329		case EXT_EXTREF:
330			KASSERT(m->m_ext.ext_free != NULL,
331				("%s: ext_free not set", __func__));
332			(void)(*(m->m_ext.ext_free))(m, m->m_ext.ext_arg1,
333			    m->m_ext.ext_arg2);
334			break;
335		default:
336			KASSERT(m->m_ext.ext_type == 0,
337				("%s: unknown ext_type", __func__));
338		}
339	}
340	if (skipmbuf)
341		return;
342
343	/*
344	 * Free this mbuf back to the mbuf zone with all m_ext
345	 * information purged.
346	 */
347	m->m_ext.ext_buf = NULL;
348	m->m_ext.ext_free = NULL;
349	m->m_ext.ext_arg1 = NULL;
350	m->m_ext.ext_arg2 = NULL;
351	m->m_ext.ref_cnt = NULL;
352	m->m_ext.ext_size = 0;
353	m->m_ext.ext_type = 0;
354	m->m_ext.ext_flags = 0;
355	m->m_flags &= ~M_EXT;
356	uma_zfree(zone_mbuf, m);
357}
358
359/*
360 * Attach the cluster from *m to *n, set up m_ext in *n
361 * and bump the refcount of the cluster.
362 */
363static void
364mb_dupcl(struct mbuf *n, struct mbuf *m)
365{
366	KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__));
367	KASSERT(m->m_ext.ref_cnt != NULL, ("%s: ref_cnt not set", __func__));
368	KASSERT((n->m_flags & M_EXT) == 0, ("%s: M_EXT set", __func__));
369
370	if (*(m->m_ext.ref_cnt) == 1)
371		*(m->m_ext.ref_cnt) += 1;
372	else
373		atomic_add_int(m->m_ext.ref_cnt, 1);
374	n->m_ext.ext_buf = m->m_ext.ext_buf;
375	n->m_ext.ext_free = m->m_ext.ext_free;
376	n->m_ext.ext_arg1 = m->m_ext.ext_arg1;
377	n->m_ext.ext_arg2 = m->m_ext.ext_arg2;
378	n->m_ext.ext_size = m->m_ext.ext_size;
379	n->m_ext.ref_cnt = m->m_ext.ref_cnt;
380	n->m_ext.ext_type = m->m_ext.ext_type;
381	n->m_ext.ext_flags = m->m_ext.ext_flags;
382	n->m_flags |= M_EXT;
383	n->m_flags |= m->m_flags & M_RDONLY;
384}
385
386/*
387 * Clean up mbuf (chain) from any tags and packet headers.
388 * If "all" is set then the first mbuf in the chain will be
389 * cleaned too.
390 */
391void
392m_demote(struct mbuf *m0, int all)
393{
394	struct mbuf *m;
395
396	for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) {
397		if (m->m_flags & M_PKTHDR) {
398			m_tag_delete_chain(m, NULL);
399			m->m_flags &= ~M_PKTHDR;
400			bzero(&m->m_pkthdr, sizeof(struct pkthdr));
401		}
402		if (m != m0 && m->m_nextpkt != NULL) {
403			KASSERT(m->m_nextpkt == NULL,
404			    ("%s: m_nextpkt not NULL", __func__));
405			m_freem(m->m_nextpkt);
406			m->m_nextpkt = NULL;
407		}
408		m->m_flags = m->m_flags & (M_EXT|M_RDONLY|M_NOFREE);
409	}
410}
411
412/*
413 * Sanity checks on mbuf (chain) for use in KASSERT() and general
414 * debugging.
415 * Returns 0 or panics when bad and 1 on all tests passed.
416 * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they
417 * blow up later.
418 */
419int
420m_sanity(struct mbuf *m0, int sanitize)
421{
422	struct mbuf *m;
423	caddr_t a, b;
424	int pktlen = 0;
425
426#ifdef INVARIANTS
427#define	M_SANITY_ACTION(s)	panic("mbuf %p: " s, m)
428#else
429#define	M_SANITY_ACTION(s)	printf("mbuf %p: " s, m)
430#endif
431
432	for (m = m0; m != NULL; m = m->m_next) {
433		/*
434		 * Basic pointer checks.  If any of these fails then some
435		 * unrelated kernel memory before or after us is trashed.
436		 * No way to recover from that.
437		 */
438		a = ((m->m_flags & M_EXT) ? m->m_ext.ext_buf :
439			((m->m_flags & M_PKTHDR) ? (caddr_t)(&m->m_pktdat) :
440			 (caddr_t)(&m->m_dat)) );
441		b = (caddr_t)(a + (m->m_flags & M_EXT ? m->m_ext.ext_size :
442			((m->m_flags & M_PKTHDR) ? MHLEN : MLEN)));
443		if ((caddr_t)m->m_data < a)
444			M_SANITY_ACTION("m_data outside mbuf data range left");
445		if ((caddr_t)m->m_data > b)
446			M_SANITY_ACTION("m_data outside mbuf data range right");
447		if ((caddr_t)m->m_data + m->m_len > b)
448			M_SANITY_ACTION("m_data + m_len exeeds mbuf space");
449
450		/* m->m_nextpkt may only be set on first mbuf in chain. */
451		if (m != m0 && m->m_nextpkt != NULL) {
452			if (sanitize) {
453				m_freem(m->m_nextpkt);
454				m->m_nextpkt = (struct mbuf *)0xDEADC0DE;
455			} else
456				M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf");
457		}
458
459		/* packet length (not mbuf length!) calculation */
460		if (m0->m_flags & M_PKTHDR)
461			pktlen += m->m_len;
462
463		/* m_tags may only be attached to first mbuf in chain. */
464		if (m != m0 && m->m_flags & M_PKTHDR &&
465		    !SLIST_EMPTY(&m->m_pkthdr.tags)) {
466			if (sanitize) {
467				m_tag_delete_chain(m, NULL);
468				/* put in 0xDEADC0DE perhaps? */
469			} else
470				M_SANITY_ACTION("m_tags on in-chain mbuf");
471		}
472
473		/* M_PKTHDR may only be set on first mbuf in chain */
474		if (m != m0 && m->m_flags & M_PKTHDR) {
475			if (sanitize) {
476				bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
477				m->m_flags &= ~M_PKTHDR;
478				/* put in 0xDEADCODE and leave hdr flag in */
479			} else
480				M_SANITY_ACTION("M_PKTHDR on in-chain mbuf");
481		}
482	}
483	m = m0;
484	if (pktlen && pktlen != m->m_pkthdr.len) {
485		if (sanitize)
486			m->m_pkthdr.len = 0;
487		else
488			M_SANITY_ACTION("m_pkthdr.len != mbuf chain length");
489	}
490	return 1;
491
492#undef	M_SANITY_ACTION
493}
494
495
496/*
497 * "Move" mbuf pkthdr from "from" to "to".
498 * "from" must have M_PKTHDR set, and "to" must be empty.
499 */
500void
501m_move_pkthdr(struct mbuf *to, struct mbuf *from)
502{
503
504#if 0
505	/* see below for why these are not enabled */
506	M_ASSERTPKTHDR(to);
507	/* Note: with MAC, this may not be a good assertion. */
508	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags),
509	    ("m_move_pkthdr: to has tags"));
510#endif
511#ifdef MAC
512	/*
513	 * XXXMAC: It could be this should also occur for non-MAC?
514	 */
515	if (to->m_flags & M_PKTHDR)
516		m_tag_delete_chain(to, NULL);
517#endif
518	to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
519	if ((to->m_flags & M_EXT) == 0)
520		to->m_data = to->m_pktdat;
521	to->m_pkthdr = from->m_pkthdr;		/* especially tags */
522	SLIST_INIT(&from->m_pkthdr.tags);	/* purge tags from src */
523	from->m_flags &= ~M_PKTHDR;
524}
525
526/*
527 * Duplicate "from"'s mbuf pkthdr in "to".
528 * "from" must have M_PKTHDR set, and "to" must be empty.
529 * In particular, this does a deep copy of the packet tags.
530 */
531int
532m_dup_pkthdr(struct mbuf *to, struct mbuf *from, int how)
533{
534
535#if 0
536	/*
537	 * The mbuf allocator only initializes the pkthdr
538	 * when the mbuf is allocated with m_gethdr(). Many users
539	 * (e.g. m_copy*, m_prepend) use m_get() and then
540	 * smash the pkthdr as needed causing these
541	 * assertions to trip.  For now just disable them.
542	 */
543	M_ASSERTPKTHDR(to);
544	/* Note: with MAC, this may not be a good assertion. */
545	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags"));
546#endif
547	MBUF_CHECKSLEEP(how);
548#ifdef MAC
549	if (to->m_flags & M_PKTHDR)
550		m_tag_delete_chain(to, NULL);
551#endif
552	to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
553	if ((to->m_flags & M_EXT) == 0)
554		to->m_data = to->m_pktdat;
555	to->m_pkthdr = from->m_pkthdr;
556	SLIST_INIT(&to->m_pkthdr.tags);
557	return (m_tag_copy_chain(to, from, MBTOM(how)));
558}
559
560/*
561 * Lesser-used path for M_PREPEND:
562 * allocate new mbuf to prepend to chain,
563 * copy junk along.
564 */
565struct mbuf *
566m_prepend(struct mbuf *m, int len, int how)
567{
568	struct mbuf *mn;
569
570	if (m->m_flags & M_PKTHDR)
571		mn = m_gethdr(how, m->m_type);
572	else
573		mn = m_get(how, m->m_type);
574	if (mn == NULL) {
575		m_freem(m);
576		return (NULL);
577	}
578	if (m->m_flags & M_PKTHDR)
579		m_move_pkthdr(mn, m);
580	mn->m_next = m;
581	m = mn;
582	if(m->m_flags & M_PKTHDR) {
583		if (len < MHLEN)
584			MH_ALIGN(m, len);
585	} else {
586		if (len < MLEN)
587			M_ALIGN(m, len);
588	}
589	m->m_len = len;
590	return (m);
591}
592
593/*
594 * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
595 * continuing for "len" bytes.  If len is M_COPYALL, copy to end of mbuf.
596 * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller.
597 * Note that the copy is read-only, because clusters are not copied,
598 * only their reference counts are incremented.
599 */
600struct mbuf *
601m_copym(struct mbuf *m, int off0, int len, int wait)
602{
603	struct mbuf *n, **np;
604	int off = off0;
605	struct mbuf *top;
606	int copyhdr = 0;
607
608	KASSERT(off >= 0, ("m_copym, negative off %d", off));
609	KASSERT(len >= 0, ("m_copym, negative len %d", len));
610	MBUF_CHECKSLEEP(wait);
611	if (off == 0 && m->m_flags & M_PKTHDR)
612		copyhdr = 1;
613	while (off > 0) {
614		KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
615		if (off < m->m_len)
616			break;
617		off -= m->m_len;
618		m = m->m_next;
619	}
620	np = &top;
621	top = 0;
622	while (len > 0) {
623		if (m == NULL) {
624			KASSERT(len == M_COPYALL,
625			    ("m_copym, length > size of mbuf chain"));
626			break;
627		}
628		if (copyhdr)
629			n = m_gethdr(wait, m->m_type);
630		else
631			n = m_get(wait, m->m_type);
632		*np = n;
633		if (n == NULL)
634			goto nospace;
635		if (copyhdr) {
636			if (!m_dup_pkthdr(n, m, wait))
637				goto nospace;
638			if (len == M_COPYALL)
639				n->m_pkthdr.len -= off0;
640			else
641				n->m_pkthdr.len = len;
642			copyhdr = 0;
643		}
644		n->m_len = min(len, m->m_len - off);
645		if (m->m_flags & M_EXT) {
646			n->m_data = m->m_data + off;
647			mb_dupcl(n, m);
648		} else
649			bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
650			    (u_int)n->m_len);
651		if (len != M_COPYALL)
652			len -= n->m_len;
653		off = 0;
654		m = m->m_next;
655		np = &n->m_next;
656	}
657
658	return (top);
659nospace:
660	m_freem(top);
661	return (NULL);
662}
663
664/*
665 * Returns mbuf chain with new head for the prepending case.
666 * Copies from mbuf (chain) n from off for len to mbuf (chain) m
667 * either prepending or appending the data.
668 * The resulting mbuf (chain) m is fully writeable.
669 * m is destination (is made writeable)
670 * n is source, off is offset in source, len is len from offset
671 * dir, 0 append, 1 prepend
672 * how, wait or nowait
673 */
674
675static int
676m_bcopyxxx(void *s, void *t, u_int len)
677{
678	bcopy(s, t, (size_t)len);
679	return 0;
680}
681
682struct mbuf *
683m_copymdata(struct mbuf *m, struct mbuf *n, int off, int len,
684    int prep, int how)
685{
686	struct mbuf *mm, *x, *z, *prev = NULL;
687	caddr_t p;
688	int i, nlen = 0;
689	caddr_t buf[MLEN];
690
691	KASSERT(m != NULL && n != NULL, ("m_copymdata, no target or source"));
692	KASSERT(off >= 0, ("m_copymdata, negative off %d", off));
693	KASSERT(len >= 0, ("m_copymdata, negative len %d", len));
694	KASSERT(prep == 0 || prep == 1, ("m_copymdata, unknown direction %d", prep));
695
696	mm = m;
697	if (!prep) {
698		while(mm->m_next) {
699			prev = mm;
700			mm = mm->m_next;
701		}
702	}
703	for (z = n; z != NULL; z = z->m_next)
704		nlen += z->m_len;
705	if (len == M_COPYALL)
706		len = nlen - off;
707	if (off + len > nlen || len < 1)
708		return NULL;
709
710	if (!M_WRITABLE(mm)) {
711		/* XXX: Use proper m_xxx function instead. */
712		x = m_getcl(how, MT_DATA, mm->m_flags);
713		if (x == NULL)
714			return NULL;
715		bcopy(mm->m_ext.ext_buf, x->m_ext.ext_buf, x->m_ext.ext_size);
716		p = x->m_ext.ext_buf + (mm->m_data - mm->m_ext.ext_buf);
717		x->m_data = p;
718		mm->m_next = NULL;
719		if (mm != m)
720			prev->m_next = x;
721		m_free(mm);
722		mm = x;
723	}
724
725	/*
726	 * Append/prepend the data.  Allocating mbufs as necessary.
727	 */
728	/* Shortcut if enough free space in first/last mbuf. */
729	if (!prep && M_TRAILINGSPACE(mm) >= len) {
730		m_apply(n, off, len, m_bcopyxxx, mtod(mm, caddr_t) +
731			 mm->m_len);
732		mm->m_len += len;
733		mm->m_pkthdr.len += len;
734		return m;
735	}
736	if (prep && M_LEADINGSPACE(mm) >= len) {
737		mm->m_data = mtod(mm, caddr_t) - len;
738		m_apply(n, off, len, m_bcopyxxx, mtod(mm, caddr_t));
739		mm->m_len += len;
740		mm->m_pkthdr.len += len;
741		return mm;
742	}
743
744	/* Expand first/last mbuf to cluster if possible. */
745	if (!prep && !(mm->m_flags & M_EXT) && len > M_TRAILINGSPACE(mm)) {
746		bcopy(mm->m_data, &buf, mm->m_len);
747		m_clget(mm, how);
748		if (!(mm->m_flags & M_EXT))
749			return NULL;
750		bcopy(&buf, mm->m_ext.ext_buf, mm->m_len);
751		mm->m_data = mm->m_ext.ext_buf;
752	}
753	if (prep && !(mm->m_flags & M_EXT) && len > M_LEADINGSPACE(mm)) {
754		bcopy(mm->m_data, &buf, mm->m_len);
755		m_clget(mm, how);
756		if (!(mm->m_flags & M_EXT))
757			return NULL;
758		bcopy(&buf, (caddr_t *)mm->m_ext.ext_buf +
759		       mm->m_ext.ext_size - mm->m_len, mm->m_len);
760		mm->m_data = (caddr_t)mm->m_ext.ext_buf +
761			      mm->m_ext.ext_size - mm->m_len;
762	}
763
764	/* Append/prepend as many mbuf (clusters) as necessary to fit len. */
765	if (!prep && len > M_TRAILINGSPACE(mm)) {
766		if (!m_getm(mm, len - M_TRAILINGSPACE(mm), how, MT_DATA))
767			return NULL;
768	}
769	if (prep && len > M_LEADINGSPACE(mm)) {
770		if (!(z = m_getm(NULL, len - M_LEADINGSPACE(mm), how, MT_DATA)))
771			return NULL;
772		i = 0;
773		for (x = z; x != NULL; x = x->m_next) {
774			i += x->m_flags & M_EXT ? x->m_ext.ext_size :
775			      (x->m_flags & M_PKTHDR ? MHLEN : MLEN);
776			if (!x->m_next)
777				break;
778		}
779		z->m_data += i - len;
780		m_move_pkthdr(mm, z);
781		x->m_next = mm;
782		mm = z;
783	}
784
785	/* Seek to start position in source mbuf. Optimization for long chains. */
786	while (off > 0) {
787		if (off < n->m_len)
788			break;
789		off -= n->m_len;
790		n = n->m_next;
791	}
792
793	/* Copy data into target mbuf. */
794	z = mm;
795	while (len > 0) {
796		KASSERT(z != NULL, ("m_copymdata, falling off target edge"));
797		i = M_TRAILINGSPACE(z);
798		m_apply(n, off, i, m_bcopyxxx, mtod(z, caddr_t) + z->m_len);
799		z->m_len += i;
800		/* fixup pkthdr.len if necessary */
801		if ((prep ? mm : m)->m_flags & M_PKTHDR)
802			(prep ? mm : m)->m_pkthdr.len += i;
803		off += i;
804		len -= i;
805		z = z->m_next;
806	}
807	return (prep ? mm : m);
808}
809
810/*
811 * Copy an entire packet, including header (which must be present).
812 * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
813 * Note that the copy is read-only, because clusters are not copied,
814 * only their reference counts are incremented.
815 * Preserve alignment of the first mbuf so if the creator has left
816 * some room at the beginning (e.g. for inserting protocol headers)
817 * the copies still have the room available.
818 */
819struct mbuf *
820m_copypacket(struct mbuf *m, int how)
821{
822	struct mbuf *top, *n, *o;
823
824	MBUF_CHECKSLEEP(how);
825	n = m_get(how, m->m_type);
826	top = n;
827	if (n == NULL)
828		goto nospace;
829
830	if (!m_dup_pkthdr(n, m, how))
831		goto nospace;
832	n->m_len = m->m_len;
833	if (m->m_flags & M_EXT) {
834		n->m_data = m->m_data;
835		mb_dupcl(n, m);
836	} else {
837		n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
838		bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
839	}
840
841	m = m->m_next;
842	while (m) {
843		o = m_get(how, m->m_type);
844		if (o == NULL)
845			goto nospace;
846
847		n->m_next = o;
848		n = n->m_next;
849
850		n->m_len = m->m_len;
851		if (m->m_flags & M_EXT) {
852			n->m_data = m->m_data;
853			mb_dupcl(n, m);
854		} else {
855			bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
856		}
857
858		m = m->m_next;
859	}
860	return top;
861nospace:
862	m_freem(top);
863	return (NULL);
864}
865
866/*
867 * Copy data from an mbuf chain starting "off" bytes from the beginning,
868 * continuing for "len" bytes, into the indicated buffer.
869 */
870void
871m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
872{
873	u_int count;
874
875	KASSERT(off >= 0, ("m_copydata, negative off %d", off));
876	KASSERT(len >= 0, ("m_copydata, negative len %d", len));
877	while (off > 0) {
878		KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
879		if (off < m->m_len)
880			break;
881		off -= m->m_len;
882		m = m->m_next;
883	}
884	while (len > 0) {
885		KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
886		count = min(m->m_len - off, len);
887		bcopy(mtod(m, caddr_t) + off, cp, count);
888		len -= count;
889		cp += count;
890		off = 0;
891		m = m->m_next;
892	}
893}
894
895/*
896 * Copy a packet header mbuf chain into a completely new chain, including
897 * copying any mbuf clusters.  Use this instead of m_copypacket() when
898 * you need a writable copy of an mbuf chain.
899 */
900struct mbuf *
901m_dup(struct mbuf *m, int how)
902{
903	struct mbuf **p, *top = NULL;
904	int remain, moff, nsize;
905
906	MBUF_CHECKSLEEP(how);
907	/* Sanity check */
908	if (m == NULL)
909		return (NULL);
910	M_ASSERTPKTHDR(m);
911
912	/* While there's more data, get a new mbuf, tack it on, and fill it */
913	remain = m->m_pkthdr.len;
914	moff = 0;
915	p = &top;
916	while (remain > 0 || top == NULL) {	/* allow m->m_pkthdr.len == 0 */
917		struct mbuf *n;
918
919		/* Get the next new mbuf */
920		if (remain >= MINCLSIZE) {
921			n = m_getcl(how, m->m_type, 0);
922			nsize = MCLBYTES;
923		} else {
924			n = m_get(how, m->m_type);
925			nsize = MLEN;
926		}
927		if (n == NULL)
928			goto nospace;
929
930		if (top == NULL) {		/* First one, must be PKTHDR */
931			if (!m_dup_pkthdr(n, m, how)) {
932				m_free(n);
933				goto nospace;
934			}
935			if ((n->m_flags & M_EXT) == 0)
936				nsize = MHLEN;
937			n->m_flags &= ~M_RDONLY;
938		}
939		n->m_len = 0;
940
941		/* Link it into the new chain */
942		*p = n;
943		p = &n->m_next;
944
945		/* Copy data from original mbuf(s) into new mbuf */
946		while (n->m_len < nsize && m != NULL) {
947			int chunk = min(nsize - n->m_len, m->m_len - moff);
948
949			bcopy(m->m_data + moff, n->m_data + n->m_len, chunk);
950			moff += chunk;
951			n->m_len += chunk;
952			remain -= chunk;
953			if (moff == m->m_len) {
954				m = m->m_next;
955				moff = 0;
956			}
957		}
958
959		/* Check correct total mbuf length */
960		KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
961		    	("%s: bogus m_pkthdr.len", __func__));
962	}
963	return (top);
964
965nospace:
966	m_freem(top);
967	return (NULL);
968}
969
970/*
971 * Concatenate mbuf chain n to m.
972 * Both chains must be of the same type (e.g. MT_DATA).
973 * Any m_pkthdr is not updated.
974 */
975void
976m_cat(struct mbuf *m, struct mbuf *n)
977{
978	while (m->m_next)
979		m = m->m_next;
980	while (n) {
981		if (!M_WRITABLE(m) ||
982		    M_TRAILINGSPACE(m) < n->m_len) {
983			/* just join the two chains */
984			m->m_next = n;
985			return;
986		}
987		/* splat the data from one into the other */
988		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
989		    (u_int)n->m_len);
990		m->m_len += n->m_len;
991		n = m_free(n);
992	}
993}
994
995void
996m_adj(struct mbuf *mp, int req_len)
997{
998	int len = req_len;
999	struct mbuf *m;
1000	int count;
1001
1002	if ((m = mp) == NULL)
1003		return;
1004	if (len >= 0) {
1005		/*
1006		 * Trim from head.
1007		 */
1008		while (m != NULL && len > 0) {
1009			if (m->m_len <= len) {
1010				len -= m->m_len;
1011				m->m_len = 0;
1012				m = m->m_next;
1013			} else {
1014				m->m_len -= len;
1015				m->m_data += len;
1016				len = 0;
1017			}
1018		}
1019		if (mp->m_flags & M_PKTHDR)
1020			mp->m_pkthdr.len -= (req_len - len);
1021	} else {
1022		/*
1023		 * Trim from tail.  Scan the mbuf chain,
1024		 * calculating its length and finding the last mbuf.
1025		 * If the adjustment only affects this mbuf, then just
1026		 * adjust and return.  Otherwise, rescan and truncate
1027		 * after the remaining size.
1028		 */
1029		len = -len;
1030		count = 0;
1031		for (;;) {
1032			count += m->m_len;
1033			if (m->m_next == (struct mbuf *)0)
1034				break;
1035			m = m->m_next;
1036		}
1037		if (m->m_len >= len) {
1038			m->m_len -= len;
1039			if (mp->m_flags & M_PKTHDR)
1040				mp->m_pkthdr.len -= len;
1041			return;
1042		}
1043		count -= len;
1044		if (count < 0)
1045			count = 0;
1046		/*
1047		 * Correct length for chain is "count".
1048		 * Find the mbuf with last data, adjust its length,
1049		 * and toss data from remaining mbufs on chain.
1050		 */
1051		m = mp;
1052		if (m->m_flags & M_PKTHDR)
1053			m->m_pkthdr.len = count;
1054		for (; m; m = m->m_next) {
1055			if (m->m_len >= count) {
1056				m->m_len = count;
1057				if (m->m_next != NULL) {
1058					m_freem(m->m_next);
1059					m->m_next = NULL;
1060				}
1061				break;
1062			}
1063			count -= m->m_len;
1064		}
1065	}
1066}
1067
1068/*
1069 * Rearange an mbuf chain so that len bytes are contiguous
1070 * and in the data area of an mbuf (so that mtod will work
1071 * for a structure of size len).  Returns the resulting
1072 * mbuf chain on success, frees it and returns null on failure.
1073 * If there is room, it will add up to max_protohdr-len extra bytes to the
1074 * contiguous region in an attempt to avoid being called next time.
1075 */
1076struct mbuf *
1077m_pullup(struct mbuf *n, int len)
1078{
1079	struct mbuf *m;
1080	int count;
1081	int space;
1082
1083	/*
1084	 * If first mbuf has no cluster, and has room for len bytes
1085	 * without shifting current data, pullup into it,
1086	 * otherwise allocate a new mbuf to prepend to the chain.
1087	 */
1088	if ((n->m_flags & M_EXT) == 0 &&
1089	    n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
1090		if (n->m_len >= len)
1091			return (n);
1092		m = n;
1093		n = n->m_next;
1094		len -= m->m_len;
1095	} else {
1096		if (len > MHLEN)
1097			goto bad;
1098		m = m_get(M_NOWAIT, n->m_type);
1099		if (m == NULL)
1100			goto bad;
1101		if (n->m_flags & M_PKTHDR)
1102			m_move_pkthdr(m, n);
1103	}
1104	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1105	do {
1106		count = min(min(max(len, max_protohdr), space), n->m_len);
1107		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
1108		  (u_int)count);
1109		len -= count;
1110		m->m_len += count;
1111		n->m_len -= count;
1112		space -= count;
1113		if (n->m_len)
1114			n->m_data += count;
1115		else
1116			n = m_free(n);
1117	} while (len > 0 && n);
1118	if (len > 0) {
1119		(void) m_free(m);
1120		goto bad;
1121	}
1122	m->m_next = n;
1123	return (m);
1124bad:
1125	m_freem(n);
1126	return (NULL);
1127}
1128
1129/*
1130 * Like m_pullup(), except a new mbuf is always allocated, and we allow
1131 * the amount of empty space before the data in the new mbuf to be specified
1132 * (in the event that the caller expects to prepend later).
1133 */
1134int MSFail;
1135
1136struct mbuf *
1137m_copyup(struct mbuf *n, int len, int dstoff)
1138{
1139	struct mbuf *m;
1140	int count, space;
1141
1142	if (len > (MHLEN - dstoff))
1143		goto bad;
1144	m = m_get(M_NOWAIT, n->m_type);
1145	if (m == NULL)
1146		goto bad;
1147	if (n->m_flags & M_PKTHDR)
1148		m_move_pkthdr(m, n);
1149	m->m_data += dstoff;
1150	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1151	do {
1152		count = min(min(max(len, max_protohdr), space), n->m_len);
1153		memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t),
1154		    (unsigned)count);
1155		len -= count;
1156		m->m_len += count;
1157		n->m_len -= count;
1158		space -= count;
1159		if (n->m_len)
1160			n->m_data += count;
1161		else
1162			n = m_free(n);
1163	} while (len > 0 && n);
1164	if (len > 0) {
1165		(void) m_free(m);
1166		goto bad;
1167	}
1168	m->m_next = n;
1169	return (m);
1170 bad:
1171	m_freem(n);
1172	MSFail++;
1173	return (NULL);
1174}
1175
1176/*
1177 * Partition an mbuf chain in two pieces, returning the tail --
1178 * all but the first len0 bytes.  In case of failure, it returns NULL and
1179 * attempts to restore the chain to its original state.
1180 *
1181 * Note that the resulting mbufs might be read-only, because the new
1182 * mbuf can end up sharing an mbuf cluster with the original mbuf if
1183 * the "breaking point" happens to lie within a cluster mbuf. Use the
1184 * M_WRITABLE() macro to check for this case.
1185 */
1186struct mbuf *
1187m_split(struct mbuf *m0, int len0, int wait)
1188{
1189	struct mbuf *m, *n;
1190	u_int len = len0, remain;
1191
1192	MBUF_CHECKSLEEP(wait);
1193	for (m = m0; m && len > m->m_len; m = m->m_next)
1194		len -= m->m_len;
1195	if (m == NULL)
1196		return (NULL);
1197	remain = m->m_len - len;
1198	if (m0->m_flags & M_PKTHDR && remain == 0) {
1199		n = m_gethdr(wait, m0->m_type);
1200		if (n == NULL)
1201			return (NULL);
1202		n->m_next = m->m_next;
1203		m->m_next = NULL;
1204		n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1205		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1206		m0->m_pkthdr.len = len0;
1207		return (n);
1208	} else if (m0->m_flags & M_PKTHDR) {
1209		n = m_gethdr(wait, m0->m_type);
1210		if (n == NULL)
1211			return (NULL);
1212		n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1213		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1214		m0->m_pkthdr.len = len0;
1215		if (m->m_flags & M_EXT)
1216			goto extpacket;
1217		if (remain > MHLEN) {
1218			/* m can't be the lead packet */
1219			MH_ALIGN(n, 0);
1220			n->m_next = m_split(m, len, wait);
1221			if (n->m_next == NULL) {
1222				(void) m_free(n);
1223				return (NULL);
1224			} else {
1225				n->m_len = 0;
1226				return (n);
1227			}
1228		} else
1229			MH_ALIGN(n, remain);
1230	} else if (remain == 0) {
1231		n = m->m_next;
1232		m->m_next = NULL;
1233		return (n);
1234	} else {
1235		n = m_get(wait, m->m_type);
1236		if (n == NULL)
1237			return (NULL);
1238		M_ALIGN(n, remain);
1239	}
1240extpacket:
1241	if (m->m_flags & M_EXT) {
1242		n->m_data = m->m_data + len;
1243		mb_dupcl(n, m);
1244	} else {
1245		bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
1246	}
1247	n->m_len = remain;
1248	m->m_len = len;
1249	n->m_next = m->m_next;
1250	m->m_next = NULL;
1251	return (n);
1252}
1253/*
1254 * Routine to copy from device local memory into mbufs.
1255 * Note that `off' argument is offset into first mbuf of target chain from
1256 * which to begin copying the data to.
1257 */
1258struct mbuf *
1259m_devget(char *buf, int totlen, int off, struct ifnet *ifp,
1260    void (*copy)(char *from, caddr_t to, u_int len))
1261{
1262	struct mbuf *m;
1263	struct mbuf *top = NULL, **mp = &top;
1264	int len;
1265
1266	if (off < 0 || off > MHLEN)
1267		return (NULL);
1268
1269	while (totlen > 0) {
1270		if (top == NULL) {	/* First one, must be PKTHDR */
1271			if (totlen + off >= MINCLSIZE) {
1272				m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1273				len = MCLBYTES;
1274			} else {
1275				m = m_gethdr(M_NOWAIT, MT_DATA);
1276				len = MHLEN;
1277
1278				/* Place initial small packet/header at end of mbuf */
1279				if (m && totlen + off + max_linkhdr <= MLEN) {
1280					m->m_data += max_linkhdr;
1281					len -= max_linkhdr;
1282				}
1283			}
1284			if (m == NULL)
1285				return NULL;
1286			m->m_pkthdr.rcvif = ifp;
1287			m->m_pkthdr.len = totlen;
1288		} else {
1289			if (totlen + off >= MINCLSIZE) {
1290				m = m_getcl(M_NOWAIT, MT_DATA, 0);
1291				len = MCLBYTES;
1292			} else {
1293				m = m_get(M_NOWAIT, MT_DATA);
1294				len = MLEN;
1295			}
1296			if (m == NULL) {
1297				m_freem(top);
1298				return NULL;
1299			}
1300		}
1301		if (off) {
1302			m->m_data += off;
1303			len -= off;
1304			off = 0;
1305		}
1306		m->m_len = len = min(totlen, len);
1307		if (copy)
1308			copy(buf, mtod(m, caddr_t), (u_int)len);
1309		else
1310			bcopy(buf, mtod(m, caddr_t), (u_int)len);
1311		buf += len;
1312		*mp = m;
1313		mp = &m->m_next;
1314		totlen -= len;
1315	}
1316	return (top);
1317}
1318
1319/*
1320 * Copy data from a buffer back into the indicated mbuf chain,
1321 * starting "off" bytes from the beginning, extending the mbuf
1322 * chain if necessary.
1323 */
1324void
1325m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp)
1326{
1327	int mlen;
1328	struct mbuf *m = m0, *n;
1329	int totlen = 0;
1330
1331	if (m0 == NULL)
1332		return;
1333	while (off > (mlen = m->m_len)) {
1334		off -= mlen;
1335		totlen += mlen;
1336		if (m->m_next == NULL) {
1337			n = m_get(M_NOWAIT, m->m_type);
1338			if (n == NULL)
1339				goto out;
1340			bzero(mtod(n, caddr_t), MLEN);
1341			n->m_len = min(MLEN, len + off);
1342			m->m_next = n;
1343		}
1344		m = m->m_next;
1345	}
1346	while (len > 0) {
1347		if (m->m_next == NULL && (len > m->m_len - off)) {
1348			m->m_len += min(len - (m->m_len - off),
1349			    M_TRAILINGSPACE(m));
1350		}
1351		mlen = min (m->m_len - off, len);
1352		bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen);
1353		cp += mlen;
1354		len -= mlen;
1355		mlen += off;
1356		off = 0;
1357		totlen += mlen;
1358		if (len == 0)
1359			break;
1360		if (m->m_next == NULL) {
1361			n = m_get(M_NOWAIT, m->m_type);
1362			if (n == NULL)
1363				break;
1364			n->m_len = min(MLEN, len);
1365			m->m_next = n;
1366		}
1367		m = m->m_next;
1368	}
1369out:	if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
1370		m->m_pkthdr.len = totlen;
1371}
1372
1373/*
1374 * Append the specified data to the indicated mbuf chain,
1375 * Extend the mbuf chain if the new data does not fit in
1376 * existing space.
1377 *
1378 * Return 1 if able to complete the job; otherwise 0.
1379 */
1380int
1381m_append(struct mbuf *m0, int len, c_caddr_t cp)
1382{
1383	struct mbuf *m, *n;
1384	int remainder, space;
1385
1386	for (m = m0; m->m_next != NULL; m = m->m_next)
1387		;
1388	remainder = len;
1389	space = M_TRAILINGSPACE(m);
1390	if (space > 0) {
1391		/*
1392		 * Copy into available space.
1393		 */
1394		if (space > remainder)
1395			space = remainder;
1396		bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
1397		m->m_len += space;
1398		cp += space, remainder -= space;
1399	}
1400	while (remainder > 0) {
1401		/*
1402		 * Allocate a new mbuf; could check space
1403		 * and allocate a cluster instead.
1404		 */
1405		n = m_get(M_NOWAIT, m->m_type);
1406		if (n == NULL)
1407			break;
1408		n->m_len = min(MLEN, remainder);
1409		bcopy(cp, mtod(n, caddr_t), n->m_len);
1410		cp += n->m_len, remainder -= n->m_len;
1411		m->m_next = n;
1412		m = n;
1413	}
1414	if (m0->m_flags & M_PKTHDR)
1415		m0->m_pkthdr.len += len - remainder;
1416	return (remainder == 0);
1417}
1418
1419/*
1420 * Apply function f to the data in an mbuf chain starting "off" bytes from
1421 * the beginning, continuing for "len" bytes.
1422 */
1423int
1424m_apply(struct mbuf *m, int off, int len,
1425    int (*f)(void *, void *, u_int), void *arg)
1426{
1427	u_int count;
1428	int rval;
1429
1430	KASSERT(off >= 0, ("m_apply, negative off %d", off));
1431	KASSERT(len >= 0, ("m_apply, negative len %d", len));
1432	while (off > 0) {
1433		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1434		if (off < m->m_len)
1435			break;
1436		off -= m->m_len;
1437		m = m->m_next;
1438	}
1439	while (len > 0) {
1440		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1441		count = min(m->m_len - off, len);
1442		rval = (*f)(arg, mtod(m, caddr_t) + off, count);
1443		if (rval)
1444			return (rval);
1445		len -= count;
1446		off = 0;
1447		m = m->m_next;
1448	}
1449	return (0);
1450}
1451
1452/*
1453 * Return a pointer to mbuf/offset of location in mbuf chain.
1454 */
1455struct mbuf *
1456m_getptr(struct mbuf *m, int loc, int *off)
1457{
1458
1459	while (loc >= 0) {
1460		/* Normal end of search. */
1461		if (m->m_len > loc) {
1462			*off = loc;
1463			return (m);
1464		} else {
1465			loc -= m->m_len;
1466			if (m->m_next == NULL) {
1467				if (loc == 0) {
1468					/* Point at the end of valid data. */
1469					*off = m->m_len;
1470					return (m);
1471				}
1472				return (NULL);
1473			}
1474			m = m->m_next;
1475		}
1476	}
1477	return (NULL);
1478}
1479
1480void
1481m_print(const struct mbuf *m, int maxlen)
1482{
1483	int len;
1484	int pdata;
1485	const struct mbuf *m2;
1486
1487	if (m == NULL) {
1488		printf("mbuf: %p\n", m);
1489		return;
1490	}
1491
1492	if (m->m_flags & M_PKTHDR)
1493		len = m->m_pkthdr.len;
1494	else
1495		len = -1;
1496	m2 = m;
1497	while (m2 != NULL && (len == -1 || len)) {
1498		pdata = m2->m_len;
1499		if (maxlen != -1 && pdata > maxlen)
1500			pdata = maxlen;
1501		printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len,
1502		    m2->m_next, m2->m_flags, "\20\20freelist\17skipfw"
1503		    "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly"
1504		    "\3eor\2pkthdr\1ext", pdata ? "" : "\n");
1505		if (pdata)
1506			printf(", %*D\n", pdata, (u_char *)m2->m_data, "-");
1507		if (len != -1)
1508			len -= m2->m_len;
1509		m2 = m2->m_next;
1510	}
1511	if (len > 0)
1512		printf("%d bytes unaccounted for.\n", len);
1513	return;
1514}
1515
1516u_int
1517m_fixhdr(struct mbuf *m0)
1518{
1519	u_int len;
1520
1521	len = m_length(m0, NULL);
1522	m0->m_pkthdr.len = len;
1523	return (len);
1524}
1525
1526u_int
1527m_length(struct mbuf *m0, struct mbuf **last)
1528{
1529	struct mbuf *m;
1530	u_int len;
1531
1532	len = 0;
1533	for (m = m0; m != NULL; m = m->m_next) {
1534		len += m->m_len;
1535		if (m->m_next == NULL)
1536			break;
1537	}
1538	if (last != NULL)
1539		*last = m;
1540	return (len);
1541}
1542
1543/*
1544 * Defragment a mbuf chain, returning the shortest possible
1545 * chain of mbufs and clusters.  If allocation fails and
1546 * this cannot be completed, NULL will be returned, but
1547 * the passed in chain will be unchanged.  Upon success,
1548 * the original chain will be freed, and the new chain
1549 * will be returned.
1550 *
1551 * If a non-packet header is passed in, the original
1552 * mbuf (chain?) will be returned unharmed.
1553 */
1554struct mbuf *
1555m_defrag(struct mbuf *m0, int how)
1556{
1557	struct mbuf *m_new = NULL, *m_final = NULL;
1558	int progress = 0, length;
1559
1560	MBUF_CHECKSLEEP(how);
1561	if (!(m0->m_flags & M_PKTHDR))
1562		return (m0);
1563
1564	m_fixhdr(m0); /* Needed sanity check */
1565
1566#ifdef MBUF_STRESS_TEST
1567	if (m_defragrandomfailures) {
1568		int temp = arc4random() & 0xff;
1569		if (temp == 0xba)
1570			goto nospace;
1571	}
1572#endif
1573
1574	if (m0->m_pkthdr.len > MHLEN)
1575		m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1576	else
1577		m_final = m_gethdr(how, MT_DATA);
1578
1579	if (m_final == NULL)
1580		goto nospace;
1581
1582	if (m_dup_pkthdr(m_final, m0, how) == 0)
1583		goto nospace;
1584
1585	m_new = m_final;
1586
1587	while (progress < m0->m_pkthdr.len) {
1588		length = m0->m_pkthdr.len - progress;
1589		if (length > MCLBYTES)
1590			length = MCLBYTES;
1591
1592		if (m_new == NULL) {
1593			if (length > MLEN)
1594				m_new = m_getcl(how, MT_DATA, 0);
1595			else
1596				m_new = m_get(how, MT_DATA);
1597			if (m_new == NULL)
1598				goto nospace;
1599		}
1600
1601		m_copydata(m0, progress, length, mtod(m_new, caddr_t));
1602		progress += length;
1603		m_new->m_len = length;
1604		if (m_new != m_final)
1605			m_cat(m_final, m_new);
1606		m_new = NULL;
1607	}
1608#ifdef MBUF_STRESS_TEST
1609	if (m0->m_next == NULL)
1610		m_defraguseless++;
1611#endif
1612	m_freem(m0);
1613	m0 = m_final;
1614#ifdef MBUF_STRESS_TEST
1615	m_defragpackets++;
1616	m_defragbytes += m0->m_pkthdr.len;
1617#endif
1618	return (m0);
1619nospace:
1620#ifdef MBUF_STRESS_TEST
1621	m_defragfailure++;
1622#endif
1623	if (m_final)
1624		m_freem(m_final);
1625	return (NULL);
1626}
1627
1628/*
1629 * Defragment an mbuf chain, returning at most maxfrags separate
1630 * mbufs+clusters.  If this is not possible NULL is returned and
1631 * the original mbuf chain is left in it's present (potentially
1632 * modified) state.  We use two techniques: collapsing consecutive
1633 * mbufs and replacing consecutive mbufs by a cluster.
1634 *
1635 * NB: this should really be named m_defrag but that name is taken
1636 */
1637struct mbuf *
1638m_collapse(struct mbuf *m0, int how, int maxfrags)
1639{
1640	struct mbuf *m, *n, *n2, **prev;
1641	u_int curfrags;
1642
1643	/*
1644	 * Calculate the current number of frags.
1645	 */
1646	curfrags = 0;
1647	for (m = m0; m != NULL; m = m->m_next)
1648		curfrags++;
1649	/*
1650	 * First, try to collapse mbufs.  Note that we always collapse
1651	 * towards the front so we don't need to deal with moving the
1652	 * pkthdr.  This may be suboptimal if the first mbuf has much
1653	 * less data than the following.
1654	 */
1655	m = m0;
1656again:
1657	for (;;) {
1658		n = m->m_next;
1659		if (n == NULL)
1660			break;
1661		if (M_WRITABLE(m) &&
1662		    n->m_len < M_TRAILINGSPACE(m)) {
1663			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
1664				n->m_len);
1665			m->m_len += n->m_len;
1666			m->m_next = n->m_next;
1667			m_free(n);
1668			if (--curfrags <= maxfrags)
1669				return m0;
1670		} else
1671			m = n;
1672	}
1673	KASSERT(maxfrags > 1,
1674		("maxfrags %u, but normal collapse failed", maxfrags));
1675	/*
1676	 * Collapse consecutive mbufs to a cluster.
1677	 */
1678	prev = &m0->m_next;		/* NB: not the first mbuf */
1679	while ((n = *prev) != NULL) {
1680		if ((n2 = n->m_next) != NULL &&
1681		    n->m_len + n2->m_len < MCLBYTES) {
1682			m = m_getcl(how, MT_DATA, 0);
1683			if (m == NULL)
1684				goto bad;
1685			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
1686			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
1687				n2->m_len);
1688			m->m_len = n->m_len + n2->m_len;
1689			m->m_next = n2->m_next;
1690			*prev = m;
1691			m_free(n);
1692			m_free(n2);
1693			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
1694				return m0;
1695			/*
1696			 * Still not there, try the normal collapse
1697			 * again before we allocate another cluster.
1698			 */
1699			goto again;
1700		}
1701		prev = &n->m_next;
1702	}
1703	/*
1704	 * No place where we can collapse to a cluster; punt.
1705	 * This can occur if, for example, you request 2 frags
1706	 * but the packet requires that both be clusters (we
1707	 * never reallocate the first mbuf to avoid moving the
1708	 * packet header).
1709	 */
1710bad:
1711	return NULL;
1712}
1713
1714#ifdef MBUF_STRESS_TEST
1715
1716/*
1717 * Fragment an mbuf chain.  There's no reason you'd ever want to do
1718 * this in normal usage, but it's great for stress testing various
1719 * mbuf consumers.
1720 *
1721 * If fragmentation is not possible, the original chain will be
1722 * returned.
1723 *
1724 * Possible length values:
1725 * 0	 no fragmentation will occur
1726 * > 0	each fragment will be of the specified length
1727 * -1	each fragment will be the same random value in length
1728 * -2	each fragment's length will be entirely random
1729 * (Random values range from 1 to 256)
1730 */
1731struct mbuf *
1732m_fragment(struct mbuf *m0, int how, int length)
1733{
1734	struct mbuf *m_new = NULL, *m_final = NULL;
1735	int progress = 0;
1736
1737	if (!(m0->m_flags & M_PKTHDR))
1738		return (m0);
1739
1740	if ((length == 0) || (length < -2))
1741		return (m0);
1742
1743	m_fixhdr(m0); /* Needed sanity check */
1744
1745	m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1746
1747	if (m_final == NULL)
1748		goto nospace;
1749
1750	if (m_dup_pkthdr(m_final, m0, how) == 0)
1751		goto nospace;
1752
1753	m_new = m_final;
1754
1755	if (length == -1)
1756		length = 1 + (arc4random() & 255);
1757
1758	while (progress < m0->m_pkthdr.len) {
1759		int fraglen;
1760
1761		if (length > 0)
1762			fraglen = length;
1763		else
1764			fraglen = 1 + (arc4random() & 255);
1765		if (fraglen > m0->m_pkthdr.len - progress)
1766			fraglen = m0->m_pkthdr.len - progress;
1767
1768		if (fraglen > MCLBYTES)
1769			fraglen = MCLBYTES;
1770
1771		if (m_new == NULL) {
1772			m_new = m_getcl(how, MT_DATA, 0);
1773			if (m_new == NULL)
1774				goto nospace;
1775		}
1776
1777		m_copydata(m0, progress, fraglen, mtod(m_new, caddr_t));
1778		progress += fraglen;
1779		m_new->m_len = fraglen;
1780		if (m_new != m_final)
1781			m_cat(m_final, m_new);
1782		m_new = NULL;
1783	}
1784	m_freem(m0);
1785	m0 = m_final;
1786	return (m0);
1787nospace:
1788	if (m_final)
1789		m_freem(m_final);
1790	/* Return the original chain on failure */
1791	return (m0);
1792}
1793
1794#endif
1795
1796/*
1797 * Copy the contents of uio into a properly sized mbuf chain.
1798 */
1799struct mbuf *
1800m_uiotombuf(struct uio *uio, int how, int len, int align, int flags)
1801{
1802	struct mbuf *m, *mb;
1803	int error, length;
1804	ssize_t total;
1805	int progress = 0;
1806
1807	/*
1808	 * len can be zero or an arbitrary large value bound by
1809	 * the total data supplied by the uio.
1810	 */
1811	if (len > 0)
1812		total = min(uio->uio_resid, len);
1813	else
1814		total = uio->uio_resid;
1815
1816	/*
1817	 * The smallest unit returned by m_getm2() is a single mbuf
1818	 * with pkthdr.  We can't align past it.
1819	 */
1820	if (align >= MHLEN)
1821		return (NULL);
1822
1823	/*
1824	 * Give us the full allocation or nothing.
1825	 * If len is zero return the smallest empty mbuf.
1826	 */
1827	m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags);
1828	if (m == NULL)
1829		return (NULL);
1830	m->m_data += align;
1831
1832	/* Fill all mbufs with uio data and update header information. */
1833	for (mb = m; mb != NULL; mb = mb->m_next) {
1834		length = min(M_TRAILINGSPACE(mb), total - progress);
1835
1836		error = uiomove(mtod(mb, void *), length, uio);
1837		if (error) {
1838			m_freem(m);
1839			return (NULL);
1840		}
1841
1842		mb->m_len = length;
1843		progress += length;
1844		if (flags & M_PKTHDR)
1845			m->m_pkthdr.len += length;
1846	}
1847	KASSERT(progress == total, ("%s: progress != total", __func__));
1848
1849	return (m);
1850}
1851
1852/*
1853 * Copy an mbuf chain into a uio limited by len if set.
1854 */
1855int
1856m_mbuftouio(struct uio *uio, struct mbuf *m, int len)
1857{
1858	int error, length, total;
1859	int progress = 0;
1860
1861	if (len > 0)
1862		total = min(uio->uio_resid, len);
1863	else
1864		total = uio->uio_resid;
1865
1866	/* Fill the uio with data from the mbufs. */
1867	for (; m != NULL; m = m->m_next) {
1868		length = min(m->m_len, total - progress);
1869
1870		error = uiomove(mtod(m, void *), length, uio);
1871		if (error)
1872			return (error);
1873
1874		progress += length;
1875	}
1876
1877	return (0);
1878}
1879
1880/*
1881 * Set the m_data pointer of a newly-allocated mbuf
1882 * to place an object of the specified size at the
1883 * end of the mbuf, longword aligned.
1884 */
1885void
1886m_align(struct mbuf *m, int len)
1887{
1888#ifdef INVARIANTS
1889	const char *msg = "%s: not a virgin mbuf";
1890#endif
1891	int adjust;
1892
1893	if (m->m_flags & M_EXT) {
1894		KASSERT(m->m_data == m->m_ext.ext_buf, (msg, __func__));
1895		adjust = m->m_ext.ext_size - len;
1896	} else if (m->m_flags & M_PKTHDR) {
1897		KASSERT(m->m_data == m->m_pktdat, (msg, __func__));
1898		adjust = MHLEN - len;
1899	} else {
1900		KASSERT(m->m_data == m->m_dat, (msg, __func__));
1901		adjust = MLEN - len;
1902	}
1903
1904	m->m_data += adjust &~ (sizeof(long)-1);
1905}
1906
1907/*
1908 * Create a writable copy of the mbuf chain.  While doing this
1909 * we compact the chain with a goal of producing a chain with
1910 * at most two mbufs.  The second mbuf in this chain is likely
1911 * to be a cluster.  The primary purpose of this work is to create
1912 * a writable packet for encryption, compression, etc.  The
1913 * secondary goal is to linearize the data so the data can be
1914 * passed to crypto hardware in the most efficient manner possible.
1915 */
1916struct mbuf *
1917m_unshare(struct mbuf *m0, int how)
1918{
1919	struct mbuf *m, *mprev;
1920	struct mbuf *n, *mfirst, *mlast;
1921	int len, off;
1922
1923	mprev = NULL;
1924	for (m = m0; m != NULL; m = mprev->m_next) {
1925		/*
1926		 * Regular mbufs are ignored unless there's a cluster
1927		 * in front of it that we can use to coalesce.  We do
1928		 * the latter mainly so later clusters can be coalesced
1929		 * also w/o having to handle them specially (i.e. convert
1930		 * mbuf+cluster -> cluster).  This optimization is heavily
1931		 * influenced by the assumption that we're running over
1932		 * Ethernet where MCLBYTES is large enough that the max
1933		 * packet size will permit lots of coalescing into a
1934		 * single cluster.  This in turn permits efficient
1935		 * crypto operations, especially when using hardware.
1936		 */
1937		if ((m->m_flags & M_EXT) == 0) {
1938			if (mprev && (mprev->m_flags & M_EXT) &&
1939			    m->m_len <= M_TRAILINGSPACE(mprev)) {
1940				/* XXX: this ignores mbuf types */
1941				memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1942				       mtod(m, caddr_t), m->m_len);
1943				mprev->m_len += m->m_len;
1944				mprev->m_next = m->m_next;	/* unlink from chain */
1945				m_free(m);			/* reclaim mbuf */
1946#if 0
1947				newipsecstat.ips_mbcoalesced++;
1948#endif
1949			} else {
1950				mprev = m;
1951			}
1952			continue;
1953		}
1954		/*
1955		 * Writable mbufs are left alone (for now).
1956		 */
1957		if (M_WRITABLE(m)) {
1958			mprev = m;
1959			continue;
1960		}
1961
1962		/*
1963		 * Not writable, replace with a copy or coalesce with
1964		 * the previous mbuf if possible (since we have to copy
1965		 * it anyway, we try to reduce the number of mbufs and
1966		 * clusters so that future work is easier).
1967		 */
1968		KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags));
1969		/* NB: we only coalesce into a cluster or larger */
1970		if (mprev != NULL && (mprev->m_flags & M_EXT) &&
1971		    m->m_len <= M_TRAILINGSPACE(mprev)) {
1972			/* XXX: this ignores mbuf types */
1973			memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1974			       mtod(m, caddr_t), m->m_len);
1975			mprev->m_len += m->m_len;
1976			mprev->m_next = m->m_next;	/* unlink from chain */
1977			m_free(m);			/* reclaim mbuf */
1978#if 0
1979			newipsecstat.ips_clcoalesced++;
1980#endif
1981			continue;
1982		}
1983
1984		/*
1985		 * Allocate new space to hold the copy and copy the data.
1986		 * We deal with jumbo mbufs (i.e. m_len > MCLBYTES) by
1987		 * splitting them into clusters.  We could just malloc a
1988		 * buffer and make it external but too many device drivers
1989		 * don't know how to break up the non-contiguous memory when
1990		 * doing DMA.
1991		 */
1992		n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS);
1993		if (n == NULL) {
1994			m_freem(m0);
1995			return (NULL);
1996		}
1997		if (m->m_flags & M_PKTHDR) {
1998			KASSERT(mprev == NULL, ("%s: m0 %p, m %p has M_PKTHDR",
1999			    __func__, m0, m));
2000			m_move_pkthdr(n, m);
2001		}
2002		len = m->m_len;
2003		off = 0;
2004		mfirst = n;
2005		mlast = NULL;
2006		for (;;) {
2007			int cc = min(len, MCLBYTES);
2008			memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc);
2009			n->m_len = cc;
2010			if (mlast != NULL)
2011				mlast->m_next = n;
2012			mlast = n;
2013#if 0
2014			newipsecstat.ips_clcopied++;
2015#endif
2016
2017			len -= cc;
2018			if (len <= 0)
2019				break;
2020			off += cc;
2021
2022			n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS);
2023			if (n == NULL) {
2024				m_freem(mfirst);
2025				m_freem(m0);
2026				return (NULL);
2027			}
2028		}
2029		n->m_next = m->m_next;
2030		if (mprev == NULL)
2031			m0 = mfirst;		/* new head of chain */
2032		else
2033			mprev->m_next = mfirst;	/* replace old mbuf */
2034		m_free(m);			/* release old mbuf */
2035		mprev = mfirst;
2036	}
2037	return (m0);
2038}
2039
2040#ifdef MBUF_PROFILING
2041
2042#define MP_BUCKETS 32 /* don't just change this as things may overflow.*/
2043struct mbufprofile {
2044	uintmax_t wasted[MP_BUCKETS];
2045	uintmax_t used[MP_BUCKETS];
2046	uintmax_t segments[MP_BUCKETS];
2047} mbprof;
2048
2049#define MP_MAXDIGITS 21	/* strlen("16,000,000,000,000,000,000") == 21 */
2050#define MP_NUMLINES 6
2051#define MP_NUMSPERLINE 16
2052#define MP_EXTRABYTES 64	/* > strlen("used:\nwasted:\nsegments:\n") */
2053/* work out max space needed and add a bit of spare space too */
2054#define MP_MAXLINE ((MP_MAXDIGITS+1) * MP_NUMSPERLINE)
2055#define MP_BUFSIZE ((MP_MAXLINE * MP_NUMLINES) + 1 + MP_EXTRABYTES)
2056
2057char mbprofbuf[MP_BUFSIZE];
2058
2059void
2060m_profile(struct mbuf *m)
2061{
2062	int segments = 0;
2063	int used = 0;
2064	int wasted = 0;
2065
2066	while (m) {
2067		segments++;
2068		used += m->m_len;
2069		if (m->m_flags & M_EXT) {
2070			wasted += MHLEN - sizeof(m->m_ext) +
2071			    m->m_ext.ext_size - m->m_len;
2072		} else {
2073			if (m->m_flags & M_PKTHDR)
2074				wasted += MHLEN - m->m_len;
2075			else
2076				wasted += MLEN - m->m_len;
2077		}
2078		m = m->m_next;
2079	}
2080	/* be paranoid.. it helps */
2081	if (segments > MP_BUCKETS - 1)
2082		segments = MP_BUCKETS - 1;
2083	if (used > 100000)
2084		used = 100000;
2085	if (wasted > 100000)
2086		wasted = 100000;
2087	/* store in the appropriate bucket */
2088	/* don't bother locking. if it's slightly off, so what? */
2089	mbprof.segments[segments]++;
2090	mbprof.used[fls(used)]++;
2091	mbprof.wasted[fls(wasted)]++;
2092}
2093
2094static void
2095mbprof_textify(void)
2096{
2097	int offset;
2098	char *c;
2099	uint64_t *p;
2100
2101
2102	p = &mbprof.wasted[0];
2103	c = mbprofbuf;
2104	offset = snprintf(c, MP_MAXLINE + 10,
2105	    "wasted:\n"
2106	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2107	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2108	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2109	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2110#ifdef BIG_ARRAY
2111	p = &mbprof.wasted[16];
2112	c += offset;
2113	offset = snprintf(c, MP_MAXLINE,
2114	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2115	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2116	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2117	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2118#endif
2119	p = &mbprof.used[0];
2120	c += offset;
2121	offset = snprintf(c, MP_MAXLINE + 10,
2122	    "used:\n"
2123	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2124	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2125	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2126	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2127#ifdef BIG_ARRAY
2128	p = &mbprof.used[16];
2129	c += offset;
2130	offset = snprintf(c, MP_MAXLINE,
2131	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2132	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2133	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2134	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2135#endif
2136	p = &mbprof.segments[0];
2137	c += offset;
2138	offset = snprintf(c, MP_MAXLINE + 10,
2139	    "segments:\n"
2140	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2141	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2142	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2143	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2144#ifdef BIG_ARRAY
2145	p = &mbprof.segments[16];
2146	c += offset;
2147	offset = snprintf(c, MP_MAXLINE,
2148	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2149	    "%ju %ju %ju %ju %ju %ju %ju %jju",
2150	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2151	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2152#endif
2153}
2154
2155static int
2156mbprof_handler(SYSCTL_HANDLER_ARGS)
2157{
2158	int error;
2159
2160	mbprof_textify();
2161	error = SYSCTL_OUT(req, mbprofbuf, strlen(mbprofbuf) + 1);
2162	return (error);
2163}
2164
2165static int
2166mbprof_clr_handler(SYSCTL_HANDLER_ARGS)
2167{
2168	int clear, error;
2169
2170	clear = 0;
2171	error = sysctl_handle_int(oidp, &clear, 0, req);
2172	if (error || !req->newptr)
2173		return (error);
2174
2175	if (clear) {
2176		bzero(&mbprof, sizeof(mbprof));
2177	}
2178
2179	return (error);
2180}
2181
2182
2183SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile, CTLTYPE_STRING|CTLFLAG_RD,
2184	    NULL, 0, mbprof_handler, "A", "mbuf profiling statistics");
2185
2186SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr, CTLTYPE_INT|CTLFLAG_RW,
2187	    NULL, 0, mbprof_clr_handler, "I", "clear mbuf profiling statistics");
2188#endif
2189
2190