1/*-
2 * Copyright (c) 1990 William Jolitz.
3 * Copyright (c) 1991 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 4. Neither the name of the University nor the names of its contributors
15 *    may be used to endorse or promote products derived from this software
16 *    without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: stable/10/sys/i386/isa/npx.c 337245 2018-08-03 14:12:37Z kib $");
35
36#include "opt_cpu.h"
37#include "opt_isa.h"
38#include "opt_npx.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/bus.h>
43#include <sys/kernel.h>
44#include <sys/lock.h>
45#include <sys/malloc.h>
46#include <sys/module.h>
47#include <sys/mutex.h>
48#include <sys/mutex.h>
49#include <sys/proc.h>
50#include <sys/smp.h>
51#include <sys/sysctl.h>
52#include <machine/bus.h>
53#include <sys/rman.h>
54#ifdef NPX_DEBUG
55#include <sys/syslog.h>
56#endif
57#include <sys/signalvar.h>
58#include <vm/uma.h>
59
60#include <machine/asmacros.h>
61#include <machine/cputypes.h>
62#include <machine/frame.h>
63#include <machine/md_var.h>
64#include <machine/pcb.h>
65#include <machine/psl.h>
66#include <machine/resource.h>
67#include <machine/specialreg.h>
68#include <machine/segments.h>
69#include <machine/ucontext.h>
70
71#include <machine/intr_machdep.h>
72#ifdef XEN
73#include <xen/xen-os.h>
74#include <xen/hypervisor.h>
75#endif
76
77#ifdef DEV_ISA
78#include <isa/isavar.h>
79#endif
80
81#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
82#define CPU_ENABLE_SSE
83#endif
84
85/*
86 * 387 and 287 Numeric Coprocessor Extension (NPX) Driver.
87 */
88
89#if defined(__GNUCLIKE_ASM) && !defined(lint)
90
91#define	fldcw(cw)		__asm __volatile("fldcw %0" : : "m" (cw))
92#define	fnclex()		__asm __volatile("fnclex")
93#define	fninit()		__asm __volatile("fninit")
94#define	fnsave(addr)		__asm __volatile("fnsave %0" : "=m" (*(addr)))
95#define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
96#define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=am" (*(addr)))
97#define	fp_divide_by_0()	__asm __volatile( \
98				    "fldz; fld1; fdiv %st,%st(1); fnop")
99#define	frstor(addr)		__asm __volatile("frstor %0" : : "m" (*(addr)))
100#ifdef CPU_ENABLE_SSE
101#define	fxrstor(addr)		__asm __volatile("fxrstor %0" : : "m" (*(addr)))
102#define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
103#define	ldmxcsr(csr)		__asm __volatile("ldmxcsr %0" : : "m" (csr))
104#define	stmxcsr(addr)		__asm __volatile("stmxcsr %0" : : "m" (*(addr)))
105
106static __inline void
107xrstor(char *addr, uint64_t mask)
108{
109	uint32_t low, hi;
110
111	low = mask;
112	hi = mask >> 32;
113	__asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
114}
115
116static __inline void
117xsave(char *addr, uint64_t mask)
118{
119	uint32_t low, hi;
120
121	low = mask;
122	hi = mask >> 32;
123	__asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
124	    "memory");
125}
126
127static __inline void
128xsaveopt(char *addr, uint64_t mask)
129{
130	uint32_t low, hi;
131
132	low = mask;
133	hi = mask >> 32;
134	__asm __volatile("xsaveopt %0" : "=m" (*addr) : "a" (low), "d" (hi) :
135	    "memory");
136}
137#endif
138#else	/* !(__GNUCLIKE_ASM && !lint) */
139
140void	fldcw(u_short cw);
141void	fnclex(void);
142void	fninit(void);
143void	fnsave(caddr_t addr);
144void	fnstcw(caddr_t addr);
145void	fnstsw(caddr_t addr);
146void	fp_divide_by_0(void);
147void	frstor(caddr_t addr);
148#ifdef CPU_ENABLE_SSE
149void	fxsave(caddr_t addr);
150void	fxrstor(caddr_t addr);
151void	ldmxcsr(u_int csr);
152void	stmxcsr(u_int *csr);
153void	xrstor(char *addr, uint64_t mask);
154void	xsave(char *addr, uint64_t mask);
155void	xsaveopt(char *addr, uint64_t mask);
156#endif
157
158#endif	/* __GNUCLIKE_ASM && !lint */
159
160#ifdef XEN
161#define	start_emulating()	(HYPERVISOR_fpu_taskswitch(1))
162#define	stop_emulating()	(HYPERVISOR_fpu_taskswitch(0))
163#else
164#define	start_emulating()	load_cr0(rcr0() | CR0_TS)
165#define	stop_emulating()	clts()
166#endif
167
168#ifdef CPU_ENABLE_SSE
169#define GET_FPU_CW(thread) \
170	(cpu_fxsr ? \
171		(thread)->td_pcb->pcb_save->sv_xmm.sv_env.en_cw : \
172		(thread)->td_pcb->pcb_save->sv_87.sv_env.en_cw)
173#define GET_FPU_SW(thread) \
174	(cpu_fxsr ? \
175		(thread)->td_pcb->pcb_save->sv_xmm.sv_env.en_sw : \
176		(thread)->td_pcb->pcb_save->sv_87.sv_env.en_sw)
177#define SET_FPU_CW(savefpu, value) do { \
178	if (cpu_fxsr) \
179		(savefpu)->sv_xmm.sv_env.en_cw = (value); \
180	else \
181		(savefpu)->sv_87.sv_env.en_cw = (value); \
182} while (0)
183#else /* CPU_ENABLE_SSE */
184#define GET_FPU_CW(thread) \
185	(thread->td_pcb->pcb_save->sv_87.sv_env.en_cw)
186#define GET_FPU_SW(thread) \
187	(thread->td_pcb->pcb_save->sv_87.sv_env.en_sw)
188#define SET_FPU_CW(savefpu, value) \
189	(savefpu)->sv_87.sv_env.en_cw = (value)
190#endif /* CPU_ENABLE_SSE */
191
192#ifdef CPU_ENABLE_SSE
193CTASSERT(sizeof(union savefpu) == 512);
194CTASSERT(sizeof(struct xstate_hdr) == 64);
195CTASSERT(sizeof(struct savefpu_ymm) == 832);
196
197/*
198 * This requirement is to make it easier for asm code to calculate
199 * offset of the fpu save area from the pcb address. FPU save area
200 * must be 64-byte aligned.
201 */
202CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
203
204/*
205 * Ensure the copy of XCR0 saved in a core is contained in the padding
206 * area.
207 */
208CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savexmm, sv_pad) &&
209    X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savexmm));
210
211static	void	fpu_clean_state(void);
212#endif
213
214static	void	fpusave(union savefpu *);
215static	void	fpurstor(union savefpu *);
216
217int	hw_float;
218
219SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
220    &hw_float, 0, "Floating point instructions executed in hardware");
221
222int lazy_fpu_switch = 0;
223SYSCTL_INT(_hw, OID_AUTO, lazy_fpu_switch, CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
224    &lazy_fpu_switch, 0,
225    "Lazily load FPU context after context switch");
226
227#ifdef CPU_ENABLE_SSE
228int use_xsave;
229uint64_t xsave_mask;
230#endif
231static	uma_zone_t fpu_save_area_zone;
232static	union savefpu *npx_initialstate;
233
234#ifdef CPU_ENABLE_SSE
235struct xsave_area_elm_descr {
236	u_int	offset;
237	u_int	size;
238} *xsave_area_desc;
239
240static int use_xsaveopt;
241#endif
242
243static	volatile u_int		npx_traps_while_probing;
244
245alias_for_inthand_t probetrap;
246__asm("								\n\
247	.text							\n\
248	.p2align 2,0x90						\n\
249	.type	" __XSTRING(CNAME(probetrap)) ",@function	\n\
250" __XSTRING(CNAME(probetrap)) ":				\n\
251	ss							\n\
252	incl	" __XSTRING(CNAME(npx_traps_while_probing)) "	\n\
253	fnclex							\n\
254	iret							\n\
255");
256
257/*
258 * Determine if an FPU is present and how to use it.
259 */
260static int
261npx_probe(void)
262{
263	struct gate_descriptor save_idt_npxtrap;
264	u_short control, status;
265
266	/*
267	 * Modern CPUs all have an FPU that uses the INT16 interface
268	 * and provide a simple way to verify that, so handle the
269	 * common case right away.
270	 */
271	if (cpu_feature & CPUID_FPU) {
272		hw_float = 1;
273		return (1);
274	}
275
276	save_idt_npxtrap = idt[IDT_MF];
277	setidt(IDT_MF, probetrap, SDT_SYS386TGT, SEL_KPL,
278	    GSEL(GCODE_SEL, SEL_KPL));
279
280	/*
281	 * Don't trap while we're probing.
282	 */
283	stop_emulating();
284
285	/*
286	 * Finish resetting the coprocessor, if any.  If there is an error
287	 * pending, then we may get a bogus IRQ13, but npx_intr() will handle
288	 * it OK.  Bogus halts have never been observed, but we enabled
289	 * IRQ13 and cleared the BUSY# latch early to handle them anyway.
290	 */
291	fninit();
292
293	/*
294	 * Don't use fwait here because it might hang.
295	 * Don't use fnop here because it usually hangs if there is no FPU.
296	 */
297	DELAY(1000);		/* wait for any IRQ13 */
298#ifdef DIAGNOSTIC
299	if (npx_traps_while_probing != 0)
300		printf("fninit caused %u bogus npx trap(s)\n",
301		       npx_traps_while_probing);
302#endif
303	/*
304	 * Check for a status of mostly zero.
305	 */
306	status = 0x5a5a;
307	fnstsw(&status);
308	if ((status & 0xb8ff) == 0) {
309		/*
310		 * Good, now check for a proper control word.
311		 */
312		control = 0x5a5a;
313		fnstcw(&control);
314		if ((control & 0x1f3f) == 0x033f) {
315			/*
316			 * We have an npx, now divide by 0 to see if exception
317			 * 16 works.
318			 */
319			control &= ~(1 << 2);	/* enable divide by 0 trap */
320			fldcw(control);
321#ifdef FPU_ERROR_BROKEN
322			/*
323			 * FPU error signal doesn't work on some CPU
324			 * accelerator board.
325			 */
326			hw_float = 1;
327			return (1);
328#endif
329			npx_traps_while_probing = 0;
330			fp_divide_by_0();
331			if (npx_traps_while_probing != 0) {
332				/*
333				 * Good, exception 16 works.
334				 */
335				hw_float = 1;
336				goto cleanup;
337			}
338			printf(
339	"FPU does not use exception 16 for error reporting\n");
340			goto cleanup;
341		}
342	}
343
344	/*
345	 * Probe failed.  Floating point simply won't work.
346	 * Notify user and disable FPU/MMX/SSE instruction execution.
347	 */
348	printf("WARNING: no FPU!\n");
349	__asm __volatile("smsw %%ax; orb %0,%%al; lmsw %%ax" : :
350	    "n" (CR0_EM | CR0_MP) : "ax");
351
352cleanup:
353	idt[IDT_MF] = save_idt_npxtrap;
354	return (hw_float);
355}
356
357#ifdef CPU_ENABLE_SSE
358/*
359 * Enable XSAVE if supported and allowed by user.
360 * Calculate the xsave_mask.
361 */
362static void
363npxinit_bsp1(void)
364{
365	u_int cp[4];
366	uint64_t xsave_mask_user;
367
368	TUNABLE_INT_FETCH("hw.lazy_fpu_switch", &lazy_fpu_switch);
369	if (cpu_fxsr && (cpu_feature2 & CPUID2_XSAVE) != 0) {
370		use_xsave = 1;
371		TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
372	}
373	if (!use_xsave)
374		return;
375
376	cpuid_count(0xd, 0x0, cp);
377	xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
378	if ((cp[0] & xsave_mask) != xsave_mask)
379		panic("CPU0 does not support X87 or SSE: %x", cp[0]);
380	xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
381	xsave_mask_user = xsave_mask;
382	TUNABLE_QUAD_FETCH("hw.xsave_mask", &xsave_mask_user);
383	xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
384	xsave_mask &= xsave_mask_user;
385	if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
386		xsave_mask &= ~XFEATURE_AVX512;
387	if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
388		xsave_mask &= ~XFEATURE_MPX;
389
390	cpuid_count(0xd, 0x1, cp);
391	if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0)
392		use_xsaveopt = 1;
393}
394#endif
395/*
396
397 * Calculate the fpu save area size.
398 */
399static void
400npxinit_bsp2(void)
401{
402#ifdef CPU_ENABLE_SSE
403	u_int cp[4];
404
405	if (use_xsave) {
406		cpuid_count(0xd, 0x0, cp);
407		cpu_max_ext_state_size = cp[1];
408
409		/*
410		 * Reload the cpu_feature2, since we enabled OSXSAVE.
411		 */
412		do_cpuid(1, cp);
413		cpu_feature2 = cp[2];
414	} else
415#endif
416		cpu_max_ext_state_size = sizeof(union savefpu);
417}
418
419/*
420 * Initialize floating point unit.
421 */
422void
423npxinit(bool bsp)
424{
425	static union savefpu dummy;
426	register_t saveintr;
427#ifdef CPU_ENABLE_SSE
428	u_int mxcsr;
429#endif
430	u_short control;
431
432	if (bsp) {
433		if (!npx_probe())
434			return;
435#ifdef CPU_ENABLE_SSE
436		npxinit_bsp1();
437#endif
438	}
439
440#ifdef CPU_ENABLE_SSE
441	if (use_xsave) {
442		load_cr4(rcr4() | CR4_XSAVE);
443		load_xcr(XCR0, xsave_mask);
444	}
445#endif
446
447	/*
448	 * XCR0 shall be set up before CPU can report the save area size.
449	 */
450	if (bsp)
451		npxinit_bsp2();
452
453	/*
454	 * fninit has the same h/w bugs as fnsave.  Use the detoxified
455	 * fnsave to throw away any junk in the fpu.  fpusave() initializes
456	 * the fpu.
457	 *
458	 * It is too early for critical_enter() to work on AP.
459	 */
460	saveintr = intr_disable();
461	stop_emulating();
462#ifdef CPU_ENABLE_SSE
463	if (cpu_fxsr)
464		fninit();
465	else
466#endif
467		fnsave(&dummy);
468	control = __INITIAL_NPXCW__;
469	fldcw(control);
470#ifdef CPU_ENABLE_SSE
471	if (cpu_fxsr) {
472		mxcsr = __INITIAL_MXCSR__;
473		ldmxcsr(mxcsr);
474	}
475#endif
476	start_emulating();
477	intr_restore(saveintr);
478}
479
480/*
481 * On the boot CPU we generate a clean state that is used to
482 * initialize the floating point unit when it is first used by a
483 * process.
484 */
485static void
486npxinitstate(void *arg __unused)
487{
488	register_t saveintr;
489#ifdef CPU_ENABLE_SSE
490	int cp[4], i, max_ext_n;
491#endif
492
493	if (!hw_float)
494		return;
495
496	npx_initialstate = malloc(cpu_max_ext_state_size, M_DEVBUF,
497	    M_WAITOK | M_ZERO);
498	saveintr = intr_disable();
499	stop_emulating();
500
501	fpusave(npx_initialstate);
502#ifdef CPU_ENABLE_SSE
503	if (cpu_fxsr) {
504		if (npx_initialstate->sv_xmm.sv_env.en_mxcsr_mask)
505			cpu_mxcsr_mask =
506			    npx_initialstate->sv_xmm.sv_env.en_mxcsr_mask;
507		else
508			cpu_mxcsr_mask = 0xFFBF;
509
510		/*
511		 * The fninit instruction does not modify XMM
512		 * registers or x87 registers (MM/ST).  The fpusave
513		 * call dumped the garbage contained in the registers
514		 * after reset to the initial state saved.  Clear XMM
515		 * and x87 registers file image to make the startup
516		 * program state and signal handler XMM/x87 register
517		 * content predictable.
518		 */
519		bzero(npx_initialstate->sv_xmm.sv_fp,
520		    sizeof(npx_initialstate->sv_xmm.sv_fp));
521		bzero(npx_initialstate->sv_xmm.sv_xmm,
522		    sizeof(npx_initialstate->sv_xmm.sv_xmm));
523	} else
524#endif
525		bzero(npx_initialstate->sv_87.sv_ac,
526		    sizeof(npx_initialstate->sv_87.sv_ac));
527
528#ifdef CPU_ENABLE_SSE
529	/*
530	 * Create a table describing the layout of the CPU Extended
531	 * Save Area.
532	 */
533	if (use_xsave) {
534		if (xsave_mask >> 32 != 0)
535			max_ext_n = fls(xsave_mask >> 32) + 32;
536		else
537			max_ext_n = fls(xsave_mask);
538		xsave_area_desc = malloc(max_ext_n * sizeof(struct
539		    xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
540		/* x87 state */
541		xsave_area_desc[0].offset = 0;
542		xsave_area_desc[0].size = 160;
543		/* XMM */
544		xsave_area_desc[1].offset = 160;
545		xsave_area_desc[1].size = 288 - 160;
546
547		for (i = 2; i < max_ext_n; i++) {
548			cpuid_count(0xd, i, cp);
549			xsave_area_desc[i].offset = cp[1];
550			xsave_area_desc[i].size = cp[0];
551		}
552	}
553#endif
554
555	fpu_save_area_zone = uma_zcreate("FPU_save_area",
556	    cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
557	    XSAVE_AREA_ALIGN - 1, 0);
558
559	start_emulating();
560	intr_restore(saveintr);
561}
562SYSINIT(npxinitstate, SI_SUB_DRIVERS, SI_ORDER_ANY, npxinitstate, NULL);
563
564/*
565 * Free coprocessor (if we have it).
566 */
567void
568npxexit(struct thread *td)
569{
570
571	critical_enter();
572	if (curthread == PCPU_GET(fpcurthread)) {
573		stop_emulating();
574		fpusave(curpcb->pcb_save);
575		start_emulating();
576		PCPU_SET(fpcurthread, NULL);
577	}
578	critical_exit();
579#ifdef NPX_DEBUG
580	if (hw_float) {
581		u_int	masked_exceptions;
582
583		masked_exceptions = GET_FPU_CW(td) & GET_FPU_SW(td) & 0x7f;
584		/*
585		 * Log exceptions that would have trapped with the old
586		 * control word (overflow, divide by 0, and invalid operand).
587		 */
588		if (masked_exceptions & 0x0d)
589			log(LOG_ERR,
590	"pid %d (%s) exited with masked floating point exceptions 0x%02x\n",
591			    td->td_proc->p_pid, td->td_proc->p_comm,
592			    masked_exceptions);
593	}
594#endif
595}
596
597int
598npxformat(void)
599{
600
601	if (!hw_float)
602		return (_MC_FPFMT_NODEV);
603#ifdef	CPU_ENABLE_SSE
604	if (cpu_fxsr)
605		return (_MC_FPFMT_XMM);
606#endif
607	return (_MC_FPFMT_387);
608}
609
610/*
611 * The following mechanism is used to ensure that the FPE_... value
612 * that is passed as a trapcode to the signal handler of the user
613 * process does not have more than one bit set.
614 *
615 * Multiple bits may be set if the user process modifies the control
616 * word while a status word bit is already set.  While this is a sign
617 * of bad coding, we have no choise than to narrow them down to one
618 * bit, since we must not send a trapcode that is not exactly one of
619 * the FPE_ macros.
620 *
621 * The mechanism has a static table with 127 entries.  Each combination
622 * of the 7 FPU status word exception bits directly translates to a
623 * position in this table, where a single FPE_... value is stored.
624 * This FPE_... value stored there is considered the "most important"
625 * of the exception bits and will be sent as the signal code.  The
626 * precedence of the bits is based upon Intel Document "Numerical
627 * Applications", Chapter "Special Computational Situations".
628 *
629 * The macro to choose one of these values does these steps: 1) Throw
630 * away status word bits that cannot be masked.  2) Throw away the bits
631 * currently masked in the control word, assuming the user isn't
632 * interested in them anymore.  3) Reinsert status word bit 7 (stack
633 * fault) if it is set, which cannot be masked but must be presered.
634 * 4) Use the remaining bits to point into the trapcode table.
635 *
636 * The 6 maskable bits in order of their preference, as stated in the
637 * above referenced Intel manual:
638 * 1  Invalid operation (FP_X_INV)
639 * 1a   Stack underflow
640 * 1b   Stack overflow
641 * 1c   Operand of unsupported format
642 * 1d   SNaN operand.
643 * 2  QNaN operand (not an exception, irrelavant here)
644 * 3  Any other invalid-operation not mentioned above or zero divide
645 *      (FP_X_INV, FP_X_DZ)
646 * 4  Denormal operand (FP_X_DNML)
647 * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
648 * 6  Inexact result (FP_X_IMP)
649 */
650static char fpetable[128] = {
651	0,
652	FPE_FLTINV,	/*  1 - INV */
653	FPE_FLTUND,	/*  2 - DNML */
654	FPE_FLTINV,	/*  3 - INV | DNML */
655	FPE_FLTDIV,	/*  4 - DZ */
656	FPE_FLTINV,	/*  5 - INV | DZ */
657	FPE_FLTDIV,	/*  6 - DNML | DZ */
658	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
659	FPE_FLTOVF,	/*  8 - OFL */
660	FPE_FLTINV,	/*  9 - INV | OFL */
661	FPE_FLTUND,	/*  A - DNML | OFL */
662	FPE_FLTINV,	/*  B - INV | DNML | OFL */
663	FPE_FLTDIV,	/*  C - DZ | OFL */
664	FPE_FLTINV,	/*  D - INV | DZ | OFL */
665	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
666	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
667	FPE_FLTUND,	/* 10 - UFL */
668	FPE_FLTINV,	/* 11 - INV | UFL */
669	FPE_FLTUND,	/* 12 - DNML | UFL */
670	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
671	FPE_FLTDIV,	/* 14 - DZ | UFL */
672	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
673	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
674	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
675	FPE_FLTOVF,	/* 18 - OFL | UFL */
676	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
677	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
678	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
679	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
680	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
681	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
682	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
683	FPE_FLTRES,	/* 20 - IMP */
684	FPE_FLTINV,	/* 21 - INV | IMP */
685	FPE_FLTUND,	/* 22 - DNML | IMP */
686	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
687	FPE_FLTDIV,	/* 24 - DZ | IMP */
688	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
689	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
690	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
691	FPE_FLTOVF,	/* 28 - OFL | IMP */
692	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
693	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
694	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
695	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
696	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
697	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
698	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
699	FPE_FLTUND,	/* 30 - UFL | IMP */
700	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
701	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
702	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
703	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
704	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
705	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
706	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
707	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
708	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
709	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
710	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
711	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
712	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
713	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
714	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
715	FPE_FLTSUB,	/* 40 - STK */
716	FPE_FLTSUB,	/* 41 - INV | STK */
717	FPE_FLTUND,	/* 42 - DNML | STK */
718	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
719	FPE_FLTDIV,	/* 44 - DZ | STK */
720	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
721	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
722	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
723	FPE_FLTOVF,	/* 48 - OFL | STK */
724	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
725	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
726	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
727	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
728	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
729	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
730	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
731	FPE_FLTUND,	/* 50 - UFL | STK */
732	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
733	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
734	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
735	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
736	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
737	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
738	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
739	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
740	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
741	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
742	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
743	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
744	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
745	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
746	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
747	FPE_FLTRES,	/* 60 - IMP | STK */
748	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
749	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
750	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
751	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
752	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
753	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
754	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
755	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
756	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
757	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
758	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
759	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
760	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
761	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
762	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
763	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
764	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
765	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
766	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
767	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
768	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
769	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
770	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
771	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
772	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
773	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
774	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
775	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
776	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
777	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
778	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
779};
780
781/*
782 * Read the FP status and control words, then generate si_code value
783 * for SIGFPE.  The error code chosen will be one of the
784 * FPE_... macros.  It will be sent as the second argument to old
785 * BSD-style signal handlers and as "siginfo_t->si_code" (second
786 * argument) to SA_SIGINFO signal handlers.
787 *
788 * Some time ago, we cleared the x87 exceptions with FNCLEX there.
789 * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
790 * usermode code which understands the FPU hardware enough to enable
791 * the exceptions, can also handle clearing the exception state in the
792 * handler.  The only consequence of not clearing the exception is the
793 * rethrow of the SIGFPE on return from the signal handler and
794 * reexecution of the corresponding instruction.
795 *
796 * For XMM traps, the exceptions were never cleared.
797 */
798int
799npxtrap_x87(void)
800{
801	u_short control, status;
802
803	if (!hw_float) {
804		printf(
805	"npxtrap_x87: fpcurthread = %p, curthread = %p, hw_float = %d\n",
806		       PCPU_GET(fpcurthread), curthread, hw_float);
807		panic("npxtrap from nowhere");
808	}
809	critical_enter();
810
811	/*
812	 * Interrupt handling (for another interrupt) may have pushed the
813	 * state to memory.  Fetch the relevant parts of the state from
814	 * wherever they are.
815	 */
816	if (PCPU_GET(fpcurthread) != curthread) {
817		control = GET_FPU_CW(curthread);
818		status = GET_FPU_SW(curthread);
819	} else {
820		fnstcw(&control);
821		fnstsw(&status);
822	}
823	critical_exit();
824	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
825}
826
827#ifdef CPU_ENABLE_SSE
828int
829npxtrap_sse(void)
830{
831	u_int mxcsr;
832
833	if (!hw_float) {
834		printf(
835	"npxtrap_sse: fpcurthread = %p, curthread = %p, hw_float = %d\n",
836		       PCPU_GET(fpcurthread), curthread, hw_float);
837		panic("npxtrap from nowhere");
838	}
839	critical_enter();
840	if (PCPU_GET(fpcurthread) != curthread)
841		mxcsr = curthread->td_pcb->pcb_save->sv_xmm.sv_env.en_mxcsr;
842	else
843		stmxcsr(&mxcsr);
844	critical_exit();
845	return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
846}
847#endif
848
849static void
850restore_npx_curthread(struct thread *td, struct pcb *pcb)
851{
852
853	/*
854	 * Record new context early in case frstor causes a trap.
855	 */
856	PCPU_SET(fpcurthread, td);
857
858	stop_emulating();
859#ifdef CPU_ENABLE_SSE
860	if (cpu_fxsr)
861		fpu_clean_state();
862#endif
863
864	if ((pcb->pcb_flags & PCB_NPXINITDONE) == 0) {
865		/*
866		 * This is the first time this thread has used the FPU or
867		 * the PCB doesn't contain a clean FPU state.  Explicitly
868		 * load an initial state.
869		 *
870		 * We prefer to restore the state from the actual save
871		 * area in PCB instead of directly loading from
872		 * npx_initialstate, to ignite the XSAVEOPT
873		 * tracking engine.
874		 */
875		bcopy(npx_initialstate, pcb->pcb_save, cpu_max_ext_state_size);
876		fpurstor(pcb->pcb_save);
877		if (pcb->pcb_initial_npxcw != __INITIAL_NPXCW__)
878			fldcw(pcb->pcb_initial_npxcw);
879		pcb->pcb_flags |= PCB_NPXINITDONE;
880		if (PCB_USER_FPU(pcb))
881			pcb->pcb_flags |= PCB_NPXUSERINITDONE;
882	} else {
883		fpurstor(pcb->pcb_save);
884	}
885}
886
887/*
888 * Implement device not available (DNA) exception
889 *
890 * It would be better to switch FP context here (if curthread != fpcurthread)
891 * and not necessarily for every context switch, but it is too hard to
892 * access foreign pcb's.
893 */
894int
895npxdna(void)
896{
897	struct thread *td;
898
899	if (!hw_float)
900		return (0);
901	td = curthread;
902	critical_enter();
903	if (__predict_false(PCPU_GET(fpcurthread) == td)) {
904		/*
905		 * Some virtual machines seems to set %cr0.TS at
906		 * arbitrary moments.  Silently clear the TS bit
907		 * regardless of the eager/lazy FPU context switch
908		 * mode.
909		 */
910		stop_emulating();
911	} else {
912		if (__predict_false(PCPU_GET(fpcurthread) != NULL)) {
913			printf(
914		    "npxdna: fpcurthread = %p (%d), curthread = %p (%d)\n",
915			    PCPU_GET(fpcurthread),
916			    PCPU_GET(fpcurthread)->td_proc->p_pid,
917			    td, td->td_proc->p_pid);
918			panic("npxdna");
919		}
920		restore_npx_curthread(td, td->td_pcb);
921	}
922	critical_exit();
923	return (1);
924}
925
926/*
927 * Wrapper for fpusave() called from context switch routines.
928 *
929 * npxsave() must be called with interrupts disabled, so that it clears
930 * fpcurthread atomically with saving the state.  We require callers to do the
931 * disabling, since most callers need to disable interrupts anyway to call
932 * npxsave() atomically with checking fpcurthread.
933 */
934void
935npxsave(addr)
936	union savefpu *addr;
937{
938
939	stop_emulating();
940#ifdef CPU_ENABLE_SSE
941	if (use_xsaveopt)
942		xsaveopt((char *)addr, xsave_mask);
943	else
944#endif
945		fpusave(addr);
946}
947
948void npxswitch(struct thread *td, struct pcb *pcb);
949void
950npxswitch(struct thread *td, struct pcb *pcb)
951{
952
953	if (lazy_fpu_switch || (td->td_pflags & TDP_KTHREAD) != 0 ||
954	    !PCB_USER_FPU(pcb)) {
955		start_emulating();
956		PCPU_SET(fpcurthread, NULL);
957	} else if (PCPU_GET(fpcurthread) != td) {
958		restore_npx_curthread(td, pcb);
959	}
960}
961
962/*
963 * Unconditionally save the current co-processor state across suspend and
964 * resume.
965 */
966void
967npxsuspend(union savefpu *addr)
968{
969	register_t cr0;
970
971	if (!hw_float)
972		return;
973	if (PCPU_GET(fpcurthread) == NULL) {
974		bcopy(npx_initialstate, addr, cpu_max_ext_state_size);
975		return;
976	}
977	cr0 = rcr0();
978	stop_emulating();
979	fpusave(addr);
980	load_cr0(cr0);
981}
982
983void
984npxresume(union savefpu *addr)
985{
986	register_t cr0;
987
988	if (!hw_float)
989		return;
990
991	cr0 = rcr0();
992	npxinit(false);
993	stop_emulating();
994	fpurstor(addr);
995	load_cr0(cr0);
996}
997
998void
999npxdrop(void)
1000{
1001	struct thread *td;
1002
1003	/*
1004	 * Discard pending exceptions in the !cpu_fxsr case so that unmasked
1005	 * ones don't cause a panic on the next frstor.
1006	 */
1007#ifdef CPU_ENABLE_SSE
1008	if (!cpu_fxsr)
1009#endif
1010		fnclex();
1011
1012	td = PCPU_GET(fpcurthread);
1013	KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
1014	CRITICAL_ASSERT(td);
1015	PCPU_SET(fpcurthread, NULL);
1016	td->td_pcb->pcb_flags &= ~PCB_NPXINITDONE;
1017	start_emulating();
1018}
1019
1020/*
1021 * Get the user state of the FPU into pcb->pcb_user_save without
1022 * dropping ownership (if possible).  It returns the FPU ownership
1023 * status.
1024 */
1025int
1026npxgetregs(struct thread *td)
1027{
1028	struct pcb *pcb;
1029#ifdef CPU_ENABLE_SSE
1030	uint64_t *xstate_bv, bit;
1031	char *sa;
1032	int max_ext_n, i;
1033#endif
1034	int owned;
1035
1036	if (!hw_float)
1037		return (_MC_FPOWNED_NONE);
1038
1039	pcb = td->td_pcb;
1040	critical_enter();
1041	if ((pcb->pcb_flags & PCB_NPXINITDONE) == 0) {
1042		bcopy(npx_initialstate, get_pcb_user_save_pcb(pcb),
1043		    cpu_max_ext_state_size);
1044		SET_FPU_CW(get_pcb_user_save_pcb(pcb), pcb->pcb_initial_npxcw);
1045		npxuserinited(td);
1046		critical_exit();
1047		return (_MC_FPOWNED_PCB);
1048	}
1049	if (td == PCPU_GET(fpcurthread)) {
1050		fpusave(get_pcb_user_save_pcb(pcb));
1051#ifdef CPU_ENABLE_SSE
1052		if (!cpu_fxsr)
1053#endif
1054			/*
1055			 * fnsave initializes the FPU and destroys whatever
1056			 * context it contains.  Make sure the FPU owner
1057			 * starts with a clean state next time.
1058			 */
1059			npxdrop();
1060		owned = _MC_FPOWNED_FPU;
1061	} else {
1062		owned = _MC_FPOWNED_PCB;
1063	}
1064#ifdef CPU_ENABLE_SSE
1065	if (use_xsave) {
1066		/*
1067		 * Handle partially saved state.
1068		 */
1069		sa = (char *)get_pcb_user_save_pcb(pcb);
1070		xstate_bv = (uint64_t *)(sa + sizeof(union savefpu) +
1071		    offsetof(struct xstate_hdr, xstate_bv));
1072		if (xsave_mask >> 32 != 0)
1073			max_ext_n = fls(xsave_mask >> 32) + 32;
1074		else
1075			max_ext_n = fls(xsave_mask);
1076		for (i = 0; i < max_ext_n; i++) {
1077			bit = 1ULL << i;
1078			if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
1079				continue;
1080			bcopy((char *)npx_initialstate +
1081			    xsave_area_desc[i].offset,
1082			    sa + xsave_area_desc[i].offset,
1083			    xsave_area_desc[i].size);
1084			*xstate_bv |= bit;
1085		}
1086	}
1087#endif
1088	critical_exit();
1089	return (owned);
1090}
1091
1092void
1093npxuserinited(struct thread *td)
1094{
1095	struct pcb *pcb;
1096
1097	CRITICAL_ASSERT(td);
1098	pcb = td->td_pcb;
1099	if (PCB_USER_FPU(pcb))
1100		pcb->pcb_flags |= PCB_NPXINITDONE;
1101	pcb->pcb_flags |= PCB_NPXUSERINITDONE;
1102}
1103
1104#ifdef CPU_ENABLE_SSE
1105int
1106npxsetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
1107{
1108	struct xstate_hdr *hdr, *ehdr;
1109	size_t len, max_len;
1110	uint64_t bv;
1111
1112	/* XXXKIB should we clear all extended state in xstate_bv instead ? */
1113	if (xfpustate == NULL)
1114		return (0);
1115	if (!use_xsave)
1116		return (EOPNOTSUPP);
1117
1118	len = xfpustate_size;
1119	if (len < sizeof(struct xstate_hdr))
1120		return (EINVAL);
1121	max_len = cpu_max_ext_state_size - sizeof(union savefpu);
1122	if (len > max_len)
1123		return (EINVAL);
1124
1125	ehdr = (struct xstate_hdr *)xfpustate;
1126	bv = ehdr->xstate_bv;
1127
1128	/*
1129	 * Avoid #gp.
1130	 */
1131	if (bv & ~xsave_mask)
1132		return (EINVAL);
1133
1134	hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
1135
1136	hdr->xstate_bv = bv;
1137	bcopy(xfpustate + sizeof(struct xstate_hdr),
1138	    (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
1139
1140	return (0);
1141}
1142#endif
1143
1144int
1145npxsetregs(struct thread *td, union savefpu *addr, char *xfpustate,
1146	size_t xfpustate_size)
1147{
1148	struct pcb *pcb;
1149#ifdef CPU_ENABLE_SSE
1150	int error;
1151#endif
1152
1153	if (!hw_float)
1154		return (ENXIO);
1155
1156#ifdef CPU_ENABLE_SSE
1157	if (cpu_fxsr)
1158		addr->sv_xmm.sv_env.en_mxcsr &= cpu_mxcsr_mask;
1159#endif
1160	pcb = td->td_pcb;
1161	error = 0;
1162	critical_enter();
1163	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
1164#ifdef CPU_ENABLE_SSE
1165		error = npxsetxstate(td, xfpustate, xfpustate_size);
1166#endif
1167		if (error == 0) {
1168#ifdef CPU_ENABLE_SSE
1169			if (!cpu_fxsr)
1170#endif
1171				fnclex();	/* As in npxdrop(). */
1172			bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
1173			fpurstor(get_pcb_user_save_td(td));
1174			pcb->pcb_flags |= PCB_NPXUSERINITDONE | PCB_NPXINITDONE;
1175		}
1176	} else {
1177#ifdef CPU_ENABLE_SSE
1178		error = npxsetxstate(td, xfpustate, xfpustate_size);
1179#endif
1180		if (error == 0) {
1181			bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
1182			npxuserinited(td);
1183		}
1184	}
1185	critical_exit();
1186	return (error);
1187}
1188
1189static void
1190fpusave(addr)
1191	union savefpu *addr;
1192{
1193
1194#ifdef CPU_ENABLE_SSE
1195	if (use_xsave)
1196		xsave((char *)addr, xsave_mask);
1197	else if (cpu_fxsr)
1198		fxsave(addr);
1199	else
1200#endif
1201		fnsave(addr);
1202}
1203
1204#ifdef CPU_ENABLE_SSE
1205/*
1206 * On AuthenticAMD processors, the fxrstor instruction does not restore
1207 * the x87's stored last instruction pointer, last data pointer, and last
1208 * opcode values, except in the rare case in which the exception summary
1209 * (ES) bit in the x87 status word is set to 1.
1210 *
1211 * In order to avoid leaking this information across processes, we clean
1212 * these values by performing a dummy load before executing fxrstor().
1213 */
1214static void
1215fpu_clean_state(void)
1216{
1217	static float dummy_variable = 0.0;
1218	u_short status;
1219
1220	/*
1221	 * Clear the ES bit in the x87 status word if it is currently
1222	 * set, in order to avoid causing a fault in the upcoming load.
1223	 */
1224	fnstsw(&status);
1225	if (status & 0x80)
1226		fnclex();
1227
1228	/*
1229	 * Load the dummy variable into the x87 stack.  This mangles
1230	 * the x87 stack, but we don't care since we're about to call
1231	 * fxrstor() anyway.
1232	 */
1233	__asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
1234}
1235#endif /* CPU_ENABLE_SSE */
1236
1237static void
1238fpurstor(union savefpu *addr)
1239{
1240
1241#ifdef CPU_ENABLE_SSE
1242	if (use_xsave)
1243		xrstor((char *)addr, xsave_mask);
1244	else if (cpu_fxsr)
1245		fxrstor(addr);
1246	else
1247#endif
1248		frstor(addr);
1249}
1250
1251#ifdef DEV_ISA
1252/*
1253 * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
1254 */
1255static struct isa_pnp_id npxisa_ids[] = {
1256	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
1257	{ 0 }
1258};
1259
1260static int
1261npxisa_probe(device_t dev)
1262{
1263	int result;
1264	if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, npxisa_ids)) <= 0) {
1265		device_quiet(dev);
1266	}
1267	return(result);
1268}
1269
1270static int
1271npxisa_attach(device_t dev)
1272{
1273	return (0);
1274}
1275
1276static device_method_t npxisa_methods[] = {
1277	/* Device interface */
1278	DEVMETHOD(device_probe,		npxisa_probe),
1279	DEVMETHOD(device_attach,	npxisa_attach),
1280	DEVMETHOD(device_detach,	bus_generic_detach),
1281	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1282	DEVMETHOD(device_suspend,	bus_generic_suspend),
1283	DEVMETHOD(device_resume,	bus_generic_resume),
1284
1285	{ 0, 0 }
1286};
1287
1288static driver_t npxisa_driver = {
1289	"npxisa",
1290	npxisa_methods,
1291	1,			/* no softc */
1292};
1293
1294static devclass_t npxisa_devclass;
1295
1296DRIVER_MODULE(npxisa, isa, npxisa_driver, npxisa_devclass, 0, 0);
1297#ifndef PC98
1298DRIVER_MODULE(npxisa, acpi, npxisa_driver, npxisa_devclass, 0, 0);
1299#endif
1300#endif /* DEV_ISA */
1301
1302static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
1303    "Kernel contexts for FPU state");
1304
1305#define	FPU_KERN_CTX_NPXINITDONE 0x01
1306#define	FPU_KERN_CTX_DUMMY	 0x02
1307
1308struct fpu_kern_ctx {
1309	union savefpu *prev;
1310	uint32_t flags;
1311	char hwstate1[];
1312};
1313
1314struct fpu_kern_ctx *
1315fpu_kern_alloc_ctx(u_int flags)
1316{
1317	struct fpu_kern_ctx *res;
1318	size_t sz;
1319
1320	sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN +
1321	    cpu_max_ext_state_size;
1322	res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
1323	    M_NOWAIT : M_WAITOK) | M_ZERO);
1324	return (res);
1325}
1326
1327void
1328fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
1329{
1330
1331	/* XXXKIB clear the memory ? */
1332	free(ctx, M_FPUKERN_CTX);
1333}
1334
1335static union savefpu *
1336fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
1337{
1338	vm_offset_t p;
1339
1340	p = (vm_offset_t)&ctx->hwstate1;
1341	p = roundup2(p, XSAVE_AREA_ALIGN);
1342	return ((union savefpu *)p);
1343}
1344
1345int
1346fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
1347{
1348	struct pcb *pcb;
1349
1350	if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
1351		ctx->flags = FPU_KERN_CTX_DUMMY;
1352		return (0);
1353	}
1354	pcb = td->td_pcb;
1355	critical_enter();
1356	KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
1357	    get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
1358	ctx->flags = 0;
1359	if ((pcb->pcb_flags & PCB_NPXINITDONE) != 0)
1360		ctx->flags |= FPU_KERN_CTX_NPXINITDONE;
1361	npxexit(td);
1362	ctx->prev = pcb->pcb_save;
1363	pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
1364	pcb->pcb_flags |= PCB_KERNNPX;
1365	pcb->pcb_flags &= ~PCB_NPXINITDONE;
1366	critical_exit();
1367	return (0);
1368}
1369
1370int
1371fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
1372{
1373	struct pcb *pcb;
1374
1375	if (is_fpu_kern_thread(0) && (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
1376		return (0);
1377	pcb = td->td_pcb;
1378	critical_enter();
1379	if (curthread == PCPU_GET(fpcurthread))
1380		npxdrop();
1381	pcb->pcb_save = ctx->prev;
1382	if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
1383		if ((pcb->pcb_flags & PCB_NPXUSERINITDONE) != 0)
1384			pcb->pcb_flags |= PCB_NPXINITDONE;
1385		else
1386			pcb->pcb_flags &= ~PCB_NPXINITDONE;
1387		pcb->pcb_flags &= ~PCB_KERNNPX;
1388	} else {
1389		if ((ctx->flags & FPU_KERN_CTX_NPXINITDONE) != 0)
1390			pcb->pcb_flags |= PCB_NPXINITDONE;
1391		else
1392			pcb->pcb_flags &= ~PCB_NPXINITDONE;
1393		KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
1394	}
1395	critical_exit();
1396	return (0);
1397}
1398
1399int
1400fpu_kern_thread(u_int flags)
1401{
1402
1403	KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
1404	    ("Only kthread may use fpu_kern_thread"));
1405	KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
1406	    ("mangled pcb_save"));
1407	KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
1408
1409	curpcb->pcb_flags |= PCB_KERNNPX;
1410	return (0);
1411}
1412
1413int
1414is_fpu_kern_thread(u_int flags)
1415{
1416
1417	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
1418		return (0);
1419	return ((curpcb->pcb_flags & PCB_KERNNPX) != 0);
1420}
1421
1422/*
1423 * FPU save area alloc/free/init utility routines
1424 */
1425union savefpu *
1426fpu_save_area_alloc(void)
1427{
1428
1429	return (uma_zalloc(fpu_save_area_zone, 0));
1430}
1431
1432void
1433fpu_save_area_free(union savefpu *fsa)
1434{
1435
1436	uma_zfree(fpu_save_area_zone, fsa);
1437}
1438
1439void
1440fpu_save_area_reset(union savefpu *fsa)
1441{
1442
1443	bcopy(npx_initialstate, fsa, cpu_max_ext_state_size);
1444}
1445