1/*-
2 * Copyright (c) 2008 Isilon Inc http://www.isilon.com/
3 * Authors: Doug Rabson <dfr@rabson.org>
4 * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27/*-
28 * Copyright (c) 1982, 1986, 1989, 1993
29 *	The Regents of the University of California.  All rights reserved.
30 *
31 * This code is derived from software contributed to Berkeley by
32 * Scooter Morris at Genentech Inc.
33 *
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
36 * are met:
37 * 1. Redistributions of source code must retain the above copyright
38 *    notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce the above copyright
40 *    notice, this list of conditions and the following disclaimer in the
41 *    documentation and/or other materials provided with the distribution.
42 * 4. Neither the name of the University nor the names of its contributors
43 *    may be used to endorse or promote products derived from this software
44 *    without specific prior written permission.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 *
58 *	@(#)ufs_lockf.c	8.3 (Berkeley) 1/6/94
59 */
60
61#include <sys/cdefs.h>
62__FBSDID("$FreeBSD: stable/10/sys/kern/kern_lockf.c 313729 2017-02-14 13:45:38Z avg $");
63
64#include "opt_debug_lockf.h"
65
66#include <sys/param.h>
67#include <sys/systm.h>
68#include <sys/hash.h>
69#include <sys/kernel.h>
70#include <sys/limits.h>
71#include <sys/lock.h>
72#include <sys/mount.h>
73#include <sys/mutex.h>
74#include <sys/proc.h>
75#include <sys/sx.h>
76#include <sys/unistd.h>
77#include <sys/vnode.h>
78#include <sys/malloc.h>
79#include <sys/fcntl.h>
80#include <sys/lockf.h>
81#include <sys/taskqueue.h>
82
83#ifdef LOCKF_DEBUG
84#include <sys/sysctl.h>
85
86#include <ufs/ufs/quota.h>
87#include <ufs/ufs/inode.h>
88
89static int	lockf_debug = 0; /* control debug output */
90SYSCTL_INT(_debug, OID_AUTO, lockf_debug, CTLFLAG_RW, &lockf_debug, 0, "");
91#endif
92
93static MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures");
94
95struct owner_edge;
96struct owner_vertex;
97struct owner_vertex_list;
98struct owner_graph;
99
100#define NOLOCKF (struct lockf_entry *)0
101#define SELF	0x1
102#define OTHERS	0x2
103static void	 lf_init(void *);
104static int	 lf_hash_owner(caddr_t, struct flock *, int);
105static int	 lf_owner_matches(struct lock_owner *, caddr_t, struct flock *,
106    int);
107static struct lockf_entry *
108		 lf_alloc_lock(struct lock_owner *);
109static int	 lf_free_lock(struct lockf_entry *);
110static int	 lf_clearlock(struct lockf *, struct lockf_entry *);
111static int	 lf_overlaps(struct lockf_entry *, struct lockf_entry *);
112static int	 lf_blocks(struct lockf_entry *, struct lockf_entry *);
113static void	 lf_free_edge(struct lockf_edge *);
114static struct lockf_edge *
115		 lf_alloc_edge(void);
116static void	 lf_alloc_vertex(struct lockf_entry *);
117static int	 lf_add_edge(struct lockf_entry *, struct lockf_entry *);
118static void	 lf_remove_edge(struct lockf_edge *);
119static void	 lf_remove_outgoing(struct lockf_entry *);
120static void	 lf_remove_incoming(struct lockf_entry *);
121static int	 lf_add_outgoing(struct lockf *, struct lockf_entry *);
122static int	 lf_add_incoming(struct lockf *, struct lockf_entry *);
123static int	 lf_findoverlap(struct lockf_entry **, struct lockf_entry *,
124    int);
125static struct lockf_entry *
126		 lf_getblock(struct lockf *, struct lockf_entry *);
127static int	 lf_getlock(struct lockf *, struct lockf_entry *, struct flock *);
128static void	 lf_insert_lock(struct lockf *, struct lockf_entry *);
129static void	 lf_wakeup_lock(struct lockf *, struct lockf_entry *);
130static void	 lf_update_dependancies(struct lockf *, struct lockf_entry *,
131    int all, struct lockf_entry_list *);
132static void	 lf_set_start(struct lockf *, struct lockf_entry *, off_t,
133	struct lockf_entry_list*);
134static void	 lf_set_end(struct lockf *, struct lockf_entry *, off_t,
135	struct lockf_entry_list*);
136static int	 lf_setlock(struct lockf *, struct lockf_entry *,
137    struct vnode *, void **cookiep);
138static int	 lf_cancel(struct lockf *, struct lockf_entry *, void *);
139static void	 lf_split(struct lockf *, struct lockf_entry *,
140    struct lockf_entry *, struct lockf_entry_list *);
141#ifdef LOCKF_DEBUG
142static int	 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
143    struct owner_vertex_list *path);
144static void	 graph_check(struct owner_graph *g, int checkorder);
145static void	 graph_print_vertices(struct owner_vertex_list *set);
146#endif
147static int	 graph_delta_forward(struct owner_graph *g,
148    struct owner_vertex *x, struct owner_vertex *y,
149    struct owner_vertex_list *delta);
150static int	 graph_delta_backward(struct owner_graph *g,
151    struct owner_vertex *x, struct owner_vertex *y,
152    struct owner_vertex_list *delta);
153static int	 graph_add_indices(int *indices, int n,
154    struct owner_vertex_list *set);
155static int	 graph_assign_indices(struct owner_graph *g, int *indices,
156    int nextunused, struct owner_vertex_list *set);
157static int	 graph_add_edge(struct owner_graph *g,
158    struct owner_vertex *x, struct owner_vertex *y);
159static void	 graph_remove_edge(struct owner_graph *g,
160    struct owner_vertex *x, struct owner_vertex *y);
161static struct owner_vertex *graph_alloc_vertex(struct owner_graph *g,
162    struct lock_owner *lo);
163static void	 graph_free_vertex(struct owner_graph *g,
164    struct owner_vertex *v);
165static struct owner_graph * graph_init(struct owner_graph *g);
166#ifdef LOCKF_DEBUG
167static void	 lf_print(char *, struct lockf_entry *);
168static void	 lf_printlist(char *, struct lockf_entry *);
169static void	 lf_print_owner(struct lock_owner *);
170#endif
171
172/*
173 * This structure is used to keep track of both local and remote lock
174 * owners. The lf_owner field of the struct lockf_entry points back at
175 * the lock owner structure. Each possible lock owner (local proc for
176 * POSIX fcntl locks, local file for BSD flock locks or <pid,sysid>
177 * pair for remote locks) is represented by a unique instance of
178 * struct lock_owner.
179 *
180 * If a lock owner has a lock that blocks some other lock or a lock
181 * that is waiting for some other lock, it also has a vertex in the
182 * owner_graph below.
183 *
184 * Locks:
185 * (s)		locked by state->ls_lock
186 * (S)		locked by lf_lock_states_lock
187 * (l)		locked by lf_lock_owners_lock
188 * (g)		locked by lf_owner_graph_lock
189 * (c)		const until freeing
190 */
191#define	LOCK_OWNER_HASH_SIZE	256
192
193struct lock_owner {
194	LIST_ENTRY(lock_owner) lo_link; /* (l) hash chain */
195	int	lo_refs;	    /* (l) Number of locks referring to this */
196	int	lo_flags;	    /* (c) Flags passwd to lf_advlock */
197	caddr_t	lo_id;		    /* (c) Id value passed to lf_advlock */
198	pid_t	lo_pid;		    /* (c) Process Id of the lock owner */
199	int	lo_sysid;	    /* (c) System Id of the lock owner */
200	struct owner_vertex *lo_vertex; /* (g) entry in deadlock graph */
201};
202
203LIST_HEAD(lock_owner_list, lock_owner);
204
205static struct sx		lf_lock_states_lock;
206static struct lockf_list	lf_lock_states; /* (S) */
207static struct sx		lf_lock_owners_lock;
208static struct lock_owner_list	lf_lock_owners[LOCK_OWNER_HASH_SIZE]; /* (l) */
209
210/*
211 * Structures for deadlock detection.
212 *
213 * We have two types of directed graph, the first is the set of locks,
214 * both active and pending on a vnode. Within this graph, active locks
215 * are terminal nodes in the graph (i.e. have no out-going
216 * edges). Pending locks have out-going edges to each blocking active
217 * lock that prevents the lock from being granted and also to each
218 * older pending lock that would block them if it was active. The
219 * graph for each vnode is naturally acyclic; new edges are only ever
220 * added to or from new nodes (either new pending locks which only add
221 * out-going edges or new active locks which only add in-coming edges)
222 * therefore they cannot create loops in the lock graph.
223 *
224 * The second graph is a global graph of lock owners. Each lock owner
225 * is a vertex in that graph and an edge is added to the graph
226 * whenever an edge is added to a vnode graph, with end points
227 * corresponding to owner of the new pending lock and the owner of the
228 * lock upon which it waits. In order to prevent deadlock, we only add
229 * an edge to this graph if the new edge would not create a cycle.
230 *
231 * The lock owner graph is topologically sorted, i.e. if a node has
232 * any outgoing edges, then it has an order strictly less than any
233 * node to which it has an outgoing edge. We preserve this ordering
234 * (and detect cycles) on edge insertion using Algorithm PK from the
235 * paper "A Dynamic Topological Sort Algorithm for Directed Acyclic
236 * Graphs" (ACM Journal of Experimental Algorithms, Vol 11, Article
237 * No. 1.7)
238 */
239struct owner_vertex;
240
241struct owner_edge {
242	LIST_ENTRY(owner_edge) e_outlink; /* (g) link from's out-edge list */
243	LIST_ENTRY(owner_edge) e_inlink;  /* (g) link to's in-edge list */
244	int		e_refs;		  /* (g) number of times added */
245	struct owner_vertex *e_from;	  /* (c) out-going from here */
246	struct owner_vertex *e_to;	  /* (c) in-coming to here */
247};
248LIST_HEAD(owner_edge_list, owner_edge);
249
250struct owner_vertex {
251	TAILQ_ENTRY(owner_vertex) v_link; /* (g) workspace for edge insertion */
252	uint32_t	v_gen;		  /* (g) workspace for edge insertion */
253	int		v_order;	  /* (g) order of vertex in graph */
254	struct owner_edge_list v_outedges;/* (g) list of out-edges */
255	struct owner_edge_list v_inedges; /* (g) list of in-edges */
256	struct lock_owner *v_owner;	  /* (c) corresponding lock owner */
257};
258TAILQ_HEAD(owner_vertex_list, owner_vertex);
259
260struct owner_graph {
261	struct owner_vertex** g_vertices; /* (g) pointers to vertices */
262	int		g_size;		  /* (g) number of vertices */
263	int		g_space;	  /* (g) space allocated for vertices */
264	int		*g_indexbuf;	  /* (g) workspace for loop detection */
265	uint32_t	g_gen;		  /* (g) increment when re-ordering */
266};
267
268static struct sx		lf_owner_graph_lock;
269static struct owner_graph	lf_owner_graph;
270
271/*
272 * Initialise various structures and locks.
273 */
274static void
275lf_init(void *dummy)
276{
277	int i;
278
279	sx_init(&lf_lock_states_lock, "lock states lock");
280	LIST_INIT(&lf_lock_states);
281
282	sx_init(&lf_lock_owners_lock, "lock owners lock");
283	for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++)
284		LIST_INIT(&lf_lock_owners[i]);
285
286	sx_init(&lf_owner_graph_lock, "owner graph lock");
287	graph_init(&lf_owner_graph);
288}
289SYSINIT(lf_init, SI_SUB_LOCK, SI_ORDER_FIRST, lf_init, NULL);
290
291/*
292 * Generate a hash value for a lock owner.
293 */
294static int
295lf_hash_owner(caddr_t id, struct flock *fl, int flags)
296{
297	uint32_t h;
298
299	if (flags & F_REMOTE) {
300		h = HASHSTEP(0, fl->l_pid);
301		h = HASHSTEP(h, fl->l_sysid);
302	} else if (flags & F_FLOCK) {
303		h = ((uintptr_t) id) >> 7;
304	} else {
305		struct proc *p = (struct proc *) id;
306		h = HASHSTEP(0, p->p_pid);
307		h = HASHSTEP(h, 0);
308	}
309
310	return (h % LOCK_OWNER_HASH_SIZE);
311}
312
313/*
314 * Return true if a lock owner matches the details passed to
315 * lf_advlock.
316 */
317static int
318lf_owner_matches(struct lock_owner *lo, caddr_t id, struct flock *fl,
319    int flags)
320{
321	if (flags & F_REMOTE) {
322		return lo->lo_pid == fl->l_pid
323			&& lo->lo_sysid == fl->l_sysid;
324	} else {
325		return lo->lo_id == id;
326	}
327}
328
329static struct lockf_entry *
330lf_alloc_lock(struct lock_owner *lo)
331{
332	struct lockf_entry *lf;
333
334	lf = malloc(sizeof(struct lockf_entry), M_LOCKF, M_WAITOK|M_ZERO);
335
336#ifdef LOCKF_DEBUG
337	if (lockf_debug & 4)
338		printf("Allocated lock %p\n", lf);
339#endif
340	if (lo) {
341		sx_xlock(&lf_lock_owners_lock);
342		lo->lo_refs++;
343		sx_xunlock(&lf_lock_owners_lock);
344		lf->lf_owner = lo;
345	}
346
347	return (lf);
348}
349
350static int
351lf_free_lock(struct lockf_entry *lock)
352{
353
354	KASSERT(lock->lf_refs > 0, ("lockf_entry negative ref count %p", lock));
355	if (--lock->lf_refs > 0)
356		return (0);
357	/*
358	 * Adjust the lock_owner reference count and
359	 * reclaim the entry if this is the last lock
360	 * for that owner.
361	 */
362	struct lock_owner *lo = lock->lf_owner;
363	if (lo) {
364		KASSERT(LIST_EMPTY(&lock->lf_outedges),
365		    ("freeing lock with dependencies"));
366		KASSERT(LIST_EMPTY(&lock->lf_inedges),
367		    ("freeing lock with dependants"));
368		sx_xlock(&lf_lock_owners_lock);
369		KASSERT(lo->lo_refs > 0, ("lock owner refcount"));
370		lo->lo_refs--;
371		if (lo->lo_refs == 0) {
372#ifdef LOCKF_DEBUG
373			if (lockf_debug & 1)
374				printf("lf_free_lock: freeing lock owner %p\n",
375				    lo);
376#endif
377			if (lo->lo_vertex) {
378				sx_xlock(&lf_owner_graph_lock);
379				graph_free_vertex(&lf_owner_graph,
380				    lo->lo_vertex);
381				sx_xunlock(&lf_owner_graph_lock);
382			}
383			LIST_REMOVE(lo, lo_link);
384			free(lo, M_LOCKF);
385#ifdef LOCKF_DEBUG
386			if (lockf_debug & 4)
387				printf("Freed lock owner %p\n", lo);
388#endif
389		}
390		sx_unlock(&lf_lock_owners_lock);
391	}
392	if ((lock->lf_flags & F_REMOTE) && lock->lf_vnode) {
393		vrele(lock->lf_vnode);
394		lock->lf_vnode = NULL;
395	}
396#ifdef LOCKF_DEBUG
397	if (lockf_debug & 4)
398		printf("Freed lock %p\n", lock);
399#endif
400	free(lock, M_LOCKF);
401	return (1);
402}
403
404/*
405 * Advisory record locking support
406 */
407int
408lf_advlockasync(struct vop_advlockasync_args *ap, struct lockf **statep,
409    u_quad_t size)
410{
411	struct lockf *state, *freestate = NULL;
412	struct flock *fl = ap->a_fl;
413	struct lockf_entry *lock;
414	struct vnode *vp = ap->a_vp;
415	caddr_t id = ap->a_id;
416	int flags = ap->a_flags;
417	int hash;
418	struct lock_owner *lo;
419	off_t start, end, oadd;
420	int error;
421
422	/*
423	 * Handle the F_UNLKSYS case first - no need to mess about
424	 * creating a lock owner for this one.
425	 */
426	if (ap->a_op == F_UNLCKSYS) {
427		lf_clearremotesys(fl->l_sysid);
428		return (0);
429	}
430
431	/*
432	 * Convert the flock structure into a start and end.
433	 */
434	switch (fl->l_whence) {
435
436	case SEEK_SET:
437	case SEEK_CUR:
438		/*
439		 * Caller is responsible for adding any necessary offset
440		 * when SEEK_CUR is used.
441		 */
442		start = fl->l_start;
443		break;
444
445	case SEEK_END:
446		if (size > OFF_MAX ||
447		    (fl->l_start > 0 && size > OFF_MAX - fl->l_start))
448			return (EOVERFLOW);
449		start = size + fl->l_start;
450		break;
451
452	default:
453		return (EINVAL);
454	}
455	if (start < 0)
456		return (EINVAL);
457	if (fl->l_len < 0) {
458		if (start == 0)
459			return (EINVAL);
460		end = start - 1;
461		start += fl->l_len;
462		if (start < 0)
463			return (EINVAL);
464	} else if (fl->l_len == 0) {
465		end = OFF_MAX;
466	} else {
467		oadd = fl->l_len - 1;
468		if (oadd > OFF_MAX - start)
469			return (EOVERFLOW);
470		end = start + oadd;
471	}
472
473retry_setlock:
474
475	/*
476	 * Avoid the common case of unlocking when inode has no locks.
477	 */
478	VI_LOCK(vp);
479	if ((*statep) == NULL) {
480		if (ap->a_op != F_SETLK) {
481			fl->l_type = F_UNLCK;
482			VI_UNLOCK(vp);
483			return (0);
484		}
485	}
486	VI_UNLOCK(vp);
487
488	/*
489	 * Map our arguments to an existing lock owner or create one
490	 * if this is the first time we have seen this owner.
491	 */
492	hash = lf_hash_owner(id, fl, flags);
493	sx_xlock(&lf_lock_owners_lock);
494	LIST_FOREACH(lo, &lf_lock_owners[hash], lo_link)
495		if (lf_owner_matches(lo, id, fl, flags))
496			break;
497	if (!lo) {
498		/*
499		 * We initialise the lock with a reference
500		 * count which matches the new lockf_entry
501		 * structure created below.
502		 */
503		lo = malloc(sizeof(struct lock_owner), M_LOCKF,
504		    M_WAITOK|M_ZERO);
505#ifdef LOCKF_DEBUG
506		if (lockf_debug & 4)
507			printf("Allocated lock owner %p\n", lo);
508#endif
509
510		lo->lo_refs = 1;
511		lo->lo_flags = flags;
512		lo->lo_id = id;
513		if (flags & F_REMOTE) {
514			lo->lo_pid = fl->l_pid;
515			lo->lo_sysid = fl->l_sysid;
516		} else if (flags & F_FLOCK) {
517			lo->lo_pid = -1;
518			lo->lo_sysid = 0;
519		} else {
520			struct proc *p = (struct proc *) id;
521			lo->lo_pid = p->p_pid;
522			lo->lo_sysid = 0;
523		}
524		lo->lo_vertex = NULL;
525
526#ifdef LOCKF_DEBUG
527		if (lockf_debug & 1) {
528			printf("lf_advlockasync: new lock owner %p ", lo);
529			lf_print_owner(lo);
530			printf("\n");
531		}
532#endif
533
534		LIST_INSERT_HEAD(&lf_lock_owners[hash], lo, lo_link);
535	} else {
536		/*
537		 * We have seen this lock owner before, increase its
538		 * reference count to account for the new lockf_entry
539		 * structure we create below.
540		 */
541		lo->lo_refs++;
542	}
543	sx_xunlock(&lf_lock_owners_lock);
544
545	/*
546	 * Create the lockf structure. We initialise the lf_owner
547	 * field here instead of in lf_alloc_lock() to avoid paying
548	 * the lf_lock_owners_lock tax twice.
549	 */
550	lock = lf_alloc_lock(NULL);
551	lock->lf_refs = 1;
552	lock->lf_start = start;
553	lock->lf_end = end;
554	lock->lf_owner = lo;
555	lock->lf_vnode = vp;
556	if (flags & F_REMOTE) {
557		/*
558		 * For remote locks, the caller may release its ref to
559		 * the vnode at any time - we have to ref it here to
560		 * prevent it from being recycled unexpectedly.
561		 */
562		vref(vp);
563	}
564
565	/*
566	 * XXX The problem is that VTOI is ufs specific, so it will
567	 * break LOCKF_DEBUG for all other FS's other than UFS because
568	 * it casts the vnode->data ptr to struct inode *.
569	 */
570/*	lock->lf_inode = VTOI(ap->a_vp); */
571	lock->lf_inode = (struct inode *)0;
572	lock->lf_type = fl->l_type;
573	LIST_INIT(&lock->lf_outedges);
574	LIST_INIT(&lock->lf_inedges);
575	lock->lf_async_task = ap->a_task;
576	lock->lf_flags = ap->a_flags;
577
578	/*
579	 * Do the requested operation. First find our state structure
580	 * and create a new one if necessary - the caller's *statep
581	 * variable and the state's ls_threads count is protected by
582	 * the vnode interlock.
583	 */
584	VI_LOCK(vp);
585	if (vp->v_iflag & VI_DOOMED) {
586		VI_UNLOCK(vp);
587		lf_free_lock(lock);
588		return (ENOENT);
589	}
590
591	/*
592	 * Allocate a state structure if necessary.
593	 */
594	state = *statep;
595	if (state == NULL) {
596		struct lockf *ls;
597
598		VI_UNLOCK(vp);
599
600		ls = malloc(sizeof(struct lockf), M_LOCKF, M_WAITOK|M_ZERO);
601		sx_init(&ls->ls_lock, "ls_lock");
602		LIST_INIT(&ls->ls_active);
603		LIST_INIT(&ls->ls_pending);
604		ls->ls_threads = 1;
605
606		sx_xlock(&lf_lock_states_lock);
607		LIST_INSERT_HEAD(&lf_lock_states, ls, ls_link);
608		sx_xunlock(&lf_lock_states_lock);
609
610		/*
611		 * Cope if we lost a race with some other thread while
612		 * trying to allocate memory.
613		 */
614		VI_LOCK(vp);
615		if (vp->v_iflag & VI_DOOMED) {
616			VI_UNLOCK(vp);
617			sx_xlock(&lf_lock_states_lock);
618			LIST_REMOVE(ls, ls_link);
619			sx_xunlock(&lf_lock_states_lock);
620			sx_destroy(&ls->ls_lock);
621			free(ls, M_LOCKF);
622			lf_free_lock(lock);
623			return (ENOENT);
624		}
625		if ((*statep) == NULL) {
626			state = *statep = ls;
627			VI_UNLOCK(vp);
628		} else {
629			state = *statep;
630			state->ls_threads++;
631			VI_UNLOCK(vp);
632
633			sx_xlock(&lf_lock_states_lock);
634			LIST_REMOVE(ls, ls_link);
635			sx_xunlock(&lf_lock_states_lock);
636			sx_destroy(&ls->ls_lock);
637			free(ls, M_LOCKF);
638		}
639	} else {
640		state->ls_threads++;
641		VI_UNLOCK(vp);
642	}
643
644	sx_xlock(&state->ls_lock);
645	/*
646	 * Recheck the doomed vnode after state->ls_lock is
647	 * locked. lf_purgelocks() requires that no new threads add
648	 * pending locks when vnode is marked by VI_DOOMED flag.
649	 */
650	VI_LOCK(vp);
651	if (vp->v_iflag & VI_DOOMED) {
652		state->ls_threads--;
653		wakeup(state);
654		VI_UNLOCK(vp);
655		sx_xunlock(&state->ls_lock);
656		lf_free_lock(lock);
657		return (ENOENT);
658	}
659	VI_UNLOCK(vp);
660
661	switch (ap->a_op) {
662	case F_SETLK:
663		error = lf_setlock(state, lock, vp, ap->a_cookiep);
664		break;
665
666	case F_UNLCK:
667		error = lf_clearlock(state, lock);
668		lf_free_lock(lock);
669		break;
670
671	case F_GETLK:
672		error = lf_getlock(state, lock, fl);
673		lf_free_lock(lock);
674		break;
675
676	case F_CANCEL:
677		if (ap->a_cookiep)
678			error = lf_cancel(state, lock, *ap->a_cookiep);
679		else
680			error = EINVAL;
681		lf_free_lock(lock);
682		break;
683
684	default:
685		lf_free_lock(lock);
686		error = EINVAL;
687		break;
688	}
689
690#ifdef DIAGNOSTIC
691	/*
692	 * Check for some can't happen stuff. In this case, the active
693	 * lock list becoming disordered or containing mutually
694	 * blocking locks. We also check the pending list for locks
695	 * which should be active (i.e. have no out-going edges).
696	 */
697	LIST_FOREACH(lock, &state->ls_active, lf_link) {
698		struct lockf_entry *lf;
699		if (LIST_NEXT(lock, lf_link))
700			KASSERT((lock->lf_start
701				<= LIST_NEXT(lock, lf_link)->lf_start),
702			    ("locks disordered"));
703		LIST_FOREACH(lf, &state->ls_active, lf_link) {
704			if (lock == lf)
705				break;
706			KASSERT(!lf_blocks(lock, lf),
707			    ("two conflicting active locks"));
708			if (lock->lf_owner == lf->lf_owner)
709				KASSERT(!lf_overlaps(lock, lf),
710				    ("two overlapping locks from same owner"));
711		}
712	}
713	LIST_FOREACH(lock, &state->ls_pending, lf_link) {
714		KASSERT(!LIST_EMPTY(&lock->lf_outedges),
715		    ("pending lock which should be active"));
716	}
717#endif
718	sx_xunlock(&state->ls_lock);
719
720	/*
721	 * If we have removed the last active lock on the vnode and
722	 * this is the last thread that was in-progress, we can free
723	 * the state structure. We update the caller's pointer inside
724	 * the vnode interlock but call free outside.
725	 *
726	 * XXX alternatively, keep the state structure around until
727	 * the filesystem recycles - requires a callback from the
728	 * filesystem.
729	 */
730	VI_LOCK(vp);
731
732	state->ls_threads--;
733	wakeup(state);
734	if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) {
735		KASSERT(LIST_EMPTY(&state->ls_pending),
736		    ("freeing state with pending locks"));
737		freestate = state;
738		*statep = NULL;
739	}
740
741	VI_UNLOCK(vp);
742
743	if (freestate != NULL) {
744		sx_xlock(&lf_lock_states_lock);
745		LIST_REMOVE(freestate, ls_link);
746		sx_xunlock(&lf_lock_states_lock);
747		sx_destroy(&freestate->ls_lock);
748		free(freestate, M_LOCKF);
749		freestate = NULL;
750	}
751
752	if (error == EDOOFUS) {
753		KASSERT(ap->a_op == F_SETLK, ("EDOOFUS"));
754		goto retry_setlock;
755	}
756	return (error);
757}
758
759int
760lf_advlock(struct vop_advlock_args *ap, struct lockf **statep, u_quad_t size)
761{
762	struct vop_advlockasync_args a;
763
764	a.a_vp = ap->a_vp;
765	a.a_id = ap->a_id;
766	a.a_op = ap->a_op;
767	a.a_fl = ap->a_fl;
768	a.a_flags = ap->a_flags;
769	a.a_task = NULL;
770	a.a_cookiep = NULL;
771
772	return (lf_advlockasync(&a, statep, size));
773}
774
775void
776lf_purgelocks(struct vnode *vp, struct lockf **statep)
777{
778	struct lockf *state;
779	struct lockf_entry *lock, *nlock;
780
781	/*
782	 * For this to work correctly, the caller must ensure that no
783	 * other threads enter the locking system for this vnode,
784	 * e.g. by checking VI_DOOMED. We wake up any threads that are
785	 * sleeping waiting for locks on this vnode and then free all
786	 * the remaining locks.
787	 */
788	VI_LOCK(vp);
789	KASSERT(vp->v_iflag & VI_DOOMED,
790	    ("lf_purgelocks: vp %p has not vgone yet", vp));
791	state = *statep;
792	if (state) {
793		*statep = NULL;
794		state->ls_threads++;
795		VI_UNLOCK(vp);
796
797		sx_xlock(&state->ls_lock);
798		sx_xlock(&lf_owner_graph_lock);
799		LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) {
800			LIST_REMOVE(lock, lf_link);
801			lf_remove_outgoing(lock);
802			lf_remove_incoming(lock);
803
804			/*
805			 * If its an async lock, we can just free it
806			 * here, otherwise we let the sleeping thread
807			 * free it.
808			 */
809			if (lock->lf_async_task) {
810				lf_free_lock(lock);
811			} else {
812				lock->lf_flags |= F_INTR;
813				wakeup(lock);
814			}
815		}
816		sx_xunlock(&lf_owner_graph_lock);
817		sx_xunlock(&state->ls_lock);
818
819		/*
820		 * Wait for all other threads, sleeping and otherwise
821		 * to leave.
822		 */
823		VI_LOCK(vp);
824		while (state->ls_threads > 1)
825			msleep(state, VI_MTX(vp), 0, "purgelocks", 0);
826		VI_UNLOCK(vp);
827
828		/*
829		 * We can just free all the active locks since they
830		 * will have no dependencies (we removed them all
831		 * above). We don't need to bother locking since we
832		 * are the last thread using this state structure.
833		 */
834		KASSERT(LIST_EMPTY(&state->ls_pending),
835		    ("lock pending for %p", state));
836		LIST_FOREACH_SAFE(lock, &state->ls_active, lf_link, nlock) {
837			LIST_REMOVE(lock, lf_link);
838			lf_free_lock(lock);
839		}
840		sx_xlock(&lf_lock_states_lock);
841		LIST_REMOVE(state, ls_link);
842		sx_xunlock(&lf_lock_states_lock);
843		sx_destroy(&state->ls_lock);
844		free(state, M_LOCKF);
845	} else {
846		VI_UNLOCK(vp);
847	}
848}
849
850/*
851 * Return non-zero if locks 'x' and 'y' overlap.
852 */
853static int
854lf_overlaps(struct lockf_entry *x, struct lockf_entry *y)
855{
856
857	return (x->lf_start <= y->lf_end && x->lf_end >= y->lf_start);
858}
859
860/*
861 * Return non-zero if lock 'x' is blocked by lock 'y' (or vice versa).
862 */
863static int
864lf_blocks(struct lockf_entry *x, struct lockf_entry *y)
865{
866
867	return x->lf_owner != y->lf_owner
868		&& (x->lf_type == F_WRLCK || y->lf_type == F_WRLCK)
869		&& lf_overlaps(x, y);
870}
871
872/*
873 * Allocate a lock edge from the free list
874 */
875static struct lockf_edge *
876lf_alloc_edge(void)
877{
878
879	return (malloc(sizeof(struct lockf_edge), M_LOCKF, M_WAITOK|M_ZERO));
880}
881
882/*
883 * Free a lock edge.
884 */
885static void
886lf_free_edge(struct lockf_edge *e)
887{
888
889	free(e, M_LOCKF);
890}
891
892
893/*
894 * Ensure that the lock's owner has a corresponding vertex in the
895 * owner graph.
896 */
897static void
898lf_alloc_vertex(struct lockf_entry *lock)
899{
900	struct owner_graph *g = &lf_owner_graph;
901
902	if (!lock->lf_owner->lo_vertex)
903		lock->lf_owner->lo_vertex =
904			graph_alloc_vertex(g, lock->lf_owner);
905}
906
907/*
908 * Attempt to record an edge from lock x to lock y. Return EDEADLK if
909 * the new edge would cause a cycle in the owner graph.
910 */
911static int
912lf_add_edge(struct lockf_entry *x, struct lockf_entry *y)
913{
914	struct owner_graph *g = &lf_owner_graph;
915	struct lockf_edge *e;
916	int error;
917
918#ifdef DIAGNOSTIC
919	LIST_FOREACH(e, &x->lf_outedges, le_outlink)
920		KASSERT(e->le_to != y, ("adding lock edge twice"));
921#endif
922
923	/*
924	 * Make sure the two owners have entries in the owner graph.
925	 */
926	lf_alloc_vertex(x);
927	lf_alloc_vertex(y);
928
929	error = graph_add_edge(g, x->lf_owner->lo_vertex,
930	    y->lf_owner->lo_vertex);
931	if (error)
932		return (error);
933
934	e = lf_alloc_edge();
935	LIST_INSERT_HEAD(&x->lf_outedges, e, le_outlink);
936	LIST_INSERT_HEAD(&y->lf_inedges, e, le_inlink);
937	e->le_from = x;
938	e->le_to = y;
939
940	return (0);
941}
942
943/*
944 * Remove an edge from the lock graph.
945 */
946static void
947lf_remove_edge(struct lockf_edge *e)
948{
949	struct owner_graph *g = &lf_owner_graph;
950	struct lockf_entry *x = e->le_from;
951	struct lockf_entry *y = e->le_to;
952
953	graph_remove_edge(g, x->lf_owner->lo_vertex, y->lf_owner->lo_vertex);
954	LIST_REMOVE(e, le_outlink);
955	LIST_REMOVE(e, le_inlink);
956	e->le_from = NULL;
957	e->le_to = NULL;
958	lf_free_edge(e);
959}
960
961/*
962 * Remove all out-going edges from lock x.
963 */
964static void
965lf_remove_outgoing(struct lockf_entry *x)
966{
967	struct lockf_edge *e;
968
969	while ((e = LIST_FIRST(&x->lf_outedges)) != NULL) {
970		lf_remove_edge(e);
971	}
972}
973
974/*
975 * Remove all in-coming edges from lock x.
976 */
977static void
978lf_remove_incoming(struct lockf_entry *x)
979{
980	struct lockf_edge *e;
981
982	while ((e = LIST_FIRST(&x->lf_inedges)) != NULL) {
983		lf_remove_edge(e);
984	}
985}
986
987/*
988 * Walk the list of locks for the file and create an out-going edge
989 * from lock to each blocking lock.
990 */
991static int
992lf_add_outgoing(struct lockf *state, struct lockf_entry *lock)
993{
994	struct lockf_entry *overlap;
995	int error;
996
997	LIST_FOREACH(overlap, &state->ls_active, lf_link) {
998		/*
999		 * We may assume that the active list is sorted by
1000		 * lf_start.
1001		 */
1002		if (overlap->lf_start > lock->lf_end)
1003			break;
1004		if (!lf_blocks(lock, overlap))
1005			continue;
1006
1007		/*
1008		 * We've found a blocking lock. Add the corresponding
1009		 * edge to the graphs and see if it would cause a
1010		 * deadlock.
1011		 */
1012		error = lf_add_edge(lock, overlap);
1013
1014		/*
1015		 * The only error that lf_add_edge returns is EDEADLK.
1016		 * Remove any edges we added and return the error.
1017		 */
1018		if (error) {
1019			lf_remove_outgoing(lock);
1020			return (error);
1021		}
1022	}
1023
1024	/*
1025	 * We also need to add edges to sleeping locks that block
1026	 * us. This ensures that lf_wakeup_lock cannot grant two
1027	 * mutually blocking locks simultaneously and also enforces a
1028	 * 'first come, first served' fairness model. Note that this
1029	 * only happens if we are blocked by at least one active lock
1030	 * due to the call to lf_getblock in lf_setlock below.
1031	 */
1032	LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1033		if (!lf_blocks(lock, overlap))
1034			continue;
1035		/*
1036		 * We've found a blocking lock. Add the corresponding
1037		 * edge to the graphs and see if it would cause a
1038		 * deadlock.
1039		 */
1040		error = lf_add_edge(lock, overlap);
1041
1042		/*
1043		 * The only error that lf_add_edge returns is EDEADLK.
1044		 * Remove any edges we added and return the error.
1045		 */
1046		if (error) {
1047			lf_remove_outgoing(lock);
1048			return (error);
1049		}
1050	}
1051
1052	return (0);
1053}
1054
1055/*
1056 * Walk the list of pending locks for the file and create an in-coming
1057 * edge from lock to each blocking lock.
1058 */
1059static int
1060lf_add_incoming(struct lockf *state, struct lockf_entry *lock)
1061{
1062	struct lockf_entry *overlap;
1063	int error;
1064
1065	LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1066		if (!lf_blocks(lock, overlap))
1067			continue;
1068
1069		/*
1070		 * We've found a blocking lock. Add the corresponding
1071		 * edge to the graphs and see if it would cause a
1072		 * deadlock.
1073		 */
1074		error = lf_add_edge(overlap, lock);
1075
1076		/*
1077		 * The only error that lf_add_edge returns is EDEADLK.
1078		 * Remove any edges we added and return the error.
1079		 */
1080		if (error) {
1081			lf_remove_incoming(lock);
1082			return (error);
1083		}
1084	}
1085	return (0);
1086}
1087
1088/*
1089 * Insert lock into the active list, keeping list entries ordered by
1090 * increasing values of lf_start.
1091 */
1092static void
1093lf_insert_lock(struct lockf *state, struct lockf_entry *lock)
1094{
1095	struct lockf_entry *lf, *lfprev;
1096
1097	if (LIST_EMPTY(&state->ls_active)) {
1098		LIST_INSERT_HEAD(&state->ls_active, lock, lf_link);
1099		return;
1100	}
1101
1102	lfprev = NULL;
1103	LIST_FOREACH(lf, &state->ls_active, lf_link) {
1104		if (lf->lf_start > lock->lf_start) {
1105			LIST_INSERT_BEFORE(lf, lock, lf_link);
1106			return;
1107		}
1108		lfprev = lf;
1109	}
1110	LIST_INSERT_AFTER(lfprev, lock, lf_link);
1111}
1112
1113/*
1114 * Wake up a sleeping lock and remove it from the pending list now
1115 * that all its dependencies have been resolved. The caller should
1116 * arrange for the lock to be added to the active list, adjusting any
1117 * existing locks for the same owner as needed.
1118 */
1119static void
1120lf_wakeup_lock(struct lockf *state, struct lockf_entry *wakelock)
1121{
1122
1123	/*
1124	 * Remove from ls_pending list and wake up the caller
1125	 * or start the async notification, as appropriate.
1126	 */
1127	LIST_REMOVE(wakelock, lf_link);
1128#ifdef LOCKF_DEBUG
1129	if (lockf_debug & 1)
1130		lf_print("lf_wakeup_lock: awakening", wakelock);
1131#endif /* LOCKF_DEBUG */
1132	if (wakelock->lf_async_task) {
1133		taskqueue_enqueue(taskqueue_thread, wakelock->lf_async_task);
1134	} else {
1135		wakeup(wakelock);
1136	}
1137}
1138
1139/*
1140 * Re-check all dependent locks and remove edges to locks that we no
1141 * longer block. If 'all' is non-zero, the lock has been removed and
1142 * we must remove all the dependencies, otherwise it has simply been
1143 * reduced but remains active. Any pending locks which have been been
1144 * unblocked are added to 'granted'
1145 */
1146static void
1147lf_update_dependancies(struct lockf *state, struct lockf_entry *lock, int all,
1148	struct lockf_entry_list *granted)
1149{
1150	struct lockf_edge *e, *ne;
1151	struct lockf_entry *deplock;
1152
1153	LIST_FOREACH_SAFE(e, &lock->lf_inedges, le_inlink, ne) {
1154		deplock = e->le_from;
1155		if (all || !lf_blocks(lock, deplock)) {
1156			sx_xlock(&lf_owner_graph_lock);
1157			lf_remove_edge(e);
1158			sx_xunlock(&lf_owner_graph_lock);
1159			if (LIST_EMPTY(&deplock->lf_outedges)) {
1160				lf_wakeup_lock(state, deplock);
1161				LIST_INSERT_HEAD(granted, deplock, lf_link);
1162			}
1163		}
1164	}
1165}
1166
1167/*
1168 * Set the start of an existing active lock, updating dependencies and
1169 * adding any newly woken locks to 'granted'.
1170 */
1171static void
1172lf_set_start(struct lockf *state, struct lockf_entry *lock, off_t new_start,
1173	struct lockf_entry_list *granted)
1174{
1175
1176	KASSERT(new_start >= lock->lf_start, ("can't increase lock"));
1177	lock->lf_start = new_start;
1178	LIST_REMOVE(lock, lf_link);
1179	lf_insert_lock(state, lock);
1180	lf_update_dependancies(state, lock, FALSE, granted);
1181}
1182
1183/*
1184 * Set the end of an existing active lock, updating dependencies and
1185 * adding any newly woken locks to 'granted'.
1186 */
1187static void
1188lf_set_end(struct lockf *state, struct lockf_entry *lock, off_t new_end,
1189	struct lockf_entry_list *granted)
1190{
1191
1192	KASSERT(new_end <= lock->lf_end, ("can't increase lock"));
1193	lock->lf_end = new_end;
1194	lf_update_dependancies(state, lock, FALSE, granted);
1195}
1196
1197/*
1198 * Add a lock to the active list, updating or removing any current
1199 * locks owned by the same owner and processing any pending locks that
1200 * become unblocked as a result. This code is also used for unlock
1201 * since the logic for updating existing locks is identical.
1202 *
1203 * As a result of processing the new lock, we may unblock existing
1204 * pending locks as a result of downgrading/unlocking. We simply
1205 * activate the newly granted locks by looping.
1206 *
1207 * Since the new lock already has its dependencies set up, we always
1208 * add it to the list (unless its an unlock request). This may
1209 * fragment the lock list in some pathological cases but its probably
1210 * not a real problem.
1211 */
1212static void
1213lf_activate_lock(struct lockf *state, struct lockf_entry *lock)
1214{
1215	struct lockf_entry *overlap, *lf;
1216	struct lockf_entry_list granted;
1217	int ovcase;
1218
1219	LIST_INIT(&granted);
1220	LIST_INSERT_HEAD(&granted, lock, lf_link);
1221
1222	while (!LIST_EMPTY(&granted)) {
1223		lock = LIST_FIRST(&granted);
1224		LIST_REMOVE(lock, lf_link);
1225
1226		/*
1227		 * Skip over locks owned by other processes.  Handle
1228		 * any locks that overlap and are owned by ourselves.
1229		 */
1230		overlap = LIST_FIRST(&state->ls_active);
1231		for (;;) {
1232			ovcase = lf_findoverlap(&overlap, lock, SELF);
1233
1234#ifdef LOCKF_DEBUG
1235			if (ovcase && (lockf_debug & 2)) {
1236				printf("lf_setlock: overlap %d", ovcase);
1237				lf_print("", overlap);
1238			}
1239#endif
1240			/*
1241			 * Six cases:
1242			 *	0) no overlap
1243			 *	1) overlap == lock
1244			 *	2) overlap contains lock
1245			 *	3) lock contains overlap
1246			 *	4) overlap starts before lock
1247			 *	5) overlap ends after lock
1248			 */
1249			switch (ovcase) {
1250			case 0: /* no overlap */
1251				break;
1252
1253			case 1: /* overlap == lock */
1254				/*
1255				 * We have already setup the
1256				 * dependants for the new lock, taking
1257				 * into account a possible downgrade
1258				 * or unlock. Remove the old lock.
1259				 */
1260				LIST_REMOVE(overlap, lf_link);
1261				lf_update_dependancies(state, overlap, TRUE,
1262					&granted);
1263				lf_free_lock(overlap);
1264				break;
1265
1266			case 2: /* overlap contains lock */
1267				/*
1268				 * Just split the existing lock.
1269				 */
1270				lf_split(state, overlap, lock, &granted);
1271				break;
1272
1273			case 3: /* lock contains overlap */
1274				/*
1275				 * Delete the overlap and advance to
1276				 * the next entry in the list.
1277				 */
1278				lf = LIST_NEXT(overlap, lf_link);
1279				LIST_REMOVE(overlap, lf_link);
1280				lf_update_dependancies(state, overlap, TRUE,
1281					&granted);
1282				lf_free_lock(overlap);
1283				overlap = lf;
1284				continue;
1285
1286			case 4: /* overlap starts before lock */
1287				/*
1288				 * Just update the overlap end and
1289				 * move on.
1290				 */
1291				lf_set_end(state, overlap, lock->lf_start - 1,
1292				    &granted);
1293				overlap = LIST_NEXT(overlap, lf_link);
1294				continue;
1295
1296			case 5: /* overlap ends after lock */
1297				/*
1298				 * Change the start of overlap and
1299				 * re-insert.
1300				 */
1301				lf_set_start(state, overlap, lock->lf_end + 1,
1302				    &granted);
1303				break;
1304			}
1305			break;
1306		}
1307#ifdef LOCKF_DEBUG
1308		if (lockf_debug & 1) {
1309			if (lock->lf_type != F_UNLCK)
1310				lf_print("lf_activate_lock: activated", lock);
1311			else
1312				lf_print("lf_activate_lock: unlocked", lock);
1313			lf_printlist("lf_activate_lock", lock);
1314		}
1315#endif /* LOCKF_DEBUG */
1316		if (lock->lf_type != F_UNLCK)
1317			lf_insert_lock(state, lock);
1318	}
1319}
1320
1321/*
1322 * Cancel a pending lock request, either as a result of a signal or a
1323 * cancel request for an async lock.
1324 */
1325static void
1326lf_cancel_lock(struct lockf *state, struct lockf_entry *lock)
1327{
1328	struct lockf_entry_list granted;
1329
1330	/*
1331	 * Note it is theoretically possible that cancelling this lock
1332	 * may allow some other pending lock to become
1333	 * active. Consider this case:
1334	 *
1335	 * Owner	Action		Result		Dependencies
1336	 *
1337	 * A:		lock [0..0]	succeeds
1338	 * B:		lock [2..2]	succeeds
1339	 * C:		lock [1..2]	blocked		C->B
1340	 * D:		lock [0..1]	blocked		C->B,D->A,D->C
1341	 * A:		unlock [0..0]			C->B,D->C
1342	 * C:		cancel [1..2]
1343	 */
1344
1345	LIST_REMOVE(lock, lf_link);
1346
1347	/*
1348	 * Removing out-going edges is simple.
1349	 */
1350	sx_xlock(&lf_owner_graph_lock);
1351	lf_remove_outgoing(lock);
1352	sx_xunlock(&lf_owner_graph_lock);
1353
1354	/*
1355	 * Removing in-coming edges may allow some other lock to
1356	 * become active - we use lf_update_dependancies to figure
1357	 * this out.
1358	 */
1359	LIST_INIT(&granted);
1360	lf_update_dependancies(state, lock, TRUE, &granted);
1361	lf_free_lock(lock);
1362
1363	/*
1364	 * Feed any newly active locks to lf_activate_lock.
1365	 */
1366	while (!LIST_EMPTY(&granted)) {
1367		lock = LIST_FIRST(&granted);
1368		LIST_REMOVE(lock, lf_link);
1369		lf_activate_lock(state, lock);
1370	}
1371}
1372
1373/*
1374 * Set a byte-range lock.
1375 */
1376static int
1377lf_setlock(struct lockf *state, struct lockf_entry *lock, struct vnode *vp,
1378    void **cookiep)
1379{
1380	static char lockstr[] = "lockf";
1381	int priority, error;
1382
1383#ifdef LOCKF_DEBUG
1384	if (lockf_debug & 1)
1385		lf_print("lf_setlock", lock);
1386#endif /* LOCKF_DEBUG */
1387
1388	/*
1389	 * Set the priority
1390	 */
1391	priority = PLOCK;
1392	if (lock->lf_type == F_WRLCK)
1393		priority += 4;
1394	if (!(lock->lf_flags & F_NOINTR))
1395		priority |= PCATCH;
1396	/*
1397	 * Scan lock list for this file looking for locks that would block us.
1398	 */
1399	if (lf_getblock(state, lock)) {
1400		/*
1401		 * Free the structure and return if nonblocking.
1402		 */
1403		if ((lock->lf_flags & F_WAIT) == 0
1404		    && lock->lf_async_task == NULL) {
1405			lf_free_lock(lock);
1406			error = EAGAIN;
1407			goto out;
1408		}
1409
1410		/*
1411		 * For flock type locks, we must first remove
1412		 * any shared locks that we hold before we sleep
1413		 * waiting for an exclusive lock.
1414		 */
1415		if ((lock->lf_flags & F_FLOCK) &&
1416		    lock->lf_type == F_WRLCK) {
1417			lock->lf_type = F_UNLCK;
1418			lf_activate_lock(state, lock);
1419			lock->lf_type = F_WRLCK;
1420		}
1421
1422		/*
1423		 * We are blocked. Create edges to each blocking lock,
1424		 * checking for deadlock using the owner graph. For
1425		 * simplicity, we run deadlock detection for all
1426		 * locks, posix and otherwise.
1427		 */
1428		sx_xlock(&lf_owner_graph_lock);
1429		error = lf_add_outgoing(state, lock);
1430		sx_xunlock(&lf_owner_graph_lock);
1431
1432		if (error) {
1433#ifdef LOCKF_DEBUG
1434			if (lockf_debug & 1)
1435				lf_print("lf_setlock: deadlock", lock);
1436#endif
1437			lf_free_lock(lock);
1438			goto out;
1439		}
1440
1441		/*
1442		 * We have added edges to everything that blocks
1443		 * us. Sleep until they all go away.
1444		 */
1445		LIST_INSERT_HEAD(&state->ls_pending, lock, lf_link);
1446#ifdef LOCKF_DEBUG
1447		if (lockf_debug & 1) {
1448			struct lockf_edge *e;
1449			LIST_FOREACH(e, &lock->lf_outedges, le_outlink) {
1450				lf_print("lf_setlock: blocking on", e->le_to);
1451				lf_printlist("lf_setlock", e->le_to);
1452			}
1453		}
1454#endif /* LOCKF_DEBUG */
1455
1456		if ((lock->lf_flags & F_WAIT) == 0) {
1457			/*
1458			 * The caller requested async notification -
1459			 * this callback happens when the blocking
1460			 * lock is released, allowing the caller to
1461			 * make another attempt to take the lock.
1462			 */
1463			*cookiep = (void *) lock;
1464			error = EINPROGRESS;
1465			goto out;
1466		}
1467
1468		lock->lf_refs++;
1469		error = sx_sleep(lock, &state->ls_lock, priority, lockstr, 0);
1470		if (lf_free_lock(lock)) {
1471			error = EDOOFUS;
1472			goto out;
1473		}
1474
1475		/*
1476		 * We may have been awakened by a signal and/or by a
1477		 * debugger continuing us (in which cases we must
1478		 * remove our lock graph edges) and/or by another
1479		 * process releasing a lock (in which case our edges
1480		 * have already been removed and we have been moved to
1481		 * the active list). We may also have been woken by
1482		 * lf_purgelocks which we report to the caller as
1483		 * EINTR. In that case, lf_purgelocks will have
1484		 * removed our lock graph edges.
1485		 *
1486		 * Note that it is possible to receive a signal after
1487		 * we were successfully woken (and moved to the active
1488		 * list) but before we resumed execution. In this
1489		 * case, our lf_outedges list will be clear. We
1490		 * pretend there was no error.
1491		 *
1492		 * Note also, if we have been sleeping long enough, we
1493		 * may now have incoming edges from some newer lock
1494		 * which is waiting behind us in the queue.
1495		 */
1496		if (lock->lf_flags & F_INTR) {
1497			error = EINTR;
1498			lf_free_lock(lock);
1499			goto out;
1500		}
1501		if (LIST_EMPTY(&lock->lf_outedges)) {
1502			error = 0;
1503		} else {
1504			lf_cancel_lock(state, lock);
1505			goto out;
1506		}
1507#ifdef LOCKF_DEBUG
1508		if (lockf_debug & 1) {
1509			lf_print("lf_setlock: granted", lock);
1510		}
1511#endif
1512		goto out;
1513	}
1514	/*
1515	 * It looks like we are going to grant the lock. First add
1516	 * edges from any currently pending lock that the new lock
1517	 * would block.
1518	 */
1519	sx_xlock(&lf_owner_graph_lock);
1520	error = lf_add_incoming(state, lock);
1521	sx_xunlock(&lf_owner_graph_lock);
1522	if (error) {
1523#ifdef LOCKF_DEBUG
1524		if (lockf_debug & 1)
1525			lf_print("lf_setlock: deadlock", lock);
1526#endif
1527		lf_free_lock(lock);
1528		goto out;
1529	}
1530
1531	/*
1532	 * No blocks!!  Add the lock.  Note that we will
1533	 * downgrade or upgrade any overlapping locks this
1534	 * process already owns.
1535	 */
1536	lf_activate_lock(state, lock);
1537	error = 0;
1538out:
1539	return (error);
1540}
1541
1542/*
1543 * Remove a byte-range lock on an inode.
1544 *
1545 * Generally, find the lock (or an overlap to that lock)
1546 * and remove it (or shrink it), then wakeup anyone we can.
1547 */
1548static int
1549lf_clearlock(struct lockf *state, struct lockf_entry *unlock)
1550{
1551	struct lockf_entry *overlap;
1552
1553	overlap = LIST_FIRST(&state->ls_active);
1554
1555	if (overlap == NOLOCKF)
1556		return (0);
1557#ifdef LOCKF_DEBUG
1558	if (unlock->lf_type != F_UNLCK)
1559		panic("lf_clearlock: bad type");
1560	if (lockf_debug & 1)
1561		lf_print("lf_clearlock", unlock);
1562#endif /* LOCKF_DEBUG */
1563
1564	lf_activate_lock(state, unlock);
1565
1566	return (0);
1567}
1568
1569/*
1570 * Check whether there is a blocking lock, and if so return its
1571 * details in '*fl'.
1572 */
1573static int
1574lf_getlock(struct lockf *state, struct lockf_entry *lock, struct flock *fl)
1575{
1576	struct lockf_entry *block;
1577
1578#ifdef LOCKF_DEBUG
1579	if (lockf_debug & 1)
1580		lf_print("lf_getlock", lock);
1581#endif /* LOCKF_DEBUG */
1582
1583	if ((block = lf_getblock(state, lock))) {
1584		fl->l_type = block->lf_type;
1585		fl->l_whence = SEEK_SET;
1586		fl->l_start = block->lf_start;
1587		if (block->lf_end == OFF_MAX)
1588			fl->l_len = 0;
1589		else
1590			fl->l_len = block->lf_end - block->lf_start + 1;
1591		fl->l_pid = block->lf_owner->lo_pid;
1592		fl->l_sysid = block->lf_owner->lo_sysid;
1593	} else {
1594		fl->l_type = F_UNLCK;
1595	}
1596	return (0);
1597}
1598
1599/*
1600 * Cancel an async lock request.
1601 */
1602static int
1603lf_cancel(struct lockf *state, struct lockf_entry *lock, void *cookie)
1604{
1605	struct lockf_entry *reallock;
1606
1607	/*
1608	 * We need to match this request with an existing lock
1609	 * request.
1610	 */
1611	LIST_FOREACH(reallock, &state->ls_pending, lf_link) {
1612		if ((void *) reallock == cookie) {
1613			/*
1614			 * Double-check that this lock looks right
1615			 * (maybe use a rolling ID for the cancel
1616			 * cookie instead?)
1617			 */
1618			if (!(reallock->lf_vnode == lock->lf_vnode
1619				&& reallock->lf_start == lock->lf_start
1620				&& reallock->lf_end == lock->lf_end)) {
1621				return (ENOENT);
1622			}
1623
1624			/*
1625			 * Make sure this lock was async and then just
1626			 * remove it from its wait lists.
1627			 */
1628			if (!reallock->lf_async_task) {
1629				return (ENOENT);
1630			}
1631
1632			/*
1633			 * Note that since any other thread must take
1634			 * state->ls_lock before it can possibly
1635			 * trigger the async callback, we are safe
1636			 * from a race with lf_wakeup_lock, i.e. we
1637			 * can free the lock (actually our caller does
1638			 * this).
1639			 */
1640			lf_cancel_lock(state, reallock);
1641			return (0);
1642		}
1643	}
1644
1645	/*
1646	 * We didn't find a matching lock - not much we can do here.
1647	 */
1648	return (ENOENT);
1649}
1650
1651/*
1652 * Walk the list of locks for an inode and
1653 * return the first blocking lock.
1654 */
1655static struct lockf_entry *
1656lf_getblock(struct lockf *state, struct lockf_entry *lock)
1657{
1658	struct lockf_entry *overlap;
1659
1660	LIST_FOREACH(overlap, &state->ls_active, lf_link) {
1661		/*
1662		 * We may assume that the active list is sorted by
1663		 * lf_start.
1664		 */
1665		if (overlap->lf_start > lock->lf_end)
1666			break;
1667		if (!lf_blocks(lock, overlap))
1668			continue;
1669		return (overlap);
1670	}
1671	return (NOLOCKF);
1672}
1673
1674/*
1675 * Walk the list of locks for an inode to find an overlapping lock (if
1676 * any) and return a classification of that overlap.
1677 *
1678 * Arguments:
1679 *	*overlap	The place in the lock list to start looking
1680 *	lock		The lock which is being tested
1681 *	type		Pass 'SELF' to test only locks with the same
1682 *			owner as lock, or 'OTHER' to test only locks
1683 *			with a different owner
1684 *
1685 * Returns one of six values:
1686 *	0) no overlap
1687 *	1) overlap == lock
1688 *	2) overlap contains lock
1689 *	3) lock contains overlap
1690 *	4) overlap starts before lock
1691 *	5) overlap ends after lock
1692 *
1693 * If there is an overlapping lock, '*overlap' is set to point at the
1694 * overlapping lock.
1695 *
1696 * NOTE: this returns only the FIRST overlapping lock.  There
1697 *	 may be more than one.
1698 */
1699static int
1700lf_findoverlap(struct lockf_entry **overlap, struct lockf_entry *lock, int type)
1701{
1702	struct lockf_entry *lf;
1703	off_t start, end;
1704	int res;
1705
1706	if ((*overlap) == NOLOCKF) {
1707		return (0);
1708	}
1709#ifdef LOCKF_DEBUG
1710	if (lockf_debug & 2)
1711		lf_print("lf_findoverlap: looking for overlap in", lock);
1712#endif /* LOCKF_DEBUG */
1713	start = lock->lf_start;
1714	end = lock->lf_end;
1715	res = 0;
1716	while (*overlap) {
1717		lf = *overlap;
1718		if (lf->lf_start > end)
1719			break;
1720		if (((type & SELF) && lf->lf_owner != lock->lf_owner) ||
1721		    ((type & OTHERS) && lf->lf_owner == lock->lf_owner)) {
1722			*overlap = LIST_NEXT(lf, lf_link);
1723			continue;
1724		}
1725#ifdef LOCKF_DEBUG
1726		if (lockf_debug & 2)
1727			lf_print("\tchecking", lf);
1728#endif /* LOCKF_DEBUG */
1729		/*
1730		 * OK, check for overlap
1731		 *
1732		 * Six cases:
1733		 *	0) no overlap
1734		 *	1) overlap == lock
1735		 *	2) overlap contains lock
1736		 *	3) lock contains overlap
1737		 *	4) overlap starts before lock
1738		 *	5) overlap ends after lock
1739		 */
1740		if (start > lf->lf_end) {
1741			/* Case 0 */
1742#ifdef LOCKF_DEBUG
1743			if (lockf_debug & 2)
1744				printf("no overlap\n");
1745#endif /* LOCKF_DEBUG */
1746			*overlap = LIST_NEXT(lf, lf_link);
1747			continue;
1748		}
1749		if (lf->lf_start == start && lf->lf_end == end) {
1750			/* Case 1 */
1751#ifdef LOCKF_DEBUG
1752			if (lockf_debug & 2)
1753				printf("overlap == lock\n");
1754#endif /* LOCKF_DEBUG */
1755			res = 1;
1756			break;
1757		}
1758		if (lf->lf_start <= start && lf->lf_end >= end) {
1759			/* Case 2 */
1760#ifdef LOCKF_DEBUG
1761			if (lockf_debug & 2)
1762				printf("overlap contains lock\n");
1763#endif /* LOCKF_DEBUG */
1764			res = 2;
1765			break;
1766		}
1767		if (start <= lf->lf_start && end >= lf->lf_end) {
1768			/* Case 3 */
1769#ifdef LOCKF_DEBUG
1770			if (lockf_debug & 2)
1771				printf("lock contains overlap\n");
1772#endif /* LOCKF_DEBUG */
1773			res = 3;
1774			break;
1775		}
1776		if (lf->lf_start < start && lf->lf_end >= start) {
1777			/* Case 4 */
1778#ifdef LOCKF_DEBUG
1779			if (lockf_debug & 2)
1780				printf("overlap starts before lock\n");
1781#endif /* LOCKF_DEBUG */
1782			res = 4;
1783			break;
1784		}
1785		if (lf->lf_start > start && lf->lf_end > end) {
1786			/* Case 5 */
1787#ifdef LOCKF_DEBUG
1788			if (lockf_debug & 2)
1789				printf("overlap ends after lock\n");
1790#endif /* LOCKF_DEBUG */
1791			res = 5;
1792			break;
1793		}
1794		panic("lf_findoverlap: default");
1795	}
1796	return (res);
1797}
1798
1799/*
1800 * Split an the existing 'lock1', based on the extent of the lock
1801 * described by 'lock2'. The existing lock should cover 'lock2'
1802 * entirely.
1803 *
1804 * Any pending locks which have been been unblocked are added to
1805 * 'granted'
1806 */
1807static void
1808lf_split(struct lockf *state, struct lockf_entry *lock1,
1809    struct lockf_entry *lock2, struct lockf_entry_list *granted)
1810{
1811	struct lockf_entry *splitlock;
1812
1813#ifdef LOCKF_DEBUG
1814	if (lockf_debug & 2) {
1815		lf_print("lf_split", lock1);
1816		lf_print("splitting from", lock2);
1817	}
1818#endif /* LOCKF_DEBUG */
1819	/*
1820	 * Check to see if we don't need to split at all.
1821	 */
1822	if (lock1->lf_start == lock2->lf_start) {
1823		lf_set_start(state, lock1, lock2->lf_end + 1, granted);
1824		return;
1825	}
1826	if (lock1->lf_end == lock2->lf_end) {
1827		lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1828		return;
1829	}
1830	/*
1831	 * Make a new lock consisting of the last part of
1832	 * the encompassing lock.
1833	 */
1834	splitlock = lf_alloc_lock(lock1->lf_owner);
1835	memcpy(splitlock, lock1, sizeof *splitlock);
1836	splitlock->lf_refs = 1;
1837	if (splitlock->lf_flags & F_REMOTE)
1838		vref(splitlock->lf_vnode);
1839
1840	/*
1841	 * This cannot cause a deadlock since any edges we would add
1842	 * to splitlock already exist in lock1. We must be sure to add
1843	 * necessary dependencies to splitlock before we reduce lock1
1844	 * otherwise we may accidentally grant a pending lock that
1845	 * was blocked by the tail end of lock1.
1846	 */
1847	splitlock->lf_start = lock2->lf_end + 1;
1848	LIST_INIT(&splitlock->lf_outedges);
1849	LIST_INIT(&splitlock->lf_inedges);
1850	sx_xlock(&lf_owner_graph_lock);
1851	lf_add_incoming(state, splitlock);
1852	sx_xunlock(&lf_owner_graph_lock);
1853
1854	lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1855
1856	/*
1857	 * OK, now link it in
1858	 */
1859	lf_insert_lock(state, splitlock);
1860}
1861
1862struct lockdesc {
1863	STAILQ_ENTRY(lockdesc) link;
1864	struct vnode *vp;
1865	struct flock fl;
1866};
1867STAILQ_HEAD(lockdesclist, lockdesc);
1868
1869int
1870lf_iteratelocks_sysid(int sysid, lf_iterator *fn, void *arg)
1871{
1872	struct lockf *ls;
1873	struct lockf_entry *lf;
1874	struct lockdesc *ldesc;
1875	struct lockdesclist locks;
1876	int error;
1877
1878	/*
1879	 * In order to keep the locking simple, we iterate over the
1880	 * active lock lists to build a list of locks that need
1881	 * releasing. We then call the iterator for each one in turn.
1882	 *
1883	 * We take an extra reference to the vnode for the duration to
1884	 * make sure it doesn't go away before we are finished.
1885	 */
1886	STAILQ_INIT(&locks);
1887	sx_xlock(&lf_lock_states_lock);
1888	LIST_FOREACH(ls, &lf_lock_states, ls_link) {
1889		sx_xlock(&ls->ls_lock);
1890		LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1891			if (lf->lf_owner->lo_sysid != sysid)
1892				continue;
1893
1894			ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1895			    M_WAITOK);
1896			ldesc->vp = lf->lf_vnode;
1897			vref(ldesc->vp);
1898			ldesc->fl.l_start = lf->lf_start;
1899			if (lf->lf_end == OFF_MAX)
1900				ldesc->fl.l_len = 0;
1901			else
1902				ldesc->fl.l_len =
1903					lf->lf_end - lf->lf_start + 1;
1904			ldesc->fl.l_whence = SEEK_SET;
1905			ldesc->fl.l_type = F_UNLCK;
1906			ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1907			ldesc->fl.l_sysid = sysid;
1908			STAILQ_INSERT_TAIL(&locks, ldesc, link);
1909		}
1910		sx_xunlock(&ls->ls_lock);
1911	}
1912	sx_xunlock(&lf_lock_states_lock);
1913
1914	/*
1915	 * Call the iterator function for each lock in turn. If the
1916	 * iterator returns an error code, just free the rest of the
1917	 * lockdesc structures.
1918	 */
1919	error = 0;
1920	while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1921		STAILQ_REMOVE_HEAD(&locks, link);
1922		if (!error)
1923			error = fn(ldesc->vp, &ldesc->fl, arg);
1924		vrele(ldesc->vp);
1925		free(ldesc, M_LOCKF);
1926	}
1927
1928	return (error);
1929}
1930
1931int
1932lf_iteratelocks_vnode(struct vnode *vp, lf_iterator *fn, void *arg)
1933{
1934	struct lockf *ls;
1935	struct lockf_entry *lf;
1936	struct lockdesc *ldesc;
1937	struct lockdesclist locks;
1938	int error;
1939
1940	/*
1941	 * In order to keep the locking simple, we iterate over the
1942	 * active lock lists to build a list of locks that need
1943	 * releasing. We then call the iterator for each one in turn.
1944	 *
1945	 * We take an extra reference to the vnode for the duration to
1946	 * make sure it doesn't go away before we are finished.
1947	 */
1948	STAILQ_INIT(&locks);
1949	VI_LOCK(vp);
1950	ls = vp->v_lockf;
1951	if (!ls) {
1952		VI_UNLOCK(vp);
1953		return (0);
1954	}
1955	ls->ls_threads++;
1956	VI_UNLOCK(vp);
1957
1958	sx_xlock(&ls->ls_lock);
1959	LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1960		ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1961		    M_WAITOK);
1962		ldesc->vp = lf->lf_vnode;
1963		vref(ldesc->vp);
1964		ldesc->fl.l_start = lf->lf_start;
1965		if (lf->lf_end == OFF_MAX)
1966			ldesc->fl.l_len = 0;
1967		else
1968			ldesc->fl.l_len =
1969				lf->lf_end - lf->lf_start + 1;
1970		ldesc->fl.l_whence = SEEK_SET;
1971		ldesc->fl.l_type = F_UNLCK;
1972		ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1973		ldesc->fl.l_sysid = lf->lf_owner->lo_sysid;
1974		STAILQ_INSERT_TAIL(&locks, ldesc, link);
1975	}
1976	sx_xunlock(&ls->ls_lock);
1977	VI_LOCK(vp);
1978	ls->ls_threads--;
1979	wakeup(ls);
1980	VI_UNLOCK(vp);
1981
1982	/*
1983	 * Call the iterator function for each lock in turn. If the
1984	 * iterator returns an error code, just free the rest of the
1985	 * lockdesc structures.
1986	 */
1987	error = 0;
1988	while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1989		STAILQ_REMOVE_HEAD(&locks, link);
1990		if (!error)
1991			error = fn(ldesc->vp, &ldesc->fl, arg);
1992		vrele(ldesc->vp);
1993		free(ldesc, M_LOCKF);
1994	}
1995
1996	return (error);
1997}
1998
1999static int
2000lf_clearremotesys_iterator(struct vnode *vp, struct flock *fl, void *arg)
2001{
2002
2003	VOP_ADVLOCK(vp, 0, F_UNLCK, fl, F_REMOTE);
2004	return (0);
2005}
2006
2007void
2008lf_clearremotesys(int sysid)
2009{
2010
2011	KASSERT(sysid != 0, ("Can't clear local locks with F_UNLCKSYS"));
2012	lf_iteratelocks_sysid(sysid, lf_clearremotesys_iterator, NULL);
2013}
2014
2015int
2016lf_countlocks(int sysid)
2017{
2018	int i;
2019	struct lock_owner *lo;
2020	int count;
2021
2022	count = 0;
2023	sx_xlock(&lf_lock_owners_lock);
2024	for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++)
2025		LIST_FOREACH(lo, &lf_lock_owners[i], lo_link)
2026			if (lo->lo_sysid == sysid)
2027				count += lo->lo_refs;
2028	sx_xunlock(&lf_lock_owners_lock);
2029
2030	return (count);
2031}
2032
2033#ifdef LOCKF_DEBUG
2034
2035/*
2036 * Return non-zero if y is reachable from x using a brute force
2037 * search. If reachable and path is non-null, return the route taken
2038 * in path.
2039 */
2040static int
2041graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
2042    struct owner_vertex_list *path)
2043{
2044	struct owner_edge *e;
2045
2046	if (x == y) {
2047		if (path)
2048			TAILQ_INSERT_HEAD(path, x, v_link);
2049		return 1;
2050	}
2051
2052	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2053		if (graph_reaches(e->e_to, y, path)) {
2054			if (path)
2055				TAILQ_INSERT_HEAD(path, x, v_link);
2056			return 1;
2057		}
2058	}
2059	return 0;
2060}
2061
2062/*
2063 * Perform consistency checks on the graph. Make sure the values of
2064 * v_order are correct. If checkorder is non-zero, check no vertex can
2065 * reach any other vertex with a smaller order.
2066 */
2067static void
2068graph_check(struct owner_graph *g, int checkorder)
2069{
2070	int i, j;
2071
2072	for (i = 0; i < g->g_size; i++) {
2073		if (!g->g_vertices[i]->v_owner)
2074			continue;
2075		KASSERT(g->g_vertices[i]->v_order == i,
2076		    ("lock graph vertices disordered"));
2077		if (checkorder) {
2078			for (j = 0; j < i; j++) {
2079				if (!g->g_vertices[j]->v_owner)
2080					continue;
2081				KASSERT(!graph_reaches(g->g_vertices[i],
2082					g->g_vertices[j], NULL),
2083				    ("lock graph vertices disordered"));
2084			}
2085		}
2086	}
2087}
2088
2089static void
2090graph_print_vertices(struct owner_vertex_list *set)
2091{
2092	struct owner_vertex *v;
2093
2094	printf("{ ");
2095	TAILQ_FOREACH(v, set, v_link) {
2096		printf("%d:", v->v_order);
2097		lf_print_owner(v->v_owner);
2098		if (TAILQ_NEXT(v, v_link))
2099			printf(", ");
2100	}
2101	printf(" }\n");
2102}
2103
2104#endif
2105
2106/*
2107 * Calculate the sub-set of vertices v from the affected region [y..x]
2108 * where v is reachable from y. Return -1 if a loop was detected
2109 * (i.e. x is reachable from y, otherwise the number of vertices in
2110 * this subset.
2111 */
2112static int
2113graph_delta_forward(struct owner_graph *g, struct owner_vertex *x,
2114    struct owner_vertex *y, struct owner_vertex_list *delta)
2115{
2116	uint32_t gen;
2117	struct owner_vertex *v;
2118	struct owner_edge *e;
2119	int n;
2120
2121	/*
2122	 * We start with a set containing just y. Then for each vertex
2123	 * v in the set so far unprocessed, we add each vertex that v
2124	 * has an out-edge to and that is within the affected region
2125	 * [y..x]. If we see the vertex x on our travels, stop
2126	 * immediately.
2127	 */
2128	TAILQ_INIT(delta);
2129	TAILQ_INSERT_TAIL(delta, y, v_link);
2130	v = y;
2131	n = 1;
2132	gen = g->g_gen;
2133	while (v) {
2134		LIST_FOREACH(e, &v->v_outedges, e_outlink) {
2135			if (e->e_to == x)
2136				return -1;
2137			if (e->e_to->v_order < x->v_order
2138			    && e->e_to->v_gen != gen) {
2139				e->e_to->v_gen = gen;
2140				TAILQ_INSERT_TAIL(delta, e->e_to, v_link);
2141				n++;
2142			}
2143		}
2144		v = TAILQ_NEXT(v, v_link);
2145	}
2146
2147	return (n);
2148}
2149
2150/*
2151 * Calculate the sub-set of vertices v from the affected region [y..x]
2152 * where v reaches x. Return the number of vertices in this subset.
2153 */
2154static int
2155graph_delta_backward(struct owner_graph *g, struct owner_vertex *x,
2156    struct owner_vertex *y, struct owner_vertex_list *delta)
2157{
2158	uint32_t gen;
2159	struct owner_vertex *v;
2160	struct owner_edge *e;
2161	int n;
2162
2163	/*
2164	 * We start with a set containing just x. Then for each vertex
2165	 * v in the set so far unprocessed, we add each vertex that v
2166	 * has an in-edge from and that is within the affected region
2167	 * [y..x].
2168	 */
2169	TAILQ_INIT(delta);
2170	TAILQ_INSERT_TAIL(delta, x, v_link);
2171	v = x;
2172	n = 1;
2173	gen = g->g_gen;
2174	while (v) {
2175		LIST_FOREACH(e, &v->v_inedges, e_inlink) {
2176			if (e->e_from->v_order > y->v_order
2177			    && e->e_from->v_gen != gen) {
2178				e->e_from->v_gen = gen;
2179				TAILQ_INSERT_HEAD(delta, e->e_from, v_link);
2180				n++;
2181			}
2182		}
2183		v = TAILQ_PREV(v, owner_vertex_list, v_link);
2184	}
2185
2186	return (n);
2187}
2188
2189static int
2190graph_add_indices(int *indices, int n, struct owner_vertex_list *set)
2191{
2192	struct owner_vertex *v;
2193	int i, j;
2194
2195	TAILQ_FOREACH(v, set, v_link) {
2196		for (i = n;
2197		     i > 0 && indices[i - 1] > v->v_order; i--)
2198			;
2199		for (j = n - 1; j >= i; j--)
2200			indices[j + 1] = indices[j];
2201		indices[i] = v->v_order;
2202		n++;
2203	}
2204
2205	return (n);
2206}
2207
2208static int
2209graph_assign_indices(struct owner_graph *g, int *indices, int nextunused,
2210    struct owner_vertex_list *set)
2211{
2212	struct owner_vertex *v, *vlowest;
2213
2214	while (!TAILQ_EMPTY(set)) {
2215		vlowest = NULL;
2216		TAILQ_FOREACH(v, set, v_link) {
2217			if (!vlowest || v->v_order < vlowest->v_order)
2218				vlowest = v;
2219		}
2220		TAILQ_REMOVE(set, vlowest, v_link);
2221		vlowest->v_order = indices[nextunused];
2222		g->g_vertices[vlowest->v_order] = vlowest;
2223		nextunused++;
2224	}
2225
2226	return (nextunused);
2227}
2228
2229static int
2230graph_add_edge(struct owner_graph *g, struct owner_vertex *x,
2231    struct owner_vertex *y)
2232{
2233	struct owner_edge *e;
2234	struct owner_vertex_list deltaF, deltaB;
2235	int nF, nB, n, vi, i;
2236	int *indices;
2237
2238	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2239
2240	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2241		if (e->e_to == y) {
2242			e->e_refs++;
2243			return (0);
2244		}
2245	}
2246
2247#ifdef LOCKF_DEBUG
2248	if (lockf_debug & 8) {
2249		printf("adding edge %d:", x->v_order);
2250		lf_print_owner(x->v_owner);
2251		printf(" -> %d:", y->v_order);
2252		lf_print_owner(y->v_owner);
2253		printf("\n");
2254	}
2255#endif
2256	if (y->v_order < x->v_order) {
2257		/*
2258		 * The new edge violates the order. First find the set
2259		 * of affected vertices reachable from y (deltaF) and
2260		 * the set of affect vertices affected that reach x
2261		 * (deltaB), using the graph generation number to
2262		 * detect whether we have visited a given vertex
2263		 * already. We re-order the graph so that each vertex
2264		 * in deltaB appears before each vertex in deltaF.
2265		 *
2266		 * If x is a member of deltaF, then the new edge would
2267		 * create a cycle. Otherwise, we may assume that
2268		 * deltaF and deltaB are disjoint.
2269		 */
2270		g->g_gen++;
2271		if (g->g_gen == 0) {
2272			/*
2273			 * Generation wrap.
2274			 */
2275			for (vi = 0; vi < g->g_size; vi++) {
2276				g->g_vertices[vi]->v_gen = 0;
2277			}
2278			g->g_gen++;
2279		}
2280		nF = graph_delta_forward(g, x, y, &deltaF);
2281		if (nF < 0) {
2282#ifdef LOCKF_DEBUG
2283			if (lockf_debug & 8) {
2284				struct owner_vertex_list path;
2285				printf("deadlock: ");
2286				TAILQ_INIT(&path);
2287				graph_reaches(y, x, &path);
2288				graph_print_vertices(&path);
2289			}
2290#endif
2291			return (EDEADLK);
2292		}
2293
2294#ifdef LOCKF_DEBUG
2295		if (lockf_debug & 8) {
2296			printf("re-ordering graph vertices\n");
2297			printf("deltaF = ");
2298			graph_print_vertices(&deltaF);
2299		}
2300#endif
2301
2302		nB = graph_delta_backward(g, x, y, &deltaB);
2303
2304#ifdef LOCKF_DEBUG
2305		if (lockf_debug & 8) {
2306			printf("deltaB = ");
2307			graph_print_vertices(&deltaB);
2308		}
2309#endif
2310
2311		/*
2312		 * We first build a set of vertex indices (vertex
2313		 * order values) that we may use, then we re-assign
2314		 * orders first to those vertices in deltaB, then to
2315		 * deltaF. Note that the contents of deltaF and deltaB
2316		 * may be partially disordered - we perform an
2317		 * insertion sort while building our index set.
2318		 */
2319		indices = g->g_indexbuf;
2320		n = graph_add_indices(indices, 0, &deltaF);
2321		graph_add_indices(indices, n, &deltaB);
2322
2323		/*
2324		 * We must also be sure to maintain the relative
2325		 * ordering of deltaF and deltaB when re-assigning
2326		 * vertices. We do this by iteratively removing the
2327		 * lowest ordered element from the set and assigning
2328		 * it the next value from our new ordering.
2329		 */
2330		i = graph_assign_indices(g, indices, 0, &deltaB);
2331		graph_assign_indices(g, indices, i, &deltaF);
2332
2333#ifdef LOCKF_DEBUG
2334		if (lockf_debug & 8) {
2335			struct owner_vertex_list set;
2336			TAILQ_INIT(&set);
2337			for (i = 0; i < nB + nF; i++)
2338				TAILQ_INSERT_TAIL(&set,
2339				    g->g_vertices[indices[i]], v_link);
2340			printf("new ordering = ");
2341			graph_print_vertices(&set);
2342		}
2343#endif
2344	}
2345
2346	KASSERT(x->v_order < y->v_order, ("Failed to re-order graph"));
2347
2348#ifdef LOCKF_DEBUG
2349	if (lockf_debug & 8) {
2350		graph_check(g, TRUE);
2351	}
2352#endif
2353
2354	e = malloc(sizeof(struct owner_edge), M_LOCKF, M_WAITOK);
2355
2356	LIST_INSERT_HEAD(&x->v_outedges, e, e_outlink);
2357	LIST_INSERT_HEAD(&y->v_inedges, e, e_inlink);
2358	e->e_refs = 1;
2359	e->e_from = x;
2360	e->e_to = y;
2361
2362	return (0);
2363}
2364
2365/*
2366 * Remove an edge x->y from the graph.
2367 */
2368static void
2369graph_remove_edge(struct owner_graph *g, struct owner_vertex *x,
2370    struct owner_vertex *y)
2371{
2372	struct owner_edge *e;
2373
2374	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2375
2376	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2377		if (e->e_to == y)
2378			break;
2379	}
2380	KASSERT(e, ("Removing non-existent edge from deadlock graph"));
2381
2382	e->e_refs--;
2383	if (e->e_refs == 0) {
2384#ifdef LOCKF_DEBUG
2385		if (lockf_debug & 8) {
2386			printf("removing edge %d:", x->v_order);
2387			lf_print_owner(x->v_owner);
2388			printf(" -> %d:", y->v_order);
2389			lf_print_owner(y->v_owner);
2390			printf("\n");
2391		}
2392#endif
2393		LIST_REMOVE(e, e_outlink);
2394		LIST_REMOVE(e, e_inlink);
2395		free(e, M_LOCKF);
2396	}
2397}
2398
2399/*
2400 * Allocate a vertex from the free list. Return ENOMEM if there are
2401 * none.
2402 */
2403static struct owner_vertex *
2404graph_alloc_vertex(struct owner_graph *g, struct lock_owner *lo)
2405{
2406	struct owner_vertex *v;
2407
2408	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2409
2410	v = malloc(sizeof(struct owner_vertex), M_LOCKF, M_WAITOK);
2411	if (g->g_size == g->g_space) {
2412		g->g_vertices = realloc(g->g_vertices,
2413		    2 * g->g_space * sizeof(struct owner_vertex *),
2414		    M_LOCKF, M_WAITOK);
2415		free(g->g_indexbuf, M_LOCKF);
2416		g->g_indexbuf = malloc(2 * g->g_space * sizeof(int),
2417		    M_LOCKF, M_WAITOK);
2418		g->g_space = 2 * g->g_space;
2419	}
2420	v->v_order = g->g_size;
2421	v->v_gen = g->g_gen;
2422	g->g_vertices[g->g_size] = v;
2423	g->g_size++;
2424
2425	LIST_INIT(&v->v_outedges);
2426	LIST_INIT(&v->v_inedges);
2427	v->v_owner = lo;
2428
2429	return (v);
2430}
2431
2432static void
2433graph_free_vertex(struct owner_graph *g, struct owner_vertex *v)
2434{
2435	struct owner_vertex *w;
2436	int i;
2437
2438	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2439
2440	KASSERT(LIST_EMPTY(&v->v_outedges), ("Freeing vertex with edges"));
2441	KASSERT(LIST_EMPTY(&v->v_inedges), ("Freeing vertex with edges"));
2442
2443	/*
2444	 * Remove from the graph's array and close up the gap,
2445	 * renumbering the other vertices.
2446	 */
2447	for (i = v->v_order + 1; i < g->g_size; i++) {
2448		w = g->g_vertices[i];
2449		w->v_order--;
2450		g->g_vertices[i - 1] = w;
2451	}
2452	g->g_size--;
2453
2454	free(v, M_LOCKF);
2455}
2456
2457static struct owner_graph *
2458graph_init(struct owner_graph *g)
2459{
2460
2461	g->g_vertices = malloc(10 * sizeof(struct owner_vertex *),
2462	    M_LOCKF, M_WAITOK);
2463	g->g_size = 0;
2464	g->g_space = 10;
2465	g->g_indexbuf = malloc(g->g_space * sizeof(int), M_LOCKF, M_WAITOK);
2466	g->g_gen = 0;
2467
2468	return (g);
2469}
2470
2471#ifdef LOCKF_DEBUG
2472/*
2473 * Print description of a lock owner
2474 */
2475static void
2476lf_print_owner(struct lock_owner *lo)
2477{
2478
2479	if (lo->lo_flags & F_REMOTE) {
2480		printf("remote pid %d, system %d",
2481		    lo->lo_pid, lo->lo_sysid);
2482	} else if (lo->lo_flags & F_FLOCK) {
2483		printf("file %p", lo->lo_id);
2484	} else {
2485		printf("local pid %d", lo->lo_pid);
2486	}
2487}
2488
2489/*
2490 * Print out a lock.
2491 */
2492static void
2493lf_print(char *tag, struct lockf_entry *lock)
2494{
2495
2496	printf("%s: lock %p for ", tag, (void *)lock);
2497	lf_print_owner(lock->lf_owner);
2498	if (lock->lf_inode != (struct inode *)0)
2499		printf(" in ino %ju on dev <%s>,",
2500		    (uintmax_t)lock->lf_inode->i_number,
2501		    devtoname(lock->lf_inode->i_dev));
2502	printf(" %s, start %jd, end ",
2503	    lock->lf_type == F_RDLCK ? "shared" :
2504	    lock->lf_type == F_WRLCK ? "exclusive" :
2505	    lock->lf_type == F_UNLCK ? "unlock" : "unknown",
2506	    (intmax_t)lock->lf_start);
2507	if (lock->lf_end == OFF_MAX)
2508		printf("EOF");
2509	else
2510		printf("%jd", (intmax_t)lock->lf_end);
2511	if (!LIST_EMPTY(&lock->lf_outedges))
2512		printf(" block %p\n",
2513		    (void *)LIST_FIRST(&lock->lf_outedges)->le_to);
2514	else
2515		printf("\n");
2516}
2517
2518static void
2519lf_printlist(char *tag, struct lockf_entry *lock)
2520{
2521	struct lockf_entry *lf, *blk;
2522	struct lockf_edge *e;
2523
2524	if (lock->lf_inode == (struct inode *)0)
2525		return;
2526
2527	printf("%s: Lock list for ino %ju on dev <%s>:\n",
2528	    tag, (uintmax_t)lock->lf_inode->i_number,
2529	    devtoname(lock->lf_inode->i_dev));
2530	LIST_FOREACH(lf, &lock->lf_vnode->v_lockf->ls_active, lf_link) {
2531		printf("\tlock %p for ",(void *)lf);
2532		lf_print_owner(lock->lf_owner);
2533		printf(", %s, start %jd, end %jd",
2534		    lf->lf_type == F_RDLCK ? "shared" :
2535		    lf->lf_type == F_WRLCK ? "exclusive" :
2536		    lf->lf_type == F_UNLCK ? "unlock" :
2537		    "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
2538		LIST_FOREACH(e, &lf->lf_outedges, le_outlink) {
2539			blk = e->le_to;
2540			printf("\n\t\tlock request %p for ", (void *)blk);
2541			lf_print_owner(blk->lf_owner);
2542			printf(", %s, start %jd, end %jd",
2543			    blk->lf_type == F_RDLCK ? "shared" :
2544			    blk->lf_type == F_WRLCK ? "exclusive" :
2545			    blk->lf_type == F_UNLCK ? "unlock" :
2546			    "unknown", (intmax_t)blk->lf_start,
2547			    (intmax_t)blk->lf_end);
2548			if (!LIST_EMPTY(&blk->lf_inedges))
2549				panic("lf_printlist: bad list");
2550		}
2551		printf("\n");
2552	}
2553}
2554#endif /* LOCKF_DEBUG */
2555